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Abstract

Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles.
The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino
Majorana mass matrix Mν , derived with a type-1 seesaw from a Dirac mass matrix mD and a heavy singlet
neutrino Majorana mass matrix MR. One of its important features, highlighted here, is that there is a
common source of the origin of a nonzero θ13 and the CP violating lepton asymmetry through the imaginary
part of mD. The model predicted CP violation to be maximal for the Dirac type and vanishing for the
Majorana type. We assume strongly hierarchical mass eigenvalues for MR. The leptonic CP asymmetry
parameter εα1 with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N1 (of
mass M1) at a temperature T ∼M1, is what matters here with the lepton asymmetries, originating from the
decays of N2,3, being washed out. The light leptonic and heavy neutrino number densities (normalized to the
entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon
asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three
mass regimes (1) M1 < 109 GeV, (2) 109 GeV < M1 < 1012 GeV and (3) M1 > 1012 GeV are numerically
worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on
the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit
points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments,
successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos
with a nonzero θ13 playing a crucial role. However, the other possibility of an inverted mass ordering for the
same mass regime, though disfavored, cannot be excluded. A discussion is also given on the sensitivity of
our result to the masses M2,3 of the heavier neutrinos N2,3.
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1 Introduction

Much effort has already been made towards understanding the origin of the baryon asymmetry of the
universe YB = (nB − nB̄)/s ' (8.7± 0.1)× 10−11 [1] – the number density (nB) of baryons minus that (nB̄)
of antibaryons normalized to the entropy density s. A comprehensive review with references may be found
in Ref. [2]. Various possible mechanisms have been considered for this purpose, e.g. GUT baryogenesis,
electroweak baryogenesis, the Affleck-Dine mechanism and baryogenesis via leptogenesis. We concentrate on
the last-mentioned possibility [3–8]. Here a CP odd particle-antiparticle asymmetry is first generated at a
high scale in the leptonic sector; that is thereafter converted into a baryon asymmetry by sphaleron processes
during the electroweak phase transition. In the most popular extension of the Standard Model (SM) for
generating light neutrino masses, three1 heavy right-chiral (RH) singlet neutrinos are added to induce tiny
neutrino masses and their mixing angles through the type-1 seesaw mechanism [9–12]. The complex Yukawa
couplings fNiα, that connect those singlet RH neutrinos Ni to the SM-doublet left-chiral leptons of flavor α,
generate the necessary CP violation in the decays of those heavy RH neutrinos into the Higgs scalar plus the
SM leptons. The occurrence of Majorana mass terms for the heavy neutrinos in the Lagrangian provides the
required lepton nonconservation. The rate of interaction with those Yukawa couplings being smaller than
the Hubble expansion rate, departure from thermal equilibrium ensues. Hence all the Sakarav conditions [13]
are fulfilled for generating YB . The present work is devoted to a quantitative study of the origin of YB via
leptogenesis in a model [14,15] of neutrino masses with complex scaling – proposed by some of us. As a step
towards that, we shall summarize the relevant features of the concerned model in the next Sec. 2.

First, let us establish our notation and convention by choosing without loss of generality the Weak Basis
(sometimes called the leptogenesis basis [16]) in which the 3 × 3 mass matrices, not only of the charged
leptons but also of the heavy RH neutrinos, are diagonal with nondegenerate real and positive entries, e.g.
MR = diag (M1,M2,M3), Mi (i = 1, 2, 3) > 0. We shall work in the strongly hierarchical scenario in the
right-chiral neutrino sector in which those masses will be taken to be widely spaced. Specifically, we assume
that M1 << M2 << M3. A crucial input into these scenarios is the flavor structure of the neutrino Dirac
mass matrix mD. The latter appears in the neutrino mass terms of the Lagrangian as

−Lν,Nmass = N̄iR(mD)iανLα +
1

2
N̄iR(MR)iδijN

C
jR + h.c. (1.1)

with NC
j = CN̄T

j . The effective light neutrino Majorana mass matrix Mν is then given by the standard
seesaw result [9–12]

Mν = −mT
DM

−1
R mD. (1.2)

This Mν enters the effective low energy neutrino mass term in the Lagrangian as

−Lνmass =
1

2
¯νCLα(Mν)αβνLβ + h.c. (1.3)

It is a complex symmetric 3 × 3 matrix (M∗ν 6= Mν = MT
ν ) which can be put into a diagonal form by a

similarity transformation with a unitary matrix U :

UTMνU = Md
ν ≡ diag (m1,m2,m3) (1.4)

with mi (i = 1, 2, 3) taken to be nonzero, real and small positive masses < O(eV). In our Weak Basis we
can take U as

U = UPMNS ≡

 c12c13 ei
α
2 s12c13 s13e

−i(δ− β2 )

−s12c23 − c12s23s13e
iδ ei

α
2 (c12c23 − s12s13s23e

iδ) c13s23e
i β2

s12s23 − c12s13c23e
iδ ei

α
2 (−c12s23 − s12s13c23e

iδ) c13c23e
i β2

 (1.5)

with cij ≡ cos θij , sij ≡ sin θij and θij = [0, π/2]. CP violation enters here through nonzero values of the
Dirac phase δ and of the Majorana phases α, β with δ, α, β = [0, 2π]. We follow the PDG convention [17] on
these angles and phases except that we denote the Majorana phases by α and β.

In the main body of the paper we calculate the CP asymmetry originating from the decays Ni → /Lαφ,

/L
C
αφ
† where /Lα and φ are the respective fields of the SM left-chiral lepton doublet of flavor α and the

Higgs doublet. This is done in terms of the imaginary parts of appropriately defined quartic products of
the neutrino Dirac mass matrix mD and its hermitian conjugate m†D, as well as of an explicit function
of the variable xij ≡ M2

j /M
2
i . Clearly, the calculation depends sensitively on the flavor structure of mD

and hence on the specific neutrino mass model under consideration. The CP asymmetries (and therefore

1This can be done with two heavy RH singlet neutrinos but not with just one.
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leptogenesis as a whole) may be flavor dependent or independent according to the temperature regime in
which the CP violating decays take place. For an evolution down to the electroweak scale, one needs to
solve the corresponding Boltzmann Equations. We therefore consider the Boltzmann evolution equation for
the number density na of a particle of type a (either a right-chiral heavy neutrino Ni or a left-chiral lepton
doublet /Lα) normalized to the photon number density nγ . For this purpose, we take

ηa(z) =
na(z)

nγ(z)
, nγ(z) =

2M3
1

π2z3
(1.6)

as functions of z ≡ M1/T . We rewrite these equations for the variable Ya where

Ya = na/s =
nγ
s
ηa = 1.8g∗sηa, (1.7)

g∗s being the total number of effective and independent massless degrees of freedom at the concerned tem-
perature. The evolution of Ya is studied for different a’s from a temperature of the order of the lightest
right-chiral neutrino mass M1 to that of the electroweak phase transition where sphaleron-induced processes
take place converting the lepton asymmetry into a baryon asymmetry YB .

In pursuing YB , we need to zero in on Y∆λ
where ∆λ = 1

3B − Lλ with B being the baryon number
and Lλ the lepton number of the active flavor λ. The analysis is done numerically but in three different
regimes [7,8] depending on where M1 lies: (1) M1 < 109 GeV where all the lepton flavor are distinctly active,
(2) 109 GeV < M1 < 1012 GeV where e and µ flavors are indistinguishable but the τ -flavor is separately
active and (3) M1 > 1012 GeV where all lepton flavors are indistinguishable. The quantity YB and Y∆λ

are
linearly related but with different numerical coefficients for the three different regimes. In our numerical
analysis, six constraints from experimental and observational data are inputted: the 3σ ranges of the solar
and atmospheric neutrino mass squared differences as well as of the three neutrino mixing angles plus the
cosmological upper bound on the sum of the three light neutrino masses. The analysis is done separately in
each regime for a normal mass ordering (m3 > m2 > m1) as well as for an inverted ordering (m2 > m1 > m3)
of the light neutrinos. The final results are tabulated numerically as well as displayed graphically.

We have already mentioned the content of Section 2. The rest of the paper is organized as follows. In

Section 3 we calculate the CP asymmetry parameters generated in the decays of Ni into /Lαφ and /L
C
αφ
†.

Section 4 contains an algebraic treatment of the Boltzmann evolution equations and of the generation of
the baryon asymmetry YB in the three mass regimes. The numerical analysis that follows is detailed with
a discussion of its consequences in Section 5. Section 6 addresses the possible role played by the heavier
neutrinos N2,3. A summary of our work is given in the last Section 7.

2 Complex scaling with type-I seesaw

A key feature of Mν is the Z2 × Z2 residual symmetry [18] that it possesses. This is an invariance of Mν

under a linear transformation on neutrino fields

νLα → GαβνLβ , (2.1)

i.e. in a matrix notation, with a 3× 3 matrix G,

GTMνG = Mν . (2.2)

One can show [18] that there are two independent matrices G2,3 implementing this invariance and obeying
the unitary diagonalization

G2,3U = Ud2,3, (2.3)

where d2 = diag. (−1, 1−, 1) and d3 = diag. (−1,−1, 1). Some of us have proposed [14] a complex extension
of this symmetry by considering the nonstandard CP transformations

νLα → i(GL)αβγ
0νCLβ , NRi → i(GR)ijγ

0NC
Rj (2.4)

and demanding the invariance relations

G†RmDGL = m∗D, G†RMRG
∗
R = M∗R. (2.5)

Eqs. (1.2) and (2.5) together imply

GTLMνGL = M∗ν (2.6)
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which is our complex-extended invariance statement on the low energy neutrino Majorana mass matrix Mν .
At this point, GL is taken to be [14]

GL = Gscaling
3 =

−1 0 0
0 (1− k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1− k2)(1 + k2)−1

 = (Gscaling3 )T , (2.7)

k being a real scaling factor. This Gscaling
3 is the operative residual symmetry generator for the original

scaling ansatz [19–22]. It now obeys the relation

Gscaling
3 U∗ = Ud̃, (2.8)

where d̃αβ equals ±δαβ and hence admits eight possibilities. Only four of these were shown [14] to be viable
and led independently to the results

tan θ23 = k−1, (2.9)

sinα = sinβ = cos δ = 0. (2.10)

The detailed phenomenological consequences of (2.9) and (2.10) were worked out in Ref. [14]. The most
general Mν , that satisfies

(Gscaling
3 )TMνG

scaling
3 = M∗ν , (2.11)

is given by the complex-extended scaling (CES) form of Mν , namely [14]

MCES
ν =

 x −y1k + iy2k
−1 y1 + iy2

−y1k + iy2k
−1 z1 − wk−1(k2 − 1)− iz2 w − iz2(2k)−1(k2 − 1)

y1 + iy2 w − iz2(2k)−1(k2 − 1) z1 + iz2

 , (2.12)

where x, y1,2, z1,2 and w are real mass dimensional quantities.
Since MR has been taken to be diagonal, the corresponding symmetry generator matrix GR, cf. the

second of Eqs. (2.5), is diagonal with entries ±1, i.e.

GR = diag (±1,±1,±1). (2.13)

Thus there are eight different structures of GR. Correspondingly, from the first relation of (2.5), there could
be eight possible different structures of mD. It can be shown by tedious algebra that all other structures of
GR, except for

GR = diag (−1,−1,−1), (2.14)

are incompatible with scaling symmetry [19]. Thus we take GR of (2.14) as the only viable residual symmetry
of MR. We can now write the first of (2.5) as

mDGL = −m∗D (2.15)

which is really a complex extension of the Joshipura-Rodejohann result2 [23] mDGL = −mD.

The most general form of mD that satisfies (2.15) is

mCES
D =

a b1 + ib2 −b1/k + ib2k
e c1 + ic2 −c1/k + ic2k
f d1 + id2 −d1/k + id2k

 , (2.16)

where a, b1,2, c1,2, d1,2, e and f are nine a priori unknown real mass dimensional quantities apart from the
real, positive, dimensionless k. Using (1.2), MCES

ν of (2.12) obtains with the real mass parameters x, y1,2,
z1,2 and w related to those of (2.16), as given in Table 1. It is noteworthy that whereas mCES

D has ten real
parameters, MCES

ν has only seven.

Table 1: Parameters of MCES
ν in terms of the parameters of mD and MR.

x = −( a
2

M1
+ e2

M2
+ f2

M3
)

y1 = 1
k (ab1M1

+ ec1
M2

+ fd1
M3

)

y2 = k(ab2M1
+ ec2

M2
+ fd2

M3
)

z1 = − 1
k2 (

b21
M1

+
c21
M2

+
d21
M3

) + k2(
b22
M1

+
c22
M2

+
d22
M3

)

z2 = 2b1b2
M1

+ 2c1c2
M2

+ 2d1d2
M3

w = 1
k (

b21
M1

+
c21
M2

+
d21
M3

) + k(
b22
M1

+
c22
M2

+
d22
M3

)

2Those authors followed a different phase convention; they obtained mDGL = mD instead of mDGL = −mD.
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One can count the real parameters, as given in mD of (2.16). Along with the RH neutrino masses M1,
M2, M3, one obtains a set of thirteen real parameters for Mν . In order to reduce the number of parameters
towards attaining the goal of a tractable result, we first use the assumed hierarchical nature of the RH
neutrino masses M1 << M2 << M3. We then take the parameters d1,2, e and f in Table 1 to be of the
same order of magnitude as a, b1,2 and c1,2. That enables us to neglect all terms in Table 1 with M3 in the
denominator. Now we rescale the remaining parameters of Table 1 as follows:

a −→ a′ =
a√
M1

, (2.17)

b1,2 −→ b′1,2 =
b1,2√
M1

, (2.18)

c1,2 −→ c′1,2 =
c1,2√
M2

, (2.19)

e −→ e′ =
e√
M2

. (2.20)

Consequently, the entries of Table 1 can be written in terms of the rescaled parameters as in Table 2. We
are now left with a six-dimensional parameter space with the real parameters x, y1,2, z1,2 and w as given in
Table 2. Note that, had we neglected the terms with M2 in the denominator too, we would have been left
with a three dimensional parameter space which would have been in a danger of being overdetermined by
the six experimental and observational constraints mentioned in the Introduction. We shall latter discuss
how to estimate the missing parameters f and d1,2.

Table 2: Parameters of mCES
D in the rescaled version.

x = −(a′
2

+ e′
2
)

y1 = 1
k (a′b′1 + e′c′1)

y2 = −k(a′b′2 + e′c′2)

z1 = − 1
k2 (b′1

2
+ c′1

2
) + k2(b′2

2
+ c′2

2
)

z2 = 2b′1b
′
2 + 2c′1c

′
2

w = 1
k (b′1

2
+ c′1

2
) + k(b′2

2
+ c′2

2
)

Before concluding this section, let us make an important point. In the absence of of any imaginary part
of the matrix mCES

D of (2.16), the seesaw relation (1.2) gives rise to the Generalized Real Scaling form of
Mν , namely [14]

MGRS
ν =

 x −y1k y1

−y1k z1 − wk−1(k2 − 1) w
y1 w z1

 (2.21)

with real mass-dimensional entries. However, as was explained in Ref. [14], in this case θ13 vanishes and
so information about the Dirac CP violating phase δ is lost. Moreover, owing to the real nature of the
associated mGRS

D , there is no Majorana CP violation either. Thus we see that the imaginary part of mCES
D

is the common source of an operative nonzero θ13 as well as CP violation in leptonic sector. The latter is
in fact crucial to leptogenesis which is effected through a nonzero value of the CP asymmetry parameter ε,
as explained in the next section. It is through the nonvanishing nature of Im mCES

D that the final matter-
antimatter asymmetry in the universe gets directly related to the low energy parameters θ13 and δ.

3 Calculation of CP asymmetry parameter

The part of our Lagrangian relevant to the generation of a CP asymmetry is

−LD = fNiαNRiφ̃
†/Lα + h.c., (3.1)

where /Lα = (νLα `−Lα)T is the left-chiral SM lepton doublet of flavor α, while φ̃ = (φ0∗ − φ−)T is the
charge conjugated Higgs scaler doublet. It is evident from (3.1) that the decay products of Ni can be
`−αφ

+, ναφ
0, `+αφ

− and νCα φ
0∗. We are interested in the flavor dependent CP asymmetry parameter εαi which

is given by

εαi =
Γ(Ni → /Lαφ)− Γ(Ni → /L

C
αφ
†)

Γ(Ni → /Lαφ) + Γ(Ni → /L
C
αφ
†)
, (3.2)
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N1

φ

ℓα

φ

N1

ℓβ

N2,3

ℓβ

N2,3

φ

ℓα

N1

φ

φ

ℓα

fN fN∗ fN
fN∗ fN fN

fN

Figure 1: Tree level as well as one loop vertex correction and self energy diagrams that contribute to the CP asymmetry
parameter εα1 . The flavor of the internal charged lepton `β is summed and the Yukawa coupling fN is supplied with
appropriate flavor indices in the interference amplitude.

Γ being the corresponding partial decay width. A nonzero value of εαi needs to arise out of the interference
between the tree level and one loop contributions [4]. This is since at the tree level we have

Γtree(Ni → /Lαφ) = Γtree(Ni → /L
C
αφ
†) = (16π)−1(fN†iα fNiα)Mi, (no sum over i). (3.3)

One loop contributions come both from vertex correction and self-energy terms (cf. Fig.1). For leptoge-
nesis with hierarchical heavy RH neutrinos, (3.2) can be evaluated to be

εαi =
1

4πv2Hii
∑
j 6=i

g(xij) Im Hij(mD)iα(m∗D)jα +
1

4πv2Hii
∑
j 6=i

Im Hji(mD)iα(mD
∗)jα

(1− xij)
. (3.4)

In (3.4) < φ0 >= v/
√

2 so that mD = vfN/
√

2, H ≡ mDmD
† and xij was defined in Sec.1. Furthermore,

g(xij) is given by

g(xij) =

√
xij

1− xij
+ f(xij), (3.5)

where the first RHS term arises from the one loop self energy term interfering with the tree level contribution.
The second RHS term in (3.5), originating from the interference of the contribution from the one loop vertex
correction diagram with the tree level term, is given by

f(xij) =
√
xij

[
1− (1 + xij)ln

(
1 + xij
xij

)]
. (3.6)

Let us discuss some physics aspects of (3.4). As already mentioned, depending upon the temperature
regime in which leptogenesis occurs, lepton flavors may be fully distinguishable, partly distinguishable or
indistinguishable. It is reasonable to assume that leptogenesis takes place at T ∼ M1. It is known [4] that
lepton flavors cannot be treated separately if the concerned process occurs above a temperature T ∼M1 >
1012 GeV. In case the said temperature is lower, two possibilities arise. When T ∼ M1 < 109 GeV all
three (e, µ, τ) flavors are individually active and we need three CP asymmetry parameters εei , ε

µ
i , ε

τ
i for each

generation of RH neutrinos. On the other hand when we have 109 GeV < T ∼M1 < 1012 GeV, only the τ -
flavor can be identified separately while the e and µ act indistinguishably. Here we need two CP asymmetry

parameters ε
(2)
i = εei + εµi and ετi for each of the RH neutrinos. As an aside, let us point out a simplification

in this model for unflavored leptogenesis which is relevant for the high temperature regime. Summing over
all α, ∑

α

Im Hji(mD)iα(mD
∗)jα = Im HjiHij = Im HjiH∗ji = Im |Hji|2 = 0, (3.7)

i.e. the second term in the RHS of (3.4) vanishes. The flavor-summed CP asymmetry parameter is therefore
given by the simplified expression

εi =
∑
α

εαi

=
1

4πv2Hii
∑
j 6=i

[
f(xij) +

√
xij

(1− xij)

]
Im HijHij . (3.8)

In the mass model [14] being considered, it follows from (2.16) that

HCES =

 a2 + b21p+ b22q ac+ b1c1p+ b2c2q af + b1d1p+ b2d2q
ac+ b1c1p+ b2c2q e2 + c21p+ c22q ef + c1d1p+ c2d2q
af + b1d1p+ b2d2q ef + c1d1p+ c2d2q f2 + d2

1p+ d2
2q

 (3.9)
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with p = 1 + k−2 and q = 1 + k2. Since (3.9) implies that Im HCES=0, it follows from (3.8) that

εi = 0, (3.10)

i.e. flavored-summed leptogenesis does not take place for any Ni. With the assumption that only the decay
of N1 matters in generating the CP asymmetry, ε1 is the pertinent quantity for unflavored leptogenesis, but
it vanishes. This nonoccurrence of unflavored leptogenesis is one of the robust predictions of the model.

Next, we focus on the calculation of the α-flavored CP asymmetry in terms of x12, x13 and the elements
of mCES

D . These are relevant for the fully flavored as well as the τ -flavored regimes. We find that

εe1 = 0, (3.11)

while

εµ1 = ξ[b2k
2(χ1 + χ2) + b1(χ3 + χ4)− b21χ5] = −ετ1 . (3.12)

In (3.12) the real parameters ξ and χi (i = 1− 5) are defined as

ξ =
1

4[b21 + (a2 + b21 + b22)k2 + b22k
4]πv2

,

χ1 = b2(1 + k2)[c1c2{1 + g(x12)− x12}+ d1d2{1 + g(x13)− x13}],
χ2 = a[c1e{1 + g(x12)− x12}+ d1f{1 + g(x13)− x13}],
χ3 = b2(1 + k2)[c21{1 + g(x12)− x12} − k2[c22{1 + g(x12)

− x12}+ d2
2{1 + g(x13)− x13}] + d2

1{1 + g(x13)− x13}],
χ4 = −ak2[c2e{1 + g(x12)− x12}+ d2f{1 + g(x13)− x13}],
χ5 = k2[c1c2{1 + g(x12)− x12}+ d1d2{1 + g(x13)− x13}]. (3.13)

Thus the nonzero leptonic CP asymmetry parameter εµ1 = −ετ1 depends on all ten parameters of mCES
D as

well as on x12 and x13.

We had earlier identified Im mCES
D as the common source of the origin of a nonzero θ13 and leptonic

CP violation. A real mCES
D implies vanishing values for b2, c2 and d2 in which case εµ1 = −ετ1 vanishes

identically and, as explained in Ref. [14], so does θ13. However, the reverse statement is not true. One could
have a vanishing leptonic CP asymmetry simply by setting b1,2 to zero in (3.12). But, so long as Im mCES

D

is nonzero, e.g. through nonvanishing values of c2 and d2, θ13 need not vanish. Indeed, the leptonic CP
asymmetry depends rather sensitively on b1,2. We shall elaborate on this later in our numerical discussion.

4 Boltzmann equations and baryon asymmetry in different mass
regimes

The Boltzmann equations of concern to us govern the evolution of the number densities of the hierarchical
heavy neutrinos Ni and the left chiral lepton doublets /Lα. We follow here the treatment given in Ref. [24].

The equations involve decay transitions between Ni and /Lαφ as well as /L
C
αφ
† plus scattering transitions

QuC ↔ Ni/Lα, /LαQ
C ↔ Niu

C , /Lαu ↔ NiQ, /Lαφ ↔ NiVµ, φ
†Vµ ↔ Ni/Lα, /LαVµ ↔ Niφ

†. Here Q represents
the left-chiral quark doublet with QT = (uL dL) and Vµ can stand for either B or W1,2,3. We had already
introduced in Sec. 1 the variable z = M1/T and the parametric function ηa(z). When in thermal equilibrium,
the latter is denoted by ηeqa (z). Recall that the number density of a particle of species a and mass ma with
ga internal degrees of freedom is given by [25]

na(T ) =
gam

2
a T eµa(T )/T

2π2
K2

(
ma

T

)
, (4.1)

K2 being the modified Bessel function of the second kind with order 2. The corresponding equilibrium
density, as given by setting the chemical potential µa(T ) equal to zero, is

neq
a (T ) =

gam
2
a T

2π2
K2

(
ma

T

)
. (4.2)

We are now in a position to make use of the Boltzmann evolution equations given in Ref. [24] – generalized
with flavor [26]. In making this generalization, one comes across a subtlety: the active flavor in the mass

7



regime (given by the value of M1) under consideration may not be individually e, µ or τ but some combination
thereof. So we use a general flavor index λ for the lepton asymmetry. Now we write

dηNi
dz

=
z

H(z = 1)

[(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)

−1

4

∑
β=e,µ,τ

ηβLε
β
i

(
ΓβDi + Γ̃βSiYukawa + Γ̃βSiGauge

)]
,

dηλL
dz

= − z

H(z = 1)

[ 3∑
i=1

ελi

(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)

+
1

4
ηλL

{ 3∑
i=1

(
ΓλDi + ΓλWi

Yukawa + ΓλWi
Gauge

)
+ Γλ∆L=2

Yukawa

}]
. (4.3)

In each RHS of (4.3), apart from the Hubble rate of expansion H at the decay temperature, we have various
transition widths Γ originally introduced in Ref. [25] which are linear combinations (normalized to the photon
density) of different CP conserving collision terms γXY for the transitions X → Y and X̄ → Ȳ . Here γXY is
defined as

γXY ≡ γ(X → Y ) + γ(X → Y ) , (4.4)

with

γ(X → Y ) =

∫
dπX dπY (2π)4 δ(4)(pX − pY ) e−p

0
X/T |M(X → Y )|2 . (4.5)

In (4.5) one has used a short hand notation for the phase space

dπx =
1

Sx

nx∏
i=1

d4pi
(2π)3

δ(p2
i −m2

i )θ(p
0
i ) (4.6)

with SX = nid! being a symmetry factor in case the initial state X contains a number nid of identical
particles. Moreover, the squared matrix element in (4.5) is summed (not averaged) over the internal degrees
of freedom of the initial and final states.

The transition widths Γ in (4.3) are given as follows:

ΓλDi =
1

nγ
γNi/Lλφ† , (4.7)

ΓλSiYukawa =
1

nγ

(
γ
Ni/Lλ
QuC

+ γNiu
C

/LλQ
C + γNiQ/Lλu

)
, (4.8)

Γ̃λSiYukawa =
1

nγ

(
ηNi
ηeq
Ni

γ
Ni/Lλ
QuC

+ γNiu
C

/LλQ
C + γNiQ/Lλu

)
, (4.9)

ΓλSiGauge =
1

nγ

(
γ
NiVµ
/Lλ φ

+ γ
Ni/Lλ
φ†Vµ

+ γNiφ
†

/LλVµ

)
, (4.10)

Γ̃λSiGauge =
1

nγ

(
γ
NiVµ
/Lλφ

+
ηNi
ηeq
Ni

γ
Ni/Lλ
φ†Vµ

+ γNiφ
†

/LλVµ

)
, (4.11)

ΓλWi
Yukawa =

2

nγ

(
γ
Ni/Lλ
QuC

+ γNiu
C

/LλQ
C + γNiQ/Lλu

+
ηNi
2ηeq
Ni

γ
Ni/Lλ
QuC

)
, (4.12)

ΓλWi
Gauge =

2

nγ

(
γ
NiVµ
/Lλφ

+ γ
Ni/Lλ
φ†Vµ

+ γNiφ
†

/LλVµ
+

ηNi
2ηeq
Ni

γ
Ni/Lλ
φ†Vµ

)
, (4.13)

Γλ∆L=2
Yukawa =

2

nγ

∑
β=e,µτ

(
γ
′/Lλφ
LCβ φ

† + 2γ
/Lλ/Lβ
φ†φ†

)
. (4.14)

The explicit expressions for γ and γ′ are given in Appendix B of Ref. [24]. The subscripts D, S and W
stand for decay, scattering and washout respectively. We rewrite the Boltzmann equations in terms of
YNi(z) = ηNi(z)s

−1 and certain D-functions of z that are defined below.

Consider the first equation in (4.3) to start with. Its second RHS term has been neglected for our assumed

hierarchical leptogenesis since both ηβL and εβi are each quite small and their product much smaller3. Using
some shorthand notation, as explained in Eqs. (4.16) - (4.18) below, we can now write

dYNi(z)

dz
= {Di(z) +DSY

i (z) +DSG
i (z)}{(Y eq

Ni
(z)− YNi(z)}, (4.15)

3In order of magnitude this product is 10−6 × 10−5 ∼ 10−11, as compared with the first term which is O(1).
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where

Di(z) =
∑

β=e,µ,τ

Dβ
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβDi

ηeq
Ni

(z)
, (4.16)

DSY
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiYukawa

ηeq
Ni

(z)
, (4.17)

DSG
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiGauge

ηeq
Ni

(z)
. (4.18)

Turning to the second equation in (4.3) and neglecting the ∆L = 2 scattering terms, we rewrite it as

dηλL(z)

dz
= −

3∑
i=1

ελi {Di(z) +DSY
i (z) +DSG

i (z))(ηeq
Ni

(z)− ηNi(z)}

− 1

4
ηλL

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +DλYW

i (z) +DλGW
i (z))} (4.19)

with

DYW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Yukawa, (4.20)

DGW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Gauge. (4.21)

A major simplification (4.19) occurs in our model when the active flavor λ equals e since εe1 = 0 and only
the second RHS term contributes to the evolution of ηλ. Then the solution of the equation becomes [27]

ηeL(z) = ηeL(z = 0) exp[−1

4

∫ z

0

W e(z′)dz′], (4.22)

where

W e(z) =
1

2
De

1(z)z2K2(z) +DeYW
1 (z) +DeGW

1 (z). (4.23)

However, at a very high temperature, the lepton asymmetries get efficiently washed out. Therefore ηeL(z → 0)
vanishes and from (4.22) ηeL(z) = 0 for all z. Similarly, for an unflavored (i.e flavor-summed) leptogenesis in
our model, ηe + ηµ + ητ = 0 since εµ1 = −ετ1 .

We are now ready to calculate the baryon asymmetry from the lepton asymmetry. To that end, it is first
convenient to define the variable

Yλ =
nλL − nλL̄

s
=
nγ
s
ηλL, (4.24)

i.e. the leptonic minus the antileptonic number density of the active flavor λ normalized to the entropy
density. The factor s/ηγ is known to equal 1.8g∗s and is a function of temperature. For T > 102 GeV,
g∗s is known to remain nearly constant with temperature at a value (with three right chiral neutrinos)
of about 112 [28]. Sphaleronic processes convert the lepton asymmetry created by the decay of the right
chiral heavy neutrinos into a baryon asymmetry by keeping ∆λ = 1

3B − Lλ conserved. Y∆λ
, defined as

s−1{1/3(nB − nB̄)− (nL − nL̄)}, and Yλ are linearly related, as under

Yλ =
∑
ρ

AλρY∆ρ
, (4.25)

where Aλρ are a set of numbers whose values depend on which of the three mass regimes in which M1 lies, as
mentioned in the Introduction. These are discussed in detail later in the section. Meanwhile, we can rewrite
(4.19) as

dY∆λ

dz
=

3∑
i=1

[ελi {Di(z) +DSY
i (z) +DSG

i (z)}{Y eq
Ni

(z)− YNi(z)}]

+
1

4

∑
ρ

AλρY∆ρ

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +Dλ YW

i (z) +Dλ GW
i (z)}. (4.26)

We need to solve (4.15) and (4.26) and evolve YNi as well as Y∆λ
upto a value of z where the quantities Y∆λ

become constant with z, i.e. do not change as z is varied. The final baryon asymmetry YB is obtained [29]
linearly in terms Y∆λ

, the coefficient depending on the mass regime in which M1 is located, as explained in
what follows. Let us then discuss three mass regimes separately.
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4.1 M1 < 109 GeV

Here all three lepton flavors are separately distinguishable. Therefore the flavor index λ can just be λ = e
or µ or τ . In this case the 3× 3 A matrix, whose λ, ρ element relates Yλ and Y∆ρ , is given by [7]

A =

 −151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537

 . (4.27)

Now the final baryon asymmetry normalized to the entropy density, is given by [30]

YB =
28

79
(Y∆µ + Y∆τ ), (4.28)

since Y∆e
vanishes on account of ηeL being zero. Another important parameter, namely the baryon asymmetry

normalized to the photon density, obtains as

ηB =
s

nγ

∣∣∣∣
0

YB = 7.0394YB , (4.29)

the subscript zero denoting the present epoch.

4.2 109 GeV < M1 < 1012 GeV

In this regime the τ flavor is distinguishable but one cannot differentiate between the e and µ flavors. It is
therefore convenient to define two sets of CP asymmetry parameters ετ and ε(2) = εe + εµ. Therefor the
index λ takes the values τ and 2. The Boltzmann equations lead to the two asymmetries Y∆τ and Y∆2 .
These are related to Yτ and Y2 = Ye + Yµ by a 2× 2 A-matrix given by [7]

A =

(
−417/589 120/589

30/589 −390/589

)
. (4.30)

The final baryon asymmetry YB is then calculated as [7]

YB =
28

79
(Y∆2 + Y∆τ ). (4.31)

4.3 M1 > 1012 GeV

In this case all the lepton flavors act indistinguishably leading to a single CP asymmetry parameter εi =
∑
λ

ελi .

As mentioned earlier,
∑
λ

ηλL = 0 and Y∆ = 0. Therefore YB = 0 and no baryogenesis is possible in this mass

regime. This statement is independent of the mass ordering of the light neutrinos.

5 Numerical analysis: methodology and discussion

In order to numerically check the viability of our theoretical results, the allowed (3σ) values of globally fitted
neutrino oscillation data [31] and the upper bound of 0.23 eV on the sum of the light neutrino masses have
been used, cf. Table 3. We first constrain the parameter space constructed with the six rescaled parameters
defined in Eqs. (2.17) - (2.20). Both normal and inverted types of light neutrino mass ordering are found to
be allowed over a sizable region of the parameter space consistent with the input constraints. The ranges of

Table 3: Input values used

Parameters θ12 θ23 θ13 ∆m2
21 |∆m2

31| Σimi

degrees degrees degrees 10−5eV2 10−3(eV2) (eV)
3σ ranges/ others 31.29− 35.91 38.3− 53.3 7.87− 9.11 7.02− 8.09 2.32− 2.59 < 0.23

Best fit values (NO) 33.48 42.3 8.50 7.50 2.46 −
Best fit values (IO) 33.48 49.5 8.51 7.50 2.45 −

the rescaled parameters are graphically shown in Fig.2 and Fig.3 respectively for the normal and the inverted
ordering of the light neutrino masses. This is the primary constraining procedure since the CP asymmetry
parameters εαi and the different Γ’s of the Boltzmann equations depend individually upon the elements of
mD and the RH neutrino masses Mi (i = 1, 2, 3). Therefore, merely restricting the rescaled parameters is
not sufficient for the computation of the final baryon asymmetry. In order to obtain the allowed ranges of

10



Figure 2: Plots of the reduced parameters for a normal mass ordering of the light neutrinos.

Figure 3: Plots of the reduced parameters for an inverted mass ordering of the light neutrinos.
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the parameters a, b1,2, c1,2 and e, included in mD, we incorporate the strong hierarchy assumption of the
RH neutrino masses (M1 << M2 << M3), as mentioned in earlier sections. For numerical purposes, we
arbitrarily choose M2/M1 = M3/M2 = 103. We shall later discuss in Section 6 the effects of changing these
mass ratios. Depending upon the mass regime, for a fixed value of M1, we then obtain the allowed ranges of
the parameters of mD from the relations defined in Eqs. (2.17) - (2.20).

Even after constraining the six unprimed parameters of mD and the masses of the three right handed
heavy neutrinos, three undetermined parameters remain – namely f , d1 and d2. The latter have been
neglected earlier in the primary implementation of the input constraints since their contributions to the light
neutrino mass matrix Mν are suppressed by the heaviest RH neutrino mass M3. However, for a quantitatively
successful treatment of leptogenesis, one needs to estimate these missing parameters too, as mentioned in
Sec. 2. We discuss here some technical details regarding this estimation. For example, let us consider the
first equation of Table 1, namely

x = −
(
a2

M1
+

e2

M2
+

f2

M3

)
. (5.1)

The last RHS term was earlier neglected on the grounds that the parameter f , which is presumably of
same the order of magnitude as a or e, is suppressed by M3. Now, in order to estimate f , we first set
it at a value which is larger i.e. between a and e. Then we keep on decreasing it until the quantity
f2M−1

3 /(a2M−1
1 + e2M−1

2 ) becomes less than a very small number which we choose to be 10−5. In a similar
manner one can estimate approximate values of d1 and d2. Thus, knowing the numerical values of all the
parameters of mD as well as those of MR, we can make a realistic estimate of the final value of the baryon
asymmetry. The first step towards the last-mentioned goal is the estimation of ελ1 in the three mass regimes
of M1. We have carried out our numerical analysis over a wide range of values of M1 in the τ -flavored and
in the fully flavored regimes. As mentioned in the last paragraph of Sec. 3, εµ,τ1 are mostly sensitive to b1,2.
In order to see the nature of the variation of εµ,τ1 with b1,2 for constant values of c2 and d2, we first set c2
and d2 to be zero. Now the simplified expression of the relevant CP asymmetry parameter becomes

εµ1 = ξ(b2k
2χ2 + b1χ

′
3) = −ετ1 , (5.2)

where ξ and χ2 as are defined in (3.13), and χ′3 is given by

χ′3 = b2(1 + k2)[c21{1 + g(x12)− x12) + d2
1(1 + g(x13)− x13}]. (5.3)

For a graphical representation of the variation of the CP asymmetry parameter εµ1 with b1,2, we choose a
sample value of M1 = 3.62 × 1011 GeV and assume a normal mass ordering4 of the light neutrinos. The
corresponding scatter plots are shown in Fig. 4. The vanishing of b1,2 implies εµ1 = 0; therefore, in our

Figure 4: Plot of εµ1 with b1 (left), b2 (right) for a normal light neutrino mass ordering.

numerical computation, only those values of εµ1 are allowed which correspond to b1,2 6= 0. One can have a
similar plot for ετ1 since εµ1 = −ετ1 and the plots in Fig. 4 are symmetric about the origin. The corresponding
plots for an inverted mass ordering of the light neutrinos can also be generated. However, with the same
computational technique as used for normal ordering, we find a much smaller number of allowed points which
hardly show a fair variation of εµ1 with b1,2.

4 As we shall see later, in our model an inverted mass ordering is disfavored in terms of a realistic baryogenesis.
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Finally, knowing the numerical range of ελ1 is the last step needed to solve the Boltzmann equations given
in (4.15) and (4.26) leading to the parameter Y∆λ

upto a fairly large value of z where Y∆λ
becomes constant.

Then, using the suitable equations (4.28), (4.31), depending upon the energy regime, one can compute the
final value of YB . However, this final step needs to overcome the following hurdle. Unlike estimating ελ1
for the entire allowed parameter ranges of mD and MR, it becomes impractical in terms of computer time
to solve the Boltzmann equations for this huge data set even if M1 is fixed to a constant value. So we
were obliged to use only those values of the members of parameter set for which the neutrino oscillation
observables are restricted close to their best fit values. For this purpose we choose a χ2 for every observable
deviating from its experimentally measured best fit value as

χ2 =

5∑
i=1

[Oi(th)−Oi(bf)

∆Oi

]
. (5.4)

In (5.4) Oi denotes the ith neutrino oscillation observable from among (∆m2
21,∆m

2
32, θ12, θ23, θ13) and the

summation runs over all the five observables. The parenthetical th stands for the theoretical prediction, i.e
the numerical value of the observable given by our model, whereas bf denotes the best fit value (cf. Table
3). ∆Oi in the denominator stands for the measured 1σ range of Oi. After calculating χ2 for all the points
{a′, e′, b′1, c′1, b′2, c′2}, as allowed by the oscillation data, we start from the minimum value of the χ2 (= χ2

min)
and keep on increasing the latter until we get YB to be positive as well as in the observed range. It is to
be noted that for a particular value of χ2, i.e. for a particular primed data set, we are able to generate a
large number of unprimed points (parameters of mD) by varying the values of M1 in Eqs. (2.17)-(2.20). To
be more precise, ‘n’ values of M1 lead to ‘n’ values of the unprimed set of parameters for the particular
primed set under consideration. The other three parameters f , d1 and d2 are again computed by means
of the previously mentioned approximation technique. We vary M1 over a wide range in the relevant mass
regimes for both types of mass ordering and present our final result systematically in the following way.

YB for normal mass ordering of light neutrinos:

M1 < 109 GeV: In this regime all lepton flavors (e, µ, τ) act distinguishably. However, since εe1 = 0, we
first need to evaluate εµ,τ1 individually. It is found that |εµ,τ1 | can have values at most ∼ 10−8. YB of the
right amount cannot be generated with such a small CP asymmetry parameter [5].

109 GeV < M1 < 1012 GeV: After carrying out the χ2 analysis for this regime, we first calculate the
final YB for χ2

min(= 0.002). It is found that the final YB saturates to a negative value. Then we keep on
increasing χ2 and find that a positive value for the final YB within the observed range may be obtained for
χ2 = 0.003 which is close enough to the best-fit value of χ2 = 0.002. In the entire analysis, for each value
of χ2, i.e. for this single primed set, M1 is varied over a wide range. Then, for each value of M1, a set of
values of the unprimed parameters {a, e, f, b1, c1, d1, b2, c2, d2} is generated. The Boltzmann equations are
solved for each set of values of M1. Since, in this regime, the τ flavor acts distinguishably, we need to solve

Table 4: parameters corresponding χ2 = 0.003 for normal mass ordering.

a′ e′ b′1 c′1 b′2 c′2 χ2

0.026 0.054 0.019 0.095 −0.080 0.095 0.003

the Boltzmann equations for two flavors (τ and 2) in order to obtain the variation of Y∆τ,2
or of YB with

z. For each set of the primed parameters, we take thirty values of M1 within the range 109 GeV to 1012

GeV and solve the Boltzmann equations thirty times for each M1 along with the corresponding unprimed
set of rescaled parameters. For a concise presentation, in Table 5, we tabulate only ten such values of M1

for which YB is near or inside the observed range. Fig.5 contains a graphical presentation of the variation of

Table 5: YB for different masses of lightest right handed neutrino.

M1

1011 (GeV) 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66
YB × 1011 8.55 8.57 8.59 8.61 8.64 8.66 8.69 8.71 8.74 8.77

the asymmetries Y∆2
, Y∆τ

and YB with z for a definite value of M1 which is taken to be 3.62 × 1011 GeV.
It may be seen that YB is inside the observed range [1] for large z corresponding to the present epoch. A
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careful surveillance of Table 5 leads to the conclusion that we can obtain upper and lower bounds on M1

due to the constraint from the observed range of YB . One can appreciate this fact more clearly from the
plot of YB vs. M1 in Fig.6. Two straight lines have been drawn parallel to the abscissa in Fig.6: one at
YB = 8.55× 10−11 and the other at YB = 8.77× 10−11. The values of M1, where the straight lines meet the
YB vs z curve, yield the allowed lower and upper bounds on M1, namely (M1)lower = 3.57× 1011 GeV and
(M1)upper = 3.66× 1011 GeV.

Figure 5: Variation of Y∆µ (left), Y∆τ (middle), YB (right) with z in the mass regime (2) for a definite value of M1.
N.B. since these become negative for certain values of z, their negatives have been plotted on the log scale for those
values of z. A normal mass ordering for the light neutrinos has been assumed.

Figure 6: A plot of the final YB for different values of M1 for a normal light neutrino mass ordering.

M1 > 1012 GeV: It has been shown that YB = 0 here for our model.

YB for inverted mass ordering of light neutrinos:

In this case too the numerical estimation of the baryon asymmetry parameter has been made exactly in the
same manner as for a normal mass ordering. A final discussion for each regime goes as follows.

M1 < 109 GeV: As in the case of normal ordering, the values of εµ,τ1 can reach up to at most the order
of 10−8 which is not adequate to let YB come within its observed range.

109 GeV < M1 < 1012 GeV: In this regime we first calculate the minimum value of χ2 for the full set
of primed parameters constrained by the oscillation data. We find that for χ2

min = 0.246 the final baryon
asymmetry saturates to a negative value. As in the previous case we then keep on increasing the value of
χ2 and check the final YB by varying M1 over a wide range for each value of χ2. It turns out that though
YB attains a positive value for χ2 = 0.952, it is below the observed range. Then, using the χ2 enhancement
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technique, for YB to be in the observed range the minimum value of χ2 is found to be 1.67 which is far away
from the best-fit point. The set of primed parameters for χ2 = 1.67 is tabulated in Table 6.

Table 6: parameters corresponding χ2 = 1.67 for inverted hierarchy

a′ e′ b′1 c′1 b′2 c′2 χ2

0.15 0.16 −0.017 −0.022 0.10 −0.096 1.67

M1 > 1012 GeV: Once again, YB = 0 here for the present model.

A compact presentation of the final conclusions regarding YB from the numerical analysis is given in
Table 7.

Table 7: Final statements on YB for different mass regimes.

Type M1 < 109 GeV 109 GeV < M1 < 1012 GeV M1 > 1012 GeV

Normal
Ordering

Ruled out since YB
is below the observed range
for any χ2.

YB within the observed range for χ2=0.003
close to χ2

min = 0.002.
Ruled out
since YB = 0.

Inverted
Ordering

Ruled out since YB
is below the observed range
for any χ2.

YB within the observed range for χ2=1.67
far away from χ2

min = 0.246.
Ruled out
since YB = 0.

We would like to make a further statement before finishing this numerical discussion . Though we had
earlier enumerated the difficulties in numerically solving the Boltzmann equations for each data point within
the entire 3σ parameter range of mD, we have been able to perform the task only for a few data points in
that range. We actually find that there is no monotonic variation of YB with the chosen data points. For
example, given a normal ordering of the light neutrino masses, suppose we take the data set that corresponds
to the worst fit point (χ2

max) and solve the Boltzmann equations for 109 GeV < M1 < 1012 GeV. Such a
procedure yields a negative final value of YB contrary to the result obtained in the χ2 = 0.003 case. For
the other data points also, YB varies widely with the parameters of mD from one neutrino mass model to
another [32–35]. This conclusion is true for all mass regimes (except for M1 > 1012 GeV, where

∑
λ

ελ1 = 0

and hence YB vanishes) as well as for an inverted mass ordering of the light neutrinos. Table 7 shows that,
for data points close to the best fit values, an inverted mass ordering is not favored in this model. However,
we cannot completely rule out this mass ordering here since such is not the case as one moves further away
from the best-fit values while still remaining within the 3σ range. There may exist certain data sets (e.g.
χ2 = 1.67) in the allowed 3σ ranges for which the proper value of YB can be generated even with an inverted
light neutrino mass ordering.

6 Sensitivity to the heavier neutrinos

In our analysis so far, the effect of the two heavier neutrinos (N2, N3) on the produced final lepton asym-
metry has been neglected. We have assumed that the asymmetries produced by the decays of both of them
get washed out [36]. We examine this issue in this section. Is YB sensitive to N2 and N3? There are two
ways that such a sensitivity might arise: (1) directly, if the contributions to Yλ from N2,3 decays do not get
washed out for some reason and (2) indirectly, even if those do get washed out, a dependence of YB on the
heavier RH neutrino masses might persist through the CP asymmetry parameter εα1 .

Indirect effect of N2,3:

Though the neutrino oscillation data have been fitted with the primed parameters, cf (2.17)–(2.20), for
computing the quantities related to leptogenesis, we need to examine the unprimed ones, i.e. the Dirac mass
matrix elements. Is the final baryon asymmetry affected by the chosen hierarchies of the RH neutrinos?
Interestingly, we find that the final YB is not so sensitive to M2,3. One can justify this statement by
simplifying the CP asymmetry parameters of (3.4) to

εα1 = − 3

8πv2H11

∑
j=2,3

M1

Mj
Im[ H1j(mD)1α(m∗D)jα]− 1

4πv2H11

∑
j=2,3

M2
1

M2
j

Im[ Hj1(mD)1α(mD
∗)jα], (6.1)
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after approximating g(x1j) of Eqs. (3.5) and (3.6) to be g(x1j) = − 3
2
√
x1j

for x1j >> 1. The last term of

Eq. (6.1) is much suppressed since it is of second order in x−1
1j . The first term has two parts for j = 2, 3.

However, since M3 is much larger than M1 and f, d1 and d2 are taken to have values of the order of the
other Dirac components, the j = 3 term has a negligible effect on εα1 . Now, for j = 2, εα1 is simplified as

εµ1 = − 3M1

8πv2H11
[(ae′ + b1c

′
1 + b2c

′
2)(b2c

′
1 + b1c

′
2)] = −ετ1 (6.2)

with εe1 = 0. Since e′ and c′1,2 are fixed by the oscillation data, εµ,τ1 are insensitive to the value of M2. In order
to numerically compute the final baryon asymmetry for a normal mass ordering of the light neutrinos, we
consider each term in (6.2) and two different mass hierarchical schemes for the RH neutrinos, e.g, Mi+1/Mi =
102 and Mi+1/Mi = 104 where i can take the values 1,2. Recall that in the previous section we have presented
YB for Mi+1/Mi = 103. A careful inspection of Fig.6 and Fig.7 reveals an interesting fact. Though the chosen
mass ratios of the RH neutrinos have been altered, changes in the lower and upper bounds on M1 are not
significant for the observed range of YB . For convenience, we present in Table 8 the variation of YB with M1

for different mass ratios.

Figure 7: Plots of final YB for different values of M1 for Mi+1/Mi = 102 (left) and Mi+1/Mi = 104 (right).

Table 8: Lower and upper bounds on M1 for different mass ratios of the RH neutrinos (i = 1, 2).

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 3.64× 1011 3.66× 1011 3.67× 1011

Lower bound (GeV) 3.55× 1011 3.57× 1011 3.58× 1011

Direct effect of N2:

Figure 8: A plot of the two washout parameters K1 and K2 appears in the left panel. The red dot corresponds to
χ2 = 0.003 for which we estimate YB . The green shaded area indicates a possibility of N2 leptogenesis. A plot of χ2

with K1 for K2 < 10 is given in the right panel. A normal mass ordering for the light neutrinos has been assumed.
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Here we consider only N2, neglecting N3 for simplicity. It is argued in Ref. [37] that, due to a decoherence
effect [5,37], a finite lepton asymmetry generated by N2 decays might remain protected against N1-washout
and could survive down to the electroweak scale. Thus it itself might generate the final baryon asymmetry if
a sizable amount of lepton asymmetry survives. This procedure is subject to the condition that two washout
factors K1 (related to N1-washout) and K2 (related to N2-washout) need not be of the same order. These
are defined as

K1 =
H11

M1m∗
, (6.3)

K2 =
H22

M2m∗
, (6.4)

where m∗ = 1.66
√
g∗πv2/MPl ≈ 10−3 eV. The conditions that are needed can be stated as [37]

K1 � 1 and K2 6� 1. (6.5)

Here K1 � 1 indicates that faster N1 interactions break coherence among the states produced by N2, i.e.
a part of the lepton asymmetry produced by N2 gets protected against N1-washout. On the other hand,
K2 6� 1 implies a mild washout of the lepton asymmetry produced by N2 from N2-related interactions in a
way that a sizableN2-generated lepton asymmetry survives during theN1-leptogenesis phase. Quantitatively,
our allowed parametric region (blue shaded area in the K2 vs. K1 plot in the left panel of Fig.8) prefers
large values of K2 in excess of 10 except at the bottom (green band). Thus the K2 6� 1 condition is strongly
violated in most of the region. On the other hand, the few allowed points with K2 < 10, displayed in a χ2

vs. K1 plot in the right panel of Fig.8, correspond to values of χ2 above 0.5 far in excess of χ2 = 0.003 for
which we obtain YB in the observed range. Therefore, for our calculation, any direct effect of N2 does not
appear to be relevant.

7 Summary and discussion

Some of us has recently proposed [14] a complex-extended scaling model of the light neutrino Majorana mass
matrix Mν , generated by a type-1 seesaw induced by heavy RH neutrinos. Unlike the Simple Real Scaling
model advanced earlier [19, 20], this new model can accommodate a nonzero θ13 and has a sizable region of
parameter space allowed by all current and relevant experimental data [31]. The atmospheric mixing angle
θ23 is given by tan−1(1/k), k being a real positive scaling factor which can be either greater or less than
unity. Most interesting are the predictions of the model in regard to CP violation: maximal (cos δ = 0) for
the Dirac type and absent (α, β = 0 or π) for the Majorana type. Since CP violation is crucially related
to baryogenesis, we have been motivated in this paper to investigate the latter quantitatively in the model
under consideration.

We first performed a general calculation of the CP asymmetries εαi in the decays Ni → /Lαφ, /L
C
αφ
† in

terms of the parameters of the model. This led to a vanishing value of εei with a generally nonvanishing
εµi = −ετi . A common source of the origin of a nonzero θ13 and these CP asymmetries was found in the

imaginary part of mD. We then evolved Y2 = Ye + Yµ and Yτ , respectively equal to (n
(2)
L − n

(2)

L̄
)/s and

(nτL − nτL̄)/s, from a high temperature (depending on the mass regime in which M1 lies) down to that of
the electroweak phase transition. In doing so we have had to consider the Boltzmann equations for YNi and
Yλ, respectively equal to nNi/s and (nλL − nλL̄)/s, λ being an active lepton flavor index which can some-
times be a combination of e, µ, τ . We then utilized the different linear relations between Yλ and Y∆λ

, with
∆λ = 1

3B − Lλ, for the three different specified regimes of M1 to arrive at the baryon asymmetry of the
universe for each regime. The latter values have been evaluated numerically and their implications discussed.

In a nutshell, realistic baryogenesis has been found to be possible in this model for values close to best
fit values of the input neutrino oscillation observables only in the 109 GeV < M1 < 1012 GeV regime and for
a normal mass ordering of the light neutrinos. This analysis excludes (from a baryogenesis standpoint) the
regimes M1 < 109 GeV and M1 > 1012 GeV and disfavors an inverted mass ordering of the light neutrinos.
However, the latter is still allowed for values of the input parameters away from their best-fit numbers but
within a 3σ range. As neutrino oscillation data improve, the conclusions from our analysis will be sharpened.
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