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Abstract

This is a critical discussion of physical relevance of some space-time
characteristics which are in current use in high energy physics.

1 Introduction

High-energy physics is in many ways a synonymous of relativistic physics.
The latter circumstance introduces, as is well known, some peculiarities when
one deals with coordinates, lengths, time intervals. The theoretical and inter-
pretational toolkit of high-energy physics is dominated by energy-momentum
characteristics while the spatio-temporal ones are directly unobservable and
thus comparatively rare. Nonetheless, the latter are persistently present both
in literature and physical discourses and sometimes play quite an important
heuristic role. So Heisenberg’s attempt in his S-matrix paradigm, developed
later under the guise of the ”analytic S-matrix approach” by G. Chew, to
exorcise these entities from the particle physics as unobservable ones seems
now failed. However, spatio-temporal parameters often aren’t clearly defined
in quantum-field theoretical terms. Thereof, the need to at least reveal and
clarify their true meaning. In this talk I’ll consider the following character-
istics: charge radius, interaction range, interaction time and the size of the
like-charge pion source.
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2 Charge Radius

In PDG volumes one can find values of "charge radii” of hadrons. E. g.
the proton charge radius is presented in two hypostasis: reperge(proton) =
0.8408740.000039 fm (pp Lamb shift) and 7epqrge (proton) = 0.8775+0.0051 fm
( ep CODATA value).

How these radii are defined? In non-relativistic quantum mechanics when
considering , say, the scattering of an electron off a composite system(atom)
the relationship between the average radius of the scatterer and the derivative
of its form factor F'(q?) is ( with q the transferred 3-momentum)

(1r?) = —6dF(q’)/d’|qp—g (1)

where

F(a?) = [ deeF p(r). (2)

Here the average charge density is of the form

p(r) = Z_: erpr(T)

where

pe() = [ TL drj|w(fr;},xe = vl (3)
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So we get

<I‘2> = Z_: €ka<I‘2>k.



where N is the number of constituents with charge e, and

N
Z eka
k=1

is the total charge of the system ,

Z:: =

while (r?), stands for the average square of the distance of the k-th con-
stituent from the center of mass of the system which is implicitly fixed in
Eq.(3)with the condition

5(21: rim;/ 21: m;).

From this expression it is evident that the ”charge radius” generally doesn’t
give a clear idea of the geometrical extent of the system which is closer to
the expression of the type

2 1N
)=y 2

The wave function is a solution of the Schrodinger equation with an appropri-
ate instantaneous potential. When coming to the relativistic domain the use
of the instantaneous potential becomes problematic because of the retarda-
tion effects. Nonetheless, Eq.(1)is being actively used for extracting from the
data the ”"charge radius” of, say, the proton with further placing the result
into the PDG Reviews as an important physical characteristic of the proton
charge distribution. To avoid as much as possible the model dependence
we first consider the formula (1) in the context of the general quantum-field
theoretic expression via the Bogoliubov-LSZ reduction formalism. For sim-
plicity but without loss of generality we consider the pion form factor F(¢?)
defined as follows

(p+qlJ*(0)[p) = (2p* + ¢")F(q?)



where J#(z) is the electromagnetic current operator and |p) is a charged pion
state.The function F(g?) is hermitian analytic in the complex ¢* plane with
a cut [4m2,+oc]. In terms of the 4-momentum transfer ¢> = ¢2 — q* the
”charge radius” of the pion is taken as

(r?) = 6dF(q)/dq’| 2= (17)

The only known model-independent way to introduce space-time coordinates
is the use of the reduction formulas connecting Green functions ( and hence
scattering amplitudes) in momentum and configuration space. Taking use of
the reduction formalism [1] we get

F(¢?) = gt [ d'ze™ (0] 5555 ).

4m2 6ot (0

Variation derivative is taken over the pion out-field. Up to a finite sum of
quasi-local operators

25 = i0(—=a)[J"(x), 17 (0)].

5<p+(0)
Here I (z) —'i(s @
take the laboratory frame where p = 0. We get
. g2 . x
F(g?) = 2 [ da expl—iL — i(xn)\ /g (1 — /m2) (012220 [p — o).

Now, if we apply to this representation formula (1*) for the ”charge radius”

ST is the pion density operator. For definiteness let us

we have
— [ drepu(r) (4)
where 5J0 )
[E , T
pr(r) =50 /d Ser0.0) P~ (5)

is to have the meaning of the charge density inside the pion in rest.

When looking at Eq.(5) we notice that the distance |r| relates points taken
at different times 2°, 0 and so the profile of the supposed charge distribution
pr(r) doesn’t give us an instantaneous snapshot of the charge distribution
inside the pion but rather something smeared in time. One can prove (with
use e.g. of the JLD representation for causal commutators) that in the non-
relativistic limit

0(et,
ot {0122 | — 0] = (1) ()



so we recover a NR quantum-mechanical expression like Eq.(3). On the other
hand, one can argue that non-simultaneity in the definition of the charge
radius ( or a particle size) can be taken into account if to assume that arising
uncertainty is given by the "retardation time” ~ (r) /c and may induce an
uncertainty comparable with the very radius in question .

3 On ”physical” proton radius

With all reservations stemming from the previous Section let us consider the
charge radius of the nucleon from the point of its use in modelling practice.
Quite often the value of the charge radius of the proton is taken in models of
high-energy scattering to account for the size of the colliding nucleons. The
fact of the matter is that the charge distribution may generally differ very
much from the "matter distribution” due to the presence of the constituent
charges making the distribution generally non positive defined. E.g. the
square of the charge radius of the neutron is negative, as follows from the
definition (1*) and experimental data, and hence doesn’t give us much to
say about the neutron physical size. To make the point more concrete it is
useful to express the charge radii of the proton and neutron in terms of the
valence quarks. With account of the isotopic symmetry it is not difficult to
obtain the following expression for the nucleon physical size

2

(r?) (nucleon) = 12,,,,c(proton) + 12,,,,.(neutron)

Let’s take for definiteness the PDG values reparge(proton) = 0.707fm? (up
Lamb shift) and r2,,,,.(neutron) = —0.116 fm?.
Thereof we get for the physical radius of the nucleon

(r?) (nucleon) = 0.769 fm

to compare with 7eparge(proton) = 0.841fm. At first sight the difference can
seem insignificant but in cases where the energy dependence is logarithmic
such difference leads to significant differences in the estimates of the relevant
energies [2] .

4  On the interaction range

The transverse interaction range (b%),, ( with b the impact parameter)is
defined from the forward logarithmic slope B(s)
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dt

B(s) = [ (5 )LO — Oln[do /dl] /Ot |s—o= 2Re(DIn(T (s, £))/01) |izo

so that

272
B(s) ~ Jdb b ImNT(s,b) R (5)
[db?Im T(s,b)
where T(s,b) = 1o J T(s,t) Jo(by/—t)dt.

It is a peculiar feature of the unitarity that the range of the transverse
area where any process (inelastic included) can happen is defined by the
quantity describing elastic scattering.

One can define the quantity < b* >.; which seems to be more relevant for
spatial description of elastic scattering only

(J db*6*|T(s,b)[%)/(f db*|T(s,b)[*) =< b* > .
However it depends on the scattering phase which is very problematic as an

observed quantity [3]:

< b > =< (—t)B%(s,t) + 4(—t)[%]2 > .

Experiments show a very slow growth of < b? >,:
V< b? >1,41(0.01TeVQU — 70, I[HEP) =~ 0.9fm

while
V< 02 > (TTeVQLHC,CERN) =~ 1.3fm

only. If to take into account that physical values of the ”valence” sizes of

colliding nucleons \/ 2

: (r?) (nucleon) (seen in the impact parameter plane)
are, as we have seen above, of order of 0.6 fm we conclude that colliding
nucleons hardly cease to overlap even at the LHC energies. So even at the
LHC we are very far from the ”asymptopia” which implies the region of

energies where

V<D >0 > \/§ (r?) (nucleon).

Can one argue about the longitudinal range as well? Yes but it’s again
related to the almost unobservable scattering phase:

(L7) = 4p" {(0D(s, ) /01))

where asterisk means the cms values and p* is the cms value of colliding
hadrons’ momentum. Here we can only say that existing models give a very
fast grow of (L*) proportional to the cms energy +/s.
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5 Time evolution of space-time correlation
functions in hadron collisions

Let’s consider the forward scattering amplitude. It can be cast in the follow-
ing form

T(k.p) = [ d'explika) <p|W|p> | (©)

For the sake of simplicity let us take the simple Regge pole model high-energy
behaviour of this amplitude

T(k,p) =~ (2pk)*©B(k?)

where we allow the projectile to be off-shell and consider the region 2pk > k2.
With a sufficient degree of rigour it was shown [4] that the correllator
representing the amplitude in the configuration space behaves as follows:

<p|‘M|p> ~ ()" g(a?) )

at
(pr) — oo, x? fixed.

Simple Regge-pole asymptotics can be generalized to more complicated cases.
E.g. in the case of the functional saturation of the Froissart bound we would
have

(ilies2

W) () ), ©



In the laboratory frame and with account of the causality condition
(6I(—x/2)/6p(x/2) = 0 at z€(x : 2° > |x|)) we see that the correlation

function <p| 6;;(_;&/22)) |p> grows with the time ¢ growth as ~ t*% at a/(0) > 0 or

as ~ tIn? t inside the upper light cone on any fixed hyperboloid ¢t = /22 + x2
(this corresponds to large values of one of the light-cone variables x*). Such
a behaviour of the correlation function is quite unusual because correlation
functions we deal with in, say, statistical physics ordinarily die off at large
times and distances.

We here should also mention the estimate of the interaction time which
is being made supposing that it can be given by an ”essential” space-time
region where the exponential in Eq.(6) doesn’t strongly oscillate. With such
an assumption some authors ( see. e.g. Ref.[5])obtained that the ”effective
interaction time” At.s; can be estimated (in the laboratory frame, e.g.)as

Ateff ~ E/m2

Accordingly the longitudinal distances can be estimated as Lesf ~ Ates¢
so that at the LHC we would have the distances ( reduced to the cms frame),
where the scattering takes place, as large as 1500 fm. Sure, such an esti-
mate doesn’t take into account the correlator behaviour inside the ” effective
integration region” but Eqs.(6, 7) seem to support such a growth.

6 On the size of the like-charge pion source

Many years ago A. S. Goldhaber et al observed that the like charge pions
significantly correlate in contrast to the unlike charge pions with this cor-
relation seen in various correlation measures. With the obvious reason for
like-charge pions to correlate due to the Bose-Einstein statistics the main aim
of the further studies of these correlations was to extract from the data the
spatial size of the region where these pions are being radiated from. Generic
designation of this correlation function is R(Q) where R can be defined in
various ways dependent on the reference distribution exemplifying the un-
correlated samples. Fig.1 [5] represents a typical behaviour of R as function
of Q = /= (k1 — ky)? = \/M2_— 4m2.
Generic form (with insignificant deviations) of R is

R(Q) = 1+ exp(—RQ) (8)
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Figure 1: Typical BE correlation function as measured by CMS.

And this is parameter R which is treated as the average size of the like-
charge pion source. Such an interpretation stems from the conviction that
the two-particle distribution can be represented as a Fourier transform of the
modulus squared of some function in the configuration space as it takes place
for the form factor in NR QM (see Eq.(2)). I didn’t manage to find out a
consistent theoretical derivation of this elegant formula (8). If to accept the
premises used in literature for the spatial distribution of the "source size” r
then, in order to get exp(—QR), it should develop a singularity of the type
1/(r* + R?) which can be at odds with analyticity properties of Wightman
functions in configuration space [1]. Without going into the details of very
interesting findings concerning the energy and multiplicity dependence of
the parameter R (or even two such parameters [6]) I would like just to show
the integral representation of the two-pion distribution function in terms of
quantum-field theoretical space-time correlators.

dN(N-1)

dPk1 P2
[ dAX diedinePX € (pp, in| T(I(X + €/2)I(X — /2T (1/2)I(=n/2)]|pp, in)
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where ¢ = ky — ko, P = (k1 + k2) and I(z) is a pion density operator. First
of all we see that in configuration space the integrand is non-diagonal which
complicates its probabilistic interpretation. In any relevant channel the dis-
tance & refers to the 4-distance between the radiated pions. At the same
time the momentum ¢ related to the quantity Q is conjugated both to &
and 7. So it is difficult to relate the parameter R to the average source
size. It remains to believe that we finally will eliminate these conceptual
inconveniences though the problem seems quite a complicated from the for-
mal theoretical viewpoints. I have, nonetheless, to stress that this statement
in no way devalues intriguing regularities found in experimental and phe-
nomenological studies for the parameter R. The problem is only what does
it mean.

7 Conclusion

What was said in this talk is mostly problem statements related to the lack
of sound reasons for the standard physical interpretation of some space-time
quantities, as they are normally defined, which I believe deserve the attention
of the audience and hopefully will motivate further discussions and help to
find acceptable solutions.
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