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KRAWTCHOUK-GRIFFITHS SYSTEMS II: AS BERNOULLI

SYSTEMS

PHILIP FEINSILVER

Abstract. We call Krawtchouk-Griffiths systems, KG-systems, systems of
multivariate polynomials orthogonal with respect to corresponding multino-
mial distributions. The original Krawtchouk polynomials are orthogonal with
respect to a binomial distribution. Here we present a Fock space construction
with raising and lowering operators. The operators of “multiplication by X”
are found in terms of boson operators and corresponding recurrence relations
presented. The Riccati partial differential equations for the differentiation
operators, Berezin transform and associated partial differential equations are
found. These features provide the specifications for a Bernoulli system as a
quantization formulation of multivariate Krawtchouk polynomials.

1. Introduction

The original paper of Krawtchouk [15] presents polynomials orthogonal with re-
spect to a general binomial distribution and discusses the connection with Hermite
polynomials. Krawtchouk polynomials are part of the legacy of Mikhail Kravchuk.
A symposium in honor of his work and memory was held in Kiev and an accom-
panying volume was produced that is most highly recommended, Virchenko [18].

Krawtchouk polynomials appear in diverse areas of mathematics and science.
Applications range from coding theory, [17], to image processing, [21]. Multivari-
able extensions are of interest and the field is very active. We cite works which
have some connection to the approach in this paper.

The idea of extending to the multinomial distribution appears in the founda-
tional work of Griffiths [2, 9, 10]. Connections with Lie theory have been studied
more recently, [7, 8, 11, 12, 13, 16] as well as from the point of view of harmonic
analysis [19, 20].

Bernoulli systems in one variable are explained in [5], with higher-dimensional
Bernoulli systems appearing in [6], where the basic methods of this work appear
initially. As a good resource, the Berezin approach was applied to the Schrödinger
algebra in [4].
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An analysis of the connections between orthogonal polynomials and probability
distributions via properties of their generating function are accomplished in [1, 14].

We summarize the contents of this work. Section 2 reviews the binomial case
and introduces the matrix approach. This is followed up with a review of the
basics of symmetric representations including the homomorphism and transpose
properties. In §4, the matrix construction of Krawtchouk polynomial systems is
presented. §§1-4 are a review of the basic material in KG-Systems I, [3].

Appell systems and Bernoulli systems are described next. Appell systems es-
sentially turn out to have a generating function in the form of the exponential of
raising operators acting on a vacuum state. Bernoulli systems are Appell systems
with orthogonal polynomials as basis states. The Bernoulli systems provide mod-
els for Fock space constructions and for quantization with variables expressed in
operator form. §6 discusses the form of the observables and lays out the associ-
ated constructions of interest, such as coherent states and the Leibniz function.
After a review of the multinomial distribution in §7, in §8, we identify Krawtchouk
polynomials in the context of Bernoulli systems. Especially, we find the canonical
velocity (differentiation) operators and the form of the observables. Using coher-
ent state techniques, the lowering operators are found via the Leibniz function.
This rounds out a description of the Bernoulli system and associated quantities.
To conclude, we find the Xj variables in selfadjoint form and present associated
recurrence formulas for the basis Krawtchouk polynomials.

1.1. Basic notations and conventions. In this paper we will be working over
R.

(1) We consider polynomials in d+ 1 commuting variables.

(2) Multi-index notations for powers. With n = (n0, . . . , nd), x = (x0, . . . , xd):

xn = xn0

0 · · ·xnd

d

and the total degree |n| = n0 + · · · + nd. Typically m and n will denote
multi-indices, with i, j, k, ℓ for single indices. Running indices may be used
as either type, determined from the context.

(3) We use the following summation convention

repeated Greek indices, e.g., λ or µ, are summed from 0 to d.

Latin indices i, j, k, run from 1 to d unless explicitly indicated oth-
erwise and are summed only when explicitly indicated, preferring ℓ for a
single index running from 0 to d.

We will use the notation for standard basis eℓ as well for shifting multi-
indices, e.g. n± eℓ shifts nℓ ± 1 accordingly.
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(4) For simplicity, we will always denote identity matrices of the appropriate
dimension by I.

The transpose of a matrix A is denoted A⊤.

We will use the notation O to denote a real orthogonal matrix.

(5) Given N ≥ 0, B is defined as the multi-indexed matrix having as its only
non-zero entries

Bmm =

(

N

m

)

=
N !

m0! . . .md!

the multinomial coefficients of order N .

(6) For a tuple of numbers, diag(. . .) is the diagonal matrix with the tuple
providing the entries forming the main diagonal.

(7) Expectation with respect to a given underlying distribution is denoted 〈·〉.

2. Krawtchouk polynomials in one variable and the binomial

distribution

Krawtchouk polynomials may be defined via the generating function

(1 + pv)N−x(1− qv)x =
∑

0≤k≤N

vkKk(x,N)

The polynomialsKk(x,N) are orthogonal with respect to the binomial distribution
with parameters N, p. The associated probabilities have the form

{
(

N

0

)

qNp0, . . . ,

(

N

x

)

qN−xpx, . . . ,

(

N

N

)

q0pN } .

Let’s verify this. Setting G(v) = (1 + pv)N−x(1− qv)x, we have

〈G(v)G(w)〉 =
∑

x

(

N

x

)

qN−xpx(1 + pv)N−x(1− qv)x(1 + pw)N−x(1− qw)x

= (q + qp(v + w) + qp2vw + p− pq(v + w) + pq2vw)N

= (1 + pqvw)N

=

N
∑

k=0

(

N

k

)

(pq)k(vw)k

which shows orthogonality and identifies the squared norms

〈KiKj〉 = δij

(

N

i

)

(pq)i .

with 0 ≤ i, j ≤ N .
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2.1. Matrix formulation. Setting

(

y0
y1

)

=

(

1 p
1 −q

)(

v0
v1

)

we have

yN−x
0 yx1 =

∑

k

vN−k
0 vk1Φkx .

We call Φ a (the) Kravchuk matrix . The rows of the matrix Φ consist of the
values taken on by the corresponding polynomials at the points x. The expression
of orthogonality takes the form

ΦBPΦ⊤ = BD

where B is the diagonal matrix with entries the binomial coefficients
(

N
k

)

, the

matrix P is diagonal with entries qN−kpk and D is the diagonal matrix with
Dii = (pq)i, 0 ≤ i ≤ N .

3. Symmetric tensor powers

Given a (d + 1) × (d + 1) matrix A, the action on the symmetric tensor alge-
bra of the underlying vector space defines its “second quantization” or symmetric

representation.

Introduce commuting variables v0, . . . , vd. Map

yi =
d
∑

j=0

Aijvj

The induced matrix, Ā, at level (homogeneous degree) N = n0 + · · · + nd has
entries Āmn determined by the expansion

ym = ym0

0 · · · ymd

d =
∑

n

Āmnv
n .

Remark 3.1. Monomials are ordered according to dictionary ordering with 0 rank-
ing first, followed by 1, 2, . . . , d. Thus the first column of Ā gives the coefficients
of vN0 , etc.

The map A→ Ā is at each level a multiplicative homomorphism,

A1A2 = Ā1 Ā2

thus implementing, for each N ≥ 0, a representation of the multiplicative semi-

group of (1 + d) × (1 + d) matrices into
(

N+d
N

)

×
(

N+d
N

)

matrices as well as a

representation of the group GL(d+ 1) into GL(
(

N+d
N

)

).

3.1. Transpose Lemma. An important lemma is the relation between the in-
duced matrix of A with that of its transpose, A⊤.

Lemma 3.2. Transpose Lemma.

The induced matrices at each level satisfy

A⊤ = B−1Ā⊤B .
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Remark 3.3. Proofs of the homomorphism property and Transpose Lemma are
presented in [3].

Remark 3.4. Diagonal matrices. Multinomial distribution.

Note that the N th symmetric power of a diagonal matrix, D, is itself diagonal
with homogeneous monomials of the entries of the original matrix along its diag-
onal. In particular, the trace will be the N th homogeneous symmetric function in
the diagonal entries of D.

Example 3.5. For V =





v0 0 0
0 v1 0
0 0 v2



 we have in degree 2,

V̄ =

















v20 0 0 0 0 0
0 v0v1 0 0 0 0
0 0 v0v2 0 0 0
0 0 0 v21 0 0
0 0 0 0 v1v2 0
0 0 0 0 0 v22

















and so on.

Note that the special matrix B, diagonal with multinomial coefficients as entries
along the diagonal may be obtained as the diagonal of the induced matrix at level
N of the all 1’s matrix.

We see that if p is a diagonal matrix with entries pℓ > 0, 0 ≤ ℓ ≤ d,
∑

ℓ

pℓ = 1,

then the diagonal matrix

Bp

yields the probabilities for the corresponding multinomial distribution.

4. Construction of Krawtchouk polynomial systems

We start with O, a real orthogonal matrix with the extra condition that all
entries in the first column are positive. Form the probability matrix thus

p =







O2
00

. . .

O2
d0






=







p0
. . .

pd







row and column indices running from 0 to d.

Define

A =
1√
p
O
√
D

where D is diagonal with all positive entries on the diagonal, normalized by re-
quiring D00 = 1. The essential property satisfied by A is

A⊤pA = D .
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while observing that the entries of the first column, label 0, are all 1’s, i.e. Aℓ0 = 1,
0 ≤ ℓ ≤ d.

Definition 4.1. We say that A satisfies the K-condition if there exists a positive
diagonal probability matrix p and a positive diagonal matrix D such that

A⊤pA = D .

with Aℓ0 = 1, 0 ≤ ℓ ≤ d.
Notation. Throughout the remainder of this work, if A satisfies the K-condition,
we will denote its inverse by C. Thus,

C = A−1 = D−1A⊤p . (4.1)

We note two useful properties

Proposition 4.2. For A satisfying the K-condition we have

1. (p0, p1, . . . , pd)A = (1, 0, . . . , 0) = e0. That is, the vector of probabilities {pℓ}
times A yields e0. We express this as

pµAµℓ = δ0ℓ .

2. The first row of C is (p0, p1, . . . , pd), i.e., C0ℓ = pℓ.

Proof. Start with the observation that since the first column of A consists of all
1’s, the first row of A⊤ is all 1’s. So the first row of A⊤p is (p0, p1, . . . , pd).

Now, for #1, the row of probabilities times A is the first row of A⊤pA, thus,
the first row of D, which is precisely e0.
For #2, using the form D−1A⊤p for C, as in #1, the top row of A⊤p is the row
of probabilities, and multiplication by D−1 leaves it unchanged, as D00 = 1. �

4.1. Krawtchouk systems. In any degree N , the induced matrix Ā satisfies

A⊤p̄Ā = D̄ .

Using the Transpose Lemma

BA⊤ = Ā⊤B

where B is the special multinomial diagonal matrix yields

ΦBp̄ Φ⊤ = BD̄

the Krawtchouk matrix Φ being thus defined as Ā⊤.

The entries of Φ are the values of the multivariate Krawtchouk polynomi-

als thus determined.

BD̄ is the diagonal matrix of squared norms according to the orthogonality of
the Krawtchouk polynomial system with respect to the corresponding multinomial
distribution.
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Example 4.3. Start with the orthogonal matrix O =

(√
q
√
p√

p −√q

)

.

Factoring out the squares from the first column yields

p =

(

q 0
0 p

)

and we take

A =

(

1 p
1 −q

)

satisfying

A⊤pA =

(

1 0
0 pq

)

= D .

Take N = 4. We have the Kravchuk matrix Φ = Ā⊤ =












1 1 1 1 1
4p −q + 3p −2q + 2p −3q + p −4q
6p2 −3pq + 3p2 q2 − 4pq + p2 3q2 − 3pq 6q2

4p3 −3p2q + p3 2pq2 − 2p2q −q3 + 3pq2 −4q3
p4 −p3q p2q2 −pq3 q4













.

p is promoted to the induced matrix

p̄ =













q4 0 0 0 0
0 q3p 0 0 0
0 0 q2p2 0 0
0 0 0 qp3 0
0 0 0 0 p4













.

and the binomial coefficient matrix B = diag(1, 4, 6, 4, 1).

Remark 4.4. This approach is presented in detail in [3]. Here we continue with an
analytic approach based on operator calculus techniques.

5. Appell and Bernoulli systems

An Appell system of polynomials is a sequence {φn(x)}n≥0 such that

(1) deg φn = n

(2) ∂xφn = nφn−1 where ∂x =
d

dx
.

Introduce the raising operator

Rφn = φn+1 .

The pair ∂x,R satisfy the commutation relations

[∂x,R] = I

of the Heisenberg-Weyl algebra, i.e., boson commutation relations. Consider a
convolution family of probability measures pt, pt ∗ ps = pt+s, for s, t ≥ 0, p0 a
point mass at 0, with corresponding family of moment generating functions

∫

R

ezx pt(dx) = etH(z)
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where, extending z to complex values, we assume H(z) to be analytic in a neigh-
borhood of the origin in C, with H(0) = 0.

Remark 5.1. Discrete values of t work in general, while for continuous t ≥ 0 we
require pt to be infinitely divisible.

We have as generating function for the sequence {φn}

exz−tH(z) =

∞
∑

n=0

zn

n!
φn(x, t)

including the additional “time” variable. Note that φ0(x, t) = 1 with
∫

R

φn(x, t) pt(dx) = δ0n

for n ≥ 0.

Remark 5.2. In the infinitely divisible case, we have the exponential martingale
for the corresponding process with independent increments.

For the multivariate case, in the exponent, xz =
∑

xizi. We have ∂j = ∂/∂xj,
with Ri raising the index ni to ni + 1, satisfying

[∂j ,Ri] = δij1

noting that the action of ∂j is the same as multiplication by zj and that the action
of Ri is the same as ∂/∂zi .

5.1. Canonical Appell system. Now observe that if, in one variable, V (z) is
analytic in a neighborhood of 0 ∈ C, we can apply the operator V (∂) to polyno-
mials in x and we have as well

V (∂) exz = V (z) exz

acting on exponentials, for z in the domain of V . We have further the commutation
relation

[V (∂), x] = V ′(∂)

differentiating V . Next require that V (0) = 0, V ′(0) 6= 0 so that V has a lo-
cally analytic inverse in a neighborhood of the origin as well, denoted by U(v),
U(V (z)) = z. This yields a canonical pair

V = V (∂) and R = xW (∂)

where W (z) = 1/V ′(z).

If we have an Appell system in several variables as above, we define canonical
raising and velocity operators defined by

Vjφn = njφn−ej and Riφn = φn+ei

satisfying

[Vj ,Ri] = δij 1
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where V = (V1, . . . ,Vd) is given by a function V of ∂ = (∂1, . . . , ∂d), analytic in
a neighborhood of 0 in Cd, with a locally analytic inverse, U . The generating
function becomes

exz−tH(z) =
∑

n

V (z)n

n!
φn(x, t)

with multi-index notation for the monomials in V (z), and n! = n1! · · ·nd! as usual.
The generating function thus takes the equivalent form

exU(v)−tH(U(v)) =
∑

n

vn

n!
φn(x, t)

with multiplication by vj implemented as the operator Vj(∂) and ∂/∂vj yielding
the raising operator Rj after expressing the action in terms of ∂.

Example 5.3. For an example in one variable, take

V (z) = − log(1 − z) , U(v) = 1− e−v , W (z) = 1− z
with no time variable we have

exp
(

x(1 − e−v)
)

=
∑

n≥0

φn(x)

n!
vn

with action of the raising operator

Rφn = x(1 − ∂)φn = φn+1

and

V = − log(1 − ∂) =
∑

n≥1

∂n

n
.

The coefficients of the polynomials φn are (up to sign) Stirling numbers of the
second kind.

With p(dx) = e−x dx on x ≥ 0, we have
∫ ∞

0

ezx−xdx = (1− z)−1 = eH(z)

so H(z) = − log(1 − z), which happens to equal V (z). We get

exz−tH(z) = exp
(

x(1− e−v)
)

e−tv =
∑

n≥0

φn(x, t)

n!
vn

where now the raising operator is

R = x(1 − ∂)− t
leaving V unchanged. And we have for t > 0,

∫ ∞

0

e−xxt−1φn(x, t) dx/Γ(t) = δ0n

for n ≥ 0, the family of measures pt given by

pt(dx) = e−xxt−1 dx/Γ(t)

on [0,∞).
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5.2. Bernoulli systems. A Bernoulli system is a canonical Appell system such
that, for each t, the polynomials {φn(x, t)} form an orthogonal system with respect
to the measure pt. To indicate this, write Jn generically for the corresponding
canonical Appell sequence, thus

exU(v)−tH(U(v)) =
∑

n≥0

vn

n!
Jn(x, t) .

Example 5.4. Probably the most well-known example are Hermite polynomials,
{Hn}, with generating function

exz−z2t/2 =
∑

n≥0

zn

n!
Hn(x, t)

orthogonal with respect to the Gaussian distribution with mean zero and variance
t. Thus H(z) = z2/2,

R = x− t∂ and V = ∂ .

For an example with nontrivial V , consider a family of Poisson-Charlier poly-
nomials with generating function (1 + v)x e−tv. So

U(v) = log(1 + v) , V (z) = ez − 1 , W (z) = e−z

with H(z) = ez − 1, equal to V (z) in this case. Thus

R = xe−∂ − t and V = e∂ − 1 .

The polynomials are orthogonal with respect to the Poisson distribution on the
nonnegative integers with mean t.

5.2.1. Operator formulation. We construct a representation space for the boson
commutation relations starting with a vacuum state, Ω, satisfying VjΩ = 0, ∀j.
The basis states are built by acting with the raising operators Ri on the vacuum
state, thus they are of the form RnΩ, for multi-indices n, ni ≥ 0.

The operator form of the generating function is the exponential of the raising
operators acting on the vacuum state, using the abbreviated notation V (z)R =
∑

i

Vi(z)Ri:

eV (z)RΩ = exz−tH(z) =
∑

n≥0

V (z)n

n!
Jn(x, t)

where the vacuum state Ω is here J0(x, t), the constant function equal to 1.

Introducing the inverse function U , the generating function takes the form

evRΩ = exU(v)−tH(U(v)) =
∑

n≥0

vn

n!
Jn(x, t)

with the actions of {Ri} and {Vj} as
RiJn = Jn+ei , VjJn = njJn−ej .
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6. Quantization

We want a commuting family of selfadjoint operators to serve as quantum ob-
servables. Introduce the operators Xj, multiplication by the variables xj . These
will provide the desired operators.

Rewrite the generating function in the form

ezXΩ = etH(z) eV (z)R Ω .

We start by differentiating with respect to zj yielding the relation

Xj = t
∂H

∂zj
+
∑

i

Ri
∂Vi
∂zj

.

These act as operators by converting the zj to the partial differentiation operators,
∂j .

6.1. Specification of the system. Let’s consider the various operators and fea-
tures involved in specifying the Bernoulli system.

First, since we have a Hilbert space (in the present context, over R), we want
to find lowering operators {L1, . . . ,Ld}, where, for each i, Li is adjoint to Ri.
We wish to express all operators in terms of the canonical raising and velocity
operators Ri, Vj .

Since we are working with noncommuting operators, it is of interest to study
the Lie algebra generated by the raising and lowering operators.

With the Lj in hand, we will express Xj in manifestly self-adjoint form.

Some related constructions of interest will be considered as well, notably the
Berezin transform, based on the inner product of coherent states generated by the
raising operators. This information is summarized in the Leibniz function to be
explained subsequently. These will provide tools to study the relationships among
the lowering operators and the raising and velocity operators. We will find as
well the Riccati partial differential equations satisfied by the velocity operators, a
hallmark feature of Bernoulli systems and equations related to the Leibniz func-
tion/Berezin transform.

We start in the next two sections reviewing properties of multinomial distribu-
tions and the details of the Krawtchouk polynomials providing the basis states for
the Bernoulli system.

7. Multinomial distribution

First we describe the multinomial process we are interested in. The process
is a counting process keeping track of d possible results, with the possibility that
none of them occurs. Thus, at each time step the process makes one of d+1 choices:
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1. With probability p0, none of the levels 1 through d increase.

2. With probability pi, 1 ≤ i ≤ d, level i increases by 1.

The corresponding moment generating function for one time step is

p0 +
∑

i

pie
zi = 1 +

∑

i

pi(e
zi − 1)

= pµe
zµ

where we set z0 = 0. The moment generating function for N steps is thus

etH(z) = (pµe
zµ)N

where we identify

t = N and H(z) = log (pµe
zµ) .

8. Multivariate Krawtchouk polynomials as Bernoulli systems

We are given a matrix A satisfying the K-condition A⊤pA = D. The Kravchuk
matrix Φ is the transpose of the symmetric power of A. In degree N , we replace
the index m by the variables {N − ∑xi, x1, . . . , xd}, where the system has d
variables, the variable x0 being determined by homogeneity, equivalently, in terms
of the process, after N steps if you know x1, . . . , xd, then x0 is known. Thus,

(Av)x =
∑

n

vnΦnx =
∑

n

vn

n!
Kn(x,N) .

More explicitly,

(A0µvµ)
N−

∑
xi(A1µvµ)

x1 · · · (Adµvµ)
xd

=
∑ vn

n!
Kn(x,N) .

Recall that the first column of A consists of all 1’s, and set α0 = A00 = 1, αi = A0i,
1 ≤ i ≤ d.
We get

(αλvλ)
N
∏

i

(

Aiµvµ
ανvν

)xi

= exU(v)−NH(U(v))

as the generating function for a Bernoulli system.

8.1. Identification of Bernoulli constituents. Let’s determine the various
Bernoulli parameters.

As seen in §7, we have t = N and H(z) = log pµe
zµ . From the generating

function, the coefficient of N shows that

H(z) = log pµe
zµ = log(1/αµVµ(z)) (8.1)

or

pµe
zµ =

1

αµVµ(z)
(8.2)
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Looking at the coefficients of the variables xi in the exponent, we identify U ,
the inverse to V , such that

Uk(v) = log
Akµvµ
ανvν

(8.3)

8.2. Canonical velocity operators. Now we can solve for the velocity opera-
tors Vk(z). We have the inverse matrix

C = A−1 = D−1A⊤p .

Combine equations (8.3) and (8.2) to get

zk = Uk(V ) = log (pλe
zλAkµVµ)

Now exponentiate and move the p factor across

ezk

pµezµ
= AkµVµ (8.4)

and applying C to both sides we have

Proposition 8.1. For the Krawtchouk Bernoulli system we have the canonical

velocity operators

Vk(z) =
1

pµezµ
Ckλe

zλ .

satisfying the Riccati partial differential equations

∂Vi
∂zj

=
(

Cij − pjVi
)

AjµVµ

for 1 ≤ i, j ≤ d.

Proof. We need only verify the form of the differential equations. We have

∂Vi
∂zj

= − pje
zj

pµezµ
Vi +

Cije
zj

pµezµ

= (−pjVi + Cij)
ezj

pµezµ

and the result follows upon substituting the relation from equation (8.4). �

It is convenient to assign/adjoin projective coordinates, v0 = V0 = 1, and we
have previously set z0 = 0. To verify consistency, substitute k = 0 in the formula
for Vk:

V0(z) =
1

pµezµ
C0λe

zλ .

Now invoke Proposition 4.2, #2, to see that V0 is identically equal to one.
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8.3. Observables. We can now express the observablesXj in terms of the raising
and velocity operators. Recall the relation

Xj = t
∂H

∂zj
+
∑

i

Ri
∂Vi
∂zj

resulting by differentiating the generating function with respect to zj .

Proposition 8.2. The observables Xj have the form

Xj =

(

N pj +
∑

i

Ri(Cij − pjVi)
)

AjµVµ .

Proof. Observe that
∂H

∂zj
=
pje

zj

pµezµ
= pjAjµVµ

by equation (8.4). Now apply Proposition 8.1 to get the result. �

9. Coherent states. Leibniz function. Lie algebra

Now we want to find the lowering operators, the operators adjoint to the raising
operators. Li denotes the adjoint of Ri. We employ techniques involving coherent
states.

The generating function eVRΩ is a type of coherent state. The inner product
of coherent states has the form

Υ = 〈eBRΩ, eVRΩ〉 = φ(B1V1, . . . , BdVd)

by orthogonality. Working with this we can find the lowering operators.

We have
Υ = 〈Ω, eBLeVRΩ〉

equal to the vacuum expectation value of the group element eBLeVR. Comparing
with the Heisenberg-Weyl group

eB∂eVX = eVXeBV eB∂

we call Υ the Leibniz function of the system.

9.1. Finding the lowering operators. If we know the Leibniz function, we
have the differential relations

∂Υ

∂Vi
= 〈eBRΩ,Rie

V RΩ〉 and
∂Υ

∂Bi
= 〈eBRΩ,LieVRΩ〉 .

These are effectively the Berezin transforms of Ri and Li respectively.

Thus to find the lowering operators, we wish to express the partial derivatives
∂Υ

∂Bi
in terms of Vi and

∂Υ

∂Vi
. With the correspondence

∂Υ

∂Vi
←→Ri
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we will have found the lowering operators in terms of the canonical raising and
velocity operators.

9.2. Leibniz function for the Krawtchouk system. In our case, the gener-
ating function for the Krawtchouk polynomials is the coherent state we will use:

eVRΩ = exU(V )−tH(U(V ))

Multiplying by eBRΩ and averaging, we have

〈exU(V )+xU(B)〉e−t(H(U(B))+H(U(V )))

Recalling the moment generating function, using averaging notation,

〈exz〉 = etH(z)

we find in the exponent t times

H(U(B) + U(V ))−H(U(B))−H(U(V )) = ψ(BV ) = ψ(B1V1, . . . , BdVd)

thus defining ψ, where we use the fact that we have an orthogonal system.

Proposition 9.1. The Leibniz function for the Krawtchouk system is given by

Υ = 〈eBRΩ, eVRΩ〉 = (BµDµVµ)
N

where B0 = V0 = 1 and Di = Dii are the diagonal entries of D.

Proof. We will show that the function ψ above is given by

ψ(BV ) = logBµDµVµ .

By equation (8.1), we have

H(U(V )) = log(1/αµVµ) and H(U(B)) = log(1/αµBµ) . (9.1)

Now, using equations (8.1) and (8.3), we have

H(U(V ) + U(B)) = log(pµe
Uµ(V )eUµ(B))

= log

(

pµ
AµλVλ
ασVσ

AµνBν

αǫBǫ

)

Rewriting this last in the form

log

(

Vλ(A
⊤pA)λνBν

ασVσ αǫBǫ

)

invoke the K-condition, A⊤pA = D and bring in equation (9.1) yielding

log(VλDλBλ) +H(U(V )) +H(U(B))

from which the form of ψ follows. Exponentiating and raising to the power N then
gives the result. �
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9.3. Lowering operators for the Krawtchouk system. Lie algebra. We
are now in a position to determine the lowering operators Li.
Proposition 9.2. The Leibniz function Υ satisfies the partial differential equa-

tions
1

Di

∂Υ

∂Bi
= NViΥ− Vi

∑

Vj
∂Υ

∂Vj
.

Proof. First, for the left hand side

1

Di

∂Υ

∂Bi
=

NVi
BµVµDµ

Υ .

Now calculate
∑

j

Vj
∂Υ

∂Vj
= N

∑

j

BjDjVj
BµVµDµ

Υ = N
BνVνDν − 1

BµVµDµ
Υ = N(1− 1

BµVµDµ
)Υ

taking out the term B0V0D0 = 1. Hence

NΥ−
∑

j

Vj
∂Υ

∂Vj
=

N

BµVµDµ
Υ

and multiplying through by Vi yields the result. �

Re-interpreting the derivatives ∂Υ/∂Vi as raising operators Ri yields

Corollary 9.3. The lowering operators have the form

Li = Di

(

N −
d
∑

j=1

RjVj
)

Vi .

9.3.1. Lie algebra. Introduce the number operator N =
∑

kRkVk, satisfying
NRnΩ = |n|RnΩ .

We can write the above result in a convenient form.

Proposition 9.4. In terms of the number operator N , we have

Li = Di(N −N )Vi .
Note the commutation relations

[N ,Ri] = Ri and [Vj ,N ] = Vj .
Next, form the d2 operators

ρij = [Li,Rj ] .

Proposition 9.5. We have

1. ρii = Di(N −RiVi −N ).

2. For i 6= j, ρij = −DiRjVi.
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Proof. If i 6= j, then Rj and Vi commute so that

[Li,Rj ] = −Di[N ,Rj ]Vi = −DiRjVi
as stated. For i = j, we get

[Li,Ri] = Di(N − [N ,Ri]Vi −N ) = Di(N −RiVi −N )

as required. �

Denoting adjoint by ∗ we note that

ρij∗ = ρji

and that ρii, N , and RiVi are all selfadjoint.

For a dimension count, we have d2 operators ρij plus the 2d raising and lowering
operators which yields a Lie algebra of dimension d2 + 2d = (d + 1)2 − 1. Thus,
we have a copy of sl(d+ 1).

10. Observables

Going back to the observables, we can express the operators Xj in manifestly
selfadjoint form.

Proposition 10.1. We have Xj =

∑

1≤i≤d

(Ri + Li)Cij + (N −N )− 1

pj

∑

1≤i≤d
1≤k≤d

CijCkjρik

for 1 ≤ j ≤ d.

First we need some basic identities

Lemma 10.2. With C = A−1, we have

pjAji = DiCij

which is an explicit form of the matrix relation DC = A⊤p, cf. equation (4.1).

Proof. Recall, Proposition 8.2,

Xj =

(

N pj +
∑

i

Ri(Cij − pjVi)
)

AjµVµ

and note that

AjµVµ = Aj0V0 +
d
∑

k=1

AjkVk = 1 +
∑

k

AjkVk .
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We get, using the above Lemma, and Proposition 9.4,

(pj(N −N ) +
∑

i

RiCij)(
∑

k

AjkVk + 1)

= pj(N −N ) + (N −N )
∑

i

DiCijVi + (
∑

i

RiCij)(
∑

k

AjkVk + 1)

=
∑

i

(Ri + Li)Cij + pj(t−N ) +
∑

i,k

CijAjkRiVk . (10.1)

In the last sum, for i 6= k, we have RiVk = −(1/Dk)ρki. We get

−
∑

i6=k

1

Dk
CijAjkρki = −

1

pj

∑

i6=k

CijCkjρki (10.2)

as in Lemma 10.2. For i = k, we have from Proposition 9.5,

RiVi = N −N − 1

Di
ρii

and
∑

i

CijAjiRiVi =
∑

i

CijAji(N −N −
1

Di
ρii)

=
∑

i

CijAji(N −N )− 1

pj

∑

i

CijCijρii . (10.3)

Finally, observe that
∑

i

CijAji = CµjAjµ − C0jAj0 = 1− pj

recalling Proposition 4.2. Combining equations (10.1), (10.2) and (10.3) we arrive
at the desired form. �

10.1. Recurrence formulas. Now returning to the form of the Xj in terms of
the canonical raising and velocity operators

Xj =
(

N pj +
∑

i

Ri(Cij − pjVi)
)

AjµVµ

we see that these yield recurrence formulas for the multivariate Krawtchouk poly-
nomial system.

Proposition 10.3. The Krawtchouk polynomials satisfy the following recurrence

relations

xj Kn(x,N) =

pj(N − |n|)Kn +
∑

i

CijKn+ei + pjN
∑

k

AjknkKn−ek

− pj
∑

k

Ajk(|n| − 1)nkKn−ek +
∑

i,k

CijAjknkKn−ek+ei .
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Proof. Starting with AjµVµ = 1 +
∑

k AjkVk as in the above proof, expand out

the formula for Xj . Applying to Kn yields the result. �

11. Conclusion

The Krawtchouk polynomials and their multivariable generalizations provide
models involving a wide spectrum of mathematical objects. Among the most in-
teresting aspects from the present point of view are the representations of Lie
algebras on spaces of polynomials and the quantization aspects, especially the
connections with quantum probability.

The first part of this work, KG-Systems I, emphasizes the linear algebra and
numerical aspects of these systems, while KG-Systems II, shows these systems in
the analytic setting of a discrete quantum system, albeit over the reals.

One expects these classes of polynomials to be useful in coding theory while ap-
plications in image compression as well as quantum computation would certainly
not be wholly unexpected. And from the theoretical point of view how these sys-
tems behave under various limit theorems analogous to the classical Poisson and
Central limit theorems provides an area for interesting further study.

Acknowledgment. The author is grateful to Prof. Obata and the Center at To-
hoku University for the opportunity to have participated in the first GSIS-RCPAM
International Symposium, Sendai, 2013, where this material was presented. Fruit-
ful discussions with Prof. Tanaka are appreciatively acknowledged.

References

[1] Nobuhiro Asai, Izumi Kubo, and Hui-Hsiung Kuo. Generating function method for orthog-
onal polynomials and Jacobi-Szegő parameters. In Quantum probability and infinite dimen-
sional analysis, volume 18 of QP–PQ: Quantum Probab. White Noise Anal., pages 42–55.
World Sci. Publ., Hackensack, NJ, 2005.

[2] Persi Diaconis and Robert Griffiths. An introduction to multivariate Krawtchouk polyno-
mials and their applications. J. Statist. Plann. Inference, 154:39–53, 2014.

[3] Philip Feinsilver. Krawtchouk-Griffiths Systems I: Matrix Approach. Preprint
http://arxiv.org/abs/1611.06991, 2016.
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