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Domain model of confinement, chiral symmetry breaking and hadronization is based on
description of QCD vacuum gluon configurations as an ensemble of almost everywhere
homogeneous Abelian (anti-)self-dual fields. The ensemble can be explicitly constructed
as domain wall network. We shortly overview this approach and within this framework
discuss the effects of QCD vacuum polarization by strong electromagnetic fields. It is
stressed that such polarization effects can play the role of trigger for deconfinement.

1 Domain wall network

The following effective Lagrangian for gluon field and its motivation were discussed in [1]:
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Here Λ is a scale of QCD related to gluon condensate, f̆ = F̆ /Λ2, and

Dab
µ = δab∂µ − iĂabµ = ∂µ − iAcµ(T c)ab,

F aµν = ∂µA
a
ν − ∂νAaµ − ifabcAbµAcν , F̆µν = F aµνT

a, T abc = −ifabc

Tr
(
F̆ 2
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= F̆ abµν F̆
ba
νµ = −3F aµνF

a
µν ≤ 0, C1 > 0, C2 > 0, C3 > 0.

The minima of the effective potential are achieved for covariantly constant Abelian (anti-)self-
dual fields

Ăµ = −1

2
n̆kFµνxν , F̃µν = ±Fµν , FµνFµν = b2vacΛ4

where the matrix n̆k belongs to the Cartan subalgebra of su(3)

n̆k = T 3 cos (ξk) + T 8 sin (ξk) , ξk =
2k + 1

6
π, k = 0, 1, . . . , 5.

The minima are connected by discrete parity and Weyl transformations, which indicates that the
system is prone to existence of solitons in real space-time and kink configurations in Euclidean
space. Group-theoretical analysis of symmetry breaking and domain wall formation was done
in [2].
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Let us consider the simplest kink configuration – kink interpolating between self-dual and
anti-self-dual Abelian vacua. If the angle ω between chromoelectric and chromomagnetic fields
is allowed to deviate from the constant vacuum value and all other parameters are fixed to the
vacuum values, then the Lagrangian reads

Leff = −1

2
Λ2b2vac∂µω∂µω − b4vacΛ4

(
C2 + 3C3b

2
vac

)
sin2 ω.

The corresponding equation of motion is sine-Gordon equation

∂2ω = m2
ω sin 2ω, m2

ω = b2vacΛ2
(
C2 + 3C3b

2
vac

)
,

which have the following kink solution:

ω(xν) = 2 arctg (exp(µxν)) .

The angle ω interpolates between 0 and π. xµ stays for one of the four Euclidean coordinates.
The kink describes a planar domain wall between the regions with almost homogeneous Abelian
self-dual and anti-self-dual gluon fields. Chromomagnetic and chromoelectric fields are orthog-
onal to each other on the wall. Far away from the wall the field is self-dual or anti-self-dual, and
absolute value of the topological charge density is equal to the value of the gluon condensate.
The topological charge density vanishes on the wall.

We may now construct kink superposition with the standard methods. Let us denote the
general kink configuration as

ζ(µi, η
i
νxν − qi) =

2

π
arctan exp(µi(η

i
νxν − qi)),

where µi is the inverse width of the kink, ηiν is a normal vector to the plane of the wall. The
general kink network is then given by

ω = π

∞∑
j=1

k∏
i=1

ζ(µij , η
ij
ν xν − qij). (2)

Now we consider more general kink-like solution: three parameters bvac, ω and ξ deviate
from their vacuum values near the center of the kink (Fig. 1). One may see that the value of
scalar condensate FµνFµν = b2vacΛ4 decreases in the center of the kink which may increase size
of stable chromomagnetic flux tube.

2 Chromomagnetic trap

Calculation of one-loop quark contribution to the QCD effective potential demonstrated that
strong electromagnetic fields can play the role of a trigger for deconfinement [3]. The catalyzing
role of strong magnetic fields was also observed in Lattice QCD simulations [4, 5, 6]. During
heavy ion collisions, the electric Eel and magnetic Hel fields are almost orthogonal to each
other [7, 8]: EelHel ≈ 0. For this configuration of the external electromagnetic field, the
one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon
fields is minimal for the chromoelectric and chromomagnetic fields directed along the electric and
magnetic fields respectively [3, 9]. The orthogonal chromo-fields are not confining: color charged
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Figure 1: Kink connecting distinct vacua. An-
gle ω varies from 0 to π, angle ξ varies from
π/6 to π/2. Global minima of effective po-
tential (1) are degenerate in the value of field
strength b = bvac, so its magnitude is the same
for all vacua. Dimensionless variable x ≡ Λx
is used.

quasiparticles can move along the chromomagnetic field. Deconfined quarks as well as gluons
can move preferably along the direction of the magnetic field even after the electromagnetic
field turns off. This means that a defect in domain wall network may be formed during heavy
ion collision (see Fig. 2).

Let us consider eigenvalue problem for vector field[
−D̆2δµν + 2in̆Bµν

]
Qν = λ2Qµ (3)

with the boundary conditions

n̆Qµ(x) = 0, x ∈ ∂T , ∂T =
{
x2

1 + x2
2 = R2, (x3, x4) ∈ R2

}
.

The corresponding eigenvalues are

λ2
alkν = p2

4 + p2
3 + µ2

alk + 2sνκav, k = 0, 1, . . . ,∞, l ∈ Z,
s1 = 1, s2 = −1, s3 = s4 = 0, κa = ±1.

In the finite trap the lowest eigenvalue is

λ2
a00ν = p2

4 + p2
3 + µ2

a00 − 2v, sνκa = −1.

Few lowest eigenvalues µ2
akl as functions of

√
HR are shown in Fig. 2. One concludes that if

the dimensionless size
√
HR of the trap is sufficiently small

√
HR <

√
HRc ≈ 1.91, (4)

then there are no unstable tachyonic modes in the spectrum of color charged vector fields.
To estimate the critical size one may use the mean phenomenological value of the gluon

condensate (gauge coupling constant g is included into the field strength tensor)

〈F aµνF aµν〉 = 2H2 ≈ 0.5GeV4.

Equation (4) leads to the critical radius

Rc ≈ 0.51 fm (2Rc ≈ 1 fm).
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Figure 2: Example of two-dimensional
slice of the cylindrical thick domain wall
junction. Self-dual and anti-self-dual fields
are indicated by blue and red colors respec-
tively. The topological charge densityvan-
ishes inside the junction (green color).

Figure 3: The lowest eigenvalues corre-
sponding to positive color orientation κa =
1 as functions of

√
HR. The critical ra-

dius Rc corresponds to µ2
a00 = 2v =

√
3.

For large
√
HR eigenvalues approach cor-

rect Landau levels, the degeneracy in l is
restored.

However, as it follows from Fig. 1, scalar condensate become smaller at the domain wall and
may increase the value of critical radius.

In Minkowski space-time the eigenvalue problem turns to the wave equation:[
−D̆2δµν + 2in̆Bµν

]
Qν = 0.

Solution for this equation can be found as a linear combination of eigenmodes (3) with λ = 0.

p2
0 = p2

3 + µ2
alk + 2sνκav, (5)

p0 = ±ωalkν(p3), ωalkν =
√
p2

3 + µ2
alkν + 2sν , κav.

Equation (5) can be treated as the dispersion relation between energy p0 and momentum p3

for the quasiparticles. Unlike the chromomagnetic field, the (anti-)self-dual fields characteristic
for the bulk of domain network configuration lead to purely discrete spectrum of eigenmodes in
Euclidean space and do not possess any quasiparticle treatment in terms of dispersion relation
between energy and momentum for elementary color charged excitations.

3 Discussion

Even though a single chromomagnetic trap has critical size, overall volume of deconfinement
transition in hadronic matter is not restricted by Lc. Numerous traps may be formed, for
instance, due to the influence of strong electromagnetic fields in the whole region of relativistic
heavy ion collision [3]. The traps may merge into a large chromomagnetic lump developing
the flux tube structure inside the lump. Equivalently, one may also think about formation of
the flux tubes inside the traps with overcritical size emerging under conditions of high energy
or/and baryon number density, strong electromagnetic fields.
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In the absence of any external impact one expects that the fraction of the deconfinement
phase is statistically negligible as it occupies an essentially three-dimensional sub-manifold in the
four-dimensional space R4. The influence of external conditions like the high energy density,
high baryon density and strong electromagnetic fields can trigger the growth of the relative
fraction of the deconfined phase. Under certain conditions high energy density accumulated
by colorless collective excitations can be converted into the thermodynamics of color charged
quasiparticles. The growth of the deconfinement phase fraction may be described in terms of
creation of either numerous stable chromomagnetic traps or/and the trap with overcritical size,
populated by the polarized chromomagnetic tubes [10].

In the confinement regime (color charge quasiparticles are completely suppressed) one may
expect

q(x) = 〈|g2F̃ (x)F (x)|〉B = 〈g2F (x)F (x)〉B = B2
vac,

while the deconfinement regime (color charged quasiparticles are fully activated) occurs if

q(x)� 〈g2F (x)F (x)〉B = B2
vac.

The scalar gluon condensate may stay practically unchanged during the phase transfor-
mation. The regime of dilute plasma can not be reached unless the scalar gluon condensate
density vanishes, which would require complete rearrangement of the quantum effective action.
However, as soon as the color charged quasiparticles are activated the structure of the effective
action itself in principle becomes dependent on their temperature and density, and it cannot be
excluded that the scalar condensate vanishes at certain critical values of the temperature and
density.

In summary, the domain wall network representation of QCD vacuum is suggestive of a
two-stage deconfinement transition. At the first stage topological charge density vanishes, but
the scalar condensate stays almost unchanged, color charged quasiparticles are activated at
this stage while the colorless collective excitations can decay into the color charged ones. The
system is far from being a dilute gas. At the second stage the scalar gluon condensate vanishes,
and the system turns into dilute quark-gluon plasma.
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