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Abstract

The worldline formalism has previously been used for deriving compact
master formulas for the one-loop N-photon amplitudes in both scalar and
spinor QED, and in the vacuum as well as in a constant external field. For
scalar QED, there is also an analogous master formula for the propagator
dressed with N photons in the vacuum. Here, we extend this master formula
to include a constant field. The two-photon case is worked out explicitly,
yielding an integral representation for the Compton scattering cross section
in the field suitable for numerical integration in the full range of electric and
magnetic field strengths.

Keywords: Scalar Quantum Electrodynamics, Worldline formalism,
Bern-Kosower type maser formula, Constant field background, Compton
scattering.

1. Introduction

The one-loop effective action in scalar QED has the well-known “world-
line” or “Feynman-Schwinger” representation [1],

Γ[A] = −
∫ ∞

0

dT

T
e−m

2T

∫
P
Dx(τ) e−

∫ T
0 dτ [ 1

4
ẋ2+ieẋµAµ(x(τ))] . (1)
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Here m and T denote the mass and proper-time of the loop scalar, and∫
P Dx(τ) the path integral over closed loops in (euclidean) spacetime with
periodicity T in the proper-time.

Strassler in 1992 [2] showed how to convert this path integral into the
following master formula for the N-photon amplitudes:

Γ(k1, ε1; . . . ; kN , εN ) = −(−ie)N (2π)Dδ(
∑

ki)

∫ ∞
0

dT

T
(4πT )−

D
2 e−m

2T
N∏
i=1

∫ T

0
dτi

× exp

{ N∑
i,j=1

[1

2
GBijki · kj − iĠBijεi · kj +

1

2
G̈Bijεi · εj

]}∣∣∣
ε1ε2···εN

.

(2)

Here GB, ĠB, G̈B are the “bosonic” worldline Green’s function and its first
and second derivatives,

GB(τ, τ ′) ≡
∣∣τ − τ ′∣∣− (τ − τ ′)2

T
,

ĠB(τ, τ ′) = sign(τ − τ ′)− 2
τ − τ ′
T

,

G̈B(τ, τ ′) = 2δ(τ − τ ′)− 2

T
. (3)

Here a ‘dot’ always means a derivative with respect to the first variable, and
we abbreviate GB(τi, τj) ≡ GBij etc. GB(τ, τ ′) is the Green’s function for
the second derivative operator d2

dτ2
adapted to the periodicity, as well as to

the “string-inspired” (‘SI’) boundary conditions

∫ T

0
dτ GB(τ, τ ′) =

∫ T

0
dτ ′GB(τ, τ ′) = 0 , (4)

(up to an irrelevant constant that has been omitted). Note that G̈B(τ, τ ′)
contains a delta function that brings together two photon legs; this is how
the seagull vertex arises in the worldline formalism.

The notation
∣∣
ε1ε2···εN

means that the exponential should be expanded,
and only the terms linear in each of the polarization vectors be kept. The
photons are ingoing and still off-shell, so that these vectors are just book-
keeping devices at this stage.
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Originally, the same master formula (2) was derived by Bern and Kosower
[3, 4] from string theory as a generating expression from which to construct
the one-loop on-shell N gluon amplitudes by way of a certain set of rules.
It contains the information on the N - photon amplitudes in a form that is
not only extremely compact, but also well-organized with respect to gauge
invariance, particularly when combined with a certain integration-by-parts
procedure [3, 4, 2, 5]. Moreover, it combines into one integral the various
Feynman diagrams differing by the ordering of the N photons. This may
not seem very relevant at the one-loop level, however when the N - photon
amplitudes are used as building blocks for multiloop amplitudes it leads to
highly nontrivial representations combining Feynman diagrams of different
topologies [6, 7] (see also [8]).

In [2] also a generalization to the spinor QED was given (see [7] for
generalizations to more general field theories).

Shaisultanov [9] then generalized both the scalar and spinor QED master
formulas to the case of QED in a constant external field Fµν . For the scalar
case, this generalized master formula can be written as [10, 7]

Γ(k1, ε1; . . . ; kN , εN ) = −(−ie)N (2π)Dδ(
∑

ki)

×
∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2Tdet−
1
2

[
sin(Z)

Z

] N∏
i=1

∫ T

0
dτi

× exp

{ N∑
i,j=1

[1

2
ki · GBij · kj − iεi · ĠBij · kj +

1

2
εi · G̈Bij · εj

]}∣∣∣
ε1ε2···εN

,

(5)

where we have introduced the abbreviation Z ≡ eFT . This master formula
differs from the vacuum one, Eq. (2), only by the additional determinant fac-
tor det−

1
2

[ sin(Z)
Z
]
, which represents the dependence of the free (photonless)

path integral on the external field, and a change of the worldline Green’s
function GB to a new one GB that holds information on the external field,

GB(τi, τj) =
T

2Z2

( Z
sin(Z)

e−iZĠBij + iZĠBij − 1

)
. (6)

This Green’s function obeys the same SI boundary conditions as the vacuum
one, (4).

The master formula (5) and its spinor QED generalization [9, 10] are usu-
ally more efficient for the calculation of photonic processes in a constant field
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than the standard method based on Feynman diagrams. Its applications in-
clude the vacuum polarization in a constant field [11, 12, 7], photon splitting
in a magnetic field [13, 7], and the two-loop Euler-Heisenberg Lagrangian
in an electric/magnetic field [10, 14, 15, 7, 16] as well as in a self-dual [17]
background field. See [18, 19, 20, 21, 22, 23, 24] for extensions to gravity
and Einstein-Maxwell theory.

Much less has been done for the analogous amplitudes involving an open
line. For scalar QED in the vacuum, already in 1996 Daikouji et al. [25] ob-
tained the following master formula representing the scalar tree-level propa-
gator dressed with N photons (Fig. 1):

k3

+
−p p′

k2 k1 k3
kN

· · ·

+ −p p′

k2 k1 k3 kN

· · ·

−p p′

k1 k2 k3
kN

· · ·

−p p′

k1 k2 kN

· · ·

......

+ +

+ +

Figure 1: Multi-photon Compton-scattering diagram.

Dpp′(k1, ε1; · · · ; kN , εN ) = (−ie)N (2π)DδD
(
p+ p′ +

N∑
i=1

ki

)∫ ∞
0

dT e−m
2T

×
N∏
i=1

∫ T

0
dτi e−T [p+ 1

T

∑N
i=1(kiτi−iεi)]2+

∑N
i,j=1[∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj ]

∣∣∣
ε1ε2···εN

(7)

Here a different worldline Green’s function ∆(τ, τ ′) appears,

∆(τ, τ ′) =
ττ ′

T
+
|τ − τ ′|

2
− τ + τ ′

2
. (8)
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Instead of the SI boundary conditions (4), it is adapted to Dirichlet boundary
conditions (‘DBC’)

∆(0, τ ′) = ∆(T, τ ′) = ∆(τ, 0) = ∆(τ, T ) = 0 . (9)

Contrary to the former, these boundary conditions break the translation in-
variance in proper-time, so that one now has to distinguish between deriva-
tives with respect to the first and the second argument. A convenient nota-
tion is [26] to use left and right dots to indicate derivatives with respect to
the first and the second argument, respectively:

•∆(τ1, τ2) =
τ2

T
+

1

2
sign(τ1 − τ2)− 1

2
,

∆•(τ1, τ2) =
τ1

T
− 1

2
sign(τ1 − τ2)− 1

2
,

•∆•(τ1, τ2) =
1

T
− δ(τ1 − τ2) .

(10)

The Green’s functions GB and ∆ are related by [27]

GB(τ, τ ′) = 2∆(τ, τ ′)−∆(τ, τ)−∆(τ ′, τ ′) , (11)

(the factor of 2 is conventional) with the inverse relation

2∆(τ, τ ′) = GB(τ, τ ′)−GB(τ, 0)−GB(0, τ ′) . (12)

In [25] the master formula (7) was derived by a comparison with the standard
Schwinger parameter integral representations of the corresponding Feynman
diagrams. Recently, the same formula has been rederived [28] inside the
worldline formalism, starting from the generalization of the path integral
representation (1) to the propagator of a scalar particle in the Maxwell back-
ground:

Dxx′ [A] =

∫ ∞
0

dT e−m
2T

∫ x(T )=x

x(0)=x′
Dx e−

∫ T
0 dτ

[
1
4
ẋ2+ie ẋ·A(x)

]
.

(13)
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The master formula (7) so far has been generalized neither to spinor QED,
nor to the inclusion of an external field. The purpose of the present paper is
to carry out the latter generalization; the extension to the fermonic case (but
without an external field yet) will be presented in a companion paper [29].
See [30] for a non-abelian generalization of the dressed scalar propagator.

The organization of the paper is as follows. As a warm-up, in section 2 we
use the path integral representation to rederive the well-known scalar propa-
gator in a constant field, in configuration as well as in momentum space. In
section 3 we obtain our master formulas for the photon-dressed propagator
in a constant field in both configuration and momentum space, generalizing
the vacuum calculation of [28]. In section 4 we work the momentum space
formula out for the N = 2 case, and obtain a compact integral representa-
tion for the Compton scattering cross section in a constant field. Section 5
provides a summary and outlook. In appendix Appendix A we give our
conventions, while in appendix Appendix B we collect some information on
the constant field worldline Green’s functions.

2. The propagator in a constant field

In this section, we use (13) to just rederive the well-known scalar propa-
gator in a constant field, without photons yet.

2.1. Configuration space
Choosing Fock-Schwinger gauge, the gauge potential for a constant field

can be written as

Aµ(y) = −1

2
Fµν(y − x′)ν , (14)

where we have fixed the initial point of the trajectory x′ as the reference
point where the potential will vanish.

Further, we decompose the arbitrary trajectory x(τ) into a straight-
line part and a fluctuation part q(τ) obeying Dirichlet boundary conditions,
q(0) = q(T ) = 0:

x(τ) = x′ +
τ

T
(x− x′) + q(τ). (15)

Using (14) and (15) in (13), and further defining
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Qµ ≡
∫ T

0
dτqµ(τ) , (16)

after some simple manipulations the integrand can be rewritten as

Dxx′(F ) =

∫ ∞
0

dT e−m
2T e−

(x−x′)2
4T

∫
Dq(τ) e−

∫ T
0 dτ q̇

2

4
+ ie

2

∫ T
0 dτ q̇µFµνqν+ ie

T
(x−x′)µFµνQν

=

∫ ∞
0

dT e−m
2T e−

(x−x′)2
4T

∫
Dq(τ) e

−
∫ T
0 dτ 1

4
q
(
− d2

dτ2
+2ieF d

dτ

)
q+ ie

T
(x−x′)FQ

.

(17)

The path integral is already of gaussian form, and in the second line we have
written it in a form that prepares the formal gaussian integration. Apart
from the free path integral normalization, which is (see, e.g., [31])

∫
Dq(τ) e

−
∫ T
0 dτq

(
− 1

4
d2

dτ2

)
q

= (4πT )−
D
2 , (18)

this involves the determinant and the inverse of the operator − d2

dτ2
+2ieF d

dτ .
For the case of the SI boundary conditions (4), the relevant formulas have
been given already in (5), (6) above. The ratio of the field-dependent and
free path integral normalizations are

Det′
− 1

2
P

(
−1

4
d2

dτ2
+ 1

2 ieF
d
dτ

)
Det′

− 1
2

P

(
−1

4
d2

dτ2

) = Det′
− 1

2
P

(
1l− 2ieF

( d
dτ

)−1
)

= det−
1
2

[sin(Z)

Z
]
,(19)

(the ‘prime’ refers to the elimination of the zero mode which is contained
in the path integral for string-inspired boundary conditions). This can be
shown by a direct eigenvalue computation [31], and it is easy to see that
the spectrum does not change when passing from string-inspired to Dirichlet
boundary conditions, so that (19) holds unchanged for the open-line case.

The worldline Green’s function does change, but still relates to the one
for string-inspired boundary conditions in the same way as in the vacuum
case, (12):

∆
^

(τ, τ ′) ≡ 〈τ |
( d2

dτ2
− 2ieF

d

dτ

)−1
| τ ′〉DBC =

1

2

(
GB(τ, τ ′)− GB(τ, 0)− GB(0, τ ′) + GB(0, 0)

)
.

(20)
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Note that, contrary to the vacuum Green’s function (8), it is a non-trivial
matrix in the Lorentz space-time indices. Using this Green’s function in the
usual completing-the-square procedure, we get

Dxx′(F ) =

∫ ∞
0

dT e−m
2T e−

(x−x′)2
4T (4πT )−

D
2 det−

1
2

[
sin(eFT )

eFT

]
×exp

{∫ T

0
dτ

∫ T

0
dτ ′

ie

T
(x− x′)F∆

^
(τ, τ ′)

ie

T
F (x− x′)

}
=

∫ ∞
0

dT e−m
2T e−

(x−x′)2
4T (4πT )−

D
2 det

1
2

[ Z
sinZ

]
×exp

{
− 1

T 4
(x− x′)Z◦∆

^

◦Z(x− x′)
}
.

(21)

Here we have now extended the above ‘dot’ notation to include integration
as well as differentiation; a left (right) ‘open circle’ on ∆

^
(τ, τ ′) denotes an

integral
∫ T

0 dτ (
∫ T

0 dτ ′). In appendix Appendix B we show that

◦∆
^

◦ ≡
∫ T

0
dτ

∫ T

0
dτ ′∆

^
(τ, τ ′) =

T 3

4Z
(

cotZ − 1

Z
)
, (22)

which brings us to the well-known proper-time representation of the constant-
field propagator (see, e.g., [32]),

Dxx′(F ) =

∫ ∞
0

dT e−m
2T (4πT )−

D
2 det

1
2

[ Z
sinZ

]
exp

{
− 1

4T
(x− x′)Z cotZ(x− x′)

}
.

(23)

2.2. Momentum space
We Fourier transform (23),

Dpp′(F ) =

∫
dDx

∫
dDx′ eip·x+ip′·x′Dxx′(F ) , (24)

and changing the integration variables to

x+ =
1

2
(x+ x′), x− = x− x′ , (25)
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we get

Dpp′(F ) =

∫ ∞
0

dT e−m
2T (4πT )−

D
2 det

1
2

[ Z
sinZ

]
×
∫
dDx−

∫
dDx+ e

i
2

(p−p′)·x−+i(p+p′)x+exp

{
− 1

4T
x−Z cotZx−

}
.

(26)

As

∫
dDx− eip·x−−

1
4T
x−Z cotZx− =

(4πT )
D
2

det
1
2 [Z cotZ]

e−Tp(ZcotZ)−1p , (27)

the final result becomes

Dpp′(F ) = (2π)Dδ(p+ p′)D(p, F ) ,

D(p, F ) =

∫ ∞
0

dT e−m
2T e−Tp(

tanZ
Z )p

det
1
2 [cosZ]

.

(28)

3. The dressed propagator in a constant field

We now wish to dress the propagator with N photons in addition to the
constant field. As before, we start in configuration space.

3.1. Configuration space
For this purpose, the potential in (13) has to be chosen as

A = Aext +Aphot , (29)

where Aext is the same as in (14), and Aphot represents a sum of plane waves:

Aµphot(x) =
N∑
i=1

εµi eiki·x . (30)

Each photon then effectively gets represented by a vertex operator

9



V A[k, ε] =

∫ T

0
dτ ε · ẋ(τ) eik·x(τ) , (31)

integrated along the scalar line. This leads to the following path integral
representation of the constant-field propagator dressed with N photons:

Dxx′(F | k1, ε1; · · · ; kN , εN ) = (−ie)N
∫ ∞

0
dT e−m

2T

∫
P
Dx e−

∫ T
0 dτ

[
1
4
ẋ2+ie ẋ·Aext(x)

]
×V [k1, ε1]V [k2, ε2] · · ·V [kN , εN ] .

(32)

For the evaluation of the path integral, it will be convenient to rewrite the
photon vertex operator (31) as

V A[k, ε] =

∫ T

0
dτ eik·x(τ)+ε·ẋ(τ)

∣∣∣
lin(ε)

. (33)

Applying the path decomposition (15) we get the following generalization of
(17),

Dxx′(F | k1, ε1; · · · ; kN , εN ) = (−ie)N
∫ ∞

0
dT e−m

2T−
x2−
4T

∫
Dq e

−
∫ T
0 dτ 1

4
q
(
− d2

dτ2
+2ieF d

dτ

)
q+ ie

T
x−FQ

×
∫ T

0

N∏
i=1

dτi e
∑N
i=1

(
εi·

x−
T

+εi·q̇(τi)+iki·x−
τi
T

+iki·x′+iki·q(τi)
)∣∣∣
ε1ε2···εN

.

(34)

The path integral is already in a form suitable for gaussian integration.
“Completing the square” using the Green’s function (20), and using (22),
we get the following x - space master formula:

Dxx′(F | k1, ε1; · · · ; kN , εN ) = (−ie)N
∫ ∞

0
dT e−m

2T (4πT )−
D
2 det

1
2

[ Z
sinZ

]
e−

1
4T
x−Z cotZx−

×
∫ T

0
dτ1 · · ·

∫ T

0
dτN e

∑N
i=1

(
εi·

x−
T

+iki·
x−τi
T

+iki·x′
)

×exp

[ N∑
i,j=1

(
ki ∆

^
ij kj − 2iεi

•∆
^
ij kj − εi •∆

^

•
ij εj

)
+

2e

T
x−

N∑
i=1

(
F ◦∆

^
i ki − iF ◦∆

^

•
i εi

)]∣∣∣
ε1ε2···εN

.

(35)
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For the special case of a purely magnetic field, this x - space master formula
was obtained already in 1994 by McKeon and Sherry [33].

3.2. Momentum space
The transition to momentum space is quite analogous to the photon-

less case. We Fourier transform according to (24), and change the variables
to (25). The x+ integral produces the global delta function for energy-
momentum conservation, and the x− integral is gaussian. Performing it we
get our momentum space master formula:

Dpp′(F | k1, ε1; · · · ; kN , εN ) = (−ie)N (2π)Dδ
(
p+ p′ +

N∑
i=1

ki

)∫ ∞
0

dT e−m
2T 1

det
1
2 [cosZ]

×
∫ T

0
dτ1 · · ·

∫ T

0
dτN e

∑N
i,j=1

(
ki ∆
^
ij kj−2iεi

•∆
^
ij kj−εi •∆

^

•
ij εj

)
e−Tb(

tanZ
Z )b

∣∣∣
ε1ε2···εN

.

(36)

Here we have defined

b ≡ p+
1

T

N∑
i=1

[(
τi − 2ieF ◦∆

^
i

)
ki − i

(
1− 2ieF ◦∆

^

•
i

)
εi

]
. (37)

The master formula (36) describes the same set of Feynman diagrams
depicted in Fig. 1, only that now all the scalar propagators are the “full” ones
in the external field (usually indicated by a double line). When applying it
to the calculation of physical processes, one has to take into account that
it describes the untruncated dressed propagator, i.e. the final propagators
on each end of the scalar line in Fig. 1 are included. To obtain the matrix
element T , we have to cancel these final propagators using (28):

T (F | k1, ε1; · · · ; kN , εN ) =
Dpp′(F | k1, ε1; · · · ; kN , εN )

D(p, F )D(p′, F )
.

(38)

Moreover, it will be convenient to Wick rotate from euclidean to Minkowski
space; the rules for the Wick rotation are given in appendix Appendix A
together with our conventions. In appendix Appendix B we collect the
formulas necessary to write the integrand in explicit form. We use (20) to
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write the Green’s function ∆
^

(τ, τ ′) in terms of GB(τ, τ ′), which is translation
invariant and obeys (4) which will be very useful here. We then explain how
to write GB(τ, τ ′) explicitly for a generic constant field.

Finally, let us remark that eventual poles in the global proper-time in-
tegral due to the determinant factor in (36) are spurious, because when
cosZ = 0 the factor e−Tb(

tanZ
Z )b will vanish too (differently from the corre-

sponding one-loop amplitudes, where such poles lead to an imaginary part
related to pair creation).

4. Compton scattering in a constant field

We will now work out the N = 2 case, i.e. Compton scattering in a
constant field. Expanding out the exponentials in (36) and projecting to the
terms linear in both polarization vectors, we find (omitting now the global
factor for energy-momentum conservation):

Dpp′(F | k1, ε1; k2, ε2) = e2

∫ ∞
0

dT
e−m

2T

det
1
2 [cosZ]

×
∫ T

0
dτ1

∫ T

0
dτ2 e

−Tb0( tanZ
Z )b0+

∑2
i,j=1 ki ∆

^
ij kj

ε1M12ε2 ,

(39)

with

b0 ≡ p+
1

T

2∑
i=1

(
τi − 2ieF ◦∆

^
i

)
ki , (40)

and

M12 ≡ 2•∆
^

•
12 −

2

T

(
1 + 2ie◦∆

^

•T
1 F
)tanZ
Z

(
1− 2ieF ◦∆

^

•
2

)
+4
[
(1 + 2ie◦∆

^

•T
1 F )

tanZ
Z b0 −

2∑
i=1

•∆
^

1i ki

][
b0

tanZ
Z

(
1− 2ieF ◦∆

^

•
2

)
−

2∑
i=1

ki∆
^

•
i2

]
.

(41)

Squaring, and performing the sum over the photon polarizations via
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∑
pol

ε∗µi ε
ν
i −→ gµν , (42)

we get the following for the Compton cross section:

∑
pol

T ∗T =
e4

|D(p, F )|2 |D(p′, F )|2

×
∫ ∞

0
dT ′

e−m
2T ′

det
1
2 [cosZ ′]

∫ T ′

0
dτ ′1

∫ T ′

0
dτ ′2 e

−T ′b∗0( tanZ′
Z′ )b∗0+

∑2
i,j=1 ki ∆

^

′
ij kj

×
∫ ∞

0
dT

e−m
2T

det
1
2 [cosZ]

∫ T

0
dτ1

∫ T

0
dτ2 e

−Tb0( tanZ
Z )b0+

∑2
i,j=1 ki ∆

^
ij kj

tr(M ′†12M12) .

(43)

After writing the integrand explicitly with the help of the formulas of ap-
pendix Appendix B, this expression is suitable for numerical integration.

5. Summary and Outlook

Using the worldline path integral formalism, we have derived a Bern-
Kosower type master formula for the scalar propagator in QED, in a constant
field and dressed by an arbitrary number of photons. The x - space version
of this formula generalizes the one obtained by McKeon and Sherry for the
purely magnetic case [33]; the p - space version generalizes the vacuummaster
formula of Daikouji et al. [25] on one hand, the closed-loop master formula
of Shaisultanov [9] on the other. Our master formula is valid off-shell, and
combines the various orderings of the N photons along the scalar line. It can
thus be used as a convenient starting point for the construction of higher-
loop scalar QED processes in a constant field. On-shell, it yields parameter
integral representations for linear and nonlinear Compton scattering in the
field, as well as the various processes related to it by crossing.

To make this paper self-contained, we have also provided all the machin-
ery necessary for writing the integrands in explicit form. We have worked out
the integrand for the linear Compton scattering case explicitly, arriving at
a compact representation suitable for numerical integration. The results of
such a numerical computation will be presented in a forthcoming publication.
Compton scattering in magnetic fields is a process of potential relevance for
astrophysics, but, to the best of our knowledge, so far has been studied only
in the strong-field limit [35].
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Appendix A. Conventions

At the path integral level, we work in the Euclidean space with a positive
definite metric (gµν) = diag(+ + . . .+). The euclidean field strength tensor
is defined by F ij = εijkBk, i, j = 1, 2, 3, F 4i = −iEi. Minkowski space
amplitudes are obtained by analytically continuing

gµν → ηµν ,

k4 → −ik0 ,

T → is ,

F 4i → F 0i = Ei .

(A.1)

where (ηµν) = diag(− + ++). These Minkowski space conventions agree
with [34] up to the sign of the charge e.
Momenta appearing in vertex operators are ingoing.

Appendix B. Worldline Green’s functions

Here we collect the information necessary to work out explicitly the in-
tegrands generated by the master formulas (35) and (36) for any N .

Appendix B.1. Expressing the DBC Green’s function through the SI one
Rather than writing out the DBC Green’s function ∆

^
(τ, τ ′) and its deriva-

tives directly in terms of trigonometric functions of the field strength tensor,
we find it convenient to first rewrite them in terms of the SI Green’s function
GB(τ, τ ′) via (20),
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∆
^

(τ, τ ′) =
1

2

(
GB(τ, τ ′)− GB(τ, 0)− GB(0, τ ′) + GB(0, 0)

)
.

(B.1)

The advantages of GB(τ, τ ′) are that it is translation invariant, so that we do
not have to distinguish between right and left derivatives, and that it fulfills
the same nonlocal boundary conditions as the vacuum Green’s function (4),

∫ T

0
dτ GB(τ, τ ′) =

∫ T

0
dτ ĠB(τ, τ ′) =

∫ T

0
dτ G̈B(τ, τ ′) = 0 . (B.2)

The latter property will be very useful for the ‘circled’ Green’s functions.
Moreover, the Lorentz matrix structure of GB(τ, τ ′) has already been worked
out for the various types of constant fields [12, 7].

Using (B.1), the various derivatives and integrals of ∆
^

(τ, τ ′) appearing
in the master formulas become

•∆
^

(τ, τ ′) =
1

2

(
ĠB(τ, τ ′)− ĠB(τ, 0)

)
,

•∆
^

•(τ, τ ′) = −1

2
G̈B(τ, τ ′) ,

◦∆
^

(τ ′) =
T

2

(
−GB(0, τ ′) + GB(0, 0)

)
,

◦∆
^

•(τ ′) =
T

2
ĠB(0, τ ′) ,

◦∆
^

◦ =
T 2

2
GB(0, 0) .

(B.3)

Appendix B.2. General properties of the Green’s function GB
Here we cite a few general properties of the Green’s function GB and its

derivatives; for derivations and more details, see [12, 7, 23]. We can write
these functions as power series in the matrix Z ≡ eFT as follows [10]:

15



GB(τ, τ ′) =
T

2Z2

( Z
sin(Z)

e−iZĠB(τ,τ ′) + iZĠB(τ, τ ′)− 1

)
,

ĠB(τ, τ ′) =
i

Z

( Z
sin(Z)

e−iZĠB(τ,τ ′) − 1

)
,

G̈B(τ, τ ′) = 2δ(τ − τ ′)− 2

T

Z
sin(Z)

e−iZĠB(τ,τ ′) .

(B.4)

By absorbing the dependence on τ, τ ′ in terms of the derivative of the vacuum
Green’s function, ĠB(τ, τ ′), one avoids having to make an explicit case dis-
tinction between τ1 > τ2 and τ1 < τ2 that would become necessary otherwise
[9]. Let us note also the coincidence limits of GB, ĠB:

GB(τ, τ) =
T

2Z2

(
Z cot(Z)− 1

)
,

ĠB(τ, τ) = icot(Z)− i

Z .

(B.5)

Note that they are independent of τ . As Lorentz matrices, GB and its deriva-
tives have the following symmetry properties:

GB(τ, τ ′) = GTB(τ ′, τ), ĠB(τ, τ ′) = −ĠTB(τ ′, τ), G̈B(τ, τ ′) = G̈TB(τ ′, τ) .

(B.6)

For weak background fields, it is often justified to approximate the Green’s
function by the first few terms of its expansion in Fµν . To order F 2, one
finds

GB(τ, τ ′) = GB(τ, τ ′)− T

6
− i

3
ĠB(τ, τ ′)GB(τ, τ ′)TeF +

(T
3
G2
B(τ, τ ′)− T 3

90

)
(eF )2 +O(F 3) ,

ĠB(τ, τ ′) = ĠB(τ, τ ′) + 2i
(
GB(τ, τ ′)− T

6

)
eF +

2

3
ĠB(τ, τ ′)GB(τ, τ ′)T (eF )2 +O(F 3) ,

G̈B(τ, τ ′) = G̈B(τ, τ ′) + 2iĠB(τ, τ ′)eF − 4
(
GB(τ, τ ′)− T

6

)
(eF )2 +O(F 3) .

(B.7)
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These expansions are easily obtained from (B.4) using the identity Ġ2
B(τ, τ ′) =

1 − 4
TGB(τ, τ ′). The coefficients can be written in closed form to all orders

in F , either in terms of Bernoulli polynomials of τ − τ ′ [10], or in terms of
Faulhaber polynomials of ĠB(τ, τ ′) [23].

Appendix B.3. Matrix decomposition of the Green’s function GB
Finally, a matrix decomposition of GB will be necessary. This can be

achieved in a Lorentz invariant way [12], but from a practical point of view
it is simpler to work in a Lorentz frame well-adapted to the external field.
Here, we will be satisfied with treating (i) the case of a generic field and (ii)
the purely magnetic field case; see [12] for the more special ‘crossed field’
and ‘self-dual’ cases. In all cases it will be useful to decompose GB as

GB = SB +AB , (B.8)

where SB is the even part of GB as a function of F , and AB the odd one.
For SB, the following trigonometric rewriting is often useful:

SB(τ, τ ′)− SB(τ, τ) = T
sin
(
|u− u′| Z

)
sin[(1− |u− u′|)Z]

Z sinZ , (B.9)

where we have rescaled τ = Tu, τ ′ = Tu′.

Appendix B.3.1. The generic case
For a generic constant field, both Maxwell invariants B2 −E2 and E ·B

are nonzero. By Lorentz invariance there then exists a Lorentz frame where
the electric and magnetic field vectors both point along the z - axis, and by
parity invariance we can assume that they both point along the positive z -
axis. In euclidean conventions, we then have

F =


0 B 0 0
−B 0 0 0
0 0 0 iE
0 0 −iE 0

 , (B.10)

which suggests to introduce the following matrix base:

g⊥ ≡


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , g‖ ≡


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , r⊥ ≡


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , r‖ ≡


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 .
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Using this Lorentz frame and base, and defining

z⊥ ≡ eBT, z‖ ≡ ieET , (B.11)

the matrix functions SB and AB can be decomposed as [12, 7]

SµνB12 = −T
2

∑
α=⊥,‖

AαB12

zα
gµνα ,

AµνB12 =
iT

2

∑
α=⊥,‖

SαB12 − ĠB12

zα
rµνα ,

ṠµνB12 =
∑
α=⊥,‖

SαB12 g
µν
α ,

ȦµνB12 = −i
∑
α=⊥,‖

AαB12 r
µν
α ,

S̈µνB12 = G̈B12g
µν − 2

T

∑
α=⊥,‖

zαA
α
B12 g

µν
α ,

ÄµνB12 =
2i

T

∑
α=⊥,‖

zαS
α
B12 r

µν
α ,

(B.12)

with the following coefficient functions:

SαB12 =
sinh(zαĠB12)

sinh(zα)
,

AαB12 =
cosh(zαĠB12)

sinh(zα)
− 1

zα
.

(B.13)

(α =⊥, ‖). In the worldline formalism, these two scalar, dimensionless func-
tions SB and AB are the basic building blocks of the integrands of one-loop
amplitudes in a constant field in scalar QED, as well as in scalar Einstein-
Maxwell theory [21, 23].

Appendix B.3.2. The magnetic case
For easy reference, let us write down here also the explicit formulas for

the case of a pure magnetic field, with B pointing along the z - axis:
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ḠB12 = GB12 g‖ −
T

2

(
cosh(zĠB12)− cosh(z)

)
z sinh(z)

g⊥

+
T

2z

(
sinh(zĠB12)

sinh(z)
− ĠB12

)
ir⊥ ,

ĠB12 = ĠB12 g‖ +
sinh(zĠB12)

sinh(z)
g⊥ −

(
cosh(zĠB12)

sinh(z)
− 1

z

)
ir⊥ ,

G̈B12 = G̈B12 g‖ + 2

(
δ12 −

z cosh(zĠB12)

T sinh(z)

)
g⊥ + 2

z sinh(zĠB12)

T sinh(z)
ir⊥ .

(B.14)

Here the “bar” on GB indicates that its irrelevant coincidence limit has been
subtracted. The DBC Green’s function in the magnetic case can be written
relatively compactly as [33]

∆
^

(τ, τ ′) = ∆(τ, τ ′)g‖ +
2eT

z

[
θ(τ − τ ′) sin

z(τ − τ ′)
2eT

− sin zτ
2eT sin z(T−τ ′)

2eT

sin z
2e

]
×
[

cos
z(τ − τ ′)

2eT
g⊥ + sin

z(τ − τ ′)
2eT

r⊥

]
,

(B.15)

where now z = eBT .
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