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Abstract

With the aid of the symbolic computations software; Wolfram Math-
ematica 9, the powerful sine-Gordon expansion method is used in ex-
amining the analytical solution of the longitudinal wave equation in
a magneto-electro-elastic circular rod. Sine-Gordon expansion method
is based on the well-known sine-Gordon equation and a wave trans-
formation. The longitudinal wave equation is an equation that arises
in mathematical physics with dispersion caused by the transverse Pois-
son’s effect in a magneto-electro-elastic circular rod. We successfully get
some solutions with the complex, trigonometric and hyperbolic function
structure. We present the numerical simulations of all the obtained so-
lutions by choosing appropriate values of the parameters. We give the
physical meanings of some of the obtained analytical solutions which
significantly explain some practical physical problems.

Keywords: The SGEM; longitudinal wave equation in a MEE circular
rod; complex, hyperbolic, trigonometric function solutions

1 Introduction

Searching for the new analytical solutions to nonlinear evolution equations
(NEEs) plays a vital role in the study of nonlinear physical aspects. Nonlin-
ear evolution equation are often used to express complex models that arise
in the various fields of nonlinear sciences, such as; plasma physics, quantum
mechanics, biological sciences and so on. For the past two decades, various
analytical techniques have been invested to explore the search for the new so-
lutions to different type of NLEs such as the new generalized algebra method
[1], the tan(F (ξ)

2
)-expansion method [2, 3], the extended tanh method [4], the

jacobi elliptic function method [5], the homogeneous balance method [6], the
generalized Kudryashov method [7, 8], the generalized (G

′
/G) method [9], the
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extended homoclinic test function method [10], the improved Bernoulli sub-
equation function method [11], the modified exp (−Ω(ξ))-expansion function
method [12, 27] and so on. Generally, many more analytical techniques have
been designed and used in obtaining analytical solutions of various NLEs [13–
24].

In this work, the powerful sine-Gordon expansion method (SGEM) [25, 26]
is invested to search for some new solutions to the longitudinal wave equation
in a magneto-electro-elastic (MEE) circular rod [27]. The longitudinal wave
equation is an equation with dispersion caused by the transverse Poisson’s
effect in a MEE circular rod which is derived by [28].

The longitudinal wave equation in a MEE circular rod is given by [27];

utt − v20uxx −
(v0

2
u2 +Mutt

)
xx

= 0, (1.1)

where v0 is the linear longitudinal wave velocity for a MEE circular rod and M
is the dispersion parameter, all of them depend on the material property and
the geometry of the rod [28]. Various analytical approaches have been invested
to seek for the solutions of the longitudinal wave equation in a magneto-electro-
elastic MEE circular rod such as the modified (G

′
/G)-expansion method [29],

the functional variable method [30], the ansatz method [31] and so on.

2 The SGEM

In the present section, we give the general facts of SGEM.

Consider the following sine-Gordon equation [32, 33]:

uxx − utt = m2sin(u). (2.1)

where u = u(x, t) and n ∈ R \ {0}.

Utilizing the wave transformation u = u(x, t) = U(ζ), ζ = α(x − kt) on Eq.
(2.1), produces the following nonlinear ordinary differential equation (NODE):

U
′′

=
n2

α2(1− k2)
sin(U), (2.2)

where U = U(ζ), ζ is the amplitude of the travelling wave and k is the speed
of the travelling wave. Integrating Eq. (2.2), we obtain the following equation:[(U

2

)′]2
=

n2

α2(1− k2)
sin2

(U
2

)
+Q, (2.3)



3

where Q is the integration constant.

Substituting Q = 0, ω(ζ) = U
2

and b2 = n2

α2(1−k2) in Eq. (2.3), gives:

ω
′
= bsin(ω), (2.4)

inserting b = 1 into Eq. (2.4), produces:

ω
′
= sin(ω), (2.5)

simplifying Eq. (2.5), gives the following two significant equations;

sin(ω) = sin(ω(ζ)) =
2deζ

d2e2ζ + 1

∣∣∣∣∣
d=1

= sech(ζ), (2.6)

cos(ω) = cos(ω(ζ)) =
d2e2ζ − 1

d2e2ζ + 1

∣∣∣∣∣
d=1

= tanh(ζ), (2.7)

where d is the integral constant.

For the given nonlinear partial differential equation Eq. (2.8);

P (u, uux, u
2ut, . . .), (2.8)

we look its solution in the form;

U(ζ) =
m∑
i=1

tanhi−1(ζ)
[
Bisech(ζ) + Aitanh(ζ)

]
+ A0. (2.9)

Equation (2.9) may be given according to Eq. (2.6) and (2.7) as;

U(ω) =
m∑
i=1

cosi−1(ω)
[
Bisin(ω) + Aicos(ω)

]
+ A0. (2.10)

We determinem by balancing the highest power nonlinear term and the highest
derivative in the transformed NODE. Taking each summation of the coefficients
of sini(w)cosj(w), 0 ≤ i, j ≤ m to be zero, produces a set of equations. Solving
this set of equation with the symbolic computational software like Wolfram
Mathematica 9, yields the values of the coefficients Ai, Bi, µ and c. Finally,
inserting the obtained values of these coefficients into Eq. (2.9) along with the
value of m, gives the new travelling wave solutions to Eq. (2.8).
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3 Applications

In this section, the SGEM is used in searching the new solutions to Eq. (1.1).
Considering Eq. (1.1), we derive the following NODE by utilizing the wave
transformation; u = U(ζ), ζ = µ(x− kt);

2pk2µ2U
′′ − 2(k2 − c20)U + c20U

2 = 0, (3.1)

we get m = 2 by balancing U
′′

and U2 in Eq. (3.1).

Using Eq. (2.10) together with the value m = 2, we get the following equation;

U(ω) = B1sin(ω) + A1cos(ω) +B2cos(ω)sin(ω) + A2cos
2(ω) + A0, (3.2)

differentiating Eq. (3.2) twice, we get:

U
′′
(ω) = B1cos

2(ω)sin(ω)−B1sin
3(ω)− 2A1sin

2(ω)cos(ω)

+B2cos
3(ω)sin(ω)− 5B2sin

3(ω)cos(ω)− 4A2cos
2(ω)sinω(ω) + 2A2sin

4(ω),

(3.3)

Putting Eq. (3.2) and (3.4) into Eq. (3.1), yields an equation in trigonometric
functions. After making some trigonometric identities substitutions into the
trigonometric functions equation, we collect a set of algebraic equations by set-
ting each summation of the coefficients of the trigonometric functions of the
same power to zero. We solve the set of equations with the aid of the symbolic
software; Mathematica or Maple to get the various cases for the values of the
coefficients. We insert the values of the coefficients for each case into Eq. (2.9)
along with the value m = 2, this gives us new solution to Eq. Eq. (1.1).

Case-1:
A0 = 4

c20
(c20 − k2), A1 = 0, B1 = 0, A2 = − 6

c20
(c20 − k2), B2 = 6

(
k2

c20
− 1
)
i,

p = 1
k2µ2

(k2 − c20).

Case-2:
A0 = 4

(
1− 1

1+pµ2

)
, A1 = 0, B1 = 0, A2 = 6

(
1

1+pµ2
− 1
)
, B2 = 6pµ2(pµ2−1)

p2µ4−1 i,

c0 = −k
√

1 + pµ2.

Case-3:
A0 = 6

(
k2

c20
− 1
)
, A1 = 0, B1 = 0, A2 = 6

(
1− k2

c20

)
, B2 = 6

(
1− k2

c20

)
i,

µ = − 1
k
√
p
(k2 − c20).
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Case-4:

A0 =
1

c20
(c20 − k2), A1 = 0, B1 = 0, A2 = − 3

c20
(c20 − k2), B2 = 0, p =

k2 − c20
4k2µ2

.

Case-5:
A0 = 1− 1

4pµ2+1
, A1 = 0, B1 = 0, A2 = 3

(
1

4pµ2+1
− 1
)
, B2 = 0,

c0 = k
√

4pµ2 + 1.
Case-6:

A0 = 1− k2

c20
, A1 = 0, B1 = 0, A2 = 3

(k2
c20
− 1
)
, B2 = 0, µ =

1

2k
√
p

(k2 − c20)i.

With case-1, we get the following solution;

u1(x, t) =
(k2 − c20)

c20

(
6 + 6i sech[µ(x− kt)]tanh[µ(x− kt)]

−6tanh2[µ(x− kt)]
)
.

(3.4)

Figure 1: The 3D and 2D shape for the imaginary part of Eq. (3.4) with the
values k = 2, c0 = 1, µ = 3, −3 < x < 3, −5 < t < 5 and t = 0 for the 2D
graphic.
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Figure 2: The 3D and 2D shape for the real part of Eq. (3.4) with the values
k = 2, c0 = 1, µ = 3, −13 < x < 13, −5 < t < 5 and t = 0 for the 2D graphic.

With case-2, we get the following solution;

u2(x, t) =
(

1− 1

1 + pµ2

)(
4− 6tanh2[µ(x− kt)]

)
+

1

p2µ2 − 1

(
6pµ2(pµ2 − 1)i sech[µ(x− kt)]tanh[µ(x− kt)]

)
.

(3.5)
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Figure 3: The 3D and 2D shape for the real part of Eq. (3.5) with the values
k = 2, p = 1, µ = 3, −5 < x < 8, 0 < t < 2 and t = 0 for the 2D graphics.

With case-3, we get the following solution;

u3(x, t) =
1

c20
(c20 − k2)

(
− 1− i sech

[ 1

k
√
p

(k2 − c20)(x− kt)
]

×tanh
[ 1

k
√
p

(k2 − c20)(x− kt)
]

+ tanh2
[ 1

k
√
p

(k2 − c20)(x− kt)
])
.

(3.6)
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Figure 4: The 3D and 2D shape for the real part of Eq. (3.6) with the values
k = 2, p = 1, c0 = 1, −5 < x < 5, 0 < t < 2 and t = 0 for the 2D graphics.

With case-4, we get the following solution;

u4(x, t) =
1

c20

(
(c20 − k2)− 3(c20 − k2)tanh2[µ(x− kt)]

)
. (3.7)

Figure 5: The 3D and 2D shape for the real part of Eq. (3.7) with the values
k = 0.005, µ = 3, c0 = 1, −1 < x < 1, 0 < t < 2 and t = 0 for the 2D graphic.

With case-5, we get the following solution;

u5(x, t) =
4pµ2

1 + 4pµ2

(
1− 3tanh2[µ(x− kt)]

)
. (3.8)
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Figure 6: The 3D and 2D shape for the real part of Eq. (3.8) with the values
k = 0.5, µ = 3, p = 1, −0.5 < x < 1, 0 < t < 2 and t = 0.7 for the 2D graphic.

With case-6, we get the following solution;

u6(x, t) = −k
2 − c20
c20

(
1 + 3tan2

[√k2 − c20
2k
√
p

(x− kt)
])
. (3.9)

Figure 7: The 3D and 2D shape for the real part of Eq. (3.9) with the values
k = 2, c0 = 1, p = 1, −0.5 < x < 1, 0 < t < 2 and t = 0.7 for the 2D graphic.
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4 Discussion and Remarks

In [27] the modified exp (−Ω(ξ))-expansion function method was developed
and been utilized in solving the longitudinal wave equation in a magneto-
electro-elastic circular rod and various solutions in hyperbolic functions form
were obtained. Secondly, the well-known modified (G

′
/G)-expansion method

[29] has been employed to this equation and some exact hyperbolic and trigono-
metric function were obtained. We observe that our results are new, but with
the same solution structures when compared with the existing results obtained
by using these two methods. On the other hand, we observe that in the numer-
ical simulations of the solutions we presented; fig. 1, 2, 7 are singular soliton
surfaces, fig. 3 is solitoff surface, fig. 4, 5, 6 are soliton surfaces. We observed
that some solutions in this study have important physical meanings, like the
hyperbolic tangent arises in the calculation of magnetic moment and rapidity
of special relativity and the hyperbolic secant arises in the profile of a laminar
jet [34].

5 Conclusions

In this study, by utilizing the sine-Gordon expansion method with the help
of Wolfram Mathematica 9, we investigated the solutions of the longitudinal
wave equation in a magneto-electro-elastic circular rod. We obtained some
new complex hyperbolic and trigonometric function solutions. All the obtained
solutions in this study verified the longitudinal wave equation in a magneto-
electro-elastic circular rod, we checked this using the same program in Wolfram
Mathematica 9. We performed the numerical simulations of all the obtained
solutions in this article. We observed that our results might be helpful in
detecting the transverse Poisson’s effect in a magneto-electro-elastic circular
rod. Sine-Gordon expansion method is powerful and efficient mathematical
tool that can be used with the aid of symbolic software such as Maple or
Mathematica in exploring search for the solutions of the various nonlinear
equations arising in the various field of nonlinear sciences.
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