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Abstract

We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks

of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that

the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing

the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected

second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first

layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in

isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if

the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world

complex systems, can promote chimera states in a sparse homogeneous first layer.
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1. Introduction.

Coupled nonlinear systems can exhibit a plethora of complex

interaction patterns and novel emergent phenomena, among

which synchronization has been studied extensively due to its

wide applicability to diverse fields in science and engineer-

ing [1]. Among various synchronization patterns, the chimera

state representing a special type of partial synchronization has

recently attracted considerable attention. This intriguing dy-

namical state is a hybrid state in which coherent and incoher-

ent dynamics coexist in a coupled network of identical oscil-

lators. Since their discovery in networks of phase oscillators

[2], chimera states have been reported for a variety of differ-

ent systems including neural networks, time varying networks,

planar oscillators, Boolean networks, Van der Pol oscillators,

and for time-discrete maps as well as for time-continuous dy-

namical systems [2, 3, 4]. Chimera states have recently been

extended to quantum oscillators [5]. Although chimeras were

first reported for non-local, non-global coupling [2], recently

chimera states have also been demonstrated for locally [6] as

well as globally [7] coupled networks. There have been persis-

tent efforts to gain a deeper insight into analyzing and control-

ling [8, 9, 10] chimera states. Experimentally, chimeras have

been demonstrated for optical, chemical, mechanical, electronic

and electro-chemical oscillators, 1D superconducting metama-

terials etc [4].

Furthermore, the investigation of multiplex networks has pro-

vided a new dimension to complex systems research, where
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Figure 1: Schematic diagram depicting a multiplex network consisting of a 1D

lattice and (a) 1D lattice with different node degree (different value of nonlocal

coupling range) and (b) random network, respectively. We use this multiplex

architecture as modeled by Eq. (1).

chimeras have also been found [11]. Multiplex networks

(Fig. 1) are defined as a collection of two or more layers which

share the same nodes but have different connectivities in each

layer [12]. Thus they describe networks which possess more

than one type of interaction within the same elements, such as

transport networks (with different means of travel as different

layers), biochemical networks (with different signaling chan-

nels representing different layers), etc. [12].

We investigate the emergence of chimera states in a homo-

geneous network of identical elements which is multiplexed

with networks not necessarily having identical coupling envi-

ronment. We refer to the network (layer) possessing nodes

with identical coupling architecture as homogeneous network

(layer). We consider a 1D lattice with periodic boundary con-

ditions (ring) for the homogeneous network. We show that

the range of the coupling strength displaying chimera states in

the homogeneous first layer can be controlled by changing the

connection density and the coupling architecture of the second

layer. We particularly consider two cases, (i) a multiplex net-

work having two homogeneous layers with different connectiv-
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Figure 2: Snapshots of the first layer for (a) isolated 1D (〈k〉 = 30) and (b) 1D-

1D (〈k(1)〉 = 30, 〈k(2)〉 = 64) multiplex network. Other parameters: ε = 0.33

and N(1) = N(2) = 100.

ities, (ii) a multiplex network consisting of one homogeneous

and one inhomogeneous layer.

2. Model.

A network is a set of N nodes and edges which can be repre-

sented by an adjacency matrix A of dimension N × N such that

Ai j = 1 if the nodes i and j are connected and 0 if they are not.

The adjacency matrix of two-layer multiplex networks can be

expressed as

A =

(

A(1) I

I A(2)

)

, (1)

where A(1) (A(2)) represents the adjacency matrix of the first

(second) layer and I is an N × N identity matrix representing

the interactions between the two layers. The number of nodes

is the same in both layers. In the following, we investigate the

dynamical evolution of one layer (A(1)) with a fixed, homoge-

neous coupling scheme in dependence on the link density and

the architecture of the other layer (A(2)).

We consider a discrete-time map zi(t + 1) = f (zi(t)), zi(t) ∈

R, i = 1, ..., 2N as a real dynamical variable at time t for the ith

node. We further integrate the underlying network topology as

[13]

zi(t + 1) = f (zi(t)) +
ε

(ki + 1)

2N
∑

j=1

Ai j[ f (z j(t)) − f (zi(t))] (2)

where ki =
∑N

j=1 Ai j is the degree of the ith node in its own layer

and ε is the overall coupling constant, assuming 0 ≤ ε ≤ 1. Fur-

thermore the average degree (node degree) of the network is de-

fined as 〈k〉 =
∑N

i=1 ki/N, where N represents number of nodes

in the network. We choose the logistic map f (z) = µz(1 − z) in

the chaotic regime (µ = 4.0) as local dynamics. The coupled lo-

gistic maps display rich dynamical behavior in this regime [14]

and has been widely used as a paradigmatic model for vari-

ous complex dynamical phenomena in real-world systems [15].

One such phenomenon is the emergence of hybrid patterns in

the form of chimera states [16].

The dynamical state of the network (represented by zi(t)) is de-

fined as coherent [3] if

lim
N→∞

lim
t→∞

sup
i, j∈UN

ξ
(x)

| zi(t) − z j(t) |→ 0 for ξ → 0 (3)

where UN
ξ

(x) = { j : 0 ≤ j ≤ N, |
j

N
− x |< ξ} represents the

network neighborhood of any point x ∈ S 1, i.e., of the 1D net-

work. Geometrically, coherence means that in the continuum

limit N → ∞ snapshots of the state zi(t) approach a smooth

profile z(x, t).

Any discontinuity appearing in the profile reflects the spatial

incoherence. Further, to clearly identify chimera states, we em-

ploy a normalized probability distribution function g(| D̄ |) of

the Laplacian distance measure |D̄(t)| defined in [17], and the

correlation measure

g0(t) =

∫ δ

0

g(| D̄(t) |)d(| D̄(t) |) (4)

where |D̄(t)| is a vector with components di(t) defined as di(t) =

|(zi+1(t)−zi(t))−(zi(t)−zi−1(t))|} identifies the presence of strong

local curvature in an otherwise smooth spatial profile [18]. The

upper limit δ (Eq. 4) denotes a small positive threshold value.

The g0(t) essentially measures the relative size of spatially co-

herent regions, and ideally an intermediate value between 0 and

1 indicates a chimera state [19]. However, even an incoher-

ent state may have a small portion of nodes which can cluster

together spatially, leading to a non-zero value of g0. We numer-

ically find that 0.4 . g0 . 0.8 provides a best estimation of the

parameter regime displaying Chimera states. We highlight the

region in the figures (in g0−ε plane) for an easy comprehension.

Furthermore, discussion on special initial condition considered

here can be found in Ref.[20].

3. Chimeras in multiplex networks with connectivity mis-

match.

A multiplex network consisting of exactly the same architecture

(node degree 〈k(1)〉 = 〈k(2)〉) in both layers has been reported to

exhibit chimera states in Ref. [11] which is same as a single

layer case [3]. However, this kind of identical network archi-

tecture of both layers is hard to find in real-world systems. For

example, a transportation network consists of layers represent-

ing different modes of travel. The air travel layer may be more

sparsely connected than the rail or bus layer. Similarly, in a

communication network like the internet the optical fiber layer

will have a much sparser connectivity than the traditional ca-

ble network. Motivated by this, we investigate the behavior of

chimera states for multiplex networks with nonidentical layers,

possessing properties which are closer to those of real-world

systems.

First, we consider the case of both layers being represented by

a homogeneous nonlocal coupling topology but with a connec-

tivity mismatch between the layers (Fig. 1(a)). Specifically, we
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Figure 3: Snapshots of the first layer for a 1D-1D multiplex network for (a,d,g) ε = 0.33, (b,e,h) ε = 0.38 and (c,f,i) ε = 0.44. The node degrees of the first and

second layer are 〈k(1)〉 = 20 and (a,b,c) 〈k(2)〉 = 10, (d,e,f) 〈k(2)〉 = 40, (g,h,i) 〈k(2)〉 = 64, respectively. Other parameters: N(1) = N(2) = 100

choose a nonlocal coupling range with P(1) and P(2) neighbors

to each side in the two layers, respectively. This assignment

corresponds to a constant node degree of 〈k(1)〉 = 2P(1) and

〈k(2)〉 = 2P(2), respectively. We find that chimera states emerge

in the sparse first layer, in contrast to the single layer case, when

it is multiplexed with a dense second layer. Fig. 2(a) shows

that no chimera exists for the single layer network (incoherent

state), and Fig. 2(b) depicts a chimera in the same sparse layer

upon multiplexing with a dense layer. Furthermore, Fig. 3 dis-

play that the range of the ε for which the chimera state exists in

the first layer is enlarged as the second layer becomes denser. In

Fig. 3 (left column), when the second layer has the node degree

〈k(2)〉 = 10, a clear chimera state is only found for a very large

value of ε (Fig. 3 (c)), whereas for 〈k(2)〉 = 40 (Fig. 3 (middle

column)) the chimera state exists for a larger range (Fig. 3 (e)-

(f)). With further increasing node degree of the second layer,

say for 〈k(2)〉 = 64 (Fig. 3 (right column)), the chimera state in

the sparser first layer exists for almost all ε values as depicted

in Fig. 3 (g)-(i).

So far we have kept the degree of the sparse first layer fixed and

have varied the node degree of the second layer, demonstrating

that with increasing node degree of the second layer chimeras

occur for a larger range of ε. The same is true if we fix the

node degree of the dense second layer and change the degree of

the sparse first layer. Again, a stronger connectivity mismatch

leads to a larger range of ε for which chimeras are observed

in the sparser first layer. Note that the dense second layer still

exhibits chimeras in an intermediate ε range (similar to the case

where both layers of the multiplex network consist of dense

regular coupling topology) regardless of the connection density

of the sparse first layer [18].

To present a comprehensive picture of multiplexing with a

denser layer that promotes chimeras in a sparse network, we

plot a diagram of the parameter regimes in the plane of the node

degree 〈k(1)〉 and ε. The density plot shows the correlation mea-

sure g0 of the sparse first layer (Fig. 4). Fig. 4 (a) depicts a

network with the same node degree 〈k〉 in both layers. Now we

keep the node degree of the dense second layer fixed and vary

the node degree of the first layer from very sparse to very dense.

Fig. 4 (b) shows that there exists a regime of chimera states in

the first layer (0 < g0 < 1) in the (〈k(1)〉, ε) parameter plane at

intermediate values of ε and 〈k(1)〉 = 64, which corresponds to

two identical layers. The light-colored region to the very left

of Fig. 4 (b), corresponding to a sparse layer (low 〈k(1)〉) mul-

tiplexed with a dense layer, also indicates chimera states in a

parameter regime of large ε where they are not found in a sin-

gle layer (cf. 〈k(1)〉 = 〈k(2)〉 in Fig. 4 (a)). On the other hand,

for large 〈k(1)〉, where both layers are dense, chimeras are only

found in a small range at intermediate values of ε (light color in

Fig. 4 (b)).

To further illustrate this issue in Fig. 5, we plot the correla-

tion measure g0 as a function of ε for a multiplex network with

mismatched node degree of the two layers. In panel (a) layers

1 and 2 are sparse, in (b) layer 2 is more densely connected

than layer 1, and in panel (c) both layers are dense. A multi-

plex network consisting of two sparse layers has a low value

of the correlation measure g0 indicating incoherent dynamics

in layer 1 (Fig. 5(a)). However, with increasing connectivity of

layer 2, the critical coupling strength (i.e., ε value for which the

network dynamics exhibits a transition from the chimera to the

completely coherent state) increases in layer 1, indicating an

extended regime of chimeras. In fact, the sparse layer (layer

1) demonstrates absence of the completely coherent regime

(g0 ≈ 1) when multiplexed with a dense layer (Fig. 5(b)). Fur-

thermore, for a multiplex network consisting of two dense lay-

ers, both layers show a typical chimera regime in an intermedi-

ate range of ε as exhibited by identical dense layers (Fig. 5(c)).

Thus, for multiplex networks with dense layers, the individual

layers do not exhibit any change in the critical ε value for the

occurrence of chimera states.

4. Chimera patterns upon multiplexing with inhomoge-

neous network topology.

Here, we discuss the impact of inhomogeneous network archi-

tecture in the second layer of a multiplex network on the emer-

gence of chimera patterns in the homogeneous first layer. We

3



consider a multiplex network where a 1D ring lattice with ho-

mogeneous nonlocal coupling (layer 1) is multiplexed with an

inhomogeneous network having a random architecture (layer

2), see Fig. 1 (b). Since the network architecture represented

by the second layer does not consist of nodes which are ordered

by nearest neighbor coupling configurations, it is not straight-

forward to define chimera states in the classical sense for the

second layer. All the figures and discussions in the following

correspond to the dynamics of the 1D lattice in the first layer.

To construct the inhomogeneous layer, first we use an Erdös-

Rényi (ER) network. We consider a multiplex network con-

sisting of a dense 1D lattice (layer 1) and an ER random net-

work (layer 2). The dense 1D layer exhibits chimera states

at intermediate coupling values without any enhancement (as

compared to the single-layer case) regardless of the connec-

tion density of the inhomogeneous ER layer [18]. An inter-

esting phenomenon, however, occurs when a sparse 1D layer is

multiplexed with a random network. Unlike the case of mul-

tiplex networks consisting of two sparse homogeneous layers,

if one layer is represented by a random connection architec-

ture, for the same connection density the homogeneous layer

exhibits chimeras. The sparse 1D layer which does not exhibit

chimeras upon multiplexing with a sparse homogeneous layer

(Fig. 5 (a)), starts displaying chimeras when multiplexed with

a sparse inhomogeneous layer (Fig. 6 (a)-(b)). Moreover, mul-

tiplexing with a sparse ER networks is more favorable for the

emergence of chimeras in the homogeneous layer than multi-

plexing with a dense layer. The critical ε value in the sparse

1D lattice increases with decreasing average connection density

〈k2
ER
〉 of the ER layer (Fig. 7). The chimera regime expands as

the ER layer becomes sparser. Fig. 7(a) depicts a larger range

of ε for which chimeras are observed in the 1D layer due to its

multiplexing with a sparser random layer. One further point to

be noted is that for multiplex networks consisting of two ho-

mogeneous layers, larger average connectivity is more favor-

able for synchronization in one layer, however, for multiplex

networks consisting of one homogeneous and one inhomoge-

neous (say ER) layer, enhancement in average connectivity of
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Figure 4: (Color online) The normalized correlation measure g0, calculated for

layer 1, is plotted in the parameter plane (〈k(1)〉, ε) for (a) 1D-1D multiplex

network with the same node degree in both layers (〈k(1)〉 = 〈k(2)〉 = 〈k〉), (b)

mismatched 1D-1D multiplex network where the second layer has the fixed

node degree 〈k(2)〉 = 64. Note the chimera tongue around 〈k(1)〉 = 64 in (b).

Parameters: N(1) = N(2) = 100 and δ = 0.01(max(|D|)) [17]; g0 is averaged

over 1000 time steps.
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Figure 5: (Color online) Correlation measure g0 vs ε for the first layer of a

mismatched 1D-1D multiplex network characterizing the chimera behavior in

the sparse layer as a consequence of multiplexing. Node degrees: (a) 〈k(1)〉 =

10, 〈k(2)〉 = 10, (b) 〈k(1)〉 = 10, 〈k(2)〉 = 64, (c) 〈k(1)〉 = 64, 〈k(2)〉 = 80.

Other parameters as in Fig. 4. Highlighted area indicates parameter regime for

chimera states.
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Figure 6: Correlation measure g0 vs ε for the homogeneous first layer of a

(a) 1D-ER (b) 1D-SF multiplex network. Node degrees 〈k(1)〉 = 〈k(2)〉 = 10.

Other parameters as in Fig. 4. Highlighted area indicates parameter regime for

chimera states.

inhomogeneous layer leads to a shrinking coupling range for

which chimeras are observed. Nevertheless, for all combina-

tions of average degree, multiplexing with inhomogeneous lay-

ers yields a larger coupling range for chimeras than multiplex-

ing with a homogeneous layer. Furthermore, to demonstrate the

robustness of (i) the emergence of chimera states in a sparse 1D

layer upon multiplexing with an inhomogeneous layer, and (ii)

shrinking of the range of ε for which chimeras are observed

in a sparse 1D layer with increasing connection density of the

inhomogeneous region, we consider a multiplex network con-

sisting of a 1D and a scale-free (SF) layer. The SF network

is generated using the preferential attachment model [21]. For

this arrangement as well, chimera states emerge in the sparse

homogeneous layer upon multiplexing with another sparse SF

network. Additionally, an increase in the average connectiv-

ity of the SF network 〈k2
S F
〉 yields a similar shrinking of the

chimera regime in the sparse 1D layer (Fig. 7(b)). Furthermore,

similar to the dense 1D-ER multiplex network, a 1D-SF multi-

plex network consisting of a dense 1D layer does not show any

enhancement or suppression of the chimera state occurring in

the 1D layer as compared to the corresponding isolated 1D net-

work regardless of the connection density of the layer that it is

multiplexed with [18].

The reason behind the emergence of chimera states upon multi-

plexing with an inhomogeneous layer in those sparse networks

which do not exhibit chimeras upon multiplexing with a ho-

mogeneous layer of the same average connectivity, seems to

lie in the existence of high degree nodes in the inhomogeneous
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Figure 7: (Color online) Map of regimes for a multiplex networks consisting

of one 1D layer and one inhomogeneous layer, where g0 is calculated for layer

1: (a) 1D-ER multiplex networks and (b) 1D-SF multiplex network. The first

layer has the node degree 〈k(1)〉 = 10. Other parameters as in Fig. 4.

layer. To obtain high degree nodes in a layer of a 1D-1D mul-

tiplex network, one needs to enhance the average connectivity

of the layer. Hence, we find chimeras for the sparse 1D - dense

1D multiplex network and do not observe chimeras when both

homogeneous layers are sparse. Whereas for a 1D-ER multi-

plex network, even if both layers are sparse, there may be a

large mismatch in the degrees of a few pairs of mirror nodes.

For 1D-SF multiplex networks, multiplexing has a more pro-

nounced effect which may arise from a higher degree mismatch

for a few pairs of mirror nodes due to the existence of hub nodes

in the SF layers (Fig. 6).

5. Conclusion.

To summarize, we have shown that the occurrence of chimera

states in a layer of multiplex network depends not only on the

coupling strength or the initial condition but also on the network

architecture of the layers that it is multiplexed with. Multiplex

networks with non-identical layers promote the appearance of

chimeras in a sparse homogeneous layer as compared to the

case of single-layer networks as well as to the case of multi-

plex network consisting of identical sparse homogeneous lay-

ers. The average connectivity (mean node degree) of one layer

plays a crucial role in governing the appearance of chimera pat-

terns in the other layer. Our investigations reveal that by con-

trolling the mean node degree of one layer in the multiplex net-

work, one can tune the coupling strength for which chimeras

are observed in the other layer. Furthermore, the behavior of

chimeras in the layer with homogeneous coupling depends on

the architecture of the other layers in multiplex networks. If

both layers are homogeneous, multiplexing with a denser sec-

ond layer promotes the occurrence of chimeras in the sparse

first layer, whereas, if multiplexing is done with an inhomoge-

neous layer, it enhances the parameter range for the appearance

of chimera states in the homogeneous layer even if both layers

are sparse. The emergence of chimeras in networks upon mul-

tiplexing with an inhomogeneous layer as well as enhancement

of the coupling range for which chimeras appear in the sparse

layer is more prominent if multiplexing is done with a scale-

free network. Recently, it has been pointed out that chimera

states may have promising applications in understanding var-

ious complex processes in nature including epileptic seizures

[22], human or mammal uni-hemispheric sleep [23], motion

of heart vessels for ventricular fibrillation [24] and in ecology

[25]. The results presented in this paper may help us to gain

deeper insight into the emergence and impact of chimera states

in real-world networks which inherently possess a multi-layer

architecture.
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