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Abstract

We present a collective coordinate approach to study the collective behaviour of a finite ensem-

ble of N stochastic Kuramoto oscillators using two degrees of freedom; one describing the shape

dynamics of the oscillators and one describing their mean phase. Contrary to the thermodynamic

limit N → ∞ in which the mean phase of the cluster of globally synchronized oscillators is constant

in time, the mean phase of a finite-size cluster experiences Brownian diffusion with a variance pro-

portional to 1/N . This finite-size effect is quantitatively well captured by our collective coordinate

approach.
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I. INTRODUCTION

From flavour evolution of massive neutrinos [1], the rhythmic activity in the brain [2, 3],

to simultaneous clapping in concert halls [4] and power grids [5], networks of coupled oscilla-

tors are ubiquitous in nature and the human made world. All these examples share the same

tendency of their respective oscillators to organise themselves in collective synchronised be-

haviour. This can be detrimental to the functioning of the network, such as in epilepsy in

the brain, or may be desired, as in the smooth running of power supply in power grids. The

drosophila melanogaster of the study of coupled oscillators has been for the last 40 years the

celebrated first-order Kuramoto model [6–13], despite only representing an idealized case of

global all-to-all sine-coupling between oscillators. In neuroscience it has been used to model

oscillatory activity in the cortex [14], to provide a mechanism for low-frequency fluctuations

of the brain’s resting-state as seen in fMRI data [15] and to understand the generation of

δ- and θ-waves during anaesthesia [2]. Naturally occurring systems are subject to random

external fluctuations. In particular, it was realized that the presence of noise in nervous sys-

tems has a profound impact of the brain’s structure and function [16, 17]. To study the effect

of external noise on phase oscillators and on their collective behaviour, stochastic Kuramoto

models were introduced, see for example [18–20]. In a recent series of mathematical work,

the effect of external noise in a Kuramoto model was studied, where it was found that in

finite networks the mean phase of the synchronized cluster of oscillators exhibits Brownian

motion with variance proportional to 1/N [21–25]. There are in fact two types of finite

size effects in the stochastic Kuramoto model. First, there is a sampling error of the native

frequencies, which results in a non-zero mean frequency of the order 1/
√
N . This induces

a drift which is also present in the deterministic Kuramoto model. The second finite-size

effect are noise-induced fluctuations of the global mean phase with variance proportional to

1/N ; oscillators form a synchronized cluster which is then as a whole subjected to diffusive

behaviour along the neutral direction associated with the invariance of the Kuramoto model

with respect to translations of the mean phase.

Capturing the behaviour of finite-size networks is one of the most challenging puzzles in

the study of the collective behaviour of coupled phase oscillators. Current theory mostly

relies on the thermodynamic limit of infinite networks [26–28] and cannot reproduce the

observed behaviour of finite-size networks. One way to approach finite-size effects is to
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obtain information about multi-oscillator correlations in a kinetic theory approach [29–32].

We employ here the much simpler and easier to calculate collective coordinate approach

proposed in [33], leading to a low-dimensional description of the stochastic Kuramoto model.

The collective behaviour of coupled oscillators such as synchronisation behaviour suggests

that the dynamics of complex systems may (at least in certain cases) be described by a low

dimensional dynamical system. Recently we introduced a new framework for such a model

reduction based on collective coordinates which can deal with the physically relevant case

of finite network sizes [33]. This collective coordinate approach has since been successfully

applied to derive optimal synchronization design strategies and optimal synchrony network

topologies [37, 38]. Here we will use collective coordinates to accurately describe the finite-

size effects of a stochastic Kuramoto model, in particular the diffusion of the mean phase.

The paper is organised as follows. In Section II we introduce the stochastic Kuramoto

model. We then perform the collective coordinate approach in Section III and present

numerical results in Section IV illustrating the ability of our approach to capture the finite

size effects of this model. We conclude in Section V with a discussion.

II. STOCHASTIC KURAMOTO MODEL

We consider the stochastic Kuramoto model for N phase oscillators ϕi

dϕi = ωi dt+
K

N

N
∑

i=1

sin (ϕj − ϕi) dt+ σdBi,t , (1)

where ωi are their native frequencies and σ2 is the homogenous variance of the noise dBt ∼
N (0, t) [18, 22]. We consider here the case of an all-to-all coupling topology where each

oscillator is coupled to all the other oscillators. Without loss of generality we assume here

that the native frequencies are drawn from a distribution with mean zero. For a finite

ensemble of N native frequencies, however, the mean will not be exactly zero but will have

sample errors of size 1/
√
N .

The level of synchronisation is often characterised by the order parameter [6]

r(t) =
1

N
|
N
∑

j=1

eiϕj(t)| ,
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with 0 ≤ r ≤ 1. In practice, one determines its long-time average r̄. In the case of full

synchronisation with ϕi(t) = ϕj(t) for all pairs i, j and for all times t we obtain r̄ = r = 1.

In the case where all oscillators behave independently with random initial conditions r̄ =

O(1/
√
N) indicates incoherent phase dynamics; values in between indicate partial coherence.

III. COLLECTIVE COORDINATES

Collective coordinates have been introduced in the context of conservative nonlinear wave

dynamics [39]. The theory has then been extended to dissipative systems such as reaction

diffusion systems [40–44] and recently to phase oscillators [33]. Here we extend the method

to the stochastic Kuramoto model.

In order to find a dimension reduced description of the stochastic Kuramoto model (1) we

make the following ansatz

ϕi(t) = α(t)ωi + ψ(t) , (2)

which defines the collective coordinates α(t) and ψ(t). The collective coordinates will be

stochastic processes evolving to some as yet unspecified dynamics

dα = aα(α, ψ) dt+ σαα dW1 + σαψ dW2 , (3)

dψ = aψ(α, ψ) dt+ σψα dW1 + σψψ dW2 , (4)

where the diffusion coefficients may also be functions of the collective coordinates α and/or

ψ and W1,2 are one-dimensional Brownian motions. Solutions with dE[α] = 0, where the

expectation value is taken over the invariant measure, correspond to phase-locked solutions

with mean-phase ψ(t). The existence of such solutions corresponds to a synchronised state.

Before deriving analytical expressions for the drift and diffusion coefficients in (3)-(4), let

us first motivate the collective coordinate ansatz (2). For ψ = 0, the ansatz has been used

in [33] to describe the behaviour of the deterministic Kuramoto model with σ = 0. Figure 1

shows a snapshot of the phases ϕi as a function of the ordered native frequencies for the

stochastic Kuramoto model (1). The phases of the entrained oscillators still obey the ansatz

(2) on average. The ansatz can be motivated by considering large coupling strength K ≫ 1.

The averaged Kuramoto model (1) with can be cast as ωi = −Kr sin(ψ − ϕi) introducing

the mean phase ψ [6]. Expanding ϕi = ψ + arcsin(ωi/(rK)) in 1/K for large coupling
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strength yields up to first order ϕi = ψ + ωi/(rK). Since the Kuramoto model is invariant

under constant phase shifts we may set ψ = 0 leading to ansatz (2) with ψ ≡ 0. To capture,

however, the finite size effects of the stochasticity of the Kuramoto model with σ 6= 0 we

introduce a time dependent mean phase ψ(t), allowing for diffusive Brownian behaviour

along the group orbit associated with this continuous symmetry.
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FIG. 1. Snapshot of the phases ϕi as a function of the sorted native frequencies ωi for the stochastic

Kuramoto model (1) with native frequencies drawn from the uniform distribution U ∼ [−1, 1]. Here

N = 100 and σ = 0.2 at K = 1.49. The average linear functional form ϕi = αωi + ψ is clearly

seen.

To determine the drift and diffusion of the evolution equations (3)–(4) for the collective

coordinates we require that the error made by the collective coordinates (2) is minimized.

We introduce the error, made by restricting the solution to the subspace defined by the

ansatz (2),

dEcoll =(aαωi + aψ − ωi −
K

N

N
∑

j=1

sin(α(ωj − ωi))) dt

+ (σααωi + σfα) dW1 + (σαfωi + σff ) dW2

− σdBi .

Note that there are no Itô-corrections since ϕi is linear in the collective coordinates α and ψ.

Minimiziation of the error Ecoll is achieved by assuring that it is orthogonal to the restricted

subspace spanned by (2). We therefore require that Ecoll be orthogonal to the tangent space
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of the solution manifold (2) which is spanned by ∂ϕi/∂α = ωi and ∂ϕi/∂ψ = 1. Projecting

the error then yields the desired drift and diffusion coefficients. We obtain for the drift

coefficients of the collective coordinate evolution equation

aα = 1 +
1

H2

K

N2

N
∑

i=1

ωi

N
∑

j=1

sin(α(ωj − ωi)) , (5)

aψ = −(1 − aα)Ω̄ , (6)

where we introduced the sample mean and variances

Ω̄ =
1

N

N
∑

j=1

ωj , S2 =
1

N

N
∑

j=1

ω2
j ,

and defined H2 = S2 − Ω̄2. The drift coefficient aα (5) is exactly the same as for the

deterministic Kuramoto model [33]. The projections of the stochastic terms are written as

σcoll dW = σK dB

with the Brownian motions W = (W1,W2)
T and B = (B1, B2, · · · , BN)

T and covariance

matrices

σcoll =





σααS
2 + σψαΩ̄ σαψS

2 + σψψΩ̄

σααΩ̄ + σψα σαψΩ̄ + σψψ





and

σK =
σ

N





ω1 ω2 · · · ωN

1 1 · · · 1



 .

To assure that the collective coordinates capture the statistics of the stochastic Kuramoto

model we require that the diffusivities of the associated Fokker-Planck equations coincide,

i.e. we require 1
2
σKσ

T
K = 1

2
σcollσ

T
coll. The matrix σcoll is then found as a square root matrix

leading finally to the diffusion coefficients of the collective coordinate evolution equation

σαα = σcc (1 +
1

H
) , σαψ = −σcc

Ω̄

H
= σψα

σψψ = σcc (1 +
S2

H
) ,

where

σcc =
σ√

N
√
S2 + 1 + 2H

.
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This concludes the derivation of the dynamics of the collective coordinates. We summarize

dα =
(

1 +
1

H2

K

N2

N
∑

i=1

ωi

N
∑

j=1

sin(α(ωj − ωi))
)

dt

+
σ√

N
√
S2 + 1 + 2H

((1 +
1

H
) dW1 −

Ω̄

H
dW2) (7)

dψ = −(1− aα)Ω̄ dt

− σ√
N
√
S2 + 1 + 2H

(
Ω̄

H
dW1 + (1 +

S2

H
) dW2) . (8)

These reduced equations for the collective coordinates allow us to study the onset of syn-

chronisation by analysing a reduced two-dimensional problem and furthermore allow for

the analysis of finite network size N . Note that the noise is additive and the systems of

stochastic differential equations (7)-(8) is a skew-product system and hence the joint prob-

ability factorizes as ρ(α, ψ) = ρψ(ψ|α)ρα(α). The dynamics of α allows for a stationary

distribution ρα(α) around the deterministic mean α⋆ which is the solution to aα(α
⋆) = 0.

Solutions with dE[α] = 0, i.e. aα = 0, where the expectation value is taken over the in-

variant measure, correspond to phase-locked synchronized state with mean-phase ψ(t). The

collective coordinate equations (7)-(8) show that in the thermodynamic limit the Brownian

driving force disappears and the synchronization behaviour is given by the deterministic

Kuramoto model with ρα(α) = δ(α − α⋆). For finite N , the synchronization is delayed for

non-zero noise variance σ2; this can be seen in the thermodynamic limit, where the order

parameter r exp(iψ) =
∑N

i=1 exp(iϕi)/N can be readily evaluated by averaging over the

frequency distribution function. For uniformly distributed native frequencies, for example,

we obtain, using the collective coordinate ansatz (2), r = sin(α)/α. In the synchronized

state, averaging over ρα(α) yields r = rdet = sin(α⋆)/α⋆ in the deterministic case, and

r = rstoch =
∫

sin(α)/α ρα(α)dα in the stochastic case. For synchronized states with suf-

ficiently small α⋆ the negative curvature of r(α) renders rstoch < rdet, implying that noise

delays the onset of synchronization to higher coupling strengths K. This is confirmed in

numerical simulations and holds as well for finite networks.

Concentrating on the diffusive behaviour of the mean phase–our main aim here–we av-

erage the evolution equation (8) for the mean phase ψ over the invariant density ρα, and
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obtain

ψ(t) = −Ω̄dt+
σ√
N

S√
S2 − Ω̄2

Wt . (9)

Subtracting the mean drift, caused by the sampling error Ω̄ 6= 0, the mean-square displace-

ment of ψ is found to be

∆MSQ =
σ2

N

S2

S2 − Ω̄2
t . (10)

This shows that if the randomly chosen native frequencies have small mean frequency Ω̄ ≪ 1,

the collective motion of synchronized oscillators exhibits finite-size induced Brownian motion

with a mean-square displacement inversely proportional to N .

IV. NUMERICAL RESULTS

We now present numerical results illustrating finite-size effects of the dynamics of the

stochastic Kuramoto model, and show how the collective coordinate approach is able to

quantitatively capture those effects. We consider here a network with N = 100 oscillators

with native frequencies drawn from the uniform distribution U ∼ [−1, 1]. The critical

coupling strength Kc above which the oscillators experience global synchronization and

organize themselves into a single partially synchronized cluster is found in the noiseless case

σ = 0 as Kc = 1.285 (estimated by the collective coordinate approach accurately up to 2%).

We show here results for K = 1.39 which corresponds to a synchronized state with order

parameter r̄ = 0.84 for σ = 0.2.

In particular, we focus here on the dynamics of the centre of the single synchronized cluster

ψ. We numerically estimate ψ as the cluster centre ψ = ϕi0(t), where the index i0 cor-

responds to the node with the smallest absolute values of its native frequency. We study

its temporal evolution on the real line, rather than on the interval [0, 2π] to capture the

unbounded drift and Brownian motion.

We present results for random native frequencies with non-zero Ω̄ and with almost van-

ishing Ω̄. For non-vanishing Ω̄ we find a dominant linear drift of the mean phase (cf. (9)).

This is clearly seen in Figure 2(a) where we show results from a numerical simulation of

the stochastic Kuramoto model (1) for a network with native frequencies with sample mean
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Ω̄ = −0.314 and sample variance S2 = 0.348. The drift of the center is as expected linear

in time and linear regression yields with ψ = −0.314 t + ψ0 = −Ω̄ t + ψ0. More interesting

is the case when the sample mean of the frequencies Ω̄ is close to zero. Figure 2(b) shows

the mean phase ψ of a numerical simulation of the stochastic Kuramoto model (1) for a

network of oscillators with sample mean Ω̄ = 10−17 and sample variance S2 = 0.343. Now

the mean phase clearly exhibits non-trivial stochastic behaviour. We recall that the diffu-

sive behaviour of ψ diminishes for increasing network size N . To quantify the stochastic

motion we compute the mean-square displacement of ψ. This is shown in Figure 3 where we

compare the result of the numerical simulation with the analytical prediction of the collec-

tive coordinate approach (9). The correspondence between the observed diffusive behaviour

and the collective coordinates is remarkable with an error in the slopes, estimated by linear

regression, of only 0.9%.

V. DISCUSSION

We presented a framework for model reduction of stochastic Kuramoto systems. The

approach involves the introduction of collective coordinates, parametrizing the collective be-

haviour of coupled oscillators on the synchronization manifold. We applied the framework

here to the stochastic Kuramoto model with an all-to-all coupling topology and homoge-

neous noise. The collective coordinate approach allowed for the quantitative description of

non-trivial diffusive behaviour of the mean phase of the globally synchronized cluster which

is an effect entirely caused by the finitude of a network and which disappears in the thermo-

dynamic limit of infinitely many oscillators. Whereas in the deterministic case the collective

coordinate approach was able to capture both the collective mean behaviour as well as the

temporal behaviour of individual oscillators [33], in the stochastic case the results are only

of a statistical nature.
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