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Abstract. Ö. Morgül [9] has suggested the following modifica-
tion of the scalar dynamical system xn+1 = f(xn) to find periodic
solutions of the period T

xn+1 = (1− γ)f(xn) + γxn−T+1, 0 < γ < 1.

The schedule was extended to the vector case by Dmitirshin et all
in [15]. The advantage of the proposal scheme is in its simplicity.
The main goal of the current paper is to investigate two-delays
generalization in the form

xn+1 = (1−γ)(a1f(xn)+a2f(xn−T ))+γ(b1xn−T+1 +b2xn−2T+1).

The provided analysis suggests the effective choice of coefficients

a1 =
T + 1

T + 2
, a2 =

1

T + 2
, b1 = b2 =

1

2
, γ ∈

(
0,

1.13

T − 1

]
, T > 1.

The modified schedule allows to stabilize the cycles with disper-
sion of multipliers three times larger compare to Morgül’s scheme.
The proof heavily involves methods of real analysis and geometric
complex function theory.

1. Introduction

Accordingly to [9] ”Chaotic behavior is a very interesting and fas-
cinating phenomenon which is frequently observed in many physical
systems.” As mathematical models for the description of chaotic be-
havior are used discrete dynamical systems. By control of chaos we
mean a small external influence on the system or a small change in the
structure of the system in order to transform the chaotic behavior of
the system into regular (or chaotic, but with different properties) [1].
The problem of optimal influence on the chaotic regime is one of the
fundamental problems in nonlinear dynamics [2, 3].

It is assumed that the dynamic system has a chaotic attractor, which
contains a countable set of unstable cycles of different periods. If the
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control action locally stabilizes a cycle, then the trajectory of the sys-
tem remains in its neighborhood, i.e. regular movements will be ob-
served in the system. Hence, one of the way to control chaos is the
local stabilization of certain orbits from a chaotic attractor.

To solve the stabilization problem, various control schemes were pro-
posed [4], among them the controls based on the Delayed Feedback
Control (DFC) principle are quite popular [5]. Such controls, under
certain conditions, allow local stabilization of equilibrium positions or
cycles, which, generally speaking, are not known in advance. Among
the DFC schemes, linear schemes are the simplest for physical imple-
mentation. However, they have significant limitations: they can be
used only for a narrow area of the parameter space that enter the orig-
inal nonlinear system, c.f. [14].

To extend the class of systems to which the DFC scheme applies, it
is necessary to introduce non-linear elements into the control. For the
first time, a nonlinear DFC with one delay was considered in [6], where
the advantages of such a modification are also noted, in particular, the
fact that the control becomes robust. In [7, 8] the concept of nonlinear
control with one delay from [6] was extended: to the vector case; to
the case of several delays; to the case of an arbitrary period T . It is
shown that the control allows to stabilize cycles of arbitrary lengths,
unless the multipliers are real and greater than one. A relationship is
established between the size of the localization set of multipliers and
the amount of delay in the nonlinear feedback.

In [9, 10], a semilinear DFC scheme with linear and nonlinear ele-
ments was investigated. In spite of the fact that this scheme contains
only one difference in control, nevertheless, it is possible to stabilize cy-
cles with length T = 1, 2 under sufficiently general assumptions about
cycle multipliers. For T ≥ 3, the situation changes critically, and the
stabilization of cycles is possible only if the rigid constraints on multipli-
ers are met, namely only if cycle multiplier is in (−(T/(T−2))T , 1). Our
goal is to suggest a simple schedule finding/stabilizing cycles with com-
plex multipliers lie in a region significantly wider then in the Morgul’s
case.

In particular, the case T = 1, 2 is done in [15] for all N. In our
situatuion that implieas the chooice a1 = b1 = 2/3 and a2 = b2 = 1/3
for T = 1 and the choice of a1 = 3/4, a2 = 1/4 and b1 = 2/3, b2 = 1/3
for T = 2.

Note, the suggested semilinear control is a convex combination of lin-
ear and non-linear controls. This blend has a very interesting property
- the linear control is bad, the non-linear is better while the combined
control produced fascinating effect.
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The non-linear control is controlling the situation while the linear
part increases the rate of convergence and enlarges the possible area of
localization of multipliers.

2. Review and preliminary results

We consider vector nonlinear discrete system, which in the absence
of control has the form

(1) xn+1 = f (xn) , xn ∈ Rm, n = 1, 2, . . . ,

where f (x) is a differentiable vector function of the corresponding di-
mension. It is assumed that the system (1) has an invariant convex set
A, that is, if ξ ∈ A, then f (ξ) ∈ A. It is also assumed that in this
system there is one or more unstable T -cycles (η1, . . . , ηT ), where all
the vectors η1, . . . , ηT are distinct and belong to the invariant set A, i.e.
ηj+1 = f (ηj) , j = 1, . . . , T − 1, η1 = f (ηT ). The multipliers of the un-
stable cycles under consideration are defined as the eigenvalues of the
products of the Jacobian matrices

∏T
j=1 f

′ (ηj) of dimensions m ×m.

As a rule, the cycles (η1, . . . , ηT ) of the system (1) are not a priori

known as well as the spectrum {µ1, . . . , µm} of the matrix
∏T

j=1 f
′ (ηj).

To stabilize the cycle of the length T Morgül [9, 10] proposed a
feedback control that includes linear and nonlinear elements, i.e., a
semilinear feedback control of the form

(2) un = −γ (f(xn)− xn−T+1) ,

for which a corresponding closed-loop system is

(3) xn+1 = (1− γ)f(xn) + γxn−T+1,

where γ ∈ [0, 1). On the cycle, the conditions f(xn) = xn+1 = xn−T+1

are fulfilled, therefore, on the cycle un ≡ 0.
Note that in [9] only the scalar case f : R → R was considered.

In that case the stability is possible if multiplier (unique and real)
belongs to the interval (−(T/(T − 2))T , 1). It was shown in [15] that
the stabilization is possible if and only if all multipliers (real as well as
complex) are in the region

W =

{
w =

(
T − 1

T − 2

)T (1− z
T−1

)T

z
: z ∈ D

}
, D = {z : |z| < 1}.

Our goal is to expand the region W. To do that we suggests to consider
a control

u = −(1−γ)ε(f(xn)−f(xn−T ))−γ (δ1(f(xn)− xn−T+1) + δ2(f(xn−T )− xn−2T+1)) ,
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where ε ≥ 0, δj ≥ 0 and δ1 + δ2 = 1. Note that in this case on the
T -cycle u ≡ 0 as it was in Morgül’s case. And the close-loop system is

xn+1 = (1− γ)(a1f(xn) + a2f(xn−T )) + γ(b1xn−T+1 + b2xn−2T+1),

where a1 = 1−γδ1
1−γ − ε, a2 = ε− γδ2

1−γ and δ1 = b1, δ2 = b2. It is clear that

a1 + a2 = b1 + b2 = 1.
If xn is scalar and γ = 0 then the problem was considered in [6] and

if γ = 1 and δ2 = 0 it was considered in [9].
As well known the investigation of the local stability of cycles is

reduced to the verification that the roots of the characteristic polyno-
mials belong to the unit disc in the complex plane (c.f. [12]). In our
case the characteristic polynomial is the following (see [15])

(4) P̃ (λ) =
m∏
j=1

[
λ2T
(
1− γp(λ−1)

)
T − µj(1− γ)Tλ2T−1(q(λ−1))T

]
,

where µj are multipliers of the cycle (j = 1, . . . ,m), in general, complex
and the polynomials p and q are p(λ−1) = b1λ

−1 + b2λ
−2, q(λ−1) =

a1 + a2λ
−1.

If the multipliers µj, j = 1, . . . ,m are determined exactly, then one
can check whether the roots belong to the central unit disc by known
criteria such as Schur-Cohn, Clark, Jury [12]. However, cycles are not
known, hence, multipliers are not known.

In this case, the geometric criterion of A. Solyanik proved to be
effective for the stability of cycles of discrete systems [13]. Let us
apply this criterion.

Let λ = 1
z

and

Φ (z) = (1− γ)T
z(q(z))T

(1− γp(z))T
.

Then the following lemma is valid (c.f. [17]).

Lemma 1. The polynomial (4) is Schur stable if and only if

(5) µj ∈
(
C\Φ(D)

)∗
, j = 1, . . . ,m,

where D = {z ∈ C : |z| ≤ 1} is a closed central unit disk, C is an ex-
tended complex plane, the asterisk denotes the inversion (z)∗ = 1

z̄
. Here

z̄ denotes the complex conjugated of z.

Let m be a set of localization of multipliers and M∗ is inversion to M.
It follows from the Lemma 1 that the polynomial is Schur stable if the
M∗ is an exceptional set for the image of D under the map Φ(z). This
property will be central in the construction of the control coefficients
a1, a2, b1, b2 and averaging parameter γ.
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Let us outline a geometric meaning of the Lemma. Namely, in case
of no control the system has a form (1). Thus Φ(z) = z. Then Φ(D̄) =
D̄ and (C\D̄)∗ = D. Thus, we came up with the standard stability
condition µj ∈ D. In other words, geometrically the addition of the
control means extension of the central unit disc to a set that cover all
multipliers.

3. Conception of further strategy

Thus, our goal to make the set

W =

{
w =

(1− γ(b1z + b2z
2))T

(1− γ)T z(a1 + a2z)T
: |z| < 1

}
as large as possible by choosing control coefficients. In future we will
control the linear size of the set along the real line. I.e. we want the set
W to cover the interval (−µ∗, 1) of the largest length. If the function
1/Φ(z) is typically real in D then

µ∗ =

(
1− γ(b2 − b1)

(1− γ)(a1 − a2)

)T
In case of Φ(z) is polynomial one can apply the theory of the polyno-
mials of maximal range by S.Rushenweih [20]. By Rushenweih’s theory
the extremal polynomials should be univalent and zeros of the deriva-
tive should lie on the unit disc. However, even for the polynomials the
application of this theory is a very tricky task. In the case of stabiliza-
tion of T -cycles these polynomials should be T -symmetric. A various
sets of polynomials for cycle stabilization can be found in [16, 17].

For the semilinear control it is necessary to construct not polynomials
rather rational functions. For those functions the Rushenweih’s theory
does not have analogy. This is why the consideration of the case N = 2
is of independent interest.

First of all, the coefficients a1 and a2 can be used as in the non-linear
control, namely a1 = T+1

T+2
and a2 = 1

T+2
.

Second, we would like to chose the coefficients b1, b2 such that the
denominator in the formula for µ∗ would be as small as possible, thus
γ as large as possible to increase the size of the set W.

This is why the properties of typically real is a main property. Fur-
ther analysis indicates that the property of univalency is difficult to
verify for rational functions even in simple cases. However, in addition
to be typical real our function Φ(z) will be at same time locally univa-
lent. We will see that the property of typically real makes the formulas
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much more complicated however improves the size of the region incre-

mentally. In case of local univalency we get µ∗ =
(

T+2
(1−γ)T

)T
. What left

is to find maximal value for γ. Note that the expected value 1
T−1

is not
maximal.

4. Typically realness

Our goal is to determine conditions for the function

(6) Φ(z) = (1− γ)T
z(T+1

T+2
+ z

T+2
)T

(1− γ(αz + (1− α)z2))T

to be typically real in the disc D.
Let us remind that the function is typically real in D if it is real at

every real point of the disc and in all the others points of the disc we
have

={f(z)}={z} > 0.

We consider the class of functions f(z), f(0) = 0 that are analytic
and typically real in D.

It is clear that if f(z) is typically real in D then its T-symmetrized

version φ(z) = T
√
f(zT ) is typically real in D. The converse is true as

well.
Let us consider a general function with arbitrary polynomials q̃(z), p̃(z)

(7) Φ̃(z) = (1− γ)T
z[q̃(z)]T

(1− γp̃(z))T
, q̃(1) = 1, p̃(0) = 0, p̃(1) = 1

and assume that z[q̃(z)]T is typically real polynomial.
This function corresponds the associated T-symmetric function

(8) F̃ (z) = (1− γ)
z[q̃(zT )]

1− γp̃(zT )

Let us define the real functions

C1(t) =
={q̃(−eiT t)eit}

={q̃(−eiT t)p̃(−e−iT t)eit}
and

C2(t) =
={q̃(eiT t)eit}

={q̃(eiT t)p̃(e−iT t)eit}
.

on the the sets

τi = {t : Ci(t) > 0} ∩ (0,
π

T
), i = 1, 2.

The function C1 (or C2 ) is undefined if the denominator is identically
zero. In that case we assume that τ1 = ∅ (or τ2 = ∅. )
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Theorem 1. Let

c∗1 = inf
t∈τ1

C1(t), c∗2 = inf
t∈τ2

C2(t), c∗ = min{c∗1, c∗2}.

i) If τ1 = τ2 = ∅, then the function F̃ (z) is typically real for all
γ > 0.

ii) If c∗ = 0 then the function F̃ (z) is typically real for no γ > 0.
iii) If c∗ > 0 then the function F̃ (z) is typically real for γ ∈ [0, c∗).

Note that C1( π
T

) = 1 implies that c∗ ≤ 1 if exists.

Proof. The function F̃ (z) is not typically real if there exist parameters
(γ1, ρ1, t1) ∈ [0, 1]× (0,+∞)× (0, π

T
) such that

(9)
eit1 q̃(eiT t1)

1− γ1p̃(eiT t1)
= ρ1e

i π
T ,

or there exist parameters (γ2, ρ2, t2) such that

(10)
eit2 q̃(eiT t2)

1− γ2p̃(eiT t2)
= ρ2.

The relation (9) implies that

γ1p̃(e
iT t1) +

1

ρ1

e−i
π
T eit1 q̃(eiT t1) = 1

γ1p̃(e
−iT t1) +

1

ρ1

ei
π
T e−it1 q̃(e−iT t1) = 1

and therefore

γ1 =
q̃(eiT t1)e−i

π
T eit1 − q̃(e−iT t1)ei πT e−it1

p̃(e−iT t1)q̃(eiT t1)e−i
π
T eit1 − p̃(eiT t1)q̃(e−iT t1)ei πT e−it1

=

={q̃(eiT t1)e−i πT eit1}
={p̃(e−iT t1)q̃(eiT t1)e−i πT eit1}

Let us introduce the function

C1(t) =
={q̃(eiT t)e−i πT eit}

={p̃(e−iT t)q̃(eiT t)e−i πT eit}
Similarly, the condition (10) implies

γ2 =
={q̃(eiT t2)eit2}

={p̃(e−iT t2)q̃(eiT t2)eit2}
and consider the function

C2(t) =
={q̃(eiT t)eit}

={p̃(e−iT t)q̃(eiT t)eit}
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The function F̃ (z) is typically real for some real γ if both equations
Cj(t) = γ, j = 1, 2 do not have solutions on the set (0, π

T
).

The function z[q̃(z)]T is typically real therefore the functions z[q̃(−z)]T ,
zq̃(zT ), and zq̃(−zT ) are typically real as well.

Due to the relations

={q̃(eiT t)e−i πT eit}
={p̃(e−iT t)q̃(eiT t)e−i πT eit}

=
={q̃(e−iT t)ei πT e−it}

={p̃(eiT t)q̃(e−iT t)ei πT e−it}

and after substitution ξ = π
T
− t, ξ ∈ (0, π

T
) one gets

={q̃(−eiT ξ)eiξ}
={p̃(−e−iT ξ)q̃(−eiT ξ)eiξ}

.

Therefore, the set of the values of the functions C1(t) coincides with
the set of the values of the function

={q̃(−eiT t)eit}
={p̃(−e−iT t)q̃(−eiT t)eit}

on the set t ∈ (0, π
T

).

The function ={q̃(−eiT t)eit} > 0 for t ∈ (0, π
T

). That means that the
graph of the function C1(t) does not intersect the X-axis, however can
touch it.

The function C1(t) either continuous on (0, π
T

) or has discontinuity
of the second type. This means that the set of values of the function
C1(t) for t ∈ τ1 is an interval (c∗1, β1) with c∗1 ≤ 1 and β1 is either a
number or infinity.

In the same way, the function C2(t) maps the set τ2 on the interval
(c∗2, β2) and β2 is either a number or infinity.

Define now c∗ = min{c∗1, c∗2}. If this number exists and c∗ = 0, then
the conclusion ii) of the theorem is proved. If c∗ > 0, then the con-
clusion iii) of the theorem is proved. If c∗ does not exists, then the
conclusion i) is valid.

�

The subtlety of the situation is in the discontinuity of typically real
and univalent properties on parameters in general. However, in our case
the set of γ where it is typically real and contains zero is connected
and contains zero. I.e. if for some γ̃ the function Φ̃(z) is typically real
then it stays typically real for all γ ∈ [0, γ̃].
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The other remark in order is that to restrict ourselves with only
function C1(t) is wrong as demonstrates the example of the function
(6) with T = 7, α = −0.6

5. Examples

5.1. Example 1. Let q(z) ≡ 1, p(z) = z. For T = 1 the functions
C1(t) and C2(t) are undefined. That means that the function F (z) =
z/(1− γz) is typically real in D for all γ (possibly with the exception
of the pole).

For T ≥ 2 we have

C1(t) =
={eit}

={−e−itT eit}
=

sin t

sin(T − 1)t
,

C2(t) =
={eit}

={e−itT eit}
= − sin t

sin(T − 1)t
.

Note that C2(t) < 0 on (0, π
T

) and that the function C1(t) is increasing,
therefore

c∗1 = lim
t→0

sin t

sin(T − 1)t
=

1

T − 1
.

Thus, the function F (z) = z/(1−γz)T is typically real for γ ∈ [0, 1
T−1

].

5.2. Example 2. Let q(z) ≡ 1, p(z) = z2. In this case

C1(t) =
={eit}

={e−i2Tteit}
= − sin t

sin(2T − 1)t
, C2(t) = C1(t).

For T = 1 the function F (z) = z/(1−γz2) is typically real for γ ∈ [0, 1]
because C1(t) ≡ −1 < 0.

For T ≥ 2 we have τ1 =
(

π
2T−1

, π
T

)
. Numerically we can find c∗1

T 2 3 4 5 6 7 8 9 10
c∗1 1 0.8 0.613 0.490 0.407 0.347 0.302 0.268 0.240

The function F (z) = z/(1− γz2)T is typically real for γ ∈ [0, c∗1(T )].

5.3. Example 3. Let q(z) = T+1
T+2

+ 1
T+2

z, p(z) = αz + (1− α)z2, α ∈
[0, 1]. In this case

C1(t) =
(T + 1) sin t− sin(T + 1)t

α sin t+ (αT + 1) sin(T − 1)t− (T + 1)(1− α) sin(2T − 1)t

and

C2(t) =
(T + 1) sin t+ sin(T + 1)t

α sin t− (aT + 1) sin(T − 1)t− (T + 1)(1− α) sin(2T − 1)t
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Let us consider the behavior of the function C1(t) in the neighborhood
of zero

C1(t) =
1
6
T (T + 1)(T + 2)t3 + o(t4)

T 2(3α− 2)t+ T [T 3(4
3
− 3

2
α) + T 2(−5

6
+ 7

6
α) + T (−1

2
+ 1

2
α) + (1

3
− 2

3
α)]t3 + o(t4)

If α > 2
3

then in the neighborhood of zero C1(t) > 0 and limt→0C1(t) =

0. Therefore for α > 2
3

the function (6) won’t be typically real for any
γ 6= 0.

If a = 2
3

then the function C1(t) is increasing on (0, π
T

) and

lim
t→0

C1(t) =
3(T + 1)(T + 2)

(T − 1)(6T 2 + 5T + 2)
.

Therefore

c∗1 =
3(T + 1)(T + 2)

(T − 1)(6T 2 + 5T + 2)
.

The function C2(t) < 0 for all T > 1 and t ∈ (0, π
T

). For T = 1 the
function C2(t) is undefined.

Thus the function (6) is typically real for γ ∈ [0, c∗1].

Now, let a < 2
3
. For each such a and for T = 3, 4, ... the boundary

for the parameter γ for which the function F (z) is typically real can
be determined numerically, using the theorem.

Let us show several first values of c∗(T ) for α = 1
2
.

T 3 4 5 6 7 8 9 10
c∗1 .6415 .4364 0.3247.2570 .2119 .1800 .1561 .1378

6. Local univalence

In this section we impose an additional requirement of the local uni-
valncy on the function (6) and compare how much change appears for
the region

W =
1

Φ(D)
.

Recall that the function f(z) is locally univalent in the unit disc D if
f ′(z) 6= 0 in D. Since the condition α ≤ 2

3
is necessary for the typicall

reallness we will consider only that choice of α.
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Theorem 2. A function (6) is locally univalent in D if and only if
0 ≤ γ ≤ γ0 where

γ0 =
1

2

(
(T + 1)((2T 2 + 1)(1− α)− 1)

(T − 1)2(1− α)(α(T + 2)− 1)
−
√
D
)
, α >

1

T + 2
.

γ0 =
(T + 1)(T + 2)

(2T 2 + 1)(T + 1)− (T + 2)
, α =

1

T + 2
.

γ0 =
1

2

(
(T + 1)((2T 2 + 1)(1− α)− 1)

(T − 1)2(1− α)(α(T + 2)− 1)
+
√
D
)
, α <

1

T + 2
.

Above

D =
(T + 1)2 (((2T 2 + 1)(1− α)− 1)2 − 4(T − 1)2(1− α)(α(T + 2)− 1))

[(T − 1)2(1− α)(α(T + 2)− 1)]2

Proof. Let us write the function (7) in the form

Φ(z) = (1− γ)T z(Φ1(z))T .

Because Φ(z) has no roots in D then Φ′(z) = 0 means Φ1(z)+TzΦ′1(z) =
0. Since

Φ′1(z) =
q′(z)(1− γp(z)) + γq(z)p′(z)

(1− γp(z))2

then Φ′(z) = 0 means q(z) + Tzq′(z) + γ(Tzq(z)p′(z)− Tzq′(z)p(z)−
q(z)p(z)) = 0.

In the case q(z) = T+1
T+2

+ 1
T+2

z, p(z) = αz + (1 − α)z2, α ∈ [0, 1].
Denote

Φ2(z) ≡ z3γ(T − 1)(1− α) + z2γ(T (2T + 1)(1− α)− 1)+

z(T + 1)(γα(T − 1) + 1) + T + 1

then

(11) Φ′(z) = 0⇔ Φ2(z) = 0.

The case of interest i a ≤ 2
3

and T > 1. In this case all coefficients of
the polynomial in Φ2(z) are positive.

Beside that

γ(T (2T+1)(1−α)−1)·(T+1)(γα(T+1)+1)−γ(T−1)(1−α)(T+1) ≥
γ(T + 1)((T (2T + 1)(1− α)− 1)− (T − 1)(1− α)) =

γ(T + 1)(2T 2(1− α)− α) ≥ γ(T + 1)(T 2 − 1) > 0.

By the Gauss-Hurwitz criterion all roots of the equation (11) have neg-
ative real part.

Let us compute Φ2(−1) = T 2γ(2 − 3α). Under our assumptions
Φ2(−1) > 0. That means that for γ = 0 the polynomial Φ2(z) has
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a unique root z0 = −1. With γ increasing that real root is moving
along the real axis being less then -1 and two additional roots emerge
from −∞. With further increase of γ all three roots will be contin-
uously depending on the parameter γ. Let us find a critical value γ0

that provide at least one of the root to be on the boundary of D. That
might happen only when the pair of the conjugate roots appear on the
boundary. In that case the real root necessary to be

zγ0 = − T + 1

γ0(T − 1)(1− α)

by the Vieta theorem. That implies that Φ2(zγ0) = 0. Thus the param-
eter γ0 has to satisfy the equation

γ2
0−

(T + 1)((2T 2 + 1)(1− α)− 1)

(T − 1)2(1− α)(α(T + 2)− 1))
γ0+

(T + 1)2

(T − 1)2(1− α)(α(T + 2)− 1)
= 0.

Let us note that (2T 2 + 1)(1 − α) − 1 > 0 if α ≤ 2/3 and T > 1, and
α(T + 2)− 1 > 0 for α > 1

T+2
.

Let us find the discriminant of this equation

D =
(T + 1)2 (((2T 2 + 1)(1− α)− 1)2 − 4(T − 1)2(1− α)(α(T + 2)− 1))

[(T − 1)2(1− α)(α(T + 2)− 1)]2

or

D =
(T + 1)2

[(T − 1)2(1− α)(α(T + 2)− 1)]2
[
(2− 3α)2+

4T (T − 1)(1− α)[2− 3α + T ((T − 1)(1− α) + 2− 3α)]] .

Thus, miracally D is positive for T > 1 and α ≤ 2/3.

If α > 1
T+2

then the minimal root of the equation is

γ0 =
1

2

(
(T + 1)((2T 2 + 1)(1− α)− 1)

(T − 1)2(1− α)(α(T + 2)− 1)
−
√
D
)
.

If α = 1
T+2

then

γ0 =
(T + 1)(T + 2)

(2T 2 + 1)(T + 1)− (T + 2)
.

If α < 1
T+2

then the minimal root of the equation is

γ0 =
1

2

(
(T + 1)((2T 2 + 1)(1− α)− 1)

(T − 1)2(1− α)(α(T + 2)− 1)
+
√
D
)
.

�
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The figure below displays the image of the unit disc under the map
Φ(z) for α = 1

T+2
(red), α < 1

T+2
(green) and α > 1

T+2
(blue) for

γ = γ0.

The images of (C\Φ(D))∗ is displayed below.

The numeric computations demonstrates that for all T > 1 the value
F (−1) for α = 1

2
is strictly larger then for α = 1

T+2
. Therefore we will

be focused on the case α > 1
T+2

.

Let us compute the asymptotic of γ0 for large T

γ0 ∼
1

2(1− α)

1

T
+ o

(
1

T

)
and

F (−1) ∼

(
1− 1

2(1−α)
1
T

)T (
T
T+2

)T(
1− 1

2(1−α)
1

T (1−2α)

)T ∼ e−
1

2(1−α) e−2

e−
1−2α
2(1−α)

= e−
α

1−α−2.

That implies that the boundary for the multiplier can be chosen as

µ∗ ∼ e
α

1−α+2 < e4.
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7. Discussion on the results

Thus, we have established an algorithm for computing the values of
c∗ and γ0, that depends on α and T and such that for γ ∈ [0, c∗) the
function Φ(z) is typically real while for γ ∈ [0, γ0) is locally univalent.

Let us compare these values for α = 2/3 and for α = 1/2. Parallel
let us compute the corresponding values for µ∗. For comparison let us
show the value of the quantity (T/(T − 2))T which is a boundary of
the maximal interval by Morgül’s method.

For a = 2/3

T γ0 c∗ µ∗ ( T
T−2

)T

3 0.85714 0.42254 35.698 27
4 0.55556 0.25424 22.661 16
5 0.40909 0.17797 19.113 12.56
6 0.32308 0.13548 17.543 11.39
7 0.26667 0.10876 16.685 10.54
8 0.22689 0.09054 16.156 9.99
9 0.19737 0.07739 15.803 9.60
10 0.17460 0.06748 15.555 9.31

For a = 1/2.

T γ0 c∗ µ∗

3 0.49194 0.64145 101.640
4 0.33567 0.43635 50.157
5 0.25365 0.32474 38.309
6 0.20343 0.25703 33.404
7 0.16962 0.21193 30.766
8 0.14536 0.17993 29.140
9 0.12711 0.15613 28.046
10 0.11291 0.13777 27.264

The analysis of the obtained values leads to the following conclu-
sions: for a = 2/3 the typical realness is violated earlier then the local
univalency. At the same time the quantity µ∗ is larger then in Morgul’s
method about 1.4 times.; for a = 1/2 the local univalency is violated
earlier then the typical realness and µ∗ is larger then in Morgul’s case
about 3 times.

Now, to compare how changes the region W with loosing of univa-
lency (local univalency) let us consider the following problem: for each



MORGUL T=2 15

T find the value α∗ such that for this value of α one gets c0 = γ∗. Let
us show the some numeric solutions to this problem and for the given
values α∗ let us compute µ∗.

T α∗ γ∗ µ∗

3 0.5731 0.6932 95.521
4 0.5697 0.4017 49.122
5 0.5655 0.2979 38.186
6 0.5619 0.23588 33.511
7 0.5589 0.1946 30.967
8 0.5565 0.1655 29.385
9 0.5545 0.1438 28.313
10 0.5527 0.1271 27.542

As one can see from the table for small T the ”optimal” (green) value
for µ∗ is even slightly worse then for α = 1/2.

Inverse image of ∂D for α = 1/2 (red) and for α∗ (green), T = 3; a = 0.5730949

Inverse image of ∂D for α = 1/2 (red) and for α∗ (green), T = 7; a = 0.558936

Note, that the interior of the read curves without loops is an inverse
image of the unit disc D. We measure the linear size of the multipliers
location region along the horizontal axe and the difference is evident
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from the pictures.

Further analysis of the quantities α∗ and µ∗ for large T indicates
that α∗ ≈ π−2

π−1
and µ∗ ≈ eπ. Thus, the method suggested in the article

allows to stabilize the cycles with multipliers in the regions of linear
size larger then in the Morgul’s case in approximately eπ−2 times, i.e.
more then 3 times.

Additional analysis indicates that for α = 1/2 as c∗ one can take the
value 1.13

T−1
. The following picture displays the graphs of(
T + 2

T
· 1

1− 1.13
T−1

)T

∼ e3.13 in black and yellow

(
T

T − 2

)T
∼ e2 in blue and yellow

The above diagram illustrates that our modification of Morgúl’s ap-
praoach increases initial region of multipliers locations more then in 3
times.

8. Numeric computations

8.1. Logistic map. The simplest example for the illustartion of our
approach is logistic map xn+1 = µxn(1 − xn). For µ = 4 Morgül’s
method allows to find the cylcles of the length 1,2,3 [9] while our ap-
proach works for 4,5 and 6. For some other µ < 4 Morgül was able to
find a cycle of length 20 [10], our approach allows to find 20-cycles for
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a wider range of µ.

Much better effect of application of our method for stabilization
of the cycles is obtained for vector systems. Below we demostrates
the application of our method to some famouse maps from nonlinear
physics.

8.2. Elhaj-Sprott map.

xn+1 = 1− 4 sin(xn) + 0.9yn, yn+1 = xn.

Below the grey points are of chaotic attarctor while black points are
points of the cycle. These cycles are non-stable in the open loop system
and locally asymptotically stable in the close loop system.

The plot of 4-cycle for Elhaj-Sprott map γ = 0.25

8.3. Ikeda map.

xn+1 = 1 + 0.9
(
xn cos

(
0.4− 6

1+x2n+y2n

)
− yn sin

(
0.4− 6

1+x2n+y2n

))
,

yn+1 = 0.9
(
xn sin

(
0.4− 6

1+x2n+y2n

)
+ yn cos

(
0.4− 6

1+x2n+y2n

))
,
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The plot of 5-cycle for Ikeda map γ = 0.3247

8.4. Holms cubic map.{
xn+1 = yn
yn+1 = −0.2x+ 2.77y − y3.

The plot of 6-cycle for Holms cubic map γ = 0.257

8.5. Henon map.

xn+1 = 1− αx2
n + yn, yn+1 = βxn, α = 1.4, β = 0.3.
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The plot of 6-cycle for Henon map γ = 0.257

8.6. Lozi map. Finally, we were able to find 8 cycle in Lozi map

xn+1 = 1− α|xn|+ yn, yn+1 = βxn, α = 1.4, β = 0.3.

The plot of 8-cycle for Lozi map γ = 0.179

9. Conclusion

The current paper address the problem of finding cycles with small
multipliers, which is a typical situation for short cycles, say T ≤ 20.
For T >> 10 the region of localization of the multipliers are larger and
increases with increase of T.

To find short cycles we suggests a simple schedule which is based
on the previous stages. For long cycles are needed more sophisticated
schemes that we develop as well.

Our schedule uses semilinear control (2) with two delays. The ad-
vantage of such control is a linear choise for the polynomial q(z) in
the denominator of the rational function (6). The number of delays
depends on the size of the multipliers. Unfortunately, in case of three
and more delays the choise for the polynomial q(z) is not obvious at
all. Thus in case T >> 2 the choise of the control coefficient is difficult



20 DMITRIY DMITRISHIN, ELENA FRANZHEVA AND ALEX STOKOLOS

to state. So, the choice of the coefficient is rather an art - it depends
on skills of a researcher.

We suggested specific algorithms in [18, 15, 16].
To compute the parameters of control in the current article we con-

struct an auxiliary rational function and search the set of the excep-
tional values of that function in the unit disc.

We have obtained the necessary and sufficient conditions for the
typical realness and local univalency. As a conjecture we can suggest
that in our partial case the typical realnes and local univalency imply
univalency. Further, let us mention that beside the DFC scheme one
can consider mixing. For both of those schemes the auxiliary rational
function are the same, the control parameters are coincided. However,
the suggested schedule

xn+1 = (1−γ)f

(
T + 1

T + 2
xn +

1

T + 2
xn−T

)
+
γ

2
(xn−T+1+xn−2T+1), T > 1.

is more convenient because on each step it requires computation only
one value of function.
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