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Abstract

Lugiato-Lefever (LL) equations in one and two dimensions (1D and
2D) accurately describe the dynamics of optical fields in pumped lossy
cavities with the intrinsic Kerr nonlinearity. The external pump is usu-
ally assumed to be uniform, but it can be made tightly focused too –
in particular, for building small pixels. We obtain solutions of the LL
equations, with both the focusing and defocusing intrinsic nonlinear-
ity, for 1D and 2D confined modes supported by the localized pump.
In the 1D setting, we first develop a simple perturbation theory, based
in the sech ansatz, in the case of weak pump and loss. Then, a family
of exact analytical solutions for spatially confined modes is produced
for the pump focused in the form of a delta-function, with a nonlin-
ear loss (two-photon absorption) added to the LL model. Numerical
findings demonstrate that these exact solutions are stable, both dy-
namically and structurally (the latter means that stable numerical
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solutions close to the exact ones are found when a specific condition,
necessary for the existence of the analytical solution, does not hold).
In 2D, vast families of stable confined modes are produced by means
of a variational approximation and full numerical simulations.

It is commonly known that stable self-confined modes, such as solitons,
may be produced by the balance between nonlinear and dispersive effects in
the medium [1]. Solitons have been observed in diverse contexts, including
water waves [2], nonlinear fiber optics [3, 4] (as temporal solitons), Bose-
Einstein condensates (BECs) [5, 6, 7, 8, 9, 10, 11], plasmas [12, 13] and
plasmonics [14, 15], proteins [16] and DNA [17], etc. Optical spatial solitons
were created too in a great variety of settings, such as cells filled by vapors of
alkali metals [18], photorefractive crystals [19, 20], waveguides made of liq-
uid dielectrics [21, 22], silica [23] and second-harmonic-generating materials
[24], nematic liquid-crystal planar cells [25], semiconductor waveguides [26],
arrayed waveguides [27], and others.

While solitons have been originally introduced as exact solutions of in-
tegrable models [1, 28, 29], nonintegrable systems provide for more generic
and more realistic description of various physical settings. In particular, nu-
merous dissipative systems, although lacking integrability, readily give rise
to robust localized dissipative structures (LDSs), alias dissipative solitons
[30, 31]. In optics, an important example of a nonlinear dissipative medium
which supports LDSs is provided by an optical resonator filled with a dis-
persive loss material featuring the Kerr nonlinearity, which is pumped by a
coherent light beam (injected signal). This system is well modeled by the
Lugiato-Lefever (LL) equation, originally introduced in [32]. As a mean-field
equation, it applies to other settings too, such as Fabry-Perot resonators and
ring cavities, fully or partially filled with nonlinear materials [32], crystalline
whispering-gallery-mode disk resonators [33], and photonic-crystal-fiber res-
onators pumped by a coherent continuous-wave input beam [34, 35]. In these
contexts, the LL equation has been widely used to model Kerr frequency
combs [36, 37, 38, 39, 40], with applications to optical metrology [41], high-
precision spectroscopy [42, 43], optical atomic clocks [44, 45], phase evolution
in pulse trains [46, 47], optical communications [48], synthesis of arbitrary
optical waveforms [49, 50], and radio-frequency photonics [51]. A review of
the development of various applications of the LL equations has been pub-
lished recently [52]. Soliton-like LDSs in the 1D LL equation are important
modes too, in a broad range of values of the respective physical parameters
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[53].
In many physically relevant contexts, especially as concerns realizations in

optics, one- and two-dimensional (1D and 2D) LDSs supported by localized
gain were studied in detail in the context of complex Ginzburg-Landau (CGL)
equations [54, 55, 56, 57, 58, 59, 60, 61, 62], see also reviews in [63] and [64].
Specifically, by considering a 1D model with the tightly localized gain in the
form of a delta-function, placed on top of the spatially uniform linear loss,
analytical solutions for pinned LDSs pinned to the delta-function were found
in [54, 60] (see also a review in [64]). Stable LDSs pinned to one or two
gain-carrying “hot spots”, shaped as narrow Gaussians, were reported too
[58, 62]. Further, stable 2D LDSs, including ones with an intrinsic vortex
structure, supported by hot spots in the 2D geometry, were predicted in
works [55, 56, 57, 59, 61].

The objective of the present work is to introduce localized pump in the
framework of the 1D and 2D LL equations, and find stable confined modes,
which may be supported by the spatially focused pump. The difference from
the previous works, which were dealing with the CGL equations [54, 55, 56,
57, 58, 59, 60, 61, 64, 62], is that the pump is represented by free terms in the
LL equations, which do not multiply the field variable, while in the models
of the CGL type the gain terms provide the parametric pump, i.e., they
multiply the field variable.

We report analytical solutions of the 1D and 2D LL equation with the
localized external pump, using a possibility to find exact analytical solutions
for 1D modes pinned to the pump represented by the delta-function, and
a variational approach, respectively. In the case of weak pump and loss, a
simple perturbation theory for 1D modes is developed too. In a systematic
form, the results for confined modes, including the analysis of their stability,
are produced by means of numerical methods. The results demonstrate good
agreement between the analytical predictions and numerical findings. In
particular, while the exact analytical solutions for pinned modes in 1D are
available under a special condition, we demonstrate that very similar stable
numerical solutions exist when this condition does not hold. The predicted
confined stable modes, pinned to the “hot spots”, may be used, in particular,
for the design of pixels placed at required positions, cf. the formation of pixels
predicted by the LL equation in other contexts [65].
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Results

The one-dimensional Lugiato-Lefever equation. The 1D model equa-

tions. In the 1D setting, the scaled LL equation for amplitude φ(x, t) of the
electromagnetic field in a nonlinear lossy cavity driven by a real localized
pump E(x) is

i

(
γ +

∂

∂t

)
φ =

[
−1

2

∂2

∂x2
+∆+ σ|φ|2

]
φ+ E(x), (1)

where γ > 0 is the dissipation rate, ∆ is detuning of the pump with respect
to the cavity, while σ = −1 and +1 corresponds to the self-focusing and
defocusing nonlinearity, respectively. Note that dissipative solitons in the
model of a fiber cavity, based on the 1D LL equation written in the temporal
domain, with a pump in the form of a period train of Gaussians pulses,
placed on top a nonzero background, were recently considered in work [66].
Accordingly, the LL equation (1) may also be considered in the temporal
domain, with t and x replaced, respectively, by the propagation distance (z)
and the temporal coordinate (usually denoted τ).

Stability of various patterns produced by Eq. (1) and its 2D counterpart
considered below may be enhanced if an extra cubic lossy term, which rep-
resents the two-photon absorption, is added to the model. Then, Eq. (1) is
replaced by

i

(
γ + Γ|φ|2 + ∂

∂t

)
φ =

[
−1

2

∂2

∂x2
+∆+ σ|φ|2

]
φ+ E(x), (2)

with γ,Γ > 0.
Before proceeding to analysis of confined modes supported by the tightly

localized pump, it is relevant to mention that spatial localization may also
be provided, in the presence of the usual uniform pump, by a confining
(typically, harmonic-oscillator) potential [67]. On the other hand, results
reported below demonstrate that the use of the narrow pump region does
not imply that modes supported by it must necessarily be narrow too. Note
that effects of local defects on LDSs in similar settings were previously studied
in works [68] and [69].

The perturbative treatment. In the case of the self-focusing nonlin-
earity (σ = −1) and positive detuning, ∆ > 0, one can develop a pertur-
bation theory for the case of small γ and small E(x) in Eqs. (1) and (2).
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In the zero-order approximation, a localized solution is given by the usual
nonlinear-Schrödinger soliton [28],

φ(x) = e−iζ
√
2∆ sech

(√
2∆x

)
(3)

(as the zero-order approximation for localized patterns in the LL equation
with E = const, the soliton waveform was used before [70]). The constant
phase shift in ansatz (3), ζ , for stationary modes is then determined by the
balance condition for the integral power,

P =

∫ +∞

−∞

|φ(x)|2 dx. (4)

Indeed, it follows from condition dP/dt = 0 that

γP + Γ

∫
+∞

−∞

|φ(x)|4 dx = −
∫

+∞

−∞

E(x)Im {φ(x)} dx. (5)

Substituting the sech approximation (3) into Eq. (5) predicts the value of
the phase shift:

sin ζ =
2 [γ + (4/3) Γ∆]

∫
+∞

−∞
E(x) sech

(√
2∆x

)
dx

, (6)

which is written for the generalized LL equation (2), that includes the cubic
loss ∼ Γ. This result makes sense if it yields |sin ζ | ≤ 1, which implies that
the LDS of the prsent type exists if the pump’s strength exceeds a threshold
value, which is a combination of dissipation coefficients γ and Γ. In fact,
a mode pinned to the localized pump exists at all values of its strength, as
demonstrated by the exact solution displayed below, the threshold being an
artifact following from the assumption of the rigid form of the perturbative
ansatz (3).

Note that, even forE(x) = const ≡ E0, integral
∫ +∞

−∞
E(x)sech

(√
2∆x

)
dx

converges , hence the approximation based on Eqs. (3)-(6) may correctly
predict a state sitting on top of a small-amplitude CW background, with
amplitude φ0 ≈ E0/ (∆ + iγ), under the condition that the LDS’s amplitude,√
2∆, is much larger than φ0, i.e., E2

0 ≪ ∆3. Detailed comparison of pre-
dictions of the perturbation theory with numerical results will be presented
elsewhere.
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A particular exact solution and states close to it. In the case when
the gain is localized in a very narrow region, it may be approximated by the
Dirac’s delta-function, cf. a similar approximation adopted for a strongly
localized gain in the CGL model [54]:

E(x) = E0 δ(x) (7)

(a similar model including a localized gain, with an LDS pinned to it, was
also formulated in terms of the Swift-Hohenberg equation [71]). This means
that the homogeneous version of Eq. (2),

i

(
γ + Γ|φ|2 + ∂

∂t

)
φ =

[
−1

2

∂2

∂x2
+∆+ σ|φ|2

]
φ, (8)

must be solved with the boundary condition at x = 0 which determines the
jump of the first derivative induced by δ(x) in Eq. (7):

dφ

dx
|x=+0 −

dφ

dx
|x=−0 = 2E0. (9)

In this case, one can find a particular exact solution to the generalized LL
equation (8) in the form of

φ(x) =
Aeiζ

[sinh (λ (|x|+ ξ))]1+iµ
, (10)

with parameters (µ is called the chirp)

µ = −γ/λ2, (11)

A2 = 3γ/ (2Γ) , (12)

λ2 =
γ

4Γ

(√
9σ2 + 8Γ2 + 3σ

)
. (13)

This particular solution is a non-generic one, as it exists at the single value

of the mismatch parameter,

∆ =
λ2

2

(
1− µ2

)
≡ 1

2

(
3σγ

Γ
− λ2

)
(14)

(in other words, it is a codimension-one type of the exact solution, with
“one” referring to constraint (14), which must be adopted to produce the
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analytical expression). Note that the solution given by Eq. (13) exists (i.e.,
it gives λ2 > 0) for both σ = −1 and +1. The presence of the cubic-loss
coefficient, Γ > 0, is necessary for the existence of the solution. Indeed, in
the limit of Γ → 0 Eq. (13) leads to divergence:

λ2 ≈
{

3γ/ (2Γ) at σ = +1,
(1/3)Γγ at σ = −1.

(15)

Finally, parameters ξ and ζ in expression (10) are obtained by its substi-
tution in jump condition (9):

Aλ (1 + iµ) eiζλ
cosh (λξ)

[sinh (λξ)]2+iµ
= −E0. (16)

An explicit result, following from Eq. (16), is

ξ =
1

2λ
arcosh

(
1 +

χ

E2
0

+

√
4 +

χ

λ2E4
0

)
, (17)

χ ≡ A2λ2
(
1 + µ2

)
,

ζ = π − arctanµ+ µ ln (sinh (λξ)) , (18)

where arcosh(Z) ≡ ln
(
Z +

√
Z2 − 1

)
.

In the CGL model with localized gain (rather than pump), exact pinned
states are also codimension-one solutions, the difference being that, in the
latter case they coexist with the zero state, which may or may not be stable
solutions [54].

In Fig. 1(a)-(b) we display typical examples of the analytically found
modes pinned to the delta-function for focusing and defocusing nonlinearities,
by choosing σ = −1 and σ = 1, respectively, along with their numerically
found counterparts. In this case, we set parameters as γ = Γ = E0 = 1,
and took ∆ as per Eq. (14). The numerical counterparts were produced
by using the naturally regularized delta function in the form given by Eq.
(31) (see Methods), for three different values of width w. It is relevant to
mention that, while the regularized delta-function approaches the standard
delta-function in the limit of w → 0, the use of a finite stepsize ∆x in
the numerical procedure gives rise to a critical value wcr ≃ ∆x/2 of w, the
numerical solution getting drastically different from the analytical one at
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Figure 1: Solid red lines display the exact solution (10) for the mode pinned
to the delta-functional pump, and a set of numerical solutions based on the
use of the regularized delta-function defined as per Eq. (31) (see Methods),
with w = 0.05 (dashed orange lines), w = 0.1 (dashed-dotted gray lines),
and w = 0.15 (dotted black lines). The results presented in (a) and (b)
pertain to self-focusing (σ = −1) and self-defocusing (σ = 1) signs of the
nonlinearity, respectively. All these solutions are stable. Other parameters
are E0 = γ = Γ = 1, while ∆ is given by Eq. (14).

w < wcr. With the increase of the cubic-loss strength, Γ, wcr blows up
(increases very fast) at Γ & 3.

Further, in Fig. 2 we present systematic results for the 1D modes pro-
duced by analytical solution (10) and its numerical counterparts. These are
the peak local power, max [|φ|2], the integral power, P (see Eq. (4)), and the
mean squared width,

〈x2〉 = P−1

∫ +∞

−∞

x2 |φ(x)|2 dx, (19)

shown in the left and right panels of the figure, as functions of the two
nonlinearity coefficients, viz., the cubic-loss strength Γ and self-interaction
strength σ (in the right panel, σ is considered as a continuously varying
parameter, while in the left panel it is fixed to be σ = ±1 for the self-
defocusing and focusing cases). Note that, as predicted by the analytical
solutions (see Eqs. (10) and (15)), the integral power P vanishes at Γ →
0. On the other hand, the results pertaining to σ = +1 and −1 tend to
converge at large values of Γ, as the dissipative nonlinearity is dominant in
this limit. The numerically generated findings are very close to the analytical
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Figure 2: Panels (a,b), (c,d), and (e,f) show, severally, the peak local power,
max[|φ|2], integral norm P (see Eq. (4)), and the mean squared width 〈x2〉
(see Eq. (19)) of the analytical mode (10) versus the cubic-loss and self-
interaction strengths, Γ and σ (left and right columns). The left columns
correspond to γ = E0 = 1 and σ = 1 (solid blue lines) or σ = −1 (dashed
black lines), i.e., the self-defocusing and focusing, respectively. In the right
columns we set γ = Γ = 1 and E0 = 1 (solid blue lines) or E0 = 2 (dashed
black lines). The corresponding numerical results are shown by chains of
yellow circles and red boxes, respectively. The numerical data displayed here
and other figures have been produced using the regularized delta-function
(31), with w close to its above-mentioned critical value (see Methods).

predictions.
It is worthy to note conspicuous maxima of the peak local power and

integral power, observed in Fig. 2(b) at σ = 0 and σ ≈ −1, respectively.
Further, the bottom panel in Fig. 2(b) reveals a counter-intuitive feature of
the pinned states: they shrink (〈x2〉 → 0) in the limit of large σ > 0, i.e.,
strong self-defocusing (the same is also demonstrated by Eq. (13), which
predicts λ2 ∼ 1/〈x2〉 → ∞ at σ → +∞). Usually, self-confined modes shrink
in the opposite limit, of strong self-focusing. This surprising finding may be
explained by the effect introduced by the cubic loss term ∼ Γ. Indeed, as
mentioned above, the exact solution for the pinned state does not exist at
Γ = 0, and, in the presence of Γ > 0, the shape of the mode is essentially
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Figure 3: Panels (a,c) and (b,d) show the peak local power (max[|φ|2]) and
integral norm (P , see Eq. (4)), respectively, versus the pumping amplitude
E0 and the dissipation rate γ (left and right columns). The left columns
correspond to γ = Γ = 1 while in the right columns we set E0 = Γ =
1, both with σ = +1 and σ = −1, i.e., the self-defocusing and focusing
(the corresponding analytical results are displayed by solid blue lines and
dashed black lines, respectively), while the corresponding numerical results
are shown by chains of yellow circles and red boxes, respectively.

affected by its chirp, which is produced by Eq. (11).
Further, Fig. 3 displays the effect of the variation of the pump’s amplitude

E0 and dissipation coefficient γ on the peak local power (max[|φ|2]) and
integral power P (see Eq. (4)) of numerical solutions obtained from Eq.
(2), for both the self-defocusing and focusing signs of the nonlinearity, i.e.,
σ = +1 and σ = −1, respectively, along with the counterparts predicted
by the above analytical solutions. Naturally, the peak local and integral
powers increase with the growth of E0, and decrease with the growth of γ.
These properties can be used for an effective control of the localized modes
by means of parameters E0 and γ.

Comparing the results obtained for the self-defocusing (σ = +1) and
self-focusing (σ = −1) signs of the nonlinearity, we again observe a “counter-
intuitive” phenomenon, similar to that mentioned above, i.e., the solution is
more localized in the case of the self-defocusing case than in the self-focusing
case. Note that numerical results closely follow their analytical counterparts
in Fig. 3 too.

Because the above codimension-one analytical solution is valid only un-
der condition (14) imposed on the parameters, it is necessary to investigate
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Figure 4: Solid red lines display the exact solution (10) for the mode pinned
to the delta-functional pump. They are compared to a set of numerically
generated solutions produced with the help of the regularized delta-function:
dotted black lines pertain to mismatch parameter ∆ taken exactly as per
Eq. (14); dashed orange lines pertain to ∆ → 0.75∆, and dashed-dotted
gray lines pertain to ∆ → 1.25∆. The results displayed in panels (a) and
(b) are obtained for the self-focusing (σ = −1) and self-defocusing (σ = +1)
signs of the nonlinearity, respectively. All these solutions are stable. Other
parameters are E0 = γ = Γ = 1.

the structural stability of the pinned modes against departure from this con-
dition. To this end, in Fig. 4 we compare the solutions (both analytical
and numerically found ones) obtained with the value of ∆ selected as per
Eq. (14), and their numerical counterparts obtained with this ∆ replaced
by 0.75∆ and 1.25∆. We conclude that these considerable variations of ∆
produce a weak effect on the solutions, i.e., they are structurally stable, ef-
fectively representing generic pinned modes, rather than specially selected
ones.

While changes in the profiles of the solutions produced by the variation
of ∆ are relatively small, it is relevant to mention that the solutions are
more sensitive to the variation in the case of the self-focusing than in the
defocusing case.

Finally, systematic simulations of the perturbed solutions corroborate the
stability of all the numerical solutions emulating the analytically predicted
modes pinned to the delta-function. In fact, all the solutions are strong at-

tractors, as direct simulations demonstrate that Eq. (2) readily generates
precisely these states, starting from the zero input, φ(x, 0) = 0. This nu-
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Figure 5: Existence diagrams for stable 2D modes in the plane of parameters
(∆, σ), as produced by direct simulations of Eq. (20), with pump’s param-
eters P0 = 10 and η = 1. Panel (a) covers the range of σ ∈ [−5, 5] and
∆ ∈ [−20, 20], while (b) is a zoom of (a) for σ ∈ [−4, 4] and ∆ ∈ [−4, 4]. The
region covered by red boxes is populated by single-peak (bell-shaped) modes
(see Fig. 7), while yellow boxes designate parameters at which the shape of
the modes is crater-shaped, featuring the maximum local power at a finite
difference from the center, see an example in Fig. 9 below.

merical result is important, because the stability of the analytically found
solutions cannot be explored in an analytical form.

The two-dimensional Lugiato-Lefever equation. The 2D version of
the 1D LL equation (1) is

i

(
γ +

∂

∂t

)
φ =

[
−1

2
∇2

⊥
+∆+ σ|φ|2

]
φ+ E(x, y), (20)

where ∇2
⊥
= ∂2

∂x2 + ∂2

∂y2
, and the cubic loss is not included here (Γ = 0), as,

unlike the exact 1D solutions, this term is not necessary for finding 2D solu-
tions reported here. Further, one may fix here γ = 1 by means of rescaling.
Below, we consider the Gaussian 2D shape of the pump, given by

E(x, y) =
P0√
πη

exp

(
−x2 + y2

2η2

)
, (21)

where P0 is the pump’s integral intensity, and parameter η controls its width.
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Figure 6: (a) The integral power of the 2D modes, P , vs the pump’s ampli-
tude, P0, for ∆ = 10 and σ = −1, shown by the line with yellow circles, and
σ = +1, the line with red boxes. (b) The integral power vs σ, pertaining to
P0 = 10 and ∆ = −10 or ∆ = +10, shown by lines with yellow circles or red
boxes, respectively. Numerical and variational solutions are indistinguishable
in the range shown in the plots. Other parameters are γ = η = 1.

In Fig. 5 we display the existence diagram of stable solutions produced
by direct simulations of Eq. (20) in the plane of the mismatch and nonlin-
earity coefficients, (∆, σ), for fixed pump’s parameters, P0 = 10 and η = 1.
Light yellow boxes denote values of parameters at which stable 2D solutions
are crater-shaped (see Fig. 9 below), while red boxes correspond to the
single-peak (bell-shaped) solutions, as shown below in Fig. 7. As concerns
variational equations (28)-(30) (see Methods), their physically relevant solu-
tions, corresponding to B > 0, have been found, by means of the relaxation
method, for all values of parameters covering the range of σ ∈ [−5, 5] and
∆ ∈ [−20, 20], the respective picture essentially coinciding with one displayed
on the basis of the full numerical solution in Fig. 5(a)

In Figs. 6(a) and 6(b) we display the integral power of the confined 2D
modes, P , defined as per Eq. (25), as a function of the pump’s amplitude
P0 and nonlinearity strength σ, respectively (see Eq. (21)). Note that in
Fig. 6(a) the analytical results, produced by the variational ansatz (26), and
their numerical counterpart, obtained from direct simulations of Eq. (20), are
very close to each other. We observe that, in the self-focusing case (σ = −1,
shown by the line with circles), the integral power is slightly larger than in
the self-defocusing case (σ = 1, shown by the line with boxes). In Fig. 6(b),
the abrupt growth of the power for ∆ = −10 at σ > 4 make the numerical
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Figure 7: Profiles of stable 2D modes, |φ (x, y) |2, as produced by direct simu-
lations of Eq. ( 20) (at t = 100), for (a) ∆ = −10 and (c) ∆ = 10. Displayed
in panels (b) and (d) are transverse profiles, |φ(x, 0)|2, corresponding to the
2D shapes shown in (a) and (c), respectively. Lines in (b) and (d) depict the
approximate analytical solution based on ansatz (26), while chains of yellow
circles represent the numerical solution. Other parameters are P0 = 10 and
σ = γ = η = 1.

solutions unstable.
Generic examples of the local-power profiles, |φ|2, for the 2D modes, ob-

tained from direct simulations (at t = 100) for two different values of ∆, and
the comparisons with the corresponding approximate analytical solutions,
based on ansatz (26), are displayed in Fig. 7. Actually, the numerical and
analytical profiles are indistinguishable at these values of ∆, in accordance
with the above results which also demonstrated very good agreement of the
analytical predictions with the numerical counterparts at large values of ∆.
However, at small values of ∆, the numerical solutions feature a strong in-
crease in the norm and may become unstable. In this case, the analytical
approximation is not relevant.

The situation in a parameter region where stable stationary modes are
absent (see Fig. 5) is illustrated by numerically generated solutions (at t =
10) displayed in Figs. 8(a,b) for σ = −1 and ∆ = −1, and in Figs. 8(c)-(d)
for σ = −1 and ∆ = +1. Due to the instability of the numerical solutions,
the analytical predictions are not relevant in this case.

As mentioned above, in a small part of their existence region (covered
by yellow squared in Fig. 5), numerically found stable 2D modes feature a
crater-like shape, with the maximum of the local power attained at a finite
difference from the center, see an example in Fig. 9. Obviously, the analytical
approximation based on ansatz (26) cannot reproduce this shape.
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Figure 8: Profiles of 2D solutions, |φ (x, y) |2, and the corresponding trans-
verse profile, |φ(x, 0)|2, for ∆ = −1 in (a)-(b), and ∆ = +1 in (c)-(d). In
(b) and (d), solid black lines represents the analytical results, that were used
as inputs for the direct simulations. Results of the simulations (at t = 10)
are shown by yellow circles. Other parameters are σ = −1, P0 = 10, and
γ = η = 1.

Discussion

The modifications of the well-known 1D and 2D LL (Lugiato-Lefever)
equation introduced in this work, with tightly localized pump, make it possi-
ble to create new stable confined modes, which are of interest in terms of the
use of the LL equations as models of the pattern formation in nonlinear dis-
sipative media. They may also be used to design compact pixels that can be
created in cavities modeled by the LL equations. The present work is based
on the combination of analytical and numerical methods, in the 1D and 2D
geometries alike, the analytical parts helping to achieve a deeper insight into
the variety of steady-state confined modes produced by the LL equations.

In the 1D geometry, we have first developed a simple perturbation theory,
based on the usual sech ansatz (3), in the case of weak pump and loss.
Other results have produced a family of exact analytical solutions, assuming
that the tightly focused gain is represented by the delta-function, while the
self-interaction may have both focusing and defocusing signs (σ < 0 and
σ > 0, respectively). The analytical form of the solution is given by Eqs.
(10)-(13), under the condition that the mismatch, ∆, takes the specially
selected value (14), and the cubic nonlinear term, which represents two-
photon losses in the optical medium (with rate Γ), is present. Furthermore,
numerical results, displayed in Fig. 4, corroborate the structural stability of
the codimension-one analytical solutions, because the deviation of ∆ from the
spacial value (14) leads to weak variation of the stable pinned solutions. Most
essential parameters which control the shape of the 1D pinned modes are two
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Figure 9: (a) The same as in Fig. 7(a), but with σ = −5 and ∆ = −4.
(b) The black dashed line is the static profile, |φ (x, 0)|2, of the numerically
generated crater-shaped mode (at t = 100). The orange solid line shows
a formal prediction of the variational approximation for these values of the
parameters.

nonlinearity coefficient, σ and Γ. Characteristic features of the solution is the
cusp at the center, and the phase structure (chirp). A remarkable fact is that
the exact solutions are very close to their numerical counterparts, produced
by the localized pump shaped as a regularized delta-function, and the family
of the so generated 1D modes is entirely stable. In fact, the proximity of
the numerical and analytical solutions additionally confirms the structural
stability of the latter. A noteworthy (and counter-intuitive) feature of the
1D modes is that they shrink with the increase of the strength of the self-
defocusing nonlinearity. The 1D solution produced by the analysis may help
to find similar states in more general pattern-formation models.

In the 2D geometry with the pump applied at a small Gaussian-shape
“hot spot”, systematic numerical results are reported in the combination
with approximate analytical findings produced by the variational approx-
imation. A vast stability area in the system’s parameter space has been
found, the most essential parameters being the above-mentioned mismatch
and nonlinearity coefficients, ∆ and σ (the 2D system is considered without
the two-photon loss, Γ = 0, as its presence is not a necessary condition for
finding the relevant solutions). In most cases, the 2D modes pinned to the
“hot spot” feature a single-peak (bell-shaped) structure, which is stable, and
is well approximated by the variational ansatz. In a small part of the param-
eter space, 2D stable modes feature a crater-like shape, with the maximum
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local power found at a finite distance from the center. In another small part
of the parameter space, 2D modes are unstable.

As an extension of the analysis, it may be interesting to use numerical
methods to construct modes pinned to a set of two mutually symmetric 1D or
2D hot spots, cf. a similar configuration elaborated for the 1D CGL equation
in Ref. [72]. In particular, in the case of the self-focusing nonlinearity, σ < 0,
one may expect spontaneous symmetry breaking between peaks attached to
the two pump maxima. On the other hand, in the 2D geometry it may
also be interesting to introduce ring-shaped pump, which may give rise to
confined modes with a vortex structure, cf. a similar consideration for the
2D CGL equation in Ref. [61]. A possibility of spontaneous breaking of the
axial symmetry in vortex modes may be addressed too, following the pattern
of the analysis performed in the framework of the CGL equation [74].

Methods

The variational approach. Firstly, we define φ(x, y, t) ≡ Φ(x, y, t) exp (−γt),
casting Eq. (20) in the form of

i
∂

∂t
Φ =

[
−1

2
∇2

⊥
+∆+ σe−2γt|Φ|2

]
Φ+ Eeγt , (22)

which can be derived from a real time-dependent Lagrangian,

L =

∫ ∫
dxdy

{
i

2
(Φ∗

tΦ− Φ∗Φt) +
1

2

(
|Φx|2 + |Φy|2

)

+ ∆|Φ|2 + σ

2
e−2γt |Φ|4 + Eeγt (Φ∗ + Φ)

}
. (23)

Note that the following exact power-balance equation is produced by Eq.
(20):

dP

dt
= −2γP − 2

∫∫
Im{φ(x, y, t)}E(x, y)dxdy, (24)

for the integral power defined as

P =

∫ ∫
|φ(x, y, t)|2dxdy, (25)

cf. the 1D counterpart given by Eq. (5).
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For the variational approximation, we use the 2D isotropic Gaussian
ansatz [73],

Φ = eγtA(t) exp
[
− (B(t)− iC(t)) (x2 + y2)

]
, (26)

where A, B and C are real variational parameters, subject to obvious con-
straint B > 0. Next, substituting the ansatz in Eq. (23) and performing the
integration, we arrive at the following effective Lagrangian:

Leff =
π

2
e2γt

{
A2

2B2

dC

dt
+

[
1 +

∆

B
+

C2

B2

]
A2

+
σA4

4B
+

8ηP0 (1 + 2Bη2)A

1 + (4B2 + 4C2) η4 + 4Bη2

}
. (27)

The variational (Euler-Lagrange) equations following from Lagrangian (27),
∂Leff/∂ (A,B,C) = 0, are

σA3 +
[4B(B +∆) + 4C2]

2B
A+

8ηP0B
2 (1 + 2Bη2)√

π [4B3η4 + 4B2η2 + (4η4C2 + 1)B]
= 0,

(28)

σBA3 + 4
(
∆B + 2C2

)
A+

8η3P0B
3 [1 + 4 (B2 − C2) η4 + 4Bη2]

√
π (1 + 4 (B2 + C2) η4 + 4Bη2)2

= 0, (29)

π (2C − γ)A

2B2
− 32η5P0 (1 + 2Bη2)C

√
π [1 + 4 (B2 + C2) η4 + 4Bη2]2

= 0. (30)

Numerical simulations. To solve the one-dimensional equation (2)
numerically, we made use of the regularized delta-function based on the usual
Gaussian expression (see Ref. [64] and references therein):

δ̃(x) = (
√
πw)−1 exp(−x2/w2), (31)

with finite width w.
We employed a fourth-order split-step method to solve Eqs. (2) and (20),

starting from the zero input, φ(x, 0) = 0. An output was categorized as a
stable mode if it maintained a static profile for a long time (t ∼ 1000, which
corresponds & 100 characteristic diffraction times). In most simulations, the
spatial and temporal steps were fixed as ∆x = 0.04 and ∆t = 0.001. To
produce the numerical results for the 1D LL equation, shown in Fig. 2, we
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chose values of w such that the resultant integral power was different from
the analytical counterpart, corresponding to exact solution (10), by no more
than 3%.

To solve Eqs. (28)-(30) for A, B, and C, produced by the variational
approximation, we used a relaxation method with a fixed error constraint
of 10−6. Then, the so found values were inserted in ansatz (26) to produce
the full variational approximation for the 2D modes. Lastly, the above-
mentioned scaled value of the dissipation parameter, γ = 1, was set in all the
simulations.
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