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Abstract. A modified trace for a finite k-linear pivotal category is a family of linear forms

on endomorphism spaces of projective objects which has cyclicity and so-called partial trace

properties. The modified trace provides a meaningful generalisation of the categorical trace

to non-semisimple categories and allows to construct interesting topological invariants. We

show that a non-degenerate modified trace defines a compatible with duality Calabi-Yau

structure on the subcategory of projective objects. We prove, that for any finite-dimensional

unimodular pivotal Hopf algebra over a field k, a modified trace is determined by a symmetric

linear form on the Hopf algebra constructed from an integral. More precisely, we prove that

shifting with the pivotal element defines an isomorphism between the space of right integrals,

which is known to be 1-dimensional, and the space of modified traces. This result allows us

to compute modified traces for all simply laced restricted quantum groups at roots of unity.

Keywords: Hopf algebras and theory of integrals, pivotal categories, categorical and

modified traces, quantum groups.

AMS codes: 18D10, 16T05, 17B37.

1. Introduction

This paper establishes a one-to-one correspondence between two a priori very different

notions in the theory of finite-dimensional pivotal Hopf algebras. One of them is the well-

known linear form on the Hopf algebra H, called integral, and the other is a certain trace

function on the category of projective H-modules, called modified trace. Our new correspon-

dence allows to transfer properties (such as existence and uniqueness) from the integral to

the modified trace, and most importantly to compute the modified traces explicitly. The

main application of modified traces is in constructing topological invariants based on non-

semisimple categories. In particular, our correspondence allows to use the integral theory to

construct fully featured non-semisimple TQFTs [DGP1, DGP2, DGGPR] extending the ones

of Kerler and Lyubashenko [KL]. The importance of non-semisimple theories in physics was

also stressed recently in the work of Gukov, Pei, Putrov and Vafa [GPPV]. In mathematics,

such theories are expected to provide the right framework for categorification of 3-manifold

invariants [GM].

Let us now introduce our main players.
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Integral. The integral or dually cointegral can be thought as analogs of the Haar measure on

a compact group and the invariant
∑

g∈G g in the group algebra of a finite group, respectively.

If non-zero, they generate one-dimensional ideals in the algebra and its dual. The integral

has important topological applications. It plays the role of a Kirby color in the Hennings

construction [He] of 3-manifold invariants generalizing those of Reshetikhin-Turaev.

Let H = (H,m,1,∆, ε, S) be a Hopf algebra over a field k. A right integral on H is a linear

form µ : H → k satisfying

(1.1) (µ⊗ id)∆(x) = µ(x)1 for any x ∈ H.

Analogously, a left integral µl ∈ H∗ satisfies

(1.2) (id⊗ µl)∆(x) = µl(x)1 for any x ∈ H.

IfH is finite-dimensional, the space of solutions of these equations is known to be 1-dimensional.

A pivotal Hopf algebra is a pair (H, g), where the pivot g ∈ H is a group-like element imple-

menting S2, i.e. S2(x) = gxg−1 for any x ∈ H.

A symmetrised right integral µg on (H, g) is defined by

(1.3) µg(x) := µ(gx) for any x ∈ H .

Analogously, a symmetrised left integral is

(1.4) µlg−1(x) := µl(g−1x) for any x ∈ H .

We call a pivotal Hopf algebra (H, g) unibalanced if its symmetrised right integral is also left.

Dually, a left (resp. right) cointegral in H is an element c ∈ H such that xc = ε(x)c (resp.

cx = ε(x)c) for all x ∈ H. Non-trivial right and left cointegrals are unique up to scalar [LS].

We call a Hopf algebra unimodular if its right cointegral is also left.

In the unimodular case, the symmetrised integrals define symmetric linear forms on H, i.e.

(1.5) µg(xy) = µg(yx) and µlg−1(xy) = µlg−1(yx),

which are also non-degenerate (compare with Proposition 4.4 below).

Modified trace. Our second main player is the modified trace introduced in [GPV, GKP1].

Unlike the integral, it is defined on the category of modules and motivated by topology. For

braided pivotal categories, the modified trace allows a non-zero evaluation of the Reshetikhin-

Turaev type invariants on links colored with projective objects, even if the category is not

semisimple. We will work with pivotal categories without braiding assumptions and refer to

Section 3 for detailed definitions and graphical conventions.
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Let C be a k-linear pivotal category. Given V,W ∈ C and f ∈ EndC(W ⊗ V ), let trlW (f)

and trrV (f) be the left and right partial traces defined as follows

trlW (f) = (evW ⊗ idV ) ◦ (idW ∗ ⊗f) ◦ (c̃oevW ⊗ idV ) =

W

f

V

∈ EndC(V ),(1.6)

trrV (f) = (idW ⊗ ẽvV ) ◦ (f ⊗ idV ∗) ◦ (idW ⊗ coevV ) =

V

f

W

∈ EndC(W ) .(1.7)

The main example of a pivotal category used in this paper is the category H -mod of finite-

dimensional left modules over a pivotal Hopf algebra (H, g). In H -mod the left (co)evaluation

morphisms are those for vector spaces while the right ones are defined using the pivot.

Setting W = 1 in (1.7) and assuming EndC(1) = k, we get the definition of the (right)

categorical trace

(1.8) trCV (f) := ẽvV ◦(f ⊗ id) ◦ coevV ∈ k.

Analogously, assuming V = 1 in (1.6), we get its left version CtrV (f).

We assume now that tensor product in C is exact and let Proj(C) be the tensor ideal of

projective objects in C. A right (left) modified trace on Proj(C) is a family of linear functions

(1.9) {tP : EndC(P )→ k}P∈Proj(C)

satisfying cyclicity and right (left) partial trace properties formulated below.

Cyclicity: If P, P ′ ∈ Proj(C) then for any morphisms f : P → P ′ and g : P ′ → P

(1.10) tP (g ◦ f) = tP ′(f ◦ g) .

Right partial trace property: If P ∈ Proj(C) and V ∈ C then

(1.11) tP⊗V (f) = tP
(
trrV (f)

)
for any f ∈ EndC(P ⊗ V ).

Left partial trace property: If P ∈ Proj(C) and V ∈ C then

(1.12) tV⊗P (f) = tP
(
trlV (f)

)
for any f ∈ EndC(V ⊗ P ).

A left and right modified trace will be called modified trace.

It is then clear from the definition that the right categorical trace is also a right modified

trace, and analogously for the left. The trace trC is non-zero on Proj(C) if and only if C is

semisimple. However, there are many examples of non-semisimple categories where a non-zero

modified trace exists, and even non-degenerate, which we discuss below.
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We call a right (left) modified trace t non-degenerate if the pairings

(1.13) HomC(M,P )× HomC(P,M)→ k , (f, g) 7→ tP (f ◦ g) ,

are non-degenerate for all P ∈ Proj(C) and M ∈ C.1

For our main example C = H -mod, Proj(C) = H -pmod is the full subcategory of projective

H-modules.

Let us motivate the definition of the modified trace from a different perspective.

Modified trace and Calabi-Yau structure. Let D be a k-linear category equipped with

a family of trace maps, i.e. k-linear maps

(1.14) {tV : EndD(V )→ k}V ∈D

satisfying the trace relation (or cyclicity)

tV (g ◦ f) = tW (f ◦ g)

for any f : V → W and g : W → V in D. We say that D is Calabi-Yau if the following

pairings

(1.15) HomD(V,W )× HomD(W,V )→ k , (f, g) 7→ tW (f ◦ g)

are non-degenerate for all V,W ∈ D.

In any k-linear pivotal category D we have the following duality isomorphisms:

d∩ : HomD(W,U ⊗ V )
∼−→ HomD(W ⊗ V ∗, U)

f 7→ (idU ⊗ ẽvV ) ◦ (f ⊗ idV ∗)
, f

U V

W

7→ f

U

W V ∗

d∪ : HomD(U ⊗ V,W )
∼−→ HomD(U,W ⊗ V ∗)

f 7→ (f ⊗ idV ∗) ◦ (idU ⊗ coevV )
, f

W

U V

7→ f

W V ∗

U

.(1.16)

1We note that M is not necessarily projective and so the cyclicity property does not generally applies here.
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Let D be a k-linear pivotal category. We call a Calabi-Yau stucture on D compatible with

duality on the right if the following diagram commutes, for all U, V,W ∈ D,

(1.17) HomD(U ⊗ V,W )× HomD(W,U ⊗ V )
◦ //

d∪

��

d∩

��

EndD(U ⊗ V )

tU⊗V
��

k

HomD(U,W ⊗ V ∗)× HomD(W ⊗ V ∗, U)
◦ // EndD(U)

tU

OO

We analogously define Calabi-Yau stucture on D compatible with duality on the left, see

more details in Section 3. It is now easy to check that the right partial trace condition (1.11)

formulated for the family (1.14) with D = Proj(C) implies commutativity of (1.17), and

similarly for the left property. We give a proof that the inverse is also true, in Theorem 3.3.

Main results. The previous discussion together with Theorem 3.3 imply that a non-de-

generate modified trace on Proj(C) is nothing else but a Calabi-Yau structure on Proj(C)
compatible with duality. For a finite-dimensional pivotal Hopf algebra H, such Calabi-Yau

structure on H -pmod is uniquely determined by the non-degenerate symmetric linear form

tH : EndH(H)→ k associated with the left regular representation. This is proven in Propo-

sition 2.4 and Theorem 2.6 in a more general setting.

We are now ready to formulate our main result.

Theorem 1. Let (H, g) be a finite-dimentional unimodular pivotal Hopf algebra over a field k.

Then the space of right (left) modified traces on H -pmod is equal to the space of symmetrised

right (left) integrals, and hence is 1-dimensional. Moreover, the right modified trace on

H -pmod is non-degenerate and determined by

(1.18) tH(f) = µg

(
f(1)

)
for any f ∈ EndH(H) .

Analogously, the left modified trace is non-degenerate and determined by

(1.19) tH(f) = µlg−1

(
f(1)

)
for any f ∈ EndH(H) .

In particular, H is unibalanced if and only if the right modified trace is also left.

In the language of Calabi-Yau categories, Theorem 1 can be reformulated as follows.

Corollary 1.1. If H is a finite-dimensional unimodular pivotal Hopf algebra over a field k
then the space of Calabi-Yau structures on H -pmod compatible with duality on the right (left)

is one dimensional.
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To the best of our knowledge, Theorem 1 is the first result relating modified traces with

general concepts in the theory of Hopf algebras. The power of this theorem is in the gen-

erality of its assumptions. The existence and uniqueness of the modified trace was proven

previously in [GR] for finite pivotal braided categories with a non-degenerate monodromy,

called factorisable (see also [GKP1, Cor. 3.2.1] for a more technical statement for a larger class

of categories). The equality of the right and left modified traces was known in the ribbon

case only. However, Theorem 1 does not require braiding and allows to compute the modified

trace in all cases where the integral and pivot are known explicitly. We give few infinite

families of unimodular Hopf algebras with explicit formulas for the integral and pivots.

Theorem 1 was a starting point for further generalizations in the following settings:

• finite-dimensional pivotal non-unimodular Hopf algebras in [FG] and [GKP2],

• Hopf G-coalgebras in [Ha] providing examples of G-graded categories of [Tu2, Vi],

• quasi-Hopf algebras [BGR, SS],

• module categories in [FG].

As we already mentioned, our results were crucially used in [DGP1, DGP2] to construct a

TQFT with stronger monoidality and functoriality properties than the one in [KL]. This was

done for any finite-dimensional factorisable ribbon Hopf algebra over a field of characteristic

zero.

In [BBG], combining the modified trace on the finite-dimensional restricted quantum sl(2)

at a root of unity with the Hennings construction, a logarithmic Hennings invariant was de-

fined for any 3-manifold with a colored link inside. An interesting feature of this construction

is that it works for a not necessarily quasi-triangular Hopf algebra. The results of this paper

suggest that the invariants of [BBG] can be extended to finite-dimensional Lusztig quantum

groups at a root of unity which might not allow braiding.

To prove Theorem 1, we first show that the right partial trace property for the regular

representation implies the general property in (1.11), and similarly for the left property. This

is the context of the so-called Reduction Lemma that is proven in Section 3 in the general

context of finite pivotal k-linear categories.

Then we study the centralizer algebras EndH(H ⊗W ) for any W ∈ H -mod. An explicit

algebra isomorphism between EndH(H ⊗ H) and Matn,n(Hop) for any n-dimensional Hopf

algebra H allows us to reduce the right partial trace property to the defining relation for the

symmetrised right integral.

It is worth to mention the following consequence of Theorem 1.

Proposition 1.2. Let H be a finite-dimensional unimodular pivotal Hopf algebra over a

field k. The right categorical trace trCH and its left version CtrH are non zero if and only if

H -mod is semisimple and in this case coincide up to a scalar with the trace maps

(1.20) f 7→ µg

(
f(1)

)
and f 7→ µlg−1

(
f(1)

)
,
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respectively, where f ∈ EndH(H).

In Section 4 we give a Hopf-theoretic proof of Proposition 1.2 without using Theorem 1.

Proposition 1.2 shows that the symmetrised integral µg provides a non-trivial generalisation

of the categorical trace for non-semisimple categories H -pmod. In this case, the categorical

trace is identically zero, however the symmetrised integral (or rather the corresponding mod-

ified trace) is not. In particular, for a finite group G and its group algebra over k = Fp, the

symmetrised integral, which is in this case just the integral, defines a non-degenerate trace

compatible with duality on the category of projective Fp[G]-modules, even in the case when

the characteristic p divides the order of the group. This is a surprising application of our

theorem to the classical modular representation theory, that will be discussed in more details

in Section 4.

In Section 7, we consider finite-dimensional Lusztig quantum groups at roots of unity in

the simply laced cases and give explicit formulas for their integral, cointegral, symmetrised

integral, and hence an explicit expression for the modified trace tH . We expect similar

formulas to hold in general type.

In type A1, using Theorem 1 together with formulas for minimal idempotents given in [GT],

we obtain an alternative derivation of [BBG] formulas for the modified trace for all endo-

morphisms of indecomposable projectives. This illustrates how the modified trace can be

effectively computed from the symmetrised integral.

The paper is organised as follows. In Section 2, we collect results on traces in finite abelian

categories. In Section 3, we study a relationhsip between the modified trace and Calabi-

Yau structures in finite pivotal categories and prove Reduction Lemma. In Section 4, after

recalling standard facts from the theory of Hopf algebras, we study properties of symmetrised

integrals, in particular we show that they provide a non-degenerate symmetric pairing between

the center Z(H) and HH0(H), and then prove Proposition 1.2. Section 5 contains a detailed

analysis of the centralizer algebras EndH(H⊗W ). Section 6 contains our proof of Theorem 1.

Section 7 provides an application of our main theorem to restricted quantum groups of types

ADE: we compute the modified trace via a calculation of µg. Then in Section 8 we provide

more detailed analysis for sl2 case. Finally, Appendices contain proofs of several lemmas.
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2. Traces on finite categories

Throughout this section A is a finite-dimensional k-algebra. Our aim is to show that any

symmetric linear form t on A determines a family of trace functions on A-pmod

(2.1) {tP : EndA(P )→ k}P∈A-pmod ,

i.e. linear maps satisfying cyclicity (1.10). We will also show that if t ∈ A∗ is non-degenerate,

then the traces (2.1) are non-degenerate in the sense of (1.13).

General Setting. We assume that k is a field and C is an additive category. We call C
k-linear if HomC(X, Y ) is a vector space over k for all X, Y ∈ C and the composition of

morphisms is k-bilinear. All categories used in this paper are assumed to be k-linear.

An abelian category C is called finite if it is equivalent to the category A-mod of finite-

dimensional left A-modules for some finite-dimensional k-algebra A. In other words, C is

abelian and has finitely many isomorphism classes of simples, length of any object is finite,

it has enough projectives and Hom spaces are finite-dimensional. An algebra A can be con-

structed as EndC(G) for a projective generator G ∈ C, see e.g. [DK]. Then, the equivalence

functor HomC(−, G) : C → A-mod sends G to the regular representation A. Therefore, with-

out loss of generality in this section we will assume that C = A-mod. We will also use the

notation A-pmod for the full subcategory of projective A-modules.

We first show that a family of traces (2.1) on A-pmod defines a symmetric linear form

on A. Let us denote by Aop the algebra with the opposite multiplication.

Lemma 2.1. We have the isomorphism of algebras

(2.2) r : Aop ∼−→ EndA(A)

given by

(2.3) r(x) = rx, r−1(f) = f(1)

where by rx we denote the right multiplication with x.

Proof. It is straightforward to check that the maps r and r−1 defined in (2.2) are inverse to

each other. Moreover, for any x, y ∈ A we have r(xy) = ryrx and for any f, g ∈ EndA(A),

r−1(gf) = (gf)(1) = f(1)g(1), where in the last equality we used the intertwining property

of g. �

Suppose we are given trace functions (2.1). Then, in particular, for the regular A-module A,

we have the trace function tA : EndA(A)→ k. Lemma 2.1 shows that tA defines a symmetric

linear form t on Aop. Since the flip of multiplication is irrelevant in the argument of a

symmetric form, we have t ∈ A∗.
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To argue that the converse is also true: given a symmetric form t ∈ A∗ we can extend

it uniquely to a family of traces on A-pmod, we will need a categorical notion of the 0th-

Hochschild homology.

Traces of categories. The 0th-Hochschild homology or trace of a k-linear category C is

defined by

(2.4) HH0(C) :=

⊕
X∈C EndC(X)

[C, C]
where

[C, C] := Span{f ◦ g − g ◦ f | f ∈ HomC(X, Y ), g ∈ HomC(Y,X), X, Y ∈ C} .

The image of f ∈ EndC(X) in HH0(C) will be called its trace class and denoted by [X, f ] or

simply by [f ].

In particular, 0th-Hochschild homology of an algebra A (viewed as a category with one

object) is

(2.5) HH0(A) :=
A

[A,A]
with [A,A] = Span{xy − yx | x, y ∈ A}.

Again the image of x ∈ A in HH0(A) will be called its trace class and denoted by [x].

Actually, HH0(A) and HH0(A-pmod) are isomorphic. To show this we will need some

preparation.

Lemma 2.2. For any projective A-module P there exists a decomposition of the identity:

(2.6) idP =
∑
i∈I

ai ◦ idA ◦ bi

for some finite set I and morphisms ai : A→ P and bi : P → A.

Proof. Recall that any finitely generated projective A-module P splits as a direct sum of

indecomposables ones:

(2.7) P '
⊕
i∈I

Pi ,

for a finite indexing set I. Here several direct summands can be isomorphic. We further

observe that each indecomposable Pi can be realised as a direct summand in A, since the

regular module A is a projective generator of A-pmod. We have therefore an injective map

xi : Pi ↪→ A and a surjective map yi : A � Pi. Fixing these maps such that yi ◦ xi = idPi we

can define ai : A→ P and bi : P → A as the compositions

(2.8) ai : A
yi−−→ Pi ↪→ P and bi : P � Pi

xi−−→ A .

They clearly satisfy (2.6). �
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We note that the decomposition of idP in (2.6) is not unique, and we provide several

examples.

Example. For P = A, we can use the trivial decomposition a1 = b1 = idA. However we

can make another choice, the one corresponding to ai and bi in the proof of Lemma 2.2:

ai = bi : x 7→ xπi, for x ∈ A and here πi is the primitive idempotent corresponding to the

direct summand Pi in the decomposition A = ⊕li=1Pi. The identity (2.6) is clearly satisfied

because
∑l

i=1 πi = 1.

In a more general case of P = A⊕m, we also have two natural decompositions. For the first

one, we set aj : A ↪→ A⊕m and bj : A⊕m � A such that bi ◦ aj = δi,j idA, then (2.6) holds. For

the other choice, let V be the m-dimensional multiplicity space with a basis ej, 1 ≤ j ≤ m,

and we can then define for each pair i = (k, j) the maps ai, bi as

a(k,j) : A→ A⊕m , b(k,j) : A⊕m → A ,(2.9)

x 7→ xπk ⊗ ej , x⊗ en 7→ δn,j xπk ,

for x ∈ A, and 1 ≤ k ≤ l and 1 ≤ n, j ≤ m. It is then straightforward to check the

identity (2.6) on x⊗ en for any x ∈ A and 1 ≤ n ≤ m.

Proposition 2.3. For a finite-dimensional algebra A, there is an isomorphism

Φ : HH0(A)
∼−→ HH0(A-pmod) ,(2.10)

[x] 7→ [rx]

with the inverse map

Ψ : HH0(A-pmod)
∼−→ HH0(A) ,(2.11)

[P, f ] 7→
∑
i∈I

[(bi ◦ f ◦ ai)(1)] ,

for any sets {ai : A→ P}i∈I and {bi : P → A}i∈I satisfying (2.6).

We provide the proof in Appendix A for completeness.

Proposition 2.4. A symmetric linear form t on a finite-dimensional algebra A extends

uniquely to a family of trace maps {tP : EndA(P )→ k}P∈A-pmod where

(2.12) tP (f) =
k∑
i=1

t
(
(bi ◦ f ◦ ai)(1)

)
, f ∈ EndA(P ) ,

for a given decomposition of idP as in (2.6). In particular, we have

(2.13) tA(rx) = t(x) , x ∈ A .

Proof. We first note that there is a bijection between linear forms on HH0(A-pmod) and

families of trace maps {tP : EndA(P ) → k}P∈A-pmod such that tP (f) = l([P, f ]) for a linear
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form l. A symmetric linear form t : A → k provides a linear form on HH0(A) which we also

denote by t. By Proposition 2.3, this defines a linear form on HH0(A-pmod) by the formula

(2.14) tP (f) = t ◦Ψ
(
[f ]
)

for any f ∈ EndA(P ) and Ψ given in (2.11). Since Ψ is an isomorphism and it does not

depend on the choice of the decomposition of idP , we have the existence and uniqueness of

the extension. Finally, the equality (2.13) is straightforward after using (2.10). �

We remark that a result similar to Proposition 2.4 was also proven in [GR, proof of Prop.

5.8 (1)] (however in the case of non-degenerate traces).

Example. We assume here that P = A⊕m and demonstrate the use of the formula (2.12).

The algebra of A-linear endomorphisms of A⊕m can be rewritten as a matrix algebra:

(2.15) EndA(A⊕m) ∼= Matm,m(Aop)

where Matm,m is the m×m matrix algebra and we used Lemma 2.1. With notation as in (2.9),

the isomorphism (2.15) sends a matrix (hij) to the endomorphism x⊗ ej 7→
∑m

r=1 xhrj ⊗ er.
Let us choose ai and bi as in (2.9). From (2.12), we then obtain the unique extension tA⊕m of

the symmetric form t

(2.16) t⊕m(h) := tA⊕m(h) =
m∑
i=1

t(hii) , h ∈ EndA(A⊕m) ,

where we used cyclicity of t and on RHS we identified h with the corresponding element in

Matm,m(Aop) under the isomorphism in (2.15).

Remark 2.5. For an indecomposable projective A-module P , we can reformulate Proposi-

tion 2.4 in the following way. Let us fix an injection j : P ↪→ A and projection p : A� P such

that p ◦ j = idP – this identity provides a decomposition as in (2.6). Then j ◦ p ∈ EndA(A)

is right multiplication by a primitive idempotent π, and so tP (idP ) = t(π).

If P ∈ A-pmod is not necessarily indecomposable, then it can be realised as a direct summand

of A⊕m for some finite m ∈ Z>0, i.e. we have injective and surjective maps:

(2.17) jP : P ↪→ A⊕m , pP : A⊕m � P

such that the composition pP ◦jP is identity on P and jP ◦pP is an idempotent in EndA(A⊕m).

We then get a decomposition of the form (2.6) with

(2.18) ã(k,j) : A
a(k,j)−−−→ A⊕m

pP−→ P and b̃(k,j) : P
jP−→ A⊕m

b(k,j)−−−→ A ,

while a(k,j) and b(k,j) are defined as in (2.9). Then (2.12) for the choice (2.18) gives the

following expression for tP :

(2.19) tP : f 7→ t⊕m
(
jP ◦ f ◦ pP

)
,

with t⊕m defined in (2.16). For certain proofs below it will be more convenient to use the

decomposition idP = pP ◦ jP instead of (2.6) and this expression of tP . It is a consequence
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of Proposition 2.4 that the map (2.19) does not depend on the choices we made in the

construction.

Non-degeneracy. Let us prove the equivalence of the different notions of non-degeneracy.

For a finite-dimensional algebra A over a field k, we call a linear form t ∈ A∗ non-degenerate

if the associated bilinear pairing (x, y) 7→ t(xy) is non-degenarate, i.e. t(xy) = 0 for all x ∈ A
implies y = 0.

Theorem 2.6. For a finite-dimensional algebra A with a symmetric linear form t ∈ A∗ the

following three statements are equivalent:

(1) t is non-degenerate.

(2) A-pmod is Calabi-Yau with tP defined by (2.19).

(3) The pairings (1.13)

HomA(M,P )× HomA(P,M)→ k , (f, g) 7→ tP (f ◦ g)

are non-degenerate for all P ∈ A-pmod and M ∈ A-mod.

Proof. The equivalence of the first two statements was proven in [GR, Prop. 5.8]. Since the

third statement is the strongest, it is enough to show that it follows from the first one. For

that we need to show that for any f : M → P there exists a non-zero map g : P → M such

that tP (f ◦ g) 6= 0. The idea is to use non-degeneracy of the linear form t⊕m. Let us fix

a projective cover PM of M with the canonical surjective map πM : PM � M . Since any

projective module is a direct summand of a projective generator, say A⊕m for some m, we

have surjective and injective maps:

pM : A⊕m � PM and jM : PM ↪→ A⊕m.

Let us consider the surjective map p̃M = πM ◦ pM : A⊕m � M . By assumption f is

non-zero and therefore the composition jP ◦ f ◦ p̃M ∈ EndA(A⊕m) is non-zero too, because

p̃M is surjective and jP is injective. Since t⊕m is non-degenerate, there should be non-zero

g̃ ∈ EndA(A⊕m) such that

(2.20) t⊕m
(
(jP ◦ f ◦ p̃M) ◦ g̃

)
6= 0 .

We set g = p̃M ◦ g̃ ◦ jP : P →M and check using (2.19) the non-degeneracy of tP :

tP (f ◦ g) = t⊕m
(
jP ◦ f ◦ (p̃M ◦ g̃ ◦ jP ) ◦ pP

)
= t⊕m

(
jP ◦ pP ◦ jP ◦ f ◦ p̃M ◦ g̃

)
= t⊕m

(
jP ◦ f ◦ p̃M ◦ g̃

)
6= 0(2.21)

where in the second equality we used cyclicity of t⊕m and in the third the identity pP ◦jP = idP ,

and finally we used (2.20). This also shows that the map g is non-zero. This calculation

finishes the proof of non-degeneracy of the family tP . �
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3. Modified trace and Calabi-Yau structure

In this section for a finite pivotal category C we prove Reduction Lemma and show that

a Calabi-Yau structure on Proj(C) provides a non-degenerate modified trace if and only if

a compatibility between the Calabi-Yau structure and duality holds. Recall that Proj(C)
denotes the tensor ideal of projective modules in C.

Pivotal structure. A category C is pivotal if C is a monoidal category with left duality

equipped with a monoidal natural isomorphism δ : idC → (− )∗∗ between the identity functor

and the double duality functor. We note that the corresponding isomorphisms automatically

satisfy δV ∗ = (δ∗V )−1 for V ∈ C, see [S, Prop. A.1].

The pivotal structure allows to define right duality. Right dual objects are identified with

the left ones, and the right (co)evaluation maps are defined as

ẽvV := evV ∗ ◦(δV ⊗ idV ∗) : V ⊗ V ∗ → 1 ,

c̃oevV := (idV ∗ ⊗ δ−1
V ) ◦ coevV ∗ : 1→ V ∗ ⊗ V .

(3.1)

For the left and right (co)evaluation maps we will use the following diagrammatical notations:

evV =

V ∗ V

, coevV =

V V ∗

,(3.2)

ẽvV =

V V ∗

, c̃oevV =

V ∗ V

.

We recall the definition of the right and left partial traces in (1.7). They have the following

property.

Lemma 3.1. Let C be a pivotal category and Q,P ∈ C, we have then the equality

(3.3)

Q

f

P ∗

P ∗∗ =

Q

f

P ∗

P

for any f ∈ EndC(Q⊗ P ∗), and similarly for the left partial trace of f .

Proof. We factorise idP ∗∗ = δP ◦ δ−1
P using pivotal isomorphisms and use (3.1) to reverse

arrows. �

We call an abelian category C finite pivotal if C is a finite tensor category in the sense

of [EGNO], i.e. (1) if C is finite as an abelian category, (2) if it is a rigid monoidal category

with k-bilinear and bi-exact tensor product functor, and (3) if its tensor unit is simple; and

if C has a pivotal structure.
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Reduction Lemma. Let us prove Reduction Lemma mentioned in Introduction, which says

that to verify the right or left partial trace property, it is enough to check it on a projective

generator. Below is the exact statement, recall also Proposition 2.4.

Lemma 3.2. Given a finite pivotal category C and a projective generator G ∈ C, a symmetric

linear form t ∈ A∗, where A := EndC(G), extends uniquely to a right modified trace on Proj(C)
if and only if

(3.4) tG⊗G (f) = tG
(
trrG(f)

)
, for all f ∈ EndC(G⊗G).

Analogously, t extends to a left modified trace on Proj(C) if and only if

(3.5) tG⊗G (f) = tG
(
trlG(f)

)
, for all f ∈ EndC(G⊗G).

Proof. Only one direction is not obvious. By Proposition 2.4, the symmetric form t ∈ A∗

extends uniquely to a family of linear maps tP : EndC(P )→ k, for P ∈ Proj(C), which satisfies

the cyclicity property. We need to check the right partial trace property.

We first prove (1.11) for a pair of projective objects. Assume P, P ′ ∈ Proj(C) and f ∈
EndC(P ⊗ P ′). We have finite sum decompositions of the identities as in (2.6): 2

(3.6) idP =
∑
i∈I

ai ◦ idG ◦ bi , idP ′ =
∑
i′∈I′

ai′ ◦ idG ◦ bi′ .

We can now calculate tP⊗P ′(f) in terms of tG⊗G by inserting these identities and using the

cyclicity. Indeed,

(3.7) tPP ′(f) = tPP ′

 f

ai ai′

bi bi′

 cycl.
= tGG

 bi bi′

f

ai ai′

 (3.4)
= tG

 bi bi′

f

ai ai′

 *
= tP

(
trrP ′(f)

)

where we omit the tensor product symbol in the index of t for brevity, and the summation is

assumed over the repeated indices, i.e. over i ∈ I and i′ ∈ I ′. In the step (∗) we used first the

standard manipulations with dual maps to move bi′ around the loop and then applied (3.6),

and finally applied the cyclicity property of tG using again (3.6).

We have thus established the right partial trace property of t in the case where both

objects are projective. Now assume P ∈ Proj(C) and V ∈ C. Then we set P̂ := P ⊗ V

which is in Proj(C) due to exactness of the tensor product. For f ∈ EndC(P ⊗ V ), let

A ∈ HomC(P ⊗P ∗, P̂ ⊗ P̂ ∗) and B ∈ HomC(P̂ ⊗ P̂ ∗, P ⊗P ∗) be defined as in Figure 1. Using

the right partial trace property for projective objects established in (3.7), we get

tP⊗P ∗(B ◦ A) = tP
(
trrP ∗(B ◦ A)

) ∗
= tP

(
trrV (f)

)
,

tP̂⊗P̂ ∗(A ◦ B) = tP̂
(
trr
P̂ ∗(A ◦ B)

) ∗
= tP⊗V (f) ,

(3.8)

2Here, we use the projective generator G instead of the regular module A as we work in C, recall that the

equivalence functor HomC(−, G) between C and A-mod sends G to A.
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f

id

id

V

P

P̂

P̂

P

P

V

V

P̂ ⇤

P ⇤

B =A = ,

P P ⇤

P̂ P̂ ⇤

Figure 1. Morphisms A and B.

where in steps (∗) we used first Lemma 3.1 and then simple manipulations with the diagrams,

like the zig-zag indentity for the left duality. Using the cyclicity equation tP⊗P ∗(B ◦ A) =

tP̂⊗P̂ ∗(A ◦ B) and comparing both the lines in (3.8) we finally get the equality tP⊗V (f) =

tP (trrV (f)). The proof for the left modified trace goes along similar lines after reflecting all

diagrams on a vertical line. �

Duality and Calabi-Yau structure. We now recall that in any pivotal category D we

have the isomorphisms, for U, V,W ∈ D,

∩d : HomD(W,U ⊗ V )
∼−→ HomD(U∗ ⊗W,V )

f 7→ (evU ⊗idV ) ◦ (idU∗ ⊗ f)
, f

U V

W

7→ f

V

U∗ W

∪d : HomD(U ⊗ V,W )
∼−→ HomD(V, U∗ ⊗W )

f 7→ (idU∗ ⊗ f) ◦ (c̃oevU ⊗idV )
, f

W

U V

7→ f

U∗ W

V

(3.9)

that are defined analogously to (1.16), with the duality maps on the left side.

Calabi-Yau (CY) structure on D compatible with duality on the right was introduced before

diagram (1.17). Similarly, we say that a CY structure on D is compatible with duality on the
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left if the following diagram commutes for all U, V,W ∈ D:

(3.10) HomD(U ⊗ V,W )× HomD(W,U ⊗ V )
◦ //

∪d

��

∩d

��

EndD(U ⊗ V )

tU⊗V
��

k

HomD(V, U∗ ⊗W )× HomD(U∗ ⊗W,V )
◦ // EndD(V )

tV

OO

Theorem 3.3. Let C be a k-linear finite pivotal category. A Calabi-Yau structure on Proj(C)
is compatible with duality on the right (left) if and only if the corresponding trace maps are

non-degenerate and have the right (left) partial trace property.

Proof. We prove the right case only, the left one is similar. The one direction is an easy check.

Indeed, assume t is a non-degenerate right modified trace on Proj(C), and a ∈ HomC(U⊗V,W )

and b ∈ HomC(W,U ⊗ V ), for U, V,W ∈ Proj(C), then the top-right side of diagram (1.17)

gives tU⊗V (b◦a) while the left-bottom part gives tU
(
trrV (b◦a)

)
. Then using (1.11) we conclude

that diagram (1.17) commutes for D = Proj(C).
It remains to show the necessary condition. Let {tP |P ∈ Proj(C)} be CY structure on

Proj(C) compatible with duality on the right. We need to establish the right partial trace

property (1.11). By Reduction Lemma 3.2, it is enough to consider the case where U = V = G

for G a projective generator. Let us also fix W = G ⊗ G and choose b = idG⊗G and any

a ∈ EndC(G⊗G). Then by the assumption and using the previous calculation, commutativity

of the diagram (1.17) gives the equality tG⊗G(a) = tG
(
trrG(a)

)
which by Reduction Lemma 3.2

implies that t is a right modified trace. �

4. Pivotal Hopf algebras

In this section, we first recall standard facts from theory of finite-dimensional Hopf alge-

bras which will be needed later and then prove Proposition 1.2. The main reference is the

book [Ra]. In what follows, H will be a finite-dimensional Hopf algebra over a field k with the

unit 1, multiplication µ, counit ε, coproduct ∆, and antipode S. In this case, the antipode

is invertible [IR]. In addition, we show that if H is a unimodular pivotal Hopf algebra, then

H -pmod admits a non-degenerate and unique up-to-scalar right modified trace, or equiva-

lently a Calabi-Yau structure compatible with duality on the right, and a similar statement

for the left property.

Pivot. We will say that an element g ∈ H is group-like if ∆(g) = g ⊗ g. It follows [Ka,

Prop. III.3.7] that g is invertible, S(g) = g−1 and ε(g) = 1.
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Definition 4.1. A group-like element g ∈ H is called a pivot if

(4.1) S2(x) = gxg−1, for all x ∈ H.

The pair (H, g) of a Hopf algebra H and a pivot g is called a pivotal Hopf algebra.

A pivot g in a Hopf algebra, if it exists, is not necessarily unique. For a group-like element z

in the center of H, the product zg is also a pivot. We will therefore indicate the choice of a

pivot explicitly by the notation (H, g).

Examples. Let G be a finite group. Then its group algebra k[G] is a finite-dimensional

pivotal Hopf algebra with g = 1.

Ribbon Hopf algebras defined e.g. in [Tu] are pivotal Hopf algebras. The canonical choice of

a pivot is given by g = uv−1, where u = µ ◦ (S ⊗ id)(R21) is the canonical Drinfeld element,

and v is the ribbon element.

Many more examples can be constructed as follows. Any Hopf algebra H can be extended to

a pivotal Hopf algebra as follows [AAGTV, Sec. 2.1]. Recall that S is invertible and order of

S2 is finite. Let G be the cyclic group generated by S2 and set g = S2. We can then consider

the smash product of H with kG. The result is a pivotal Hopf algebra with the pivot g.

Symmetrised left and right integrals. For any pivotal Hopf algebra (H, g) with the

right integral µ, the symmetrised right integral µg is defined by µg(x) := µ(gx), for x ∈ H.

Applying (1.1) for gx we get the relation for µg:

(4.2) (µg ⊗ g)∆(x) = µg(x)1 .

We note that relation (4.2) defines µg uniquely (up to a scalar) because of up-to-scalar

uniqueness of µ and invertibility of the pivot g.

Analogously, the symmetrised left integral is defined by µlg−1(x) := µl(g−1x) for any x ∈ H.

Applying (1.2) for g−1x we get the defining relation for the symmetrised left integral:

(4.3) (g−1 ⊗ µlg−1)∆(x) = µlg−1(x)1 for any x ∈ H .

We note that the spaces of left and right integrals are not necessarily equal. We have a

simple lemma.

Lemma 4.2. The left integral can be chosen as µl(x) = µ(S(x)).

Proof. From (1.1) we have (µ ⊗ id)∆(S(x)) = µ(S(x))1 for any x ∈ H. Using the identity

(S ⊗ S)∆op(x) = ∆(S(x)) we get

(µ ◦ S ⊗ S)∆op(x) = (S ⊗ µ ◦ S)∆(x) = µ(S(x))1

Applying S−1 to both sides of the last equality and using S−1(1) = 1, we obtain that µ ◦ S
satisfies the defining equation for a left integral. �
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Example. If H is semisimple with S2 = id, we can choose g = 1 and then µ = µg = µl =

µlg−1 is the character of the regular representation [Ra, Prop. 10.7.4].

Proposition 4.3 ([Ra1]). Let H be a finite-dimensional Hopf algebra. Then right and left

integrals are non-degenerate linear forms.

Proof. Let us first prove the non-degeneracy of µ. For any h ∈ H we set µh(−) := µ(h · −).

By [Ra, Theorem 10.2.2(e)], H∗ is a free H-module with basis {µ}, where the action by a ∈ H
sends µ to µS(a). This means that for any non-zero b ∈ H, there exist b′ such that µ(bb′) 6= 0,

since S is bijective. This proves that left kernel of µ is trivial. Since H is finite-dimensional,

µ is non-degenerate. Non-degeneracy of µl follows from Lemma 4.2 and non-degeneracy

of µ. �

Unimodular Hopf algebras. A right cointegral in H is an element c ∈ H such that

(4.4) xc = ε(x)c , for all x ∈ H .

Similarly, a left cointegral is defined by the equation cx = ε(x)c. Non-zero right and left coin-

tegrals exist in any finite-dimensional Hopf algebra and are unique up to scalar multiple [LS].

A Hopf algebra is called unimodular if its right cointegral is also left. In this case, we call the

cointegral two-sided.

It is shown in [Hu, Theorem 2] that existence of a non-degenerate symmetric linear form

on H implies unimodularity. The argument is as follows. Let c and c′ be respectively right

and left cointegrals. With respect to a non-degenerate symmetric linear form, both c and c′

belong to the orthogonal complement of Ker(ε : H → k), which is 1-dimensional. Let us show

the converse.

Proposition 4.4. For a unimodular pivotal Hopf algebra (H, g), the symmetrised right and

left integrals define non-degenerate symmetric linear forms on H.

Proof. By Proposition 4.3, the forms µ and µl are non-degenerate. The shift of the left or

right integral by an invertible element preserves this property. Hence, µg and µlg−1 are also

non-degenerate. By [Ra, Thm. 10.5.4 (e)] we have

(4.5) µ(xy) = µ
(
S2(y)x

)
since in the unimodular case the distinguished group-like element of H∗ is the counit ε.

Similarly, we have

(4.6) µl
(
S−2(y)x

)
= µ

(
S
(
S−2(y)x

))
= µ

(
S(x)S−1(y)

)
= µ (S(y)S(x)) = µl(xy)

where we applied Lemma 4.2 for the first and last, and (4.5) for the third equalities.

By an easy computation, we check that µg is symmetric:

µg(xy) = µ(gxy) = µ(S2(y)gx) = µ(gyx) = µg(yx)
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where we used (4.5) and S2(y) = gyg−1. Similarly, using (4.6) we get

µlg−1(xy) = µl(g−1xy) = µl(S−2(y)g−1x) = µl(g−1yx) = µlg−1(yx) .

�

By the previous proposition 4.4 we thus have two non-degenerate symmetric forms on a

unimodular pivotal H, given by the symmetrised left and right integrals. By Proposition 2.4

and Theorem 2.6 they define two Calabi-Yau structures on H -pmod. In other words we have

Corollary 4.5. The symmetric forms µg and µlg−1 make a unimodular pivotal Hopf algebra

(H, g) a symmetric Frobenius algebra.

We recall now definition (2.5) of 0th-Hochschild homology HH0(H) of an algebra H.

Proposition 4.6. A right symmetrised integral on a unimodular pivotal Hopf algebra H gives

a non-degenerate symmetric pairing between the center Z(H) and HH0(H):

(4.7) (z, h) 7→ µg(zh) , z ∈ Z(H) , h ∈ HH0(H) .

Similarly, a left symmetrised integral gives a non-degenerate symmetric pairing.

Proof. We first recall that a linear form f on HH0(H) satisfies f(ab − ba) = 0, for a, b ∈ H,

or defines a symmetric linear form on H. For a given non-degenerate symmetric form t, we

have an isomorphism between the center and the space Ch(H) of symmetric forms on H, see

e.g. [Br, Lem. 2.5]:

(4.8) Z(H)
∼−→ Ch(H) , z 7→ t(z−) .

By Proposition 4.4, we can choose t = µg, and therefore any linear form f on HH0(H) can

be written as µg(z−) for an appropriate z ∈ Z(H). This is equivalent to non-degeneracy of

the pairing (4.7). The proof for a left symmetrised integral is similar. �

Unibalanced Hopf algebras. We first recall that a right integral generates a one-dimensional

right ideal of H∗, which is also a left ideal on (H∗)op, by the argument in [Ra, p. 306] we have

(4.9) (id⊗ µ)∆(x) = µ(x)a,

for a certain a ∈ H called comodulus which is group-like. Multiplying (4.9) with a−1 and

evaluating at ax, we see that the left and right integrals are related by the comodulus:

(4.10) µl(x) = µ(ax).

Recall that in Lemma 4.2 we had another choice for µl(x) using the antipode. Let us show

that these two choices agree.

Proposition 4.7. We have the equality µ(S(x)) = µ(ax).
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Proof. By Lemma 4.2 and (4.10), both µ(S(x)) and µ(ax) are left integrals. Then we clearly

have µ(S(x)) = λµ(ax), for some λ ∈ k×, because the left integral is unique up to a scalar.

To compute the proportionality coefficient it is enough to evaluate both forms µ(S(−)) and

µ(a−) on one element, we choose it to be the left cointegral c. Without loss of generality,

we will assume µ(c) = 1, see [Ra, Thm. 10.2.2 (b)]. Then by [Ra, Eq. (10.4)] we also have

µ(S(c)) = 1. Therefore,

(4.11) 1 = µ(S(c)) = λµ(ac) = λε(a)µ(c) = λε(a) .

Recall that a is group-like and so ε(a) = 1, and therefore λ = 1 from the above equality. �

A pivotal Hopf algebra (H, g) is called unibalanced if its right symmetrised integral is also

left. For a given right integral, let us choose the left integral as µl = µ ◦ S (compare in

Lemma 4.2). Then in the unibalanced case we have the equality

(4.12) µg = µlg−1 .

Indeed, we have µlg−1 = λµg for some λ ∈ k× and to compute λ we evaluate the symmetrised

integrals on left cointegral c. We note that by [Ra, Eq. (10.4)] µ and µl take same non zero

value on c, say µ(c) = µl(c) = a ∈ k×. Then, we have a = µlg−1(c) = λµg(c) = aλ, and so

λ = 1.

We have the following characterisation of the unibalanced case in terms of the comodulus a.

Lemma 4.8. A pivotal Hopf algebra (H, g) is unibalanced if and only if a = g2.

Proof. Assume first that a = g2. Then evaluating (4.9) on gx we get

(4.13) (g−1 ⊗ µg)∆(x) = µg(x)1 .

which is the defining relation for the symmetrised left integral, and therefore µg = µlg−1 .

For the other direction, assume now (H, g) is unibalanced, then applying (4.10) to g−1x

and using (4.12) we get the equality

(4.14) µ
(
(ag−1 − g)x

)
= 0 , for any x ∈ H .

By Proposition 4.3, µ is non-degenerate. Therefore, the equality (4.14) holds if and only if

ag−1 = g. �

Quantum groups at roots of unity provide many examples of unimodular and unibalanced

pivotal Hopf algebras, see details in Section 7.

Pivotal structure on H -mod. For a pivotal Hopf algebra (H, g), each object V in H -mod

has a left dual V ∗ = Homk(V, k) with the H action defined by (hf)(x) = f(S(h)x), f ∈ V ∗,
h, x ∈ H, while the action by g corresponds to the natural isomorphism δ between the identity
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functor on H -mod and the double duality functor (−)∗∗ . More precisely, we have the family

of isomorphisms

(4.15) δV : V → V ∗∗ , δV = g ◦ δvectV , V ∈ H -mod ,

where δvect is the standard pivotal structure in the category vectk: δvectV (v) = 〈−, v〉, for

the underlying vector space V , v ∈ V and 〈−,−〉 is the pairing between V ∗ and V . The

isomorphisms (4.15) are obviously natural and monoidal. We have therefore H -mod is pivotal.

In H -mod, we have the standard left duality morphisms. Assume {vj | j ∈ J} is a basis

of V and {v∗j | j ∈ J} is the dual basis of V ∗, then

evV : V ∗ ⊗ V → k, given by f ⊗ v 7→ f(v),(4.16)

coevV : k→ V ⊗ V ∗, given by 1 7→
∑
j∈J

vj ⊗ v∗j .

The pivot g allows to define the right duality morphisms as follows

ẽvV : V ⊗ V ∗ → k, given by v ⊗ f 7→ f(gv)(4.17)

c̃oevV : k→ V ∗ ⊗ V, given by 1 7→
∑
i

v∗i ⊗ g−1vi ,

where we used the combination of (3.1) and (4.15).

We recall the (right) categorical trace (1.8) which is in our case

(4.18) trH -mod
V (f) := ẽvV ◦(f ⊗ id) ◦ coevV (1) ,

for any V ∈ H -mod and f ∈ EndH(V ). With the definitions above we have

(4.19) trH -mod
V (f) = trV (lg ◦ f)

where trV (f) is the usual trace of the endomorphism f of V . The trace (4.19) is often called

quantum trace. Analogously, we can define the left categorical trace

H -modtrV (f) := evV ◦(id⊗ f) ◦ c̃oevV (1)

for any V ∈ H -mod and f ∈ EndH(V ). Then we compute

(4.20) H -modtrV (f) =
∑
i

v∗i
(
f(g−1vi)

)
= trV (f ◦ lg−1).

We note that the left and right traces are related. Indeed, using Lemma 3.1 for Q = 1,

P = V , we have the relation

(4.21) H -modtrV (f) = trH -mod
V ∗ (f ∗) .

We are now ready to prove Proposition 1.2.
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Proof of Proposition 1.2. We will assume that the right integral µ and the cointegral c

satisfy µ(c) = 1. From [Ra, Thm. 10.4.1], for any f ∈ EndH(H), we then have

(4.22) trH(f) = µ
(
S(c′′)f(c′)

)
and

(4.23) trH(f) = µ
(
S(f(c′′))c′

)
.

We use here Sweedler’s notation with implicit sum: ∆(c) = c′ ⊗ c′′. From Lemma 2.2, any

f ∈ EndH(H) is right multiplication by x = f(1), i.e. f = rx. The right categorical trace for

f = rx is obtained from (4.22) as follows:

trH(lg ◦ f) = µ
(
S(c′′)gc′x

)
= µ

(
S(c′′)S2(c′)gx

)
= µ

(
S(S(c′)c′′)gx

)
= ε(c)µg(x) .

We similarly get the left categorical trace using (4.23)

trH(lg−1 ◦ f) = µ
(
S(g−1c′′x)c′

)
= µ

(
S(x)S(c′′)gc′

)
= µ

(
S(x)gS−1(c′′)c′

)
= µ

(
S(x)gS−1(S(c′)c′′)

)
= ε(c)µ

(
S(g−1x)

)
= ε(c)µlg−1(x) ,

where the last equality comes from the formula for a left integral in Lemma 4.2. By [Ra,

Cor. 10.3.3] ε(c) is non-zero if and only if the algebra H is semisimple. This shows that

the categorical traces agree with (1.20) up to a non-zero scalar if and only if H -mod is

semisimple. �

From Proposition 1.2, we conclude that in the non-semisimple case trH(lgrx) is zero for all

x ∈ H, while µg(x) is not. This naturally suggests that µg provides a non-trivial generalisa-

tion of the categorical trace for the tensor ideal of projective H-modules, recall Lemma 3.2

for the case G = H. Such a generalisation indeed exists and is given by the (right) modified

trace – this is the content of our Theorem 1. The proof is rather long and requires more

preparation, we delegate it to Section 6.

Remark. Proposition 1.2 can also be deduced directly from Theorem 1. Indeed, the

right symmetrised integral µg gives a non-zero right modified trace on H, which is unique

up to a scalar. As we mentioned in Introduction, the right categorical trace is also a right

modified trace. However, the right categorical trace is non-zero on H ∈ H -pmod if and only

if H -pmod is semisimple, see e.g. [GR, Rem. 4.6], or equivalently if and only if H -mod is

semisimple. Therefore, the two traces agree if and only if H is semisimple as an algebra.

Similar argument applies for the left categorical trace.

It is interesting to note an application of Theorem 1 in the classical context – to the

modular representation theory of finite groups. Let G be a finite group and consider its

group algebra Fp[G] over the field k = Fp when the characteristic p divides the order of the
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group. It is a unimodular pivotal Hopf algebra with g = 1 and the two sided cointegral is

c =
∑

g∈G g. So, the symmetrised integral in this case is just the integral and it provides

a non-degenerate modified trace on the subcategory of projective Fp[G]-modules. To our

knowledge, such modified traces were not observed in this generality. However we should also

mention that existence and non-degeneracy of the modified trace in the finite characteristic

case was proven in [GR] in the case of Drinfeld doubles of Fp[G] and under an extra technical

assumption, which did not work e.g. in the case of abelian p-groups.

As another corollary of Theorem 1 and Theorem 3.3 we conclude this section with the

following (c.f. Corollary 1.1).

Corollary 4.9. Let (H, g) be a unimodular pivotal Hopf algebra. Then H -pmod admits a

unique up-to-scalar CY structure compatible with duality on the right, and a possibly different

CY structure compatible with duality on the left. The CY structure on H -pmod is compatible

with duality on the right and the left if and only if H is unibalanced.

5. Decomposition of tensor powers of the regular representation

In this section, for any finite-dimensional Hopf algebra H we decompose the tensor product

of the regular representation with itself and describe the centralizer algebra EndH(H⊗2)

explicitly, and more generally EndH(H ⊗ W ) for any W ∈ H -mod. We will need these

endomorphism algebras to prove our main theorem in next Section 6.

Diagrammatics for Hopf algebras. We will use the following diagrams for the structural

maps corresponding to the Hopf algebra data:

(5.1) µ = , ∆ = , η = , ε = , S = .

H

H H H

H H

H

H H

H

We note that these are maps in the category vectk of finite-dimensional vector spaces over k.

Here is a list of graphical identities corresponding to the Hopf algebra axioms we use exten-

sively below:

(5.2) = , =

H H H

H

H H

H H
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where the first is for coassociativity, the second says that ∆ is an algebra map, and the

antipode axioms (here, we skip labels H for brevity)

(5.3) = , = = , =

where the first and third say that S is an anti-algebra and anti-coalgebra map, respectively.

The axioms involving unit and counit are rather clear and we omit them.

The case of H⊗2. Let us denote by εH the vector space underlying H equipped with the

trivial action of H, i.e. for m ∈ εH and h ∈ H we have hm = ε(h)m. As a H-module, εH

is isomorphic to dimH copies of the trivial representation. We use Sweedler’s notation with

implicit sum: ∆(h) = h′ ⊗ h′′.

Theorem 5.1. We have for all h ∈ H and m ∈ εH

(a) the map

(5.4)
φ : H ⊗ εH → H ⊗H

h⊗m 7→ h′ ⊗ h′′m

is an isomorphism of H-modules whose inverse is

(5.5)
ψ : H ⊗H → H ⊗ εH

x⊗ y 7→ x′ ⊗ S(x′′)y ;

(b) the map

(5.6)
φl : εH ⊗H → H ⊗H

m⊗ h 7→ h′m⊗ h′′

is an isomorphism of H-modules whose inverse is

(5.7)
ψl : H ⊗H → εH ⊗H

x⊗ y 7→ S−1(y′)x⊗ y′′ .

This theorem is a well-known result in Hopf-algebras theory, see e.g. [Sch], however we give

a proof to demonstrate graphical calculations that are often used below. For the maps φ and

ψ we have the expressions

(5.8) φ

H H

H εH

=

H H

H εH

, ψ

H εH

H H

=

H εH

H H

and similarly for φl and ψl.
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Proof. We begin with the part (a) and first check that ψ is left inverse to φ, we thus compute

the composition

(5.9) ψ ◦ φ = = = = = idH⊗εH

where we used coassociativity of the coproduct in the third equality, and then the antipode

axiom. Since the left and right inverses of a linear endomorphism of a finite-dimensional

space are always equal, we also have φ ◦ ψ = idH⊗H . Then we check that φ intertwines the

corresponding H actions:3

(5.10) φ

H H

H H εH

= = = φ

where we used the property of coproduct being an algebra map and associativity of multipli-

cation. Clearly, the inverse map of an intertwiner is automatically an intertwiner. Therefore,

it proves that ψ is an intertwiner as well. The part b) is proven in an analogous way. �

From Theorem 5.1 we obtain two corollaries: the first is about an explicit decomposition

of H ⊗H while the second contains a description of the centraliser algebra of the H-action

on H ⊗H. First, we need a little preparation. Let us fix a basis B of H, it is a finite set. We

introduce then two families of intertwining maps:

gy : H → H ⊗ εH , h 7→ h⊗ y , y ∈ B ,(5.11)

fy : H ⊗ εH → H , h⊗ u 7→ δu,yh , u, y ∈ B ,

where δ is the Kronecker symbol, and the last map we extend linearly to the whole space

H ⊗ εH. It is clear that fy′ ◦ gy = δy′,yidH and gy ◦ fy is an idempotent for each y ∈ B. The

intertwining property of gy and fy is very straightforward to see. From this and from the

isomorphisms established in Theorem 5.1 we have the following corollary.

Corollary 5.2. Let H be the regular module of a Hopf algebra H and B be a basis of H. We

have then the decomposition

(5.12) H ⊗H ∼=
⊕
y∈B

Hy

3We show explicitly the source and target labels, H in this case, only on LHS for brevity.
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where each direct summand Hy is the regular H-module and the corresponding idempotent ey
is given by the composition

(5.13) ey = ιy ◦ πy

with the monomorphisms

(5.14) ιy : H → H ⊗H , h 7→ φ ◦ gy(h) = h′ ⊗ h′′y , y ∈ B

and the epimorphisms

(5.15) πy : H ⊗H → H , h⊗ u 7→ fy ◦ ψ(h⊗ u) , y ∈ B , u ∈ H .

In other words, the image of ιy is Hy in (5.12) and πy is identity on Hy.

Proof. The direct sum decomposition (5.12) clearly follows from Theorem 5.1 where the cor-

responding isomorphisms φ and ψ = φ−1 are given. That ιy is an intertwiner is clear from

the definition ιy := φ◦ gy as the composition of two intertwining maps. And the same applies

to πy. The idempotent property of ey = φ ◦ gy ◦ fy ◦ φ−1 follows from that of gy ◦ fy. The

image of ey is Hy ⊂ H ⊗H and ey is identity on Hx if and only if x = y for x, y ∈ B. This

finishes the proof. �

From (5.13), we also note the equalities

(5.16) eyex = δy,xey , x, y ∈ B

and

(5.17)
∑
y∈B

ey = idH⊗H .

Before formulating the second corollary of Theorem 5.1, we recall that for any k-algebra A

there is a natural isomorphism Matn,n(A) ∼= A⊗Matn,n(k), where Matn,n is the n×n matrix

algebra.

Corollary 5.3. For any n-dimensional Hopf algebra H, there is an algebra isomorphism

(5.18) EndH(H ⊗H) ∼= Matn,n(Hop) .

Hence, the algebra EndH(H ⊗H) is linearly generated by elements f parametrised by triples

(h, v, γ), for h, v ∈ H and γ ∈ H∗, where

(5.19) f(h, v, γ) := φ ◦ f(h, v, γ) ◦ ψ : H ⊗H → H ⊗H

with

(5.20) f(h, v, γ) : x⊗ y 7→ γ(y) · (xh)⊗ v , x ∈ H, y ∈ εH .

Their product is the composition with

(5.21) f(h1, v1, γ1) ◦ f(h2, v2, γ2) = γ1(v2)f(h2h1, v1, γ2) .
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Here is the graphical presentation of the maps f(h, v, γ) and f(h, v, γ):

(5.22) f(h, v, γ)

H εH

H εH

=

h

γ

v , f(h, v, γ)

H H

H H

=
h
γ

v

.

Proof. We first recall the decomposition (5.12) where the multiplicity space is the vector space

underlying H. We will denote it M := H in order to distinguish from the regular module H.

We have then isomorphisms4

(5.23) EndH(H ⊗H) ∼= EndH(H ⊗k M) ∼= HomH(H ⊗k M ⊗k M
∗, H) ,

where in the last isomorphism we used the duality maps evM and coevM . We note that

RHS of (5.23) is obviously isomorphic to EndH(H) ⊗k Matn,n(k) with n = dimH. Then by

Lemma 2.1 we get an isomorphism of vector spaces in (5.18). Let us describe this isomorphism

explicitly. First, we construct the isomorphism

Φ: Hop ⊗
(
M ⊗k M

∗) ∼−→ EndH(H ⊗k M) ,(5.24)

h⊗ v ⊗ γ 7→ f(h, v, γ)(5.25)

with f(h, v, γ) from (5.20). It is straightforward to check that f(h, v, γ) is an intertwiner.

The inverse to the map Φ is defined as follows. Elements in EndH(H ⊗k M) are of the form

(5.26) g = rh ⊗ s : x⊗ y 7→ xh⊗ s(y) ,

where s ∈ Endk(M) and we used that g has to intertwine the regular H-action and that

by Lemma 2.1 such intertwiner is given by right multiplication rh with an element h ∈ H.

Recall the isomorphism M ⊗kM
∗ ∼−→ Endk(M) that sends v⊗γ to the operator γ(−)v. Then

it is straightforward to check that Φ−1 : g 7→ h ⊗
∑

v,u∈B svuv ⊗ u∗, where (svu)v,u∈B is the

matrix of the linear map s. Finally, conjugating the image of Φ by φ, i.e. sending h⊗ v ⊗ γ
to f := φ ◦ f(h, v, γ) ◦ φ−1, gives explicitly the isomorphism (5.18).

We show next that the map Φ is also an algebra map. The multiplication on M ⊗k M
∗ is

(5.27)
(
M ⊗k M

∗)⊗ (M ⊗k M
∗) id⊗evM ⊗id−−−−−−→M ⊗k M

∗

or explicitly (which is the standard matrix multiplicaition in Matn,n(k))

(5.28) (v1 ⊗ γ1) · (v2 ⊗ γ2) = γ1(v2)v1 ⊗ γ2 .

The source of Φ is then the product of two algebras Hop and M ⊗k M
∗. In the image space

of Φ, the multiplication is given by the composition (5.21), as follows from the definition of

4Using ⊗k we distinguish the tensor product of vector spaces from the one for H-modules.
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f(h, v, γ). Then using (5.28) it is easy to see that multiplication in Hop ⊗ (M ⊗k M
∗) agrees

with the one in EndH(H ⊗k M). By conjugating with φ, the latter algebra is isomorphic to

EndH(H ⊗H). This finishes our proof. �

We finally note that the product H ⊗W for any W ∈ H -mod can be studied similarly to

H ⊗H. Let us denote by εW the vector space underlying W equipped with the trivial action

of H. Then the generalisation of Theorem 5.1 is straightforward.

Theorem 5.4. Let H be a finite-dimensional Hopf algebra H and W ∈ H -mod. We then

have the isomorphisms of H-modules

(5.29) φW : H ⊗ εW → H ⊗W , φ−1
W : H ⊗W → H ⊗ εW

which are given graphically as

(5.30) φW

H W

H εW

=

H W

H εW

, φ−1W

H εW

H W

=

H εW

H W

,

where the arrow denotes the H-action on W . In particular, we have an algebra isomorphism

(5.31) Hop ⊗Matm,m(k)
∼−→ EndH(H ⊗W ) , m = dim(W ) ,

which sends h⊗ A to the intertwining map

(5.32) x⊗ w 7→ (x′h)′ ⊗ (x′h)′′mA

(
S(x′′)w

)
, x ∈ H, w ∈ W ,

and mA here is the operator, mA ∈ Endk(εW ), corresponding to the matrix A.

6. Proof of Theorem 1

We have now all the necessary ingredients to prove our main theorem. We start with a

reformulation of Reduction Lemma 3.2 adapted to our current setting.

Corollary 6.1. Given a unimodular pivotal Hopf algebra (H, g), a symmetric linear function

t ∈ H∗ extends uniquely to a right modified trace on H -pmod if and only if for all f ∈
EndH(H ⊗H)

(6.1) tH⊗H (f) = tH
(
trrH(f)

)
.

Analogously, t extends to a left modified trace on H -pmod if and only if

(6.2) tH⊗H (f) = tH
(
trlH(f)

)
, for all f ∈ EndH(H ⊗H) .
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Corollary 6.1 allows us to restrict the analysis to the regular module and its tensor powers,

and therefore we can use the results of the previous section.

The proof of Theorem 1 is divided into three steps.

Step 1: µg provides right modified trace. We first show that the symmetrised right

integral µg provides the right modified trace. By Proposition 4.4 and by the assumption that

H is unimodular, µg is a symmetric form on H, and it thus defines a family of trace functions

that we will denote by t, recall Proposition 2.4, in particular tH(f) = µg(f(1)).

In order to see that this family is a right modified trace, by Corollary 6.1 it is enough to

check the equalty tH⊗H (f) = tH (trrH(f)) for any f ∈ EndH(H). Let us rewrite LHS of the

last equation as

(6.3) tH⊗H (f) =
∑
y∈B

tH⊗H (f ◦ ey) =
∑
y∈B

tH (πy ◦ f ◦ ιy) ,

where B is a basis in H. Here, we first inserted the identity (5.17), then used Corollary 5.2

and cyclicity of tH . Therefore, the equation we have to check is

(6.4)
∑
y∈B

µg

(
πy ◦ f(h, v, γ) ◦ ιy(1)

)
= µg

(
trrH
(
f(h, v, γ)

)
(1)
)
, h ∈ H, v ∈ B, γ ∈ H∗.

Recall that by Corollary 5.3 any element f ∈ EndH(H ⊗H) is of the form f(h, v, γ) defined

in (5.19). From Corollary 5.2, we have that ιy = φ ◦ gy(h), πy = fy ◦ ψ, ψ = φ−1 and

LHS of (6.4) =
∑
y∈B

µg

(
fy ◦ f(h, v, γ) ◦ gy(1)

)
=
∑
y∈B

γ(y)µg

(
fy(h⊗ v)

)
= γ(v)µg(h) ,

where we also used (5.11). It remains to compute the RHS of (6.4). Using the graphical

expression for f(h, v, γ) in (5.22), we get5

(6.5) RHS of (6.4) =
f(h, v, γ)

µg

g

vectk

=

µg

h

γ

v

g

=

µg

h

γ

v

g

=

µg

h

γ

v

,

where for the first equality we use the definition of the partial trace in (1.7) and formu-

las (4.16)-(4.17) for the left coevaluation coevH and the right evaluation ẽvH maps; in the

second equality we substitute the explicit expression (5.22) for f(h, v, γ); the third equality

5We emphasize here by vectk in the box that the diagrams, as maps from k to k, are morphisms in vectk,

so in particular evaluation and coevaluation maps are those from vectk (the evaluation map in RepH was

already resolved by using the pivotal element g).
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is obvious; then in the fourth equality we replace the part of the diagram inside the dashed

rectangle by the (defining) relation (4.2) for the symmetrised integral µg which is diagram-

matically written as

(6.6)

H

µg

g

H

=

H

µg

.

H

We finally see that RHS of (6.4) also equals γ(v)µg(h), as we got for LHS of (6.4). Therefore

the equality (6.4) is true indeed for all h ∈ H, v ∈ B, and γ ∈ H∗ and thus for all endomor-

phisms of H ⊗ H. This proves that the symmetric form µg satisfies the right partial trace

condition, and thus provides a right modified trace for the ideal of projective H-modules.

Step 2: Right modified trace is symmetrised integral. We now turn to the proof

for the opposite direction. Assume we have a right modified trace, and hence the symmetric

form tP on EndH P for any projective P , in particular the symmetric forms on EndH H and

EndH(H ⊗H). They satisfy tH⊗H (f) = tH (trrH(f)), or equivalently

(6.7)
∑
y∈B

tH
(
πy ◦ f(h, v, γ) ◦ ιy

)
= tH

(
trrH
(
f(h, v, γ)

))
,

for all h ∈ H, v ∈ B, γ ∈ H∗. By the same arguments as in Step 1, we get γ(v)tH(rh) for

LHS of (6.7), where rh is the right multiplication with h, which we can rewrite

(6.8) LHS of (6.7) = γ(v)t(h) where t(h) := tH(rh)

is the image of tH under the isomorphism in Lemma 2.1, i.e. t is a symmetric form on H. We

will further work with t only.

Repeating now calculation in (6.5) for the symmetric form t, RHS of (6.7) takes the form:

(6.9) RHS of (6.7) =

t

h

γ

v

g
,

where we used the relation tH(f) = t
(
f(1)

)
. Combining results (6.8) and (6.9) for the both

sides and setting v = 1, we get for any γ ∈ H∗ and h ∈ H the equality

(6.10)
t

h

γ

=

t

h

γ

g .
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As it is true for all γ ∈ H∗ we get the corresponding equality for the arguments of γ – the

part of the diagram inside the dashed rectangles – and this agrees with (6.6). In other words,

t satisfies the defining relation for the symmetrised right integral, i.e.

(6.11) (t⊗ g)∆(h) = t(h)1 , h ∈ H .

We thus conclude that t, or equivalently the right modified trace tH , is a symmetrised right

integral. As the latter is non-zero and unique up to a scalar, and the right modified trace on

H -mod is determined by its value on H by Corollary 6.1, we conclude that a non-zero right

modified trace on H -pmod exists (under the assumptions of Theorem 1) and is unique up to

scalar.

Step 3: Non-degeneracy, left and balanced cases. By Proposition 4.4 and Theo-

rem 2.6 the right modified trace defined by µg is non-degenerate. This finishes the proof of

Theorem 1 in the right case.

The proof for the left modified trace is completely analogous to the previous one. For

example, to show that the left symmetrised integral provides the left modified trace, it is

enough to check the left partial trace property tH⊗H (f) = tH
(
trlH(f)

)
for µlg−1 which is

(6.12)
∑
y∈B

µlg−1

(
πy ◦ f(h, v, γ) ◦ ιy(1)

)
= µlg−1

(
trlH
(
f(h, v, γ)

)
(1)
)
,

for all h ∈ H, v ∈ B and γ ∈ H∗. Computations similar to those in (6.5) reduce this equality

to (4.13), i.e.

(g−1 ⊗ µlg−1)∆(x) = µlg−1(x)1 ,

which is the defining relation for the symmetrised left integral.

Clearly, whenever H is unibalanced, left and right symmetrised integrals can be properly

normalised such that they agree, e.g. by choosing µl = µ ◦ S. Therefore, the corresponding

left and right modified traces agree too.

This finishes the proof of Theorem 1.

7. Quantum Groups of types ADE

In this section we study finite-dimensional quantum groups at roots of unity as defined

in [L1, Sec. 5]6 in the simply laced case. We compute their right and left integrals and

cointegrals, check that they are unibalanced and give a formula for the modified trace on the

regular representation. Here, the quantum parameter q ∈ k is a root of 1, whose square has

order p ≥ 2.

6We use the opposite coproduct compared to the one in [L1].
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Definition. For n ≥ 1, let A = (aij) be an indecomposable positive definite symmetric

Cartan matrix of type An, Dn or En, and g denote the corresponding Lie algebra, with

associated pairing denoted by ( · | · ). In particular aii = 2 for 1 ≤ i ≤ n, and aij = aji ∈
{0,−1} for 1 ≤ i < j ≤ n. The k-algebra Uq g is generated by K±1

i , Ei and Fi, 1 ≤ i ≤ n,

with relations, for all i, j:

KiEjK
−1
i = qaijEj, KiFjK

−1
i = q−aijFj,

[Ei, Fj] = δij
Ki −K−1i
q − q−1

, KiKj = KjKi,(7.1)

Ep
i = F p

i = 0, K2p
i = 1,

with the Serre relations

EiEj = EjEi, FiFj = FjFi, if aij = 0,

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0, if aij = −1,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0, if aij = −1.

The algebra Uq g is a Hopf algebra where the coproduct, counit and antipode are defined as

∆(Ei) = 1⊗ Ei + Ei ⊗Ki, ε(Ei) = 0, S(Ei) = −EiK−1
i ,(7.2)

∆(Fi) = K−1
i ⊗ Fi + Fi ⊗ 1, ε(Fi) = 0, S(Fi) = −KiFi,

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, S(Ki) = K−1
i .

Let L be the root lattice, with Z-basis denoted by αi, 1 ≤ i ≤ n. We denote by ∆+ the set of

positive roots, by N = |∆+| its cardinality, and by ρ half the sum of the positive roots. The

formulas for N and the sum of positive roots 2ρ in different types are given below (compare

with [B, Ch. VI]):

N 2ρ

An, n ≥ 1 n(n+1)
2

∑n
i=1 i(n− i+ 1)αi

Dn, n ≥ 4 n(n− 1)
∑n

i=1(2in− i(i+ 1))αi
E6 36 see [B, Plate V]

E7 63 see [B, Plate VI]

E8 120 see [B, Plate VII]

PBW basis. Let W be the Weyl group generated by the simple reflexions si, 1 ≤ i ≤ n. It

is a finite Coxeter group. Its basic structural properties we use here can be found in [B]. For

w ∈ W we denote by l(w) the length of a reduced expression in the generators si. Let us

choose a reduced expression of the longest element of W ,

(7.3) w0 = si1si2 . . . siN ,
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in the simple reflexions si, 1 ≤ i ≤ n. To get an ordered list of positive roots [B, Sec. VI.1.6,

Cor. 2] we set

(7.4) β1 = αi1 , β2 = si1(αi2) , β3 = si1si2(αi3) , . . . , βN = si1 . . . siN−1
(αiN ) .

For 1 ≤ i ≤ n, let Ti be an algebra automorphism of Uq g which acts on generators Kj, Ej,

and Fj by

Ti(Kj) = K
−aij
i Kj , Ti(Ei) = −FiKi , Ti(Fi) = −K−1

i Ei ,(7.5)

Ti(Ej) = Ej , Ti(Fj) = Fj , if aij = 0 ,

Ti(Ej) = −EiEj + q−1EjEi , Ti(Fj) = qFiFj − FjFi , if aij = −1 .

The root vectors are then defined by, see [L1] or [Ja, Ch. 8],

Eβ1 = Ei1 , Eβ2 = Ti1(Ei2) , Eβ3 = Ti1Ti2(Ei3) , . . . , EβN = Ti1 . . . TiN−1
(EiN ) ,

(7.6)

Fβ1 = Fi1 , Fβ2 = Ti1(Fi2) , Fβ3 = Ti1Ti2(Fi3) , . . . , FβN = Ti1 . . . TiN−1
(FiN ) .

Example. For A2 = sl(3,C) there are two reduced decompositions of the longest element

w0 = s1s2s1 and w0 = s2s1s2. The corresponding sequences of positive root vectors are

E1 , T1(E2) = −E1E2 + q−1E2E1 , T1T2(E1) = E2

and

E2 , T2(E1) = −E2E1 + q−1E1E2 , T2T1(E2) = E1 .

The algebra automorphisms Ti satisfy the braid relations

Ti ◦ Tj = Tj ◦ Ti if aij = 0 ,(7.7)

Ti ◦ Tj ◦ Ti = Tj ◦ Ti ◦ Tj if aij = −1 .

For a given w ∈ W and a reduced decomposition w = sj1 . . . sjm there is an algebra automor-

phism Tw = Tj1 ◦ · · · ◦ Tjm . The relations (7.7) assert that Tw depends only on the element w

and not on its decomposition.

The algebra Uq g has L-grading denoted by wt and defined on generators by wt(Ei) = αi,

wt(Fi) = −αi and wt(Ki) = 0. We also define wt(EiEj) = αi + αj, etc. This makes the

algebra graded, because relations are homogeneous. We will use the following lemma.

Lemma 7.1. For any root β, the root vectors Eβ and Fβ have L-grading wt(Eβ) = β and

wt(Fβ) = −β, respectively.

When q is not a root of unity this known lemma can be established using the adjoint action

of the Cartan elements [KS, Ch. 6, Prop. 23]. For completeness we give in Appendix B a proof

of the stronger statement in the next lemma for all non-zero values of q.
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Lemma 7.2. Assume that for a pair (w, i), with w ∈ W and 1 ≤ i ≤ n, we have l(wsi) =

l(w) + 1. Then w(αi) ∈ ∆+ and Tw(Ei) has L-grading wt
(
Tw(Ei)

)
= w(αi). And similarly,

wt
(
Tw(Fi)

)
= −w(αi).

Recall that the root vectors are obtained from a reduced decomposition of the longest

word (7.3). Lemma 7.1 is obtained by applying Lemma 7.2 to (si1 . . . sik−1
, ik), 1 ≤ k ≤ N ,

and using (7.4).

Introducing I = {0, 1, . . . , 2p − 1}, J = {0, 1, . . . , p − 1}, we can now construct a PBW

basis of Uq g [L1, Section 5.8]

(7.8) Bm−,m,m+ =
∏
β∈∆+

F
m−β
β

n∏
i=1

Kmi
i

∏
β∈∆+

E
m+
β

β

indexed by m ∈ In and m± ∈ J∆+ , or in other words m± = (m±β ) is a map from ∆+ to J .

We will use the notation m±k for m±βk where βk is the k-th root defined in (7.4). We denote

by B∗m−,m,m+ the dual basis in
(
Uq g

)∗
defined by

〈B∗m−,m,m+ , Bm̃−,m̃,m̃+〉 = δm−,m̃−δm,m̃δm+,m̃+ .

7.1. Main result. We are now in position to present the main result of this section.

Theorem 7.3. a) The Hopf algebra Uq g is unimodular with the cointegral

(7.9) c =
n∏
i=1

(
2p∑
m=1

Km
i

) ∏
β∈∆+

F p−1
β

∏
β∈∆+

Ep−1
β .

b) The Hopf algebra Uq g is pivotal with pivots

(7.10) gε = K2ρ

n∏
i=1

Kpεi
i , ε ∈ {0, 1}×n

and it is unibalanced for any choice of ε, with the corresponding symmetrised integral

(7.11) µg = µlg−1 = B∗
(p−1)∆+ ,pε,(p−1)∆+ .

Here (p− 1)∆+ is the constant map on ∆+ with value p− 1.

Before giving a proof, we first note that as a consequence of Theorem 1 the formula in (7.11)

computes the modified trace t for endomorphisms of the regular representation. We also note

that for type An and with slightly different version of the quantum group, a cointegral and

an integral were computed in [GW]. Our proof for the cointegral goes along the lines in [GW,

Thm. 2.1.5], however in our case it requires the following lemma on commutation relations

whose proof is in Appendix C.
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Lemma 7.4. For 1 ≤ j < k ≤ N , we have in Uq g the commutation relation for the root

vectors, with βj defined in (7.4),

(7.12) Ep−1
βj+1

Ep−1
βj+2

. . . Ep−1
βk

Eβj = q(p−1)(βj |βj+1+···+βk)EβjE
p−1
βj+1

Ep−1
βj+2

. . . Ep−1
βk

.

Proof of Thm. 7.3. We first prove the part a). We begin with computing cointegrals for the

Borel subalgebras. For brevity, we will use the notation U q := Uq g

Let U
−
q be the negative Borel subalgebra with the basis Bm−,m,0 , m− ∈ J∆+ and m ∈ In, it

is also a Hopf subalgebra. And similarly for the positive U
+

q with the basis B0,m,m+ , m ∈ In
and m+ ∈ J∆+ .

We claim that

(7.13) c− =
n∏
i=1

(
2p∑
m=1

Km
i

) ∏
β∈∆+

F p−1
β

is a left cointegral for U
−
q . Indeed,

(7.14) Kic
− = c− = ε(Ki)c

− for 1 ≤ i ≤ n .

From Lemma 7.1 we see that
∏

β∈∆+
F p−1
β has the minimal possible L-degree −(p − 1)2ρ.

Therefore we have

(7.15) Fi ·
∏
β∈∆+

F p−1
β = 0 .

We can then check

(7.16) Fic
− = 0 = ε(Fi)c

− , for 1 ≤ i ≤ n ,

because moving Fj through the Cartan part of c− just replaces Ki by qaijKi and the most

non-trivial part is the equality (7.15). Hence for all x ∈ U−q , we have

(7.17) xc− = ε(x)c−,

and so c− is indeed a left cointegral in U
−
q . We similarly get that

c+ =
∏
β∈∆+

Ep−1
β

n∏
i=1

(
2p∑
m=1

Km
i

)

is a right cointegral in U
+

q .

We know that U q has a non-zero left cointegral c, unique up to normalisation. Moreover

there exists a group-like element α ∈ U ∗q , called the modulus, such that

(7.18) cx = α(x)c for all x ∈ U q ,
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see [Ra, Eq. (10.8)]. Using the basis (7.8) in U q, we see that U q is a free left module over U
−
q

with basis B0,0,m+ with m+ ∈ J∆+ . Let us write c in this basis

(7.19) c =
∑
m+

cm+ B0,0,m+ with cm+ ∈ U−q .

Using (7.18) we get

(7.20) cEi = α(Ei)c = 0 for 1 ≤ i ≤ n .

Here, the vanishing is because the modulus α is group-like and hence α(Ep
i ) = α(Ei)

p, but

Ep
i = 0 and so α(Ei) = 0. We therefore have that for all root vectors Eβj

(7.21)
∑
m+

cm+ B0,0,m+Eβj = 0 .

We show by induction on ν = N − j that here cm+ = 0 if m+
l < p− 1 for some l ≥ j.

Let us denote by τj(m
+) the result of increasing the j-th component of m+ by 1. We have

that B0,0,τj(m+) is zero if m+
j = p− 1 and is a PBW basis element otherwise.

We begin with ν = 0, the equation (7.21) for j = N then gives

(7.22)
∑
m+

cm+ B0,0,τN (m+) = 0 ,

where only terms with m+
N < p − 1 contribute. As the corresponding elements B0,0,τN (m+)

are linearly independent over U
−
q , we have cm+ = 0 if m+

N < p − 1. This is the first step of

induction.

By the induction hypothesis at ν = N − j we assume cm+ = 0 in (7.21) if m+
l < p− 1 for

some l ≥ j. Then, equation (7.21) for ν = N − j + 1 gives∑
m+

m+
j

=···=m+
N

=p−1

cm+ B0,0,m+Eβj−1
= 0 .

Using the commutation relation (7.12), we obtain∑
m+

m+
j

=···=m+
N

=p−1

cm+ B0,0,τj−1(m+) = 0 .

We deduce as before cm+ = 0 if m+
j−1 < p− 1 and this finishes the proof by induction.

As the equality (7.21) is true for all root vectors, we have thus obtained that only the term

with m+ = (p− 1)∆+ contributes to (7.19). We obtain that the left cointegral has the form

(7.23) c = c(p−1)∆+ B0,0,(p−1)∆+ , with c(p−1)∆+ ∈ U
−
q .

Recall that c is a left cointegral by assumption, therefore we have the equality

(7.24) xc = ε(x)c for all x ∈ U−q .
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Using that U q is a free module over U
−
q , we get

(7.25) xc(p−1)∆+ = ε(x)c(p−1)∆+ for all x ∈ U−q .

We have that c(p−1)∆+ is a left cointegral in U
−
q , i.e. it is proportional to c− from (7.13). This

shows that c is proportional to c−B0,0,(p−1)∆+ which is the formula in (7.9).

We now show that c is two-sided. Indeed, for the right multiplication on c we have

cKi = c , cEi = α(Ei)c = 0 , cFi = α(Fi)c = 0 , for 1 ≤ i ≤ n ,

where the first equality is due to the relation (7.1) and we used explicit expression (7.9), for

the second and third equalities we first used (7.18) and then the fact that the modulus α

vanishes on Ei and Fi because α is group-like and Ep
i = F p

i = 0. We have thus shown that

α = ε and therefore c is a two-sided cointegral which implies unimodularity of U q.

Now we prove part b). To verify the defining relation for the right integral µ we will need

a formula for coproduct of PBW basis elements. Let

Kβ =
n∏
i=1

Kni
i for β =

∑
niαi .

For the root vectors Eβ, for β ∈ ∆+, the coproduct can be written as follows [Ja, Sec. 4.12]

∆(Eβ) = Eβ ⊗Kβ + 1⊗ Eβ +
∑
ν

xν ⊗ yν(7.26)

where xν and yν are PBW elements B0,m,m+ ∈ U+

q with non-zero m+ and such that wt(xν) +

wt(yν) = β. We similarly have

∆(Fβ) = Fβ ⊗ 1 +K−1
β ⊗ Fβ +

∑
ν

xν ⊗ yν(7.27)

where xν and yν are now PBW elements Bm−,m,0 ∈ U
−
q with non-zero m− and such that

wt(xν) + wt(yν) = −β. More generally, for the coproduct of a PBW basis element (7.8), we

have

∆(Bm−,m,m+) =Bm−,m,m+ ⊗Kwt(B0,0,m+ )

n∏
i=1

Kmi
i(7.28)

+Kwt(Bm−,0,0)

n∏
i=1

Kmi
i ⊗Bm−,m,m+ +

∑
ν

xν ⊗ yν

where xν and yν are in the span of PBW elements Bm̃−,m̃,m̃+ where all components of m̃−

(resp. m̃+) are lower or equal to those of m− (resp. m+), and at least one of them is strictly

lower.

Let M :=
(
Mi

)
1≤i≤n be the coordinates of the sum of positive roots in basis of simple roots:

2ρ =
∑
β∈∆+

β =
n∑
i=1

Miαi .
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The corresponding Cartan element is K2ρ =
∏n

i=1 K
Mi
i .

Let us now verify that

(7.29) µ = B∗
(p−1)∆+ ,(p+1)M,(p−1)∆+

satisfies the defining relation for the right integral

(7.30) (µ⊗ id)∆(x) = µ(x)1 .

For PBW elements Bm−,m,m+ where at least one m±β is lower than p− 1, using (7.28) we see

that both sides of this equation give 0. For B(p−1)∆+ ,m,(p−1)∆+ , we get

∆
(
B(p−1)∆+ ,m,(p−1)∆+

)
= B(p−1)∆+ ,m,(p−1)∆+ ⊗Kp−1

2ρ

n∏
i=1

Kmi
i + other terms.(7.31)

Here, µ ⊗ id vanishes on the “other terms”. If m 6= (p + 1)M we again get 0 on both sides

of (7.30). In the remaining case with m = (p+ 1)M , we have Kp−1
2ρ

∏n
i=1K

(p+1)Mi

i = 1 which

shows that the equality (7.30) holds indeed.

We now compute the comodulus a using the defining equation (4.9). Using

µ
(
B(p−1)∆+ ,(p+1)M,(p−1)∆+

)
= 1 ,

we obtain the formula

(7.32) a = (id⊗ µ)∆
(
B(p−1)∆+ ,(p+1)M,(p−1)∆+

)
.

Taking now into account the second term on RHS of (7.28), we have

∆
(
B(p−1)∆+ ,(p+1)M,(p−1)∆+

)
= K1−p

2ρ

n∏
i=1

K
(p+1)Mi

i ⊗B(p−1)∆+ ,(p+1)M,(1−p)∆+ + other terms .

From this, we deduce the value of the comodulus

(7.33) a = K1−p
2ρ

n∏
i=1

K
(p+1)Mi

i = K2
2ρ .

We study next group-like square roots of a, these are gε = K2ρ

∏n
i=1K

pεi
i , with ε ∈ {0, 1}×n.

We check on generators that each gε implements S2, and so a pivot. Indeed, for 1 ≤ i ≤ n,

gεKi g
−1
ε = Ki = S2(Ki) ,

gεEi g
−1
ε = KiEiK

−1
i = S2(Ei) ,

gεFi g
−1
ε = KiFiK

−1 = S2(Fi) .

Therefore, the Hopf algebra U q is pivotal with a pivot gε = K2ρ

∏n
i=1K

pεi
i for any ε ∈ {0, 1}×n.

We then get formula (7.11) for the right symmetrised integral. By Lemma 4.8, (U q, gε) is

unibalanced for any choice of ε because a = g2
ε, or the right symmetrised integral is also left.

Moreover, we have µg = µlg−1 and so (7.11) holds for the left symmetrised integral too. �
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8. Modified trace for the restricted quantum sl2

Here, we apply results of the previous section to type A1 and demonstrate how the modified

trace for indecomposable projectives can be explicitly computed from the symmetrised inte-

gral. For this we will use an explicit basis of Hom-spaces between indecomposable projectives

constructed in [FGST]. The quantum group in type A1, for the choice q = eiπ/p and p ≥ 2, is

known as restricted quantum sl2, and will be denoted by Uq sl2. In [BBG] the modified trace

on all endomorphisms of indecomposable projectives in Uq sl2-pmod was computed and then

extended to the regular representation Uq sl2. Here we do the converse: we reprove [BBG]

formulas starting with the symmetrised integral. In this section, we set [k] =
qk − q−k

q − q−1
and

[m]! =
∏m

k=1[k], and
[
m
k

]
= [m]!

[k]![m−k]!
, for k and m positive integers.

Symmetrised integral. We will work with the choice of pivot g := gε=1 = Kp+1, re-

call (7.10). In the PBW basis of Uq sl2, the right integral is given by

µ(F iEmKn) = η δi,p−1δm,p−1δn,p+1

where η is a non-zero normalising coefficient. Then our (right) symmetrised integral is

(8.1) µg(F iEmKn) = η δi,p−1δm,p−1δn,0 .

Basis for the center Z(Uq sl2). Recall that the center of Uq sl2 is 3p− 1 dimensional. The

basis of Z(Uq sl2) consists of the central idempotents es and nilpotent elements w±s . The

formulas for these elements in the PBW basis were given in [GT]: 7

w+
s = ζs

s−1∑
n=0

n∑
i=0

2p−1∑
j=0

([i]!)2qj(s−1−2n)
[
s− n+ i− 1

i

][
n

i

]
F p−1−iEp−1−iKj,

(8.2)

w−s = ζs

p−s−1∑
n=0

n∑
i=0

2p−1∑
j=0

(−1)i+j([i]!)2qj(p−s−1−2n)
[
p− s− n+ i− 1

i

][
n

i

]
F p−1−iEp−1−iKj,

e0 = ζ0

p−1∑
n=0

n∑
i=0

2p−1∑
j=0

(−1)i+j([i]!)2qj(p−1−2n)
[
p− n+ i− 1

i

][
n

i

]
F p−1−iEp−1−iKj,

ep = ζp

p−1∑
n=0

n∑
i=0

2p−1∑
j=0

([i]!)2qj(p−1−2n)
[
p− n+ i− 1

i

][
n

i

]
F p−1−iEp−1−iKj,

es =
qs + q−s

[s]2
(w+

s +w−s )

+ ζs

p−2∑
m=0

2p−1∑
j=0

( s−1∑
n=0

qj(s−1−2n)B+
n,p−1−m(s) +

p−s−1∑
k=0

qj(−s−1−2k)B−k,p−1−m(p− s)
)
FmEmKj,

7We used here a relation with Radford basis in the center: the formulas are extracted from Section 3.2.7,

Propositions C.4 and C.5.1 in [GT].
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where B±n,m are non-zero numbers and we set

ζs =
(−1)p−s−1

2p

[s]2

([p− 1]!)2
, 1 ≤ s ≤ p− 1 ,(8.3)

ζ0 =
(−1)p−1

2p

1

([p− 1]!)2
, ζp =

1

2p

1

([p− 1]!)2
.

The symmetrised integral from (8.1) has the following values on the central basis ele-

ments (8.2):

µg(w+
s ) = sηζs , µg(w−s ) = (p− s)ηζs ,(8.4)

µg(es) = (−1)spη(qs + q−s)ζ0 ,

µg(ep) = pηζp , µg(e0) = pηζ0 .

Extension of µg to Uq sl2-pmod. Here, we compute the modified trace8 on endomorphisms

of indecomposable projective Uq sl2-modules. We recall now our result in Theorem 1 on the

modified trace t, and also note that for evaluating tP on endomorphisms f of P it is enough

to consider only corresponding trace classes [f ]. For this, we will also recall a basis in

HH0 := HH0

(
Uq sl2-pmod

)
.

Indecomposable projective Uq sl2-modules are classified up to isomorphism in [FGST]: they

are precisely the projective covers P±s of the simple modules of highest weights ±qs−1 where

1 ≤ s ≤ p. In particular, P±p is a simple module with highest weight ±qp−1. The module P+
1

is the projective cover of the trivial one. The non-trivial morphisms between indecomposable

projective modules are listed below:

• the endomorphism ring EndUq sl2(P±s ) is one dimensional for s = p and two dimensional

with basis {idP±s , x
±
s }, for 1 ≤ s ≤ p− 1,

• the Hom-spaces HomUq sl2
(P+

s ,P−p−s) and HomUq sl2
(P−s ,P+

p−s) are two dimensional with

respective bases {a+
s , b

+
s } and {a−s , b−s }, for 1 ≤ s ≤ p− 1.

It is proven in [BBG], that the images of xεs = b−εp−sa
ε
s and x−εp−s = aεsb

−ε
p−s in HH0 coincide, i.e.

[xεs] = [x−εp−s] for any 1 ≤ s ≤ p − 1. A basis of HH0 consists of trace classes of identities of

indecomposable projectives [idP±s ], 1 ≤ s ≤ p, and trace classes of nilpotent elements [x+
s ],

1 ≤ s ≤ p− 1.

In order to compute the modified trace t on the above basis in HH0, we need primitive

idempotents. Let us first define the projectors onto qn-eigenspace of K:

(8.5) πn =
1

2p

2p−1∑
j=0

q−njKj.

8We recall that by Theorem 7.3 it is both right and left.
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The primitive (non-central) idempotents are then

(8.6) In,s = πnes, n ∈ Z2p, 1 ≤ s ≤ p− 1, n− s = 1 mod 2,

and the indecomposable projective modules can be constructed as P+
s = UIs−1,s and P−p−s =

UI−s−1,s, where U is the regular representation of Uq sl2. Finally, x+
s and x−p−s equal to the

actions of w+
s on P+

s and w−s on P−p−s, respectively, so that we have

(8.7) tP+
s

(x+
s ) = µg(Is−1,sw

+
s ) , tP−p−s(x

−
p−s) = µg(I−s−1,sw

−
s ) .

Recall Remark 2.5 explaining how to express a modified trace on an indecomposable projective

via the modified trace on the regular representation given by the symmetric form µg. Inserting

the primitive idempotents Is−1,s into the arguments of µg in (8.4), we get

µg(Is−1,sw
+
s ) = ηζs , µg(I−s−1,sw

−
s ) = ηζs ,(8.8)

µg(Is−1,ses) = η(−1)s(qs + q−s)ζ0 ,

µg(πp−1ep) = ηζp , µg(π2p−1e0) = ηζ0 .

This gives the following values for modified trace on our basis in HH0:

[idP+
p

] [idP−p ] [x+
s ] = [x−p−s] [idP+

s
] [idP−p−s ]

t ηζp ηζ0 ηζs η(−1)s(qs + q−s)ζ0 η(−1)s(qs + q−s)ζ0

t for η = ζ−1
0 (−1)p−1 1 (−1)s[s]2 (−1)s(qs + q−s) (−1)s(qs + q−s)

where the second row is normalisation free, while the third row recovers the results of [BBG]

with the normalisation choice η = ζ−1
0 = (−1)p−12p([p− 1]!)2.

Appendix A. Proof of Proposition 2.3

From the definitions of HH0(A) and HH0(A-pmod) the map x 7→ rx induces a linear map

Φ: HH0(A)→ HH0(A-pmod) on the corresponding classes. We need to construct its inverse.

By Lemma 2.2, for P ∈ A-pmod we have a decomposition:

(A.1) idP =
k∑
i=1

ai ◦ idA ◦ bi , with bi : P → A, ai : A→ P .

Let us define a map ψP : EndA(P )→ HH0(A) by

(A.2) ψP (f) :=
∑
i

[(bi ◦ f ◦ ai)(1)] .

We will check that the map

Ψ: HH0(A-pmod)
∼−→ HH0(A)(A.3)

[P, f ] 7→ ψP (f)

is well-defined, i.e. it does not depend on the choice of the decomposition (A.1) and descends

on the class of f in HH0(A-pmod).
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Assume we have another decomposition idP =
∑

i′ a
′
i′ ◦ idA ◦ b′i′ , with the associated map

ψ′P (f) =
∑
i′

[(b′i′ ◦ f ◦ a′i′)(1)] .

Inserting the identity (A.1), we have

ψ′P (f) =
∑
i,i′

[(b′i′ ◦ f ◦ ai ◦ bi ◦ a′i′)(1)](A.4)

=
∑
i,i′

[(bi ◦ a′i′)(1) (b′i′ ◦ f ◦ ai)(1)]

where we applied the algebra isomorphism from Lemma 2.1 to the composition of A-endo-

morphisms (b′i′ ◦ f ◦ ai) and (bi ◦ a′i′). Similarly,

ψP (f) =
∑
i,i′

[(bi ◦ a′i′ ◦ b′i′ ◦ f ◦ ai)(1)](A.5)

=
∑
i,i′

[(b′i′ ◦ f ◦ ai)(1) (bi ◦ a′i′)(1)]

which is equal to the second line in (A.4) because the summands are classes in HH0(A). We

thus get the equality ψ′P (f) = ψP (f) ∈ HH0(A).

Let us now show that the family

{ψP : EndA(P )→ HH0(A) |P ∈ A-pmod}

has cyclicity property. Let f : P → P ′ and g : P ′ → P , and idP as in (A.1) and let idP ′ =∑
i′ a
′
i′ ◦ idA ◦ b′i′ . We then have

ψP ′(f ◦ g) =
∑
i,i′

[(b′i′ ◦ f ◦ ai ◦ idA ◦ bi ◦ g ◦ a′i′)(1)](A.6)

=
∑
i,i′

[(bi ◦ g ◦ a′i′)(1) (b′i′ ◦ f ◦ ai)(1)]

=
∑
i,i′

[(b′i′ ◦ f ◦ ai)(1) (bi ◦ g ◦ a′i′)(1)]

=
∑
i,i′

[(bi ◦ g ◦ a′i′ ◦ b′i′ ◦ f ◦ ai)(1)]

= ψP (g ◦ f)

where we again used the algebra isomorphism in Lemma 2.1. From this cyclicity property, we

see that the map ψP does not depend on representatives f in the class [f ] ∈ HH0(A-pmod),

for f ∈ EndA(P ). Therefore, the map Ψ in (A.3) is well-defined.

To see that Ψ ◦ Φ = idHH0(A) we have to check that the composition [x] 7→ [rx] 7→ ψA(rx)

is identity. Note that here we use only P = A component in the quotient (2.4). Using the

trivial decomposition of idA from (A.1), we indeed get the expected identity, and so Ψ is a

left inverse of Φ.
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To show that Ψ is also a right inverse of Φ, assume P ∈ A-pmod and f ∈ EndA(P ). Then

Ψ maps [P, f ] to the class of x =
∑

i(bi ◦ f ◦ ai)(1) ∈ A. We note that the corresponding

endomorphism of A by right multiplication with x is rx =
∑

i(bi ◦ f ◦ ai). And by cyclicity

we have [rx] = [f ] ∈ HH0(A-pmod). We thus get Φ ◦Ψ = idHH0(A-pmod), which completes the

proof of the proposition.

Appendix B. Proof of Lemma 7.2

The fact that w(αi) is a positive root if l(wsi) = l(w) + 1 follows from [B, VI.1.6, Cor. 2].

We will prove the formula for wt(Tw(Ei)) by induction on the length l(w) = ν ≥ 0. A proof

for wt(Tw(Fi)) works similarly. For ν = 0, w is the unit element and the statement holds by

definition of the L-grading. We suppose that the statement holds for ν ≥ 0, i.e. that Tw(Ei)

has L-grading wt
(
Tw(Ei)

)
= w(αi) if l(w) ≤ ν and l(wsi) = l(w) + 1.

Let w ∈ W be an element with length l(w) = ν + 1 and i be such that l(wsi) = ν + 2.

Recall that w(αi) ∈ ∆+. We claim that there exists j 6= i such that w(αj) is a negative root.

This follows from [B, Sec. V.4.4, Thm 1], indeed if w permutes the positive roots, then w fixes

the positive chamber C = {x ∈ L | (αi|x) > 0, 1 ≤ i ≤ n} and hence is identity. Let us choose

such j. Recall that l(wsj) = l(w)+1 would imply that w(αj) is a positive root, hence we have

that l(wsj) < ν + 2. From the defining relations, multiplication with sj changes the length

by ±1, we then clearly have l(wsj) 6= l(w), therefore l(wsj) = ν. Denote by 〈si, sj〉 ⊂ W
the subgroup generated by si and sj. The idea is to use elements from the orbit w〈si, sj〉 to

construct an appropriate pair (w′, k) to which the induction hypothesis applies. For a given

choice of j above, we have 3 cases: aij = 0 or if aij = −1 then wsjsi might have length ν± 1.

We analyse all of these cases:

Case 1: aij = 0. We can choose (w′, k) = (wsj, i). Indeed, l(w′) = ν and since l(wsi) =

ν + 2 then w′si = wsisj has length ν + 1, and so we can apply the induction hypothesis.

We then get Tw(Ei) = (Tw′ ◦ Tj)(Ei) = Tw′(Ei) because Tj(Ei) = Ei, see (7.5). Using that

sj(αi) = αi we get wt
(
Tw(Ei)

)
= w′(αi) = w(αi).

Case 2a: aij = −1 and l(wsjsi) = ν + 1. We choose w′ = wsj and to both (w′, i), (w′, j)

the induction hypothesis applies. We have Tj(Ei) = −EiEj + q−1EjEi, sj(αi) = αi + αj,

hence

wt(Tw(Ei)) = wt(Tw′ ◦ Tj(Ei)) = wt(Tw′(Ei)) + wt(Tw′(Ej))(B.1)

= w′(αi) + w′(αj) = (w′ ◦ sj)(αi) = w(αi) ,

where we used that Tw′ is an automorphism of the algebra and that wt makes the algebra

graded.

Case 2b: aij = −1 and l(wsjsi) = ν − 1. We choose w′ = wsjsi and check that l(w′sj) =

l(wsisjsi) = ν because on one side it is at most ν and on the other side it is at least

l(wsi) − l(sjsi) = ν. Therefore, we can apply the induction hypothesis to (w′, j). We have
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(Ti ◦ Tj)(Ei) = Ej and (sjsi)(αj) = αi, hence

wt(Tw(Ei)) = wt(Tw′(Ej)) = w′(αj) = w(αi) .

This finishes the proof.

Appendix C. Proof of Lemma 7.4

We will use the following result [Xi, Thm. 2.3]9 stated for 1 ≤ j ≤ k, and 1 ≤ a, b ≤ p− 1:

(C.1) Ea
βk
Eb
βj

= qab(βj |βk)Eb
βj
Ea
βk

+
∑

0≤aj,aj+1,...,ak≤p−1

aj<b , ak<a

ρ(aj, . . . , ak)E
aj
βj
E
aj+1

βj+1
. . . Eak

βk

where the coefficients ρ(aj, . . . , ak) ∈ k vanish if the corresponding monomials do not have

the expected L-grading:

(C.2) ρ(aj, . . . , ak) = 0 if ajβj + aj+1βj+1 + · · ·+ akβk 6= bβj + aβk .

We prove the lemma by induction on ν = k − j.
Let us consider the case ν = 1. The formula (C.1) gives

(C.3) Ep−1
βj+1

Eβj = q(p−1)(βj |βj+1)EβjE
p−1
βj+1

,

where we used that the second term in (C.1) vanishes because of the condition (C.2), which

is in our case

(C.4) aj+1βj+1 6= βj + (p− 1)βj+1 ,

holds for all aj+1 < p− 1. Equality (C.3) shows that (7.12) is true for k − j = 1.

Assume the induction hypothesis that for 1 ≤ ν < N the formula (7.12) is true if k−j ≤ ν.

We consider the case where k − j = ν + 1. From (C.1), we get

(C.5) Ep−1
βk

Eβj = q(p−1)(βj |βk)EβjE
p−1
βk

+
∑

0≤aj+1,...,ak≤p−1

ak<p−1

ρ(0, aj+1, . . . , ak)E
aj+1

βj+1
. . . Eak

βk
.

We then use the condition (C.2) on vanishing coefficients ρ(0, aj+1, . . . , ak), which is in our

case

aj+1βj+1 + · · ·+ akβk 6= βj + (p− 1)βk .

We see that it certainly holds if all the integers aj+1, . . . , ak−1 are zero – in this case we get the

inequality akβk 6= βj + (p− 1)βk, similar to (C.4). Therefore, for non-vanishing coefficients ρ

in the sum (C.5) we have to necessarily assume that at least one of the integers aj+1, . . . , ak−1

is non zero. Let l be the smallest index for which al is non zero. We have j+ 1 ≤ l < k hence

9We note that in [Xi, Thm. 2.3] a commutation formula is given for divided powers, and we just rewrite it

for our choice of powers of Eβ .
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|k − l| < ν. The induction hypothesis gives us commutation relation for the root vector Eβl ,

and we get

(C.6) Ep−1
βl

Ep−1
βl+1

. . . Ep−1
βk−1

Eβl = q(p−1)(βl|βl+1+···+βk−1)Ep−1
βl

EβlE
p−1
βl+1

. . . Ep−1
βk−1

= 0 .

This gives the following vanishing result for terms in the sum (C.5) corresponding to non-zero

coefficients ρ(0, aj+1, . . . , ak):

Ep−1
βj+1

Ep−1
βj+2

. . . Ep−1
βk−1

Eβl = 0 ,

and therefore these terms do not contribute while moving Eβj to the left in LHS of (7.12).

We have thus obtained

Ep−1
βj+1

Ep−1
βj+2

. . . Ep−1
βk

Eβj = q(p−1)(βj |βk)Ep−1
βj+1

Ep−1
βj+2

. . . Ep−1
βk−1

EβjE
p−1
βk

.

Using again the induction hypothesis, we move Eβj to the left using (C.1) and get the expected

formula (7.12), which completes the proof.
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