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Abstract

Let G be a complete convex geometric graph whose vertex set P forms a convex polygon
C, and let F be a family of subgraphs of G. A blocker for F is a set of edges, of smallest
possible size, that contains a common edge with every element of F . Previous works deter-
mined the blockers for various families F of non-crossing subgraphs, including the families
of all perfect matchings, all spanning trees, all Hamiltonian paths, etc.

In this paper we present a complete characterization of the family B of blockers for the
family T of triangulations of C. In particular, we show that |B| = F2n−8, where Fk is the
k’th element in the Fibonacci sequence and n = |P |.

We use our characterization to obtain a tight result on a geometric Maker-Breaker game
in which the board is the set of diagonals of a convex n-gon C and Maker seeks to occupy
a triangulation of C. Namely, we show that in the (1 : 1) triangulation game, Maker can
ensure a win within n − 3 moves, and that in the (1 : 2) triangulation game, Breaker can
ensure a win within n− 3 moves. In particular, the threshold bias for the game is 2.

1 Introduction

Let G be a complete convex geometric graph, and let F be a family of subgraphs of G. We
say that a set B of edges is a blocking set for F if it contains an edge in common with every
element of F . A blocking set for F of minimal size is called a blocker for F .

Determining the size of the blockers for F is a natural Turán-type question, as it is equivalent
to determining the maximal size of a convex geometric graph that is free of F (i.e., does not
contain an element of F). This question was studied for various families F , e.g., all sets of k
disjoint edges [20, 19] and all sets of k pairwise crossing edges ([4], and see also [3]).

The most satisfactory answer for the ‘blockers’ question is not only determining their size,
but rather giving a complete characterization of the set of blockers. Such a characterization has
been obtained for quite a few families of simple (i.e., non-crossing) graphs, including the family
M of all simple perfect matchings in [13], the family T of all simple spanning trees in [9], the
family H of all Hamiltonian paths in [15], etc. The characterizations gave rise to interesting
classes of examples, including caterpillar graphs (see [7, 13]), combs (see [16]) and semi-simple
perfect matchings (see [14]), and had applications to the structure of the ‘flip graphs’ of the
respective structures (see [9, 10]).

In this paper we consider blockers for the family T of triangulations of G. Triangulating a
polygon is a central tool in computational geometry, used in numerous proofs and algorithms.
In the special case of convex polygons, triangulations were studied from various points of view,
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Figure 1: An example of a blocker, with n = 12 and m = 4.

such as finding the optimal triangulation w.r.t. different criteria (see [12, 17]) and studying the
‘flip graph’ T (G) of triangulations (see [11, 21]), whose properties are related to deep results in
hyperbolic geometry, as shown in the seminal paper of Sleator, Tarjan, and Thurston [22]. For
more on triangulations of a convex polygon, see the textbook [5].

We present a complete characterization of the blockers for T . In order to present our result,
we need a few notations.

Let G be the complete geometric graph on a set P of n vertices, realized in the plane such
that P is the vertex set of a convex polygon C. We label the vertices of P cyclically (clockwise)
by 0, 1, . . . , n− 1.

Theorem 1.1. Any blocker B of G is (up to cyclical rotation of P ) of the type B = B1 ∪ B2,
where

B1 = {(0, 2), (1, 3), (2, 4), . . . , (m,m + 2)};
B2 = {(m + 3, i1), (m + 4, i2), (m + 5, i3), . . . , (n− 1, in−3−m)}

for some 1 ≤ m ≤ n−3, 1 ≤ ij ≤ m+1, such that if |ij−ik| ≥ 2 then the diagonals (m+j+2, ij)
and (m + k + 2, ik) do not cross.

In words, the theorem states that each blocker consists of two sets of edges. The first is a
sequence of m + 1 consecutive ‘ear-covers’ (edges connecting two vertices of distance 2) which
cover the path 〈0, 1, . . . ,m + 2〉 on the boundary of C. The second is a set of n − 3 −m leaf
edges that connect each of the vertices m+ 3,m+ 4, . . . , n− 1 to an internal vertex of the path
〈0, 1, . . . ,m + 2〉, such that two edges whose endpoints on the path are not consecutive do not
cross each other.1

We note that unlike blockers for perfect matchings and for simple (i.e., non crossing) span-
ning trees, the blockers for T are not simple. However, each blocker can be represented as the
union of two blockers for simple spanning trees on complementary subsets P1, P2 of P . Indeed,
as proved in [16], any blocker for simple spanning trees of Pi is a simple spanning caterpil-
lar whose spine lies on the boundary of conv(Pi). Any blocker for T is a union of two such
caterpillars, whose spines form the interlacing sequences 〈0, 2, 4, . . . , 〉 and 〈1, 3, 5, . . . , 〉 with the
induced leaf edges.

An example of a blocker is presented in Figure 1.

As a consequence of Theorem 1.1, we are able to calculate exactly the number of blockers.

Theorem 1.2. The number of blockers of G (up to rotations) is F2n−8, where Fk is the k’th
element in the Fibonacci sequence.

1Very recently, it has come to our attention that Theorem 1.1 was independently proved by Ali et al. [1].
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We apply our characterization to obtain a sharp result for a natural geometric Maker-Breaker
game. Recall that in the biased (m : b) Maker-Breaker game on a board X with respect to
a hypergraph F ⊂ P(X), the first player (Maker) claims m unoccupied elements v ∈ X in
each turn, and the second player (Breaker) answers by claiming b vertices. Maker wins if the
set of vertices he occupied contains a winning set S ∈ F , and otherwise, Breaker wins. The
threshold bias of the game is the minimal b such that Breaker wins the (1 : b) game. The study
of Maker-Breaker games was initiated by Erdős and Selfridge [6] in 1973, and has expanded
tremendously in the last few years (see the survey [18]).

We consider a triangulation Maker-Breaker game, in which the board is the set X of diagonals
of a convex n-gon C and the winning sets are the triangulations of C. We show the following:

Theorem 1.3. Let C be a convex n-gon, n ≥ 5. In the (1 : 1) triangulation Maker-Breaker
game on C, Maker has a winning strategy within n − 3 moves. On the other hand, in the
(1 : 2) triangulation Maker-Breaker game, Breaker has a winning strategy within n− 3 moves.
In particular, the threshold bias of the game is 2.

The rest of this paper is organized as follows. In Section 2 we present definitions and
notations that will be used in the sequel. The basic observations behind our proof are presented
in Section 3, and the proof of Theorem 1.1 is presented in Section 4. We prove Theorem 1.2 in
Section 5, and present the application to Maker-Breaker games in Section 6.

2 Definitions and Notations

For any graph G, the degree of a vertex v ∈ V (G), deg(v), is the number of edges that emanate
from v. The degree of v with respect to a subgraph B is denoted by degB(v).

Throughout the paper, P will denote a set of n points in a convex position in the plane,
forming a n-gon C, and labelled cyclically clockwise from 0 to n−1. G is the complete geometric
graph on P . All the operations on the index set {0, . . . , n− 1} are modulo n.

The order of an edge e = (i, j) ∈ E(G), denoted by o(e), is o(e) = min{|i− j|, n− |i− j|},
and so, the edges of the n-gon C are all of order 1. A diagonal of C is an edge of G of order
≥ 2. We denote by D(C) the set of diagonals of C. A diagonal of C of order 2 is called an
ear-cover. We say that the ear-cover (i − 1, i + 1) covers the vertex i. We say that two edges
e1, e2 ∈ E(G) cross if they share an interior point.

A triangulation of C is a subgraph T of G such that E(T ) consists of a maximal (with respect
to inclusion) pairwise non-crossing set of diagonals of C. Any triangulation of C contains n− 3
diagonals of C. A blocking set B for triangulations in C is a subgraph of G which contains a
common edge with each element of T . A blocking set with the minimum possible number of
edges is called a blocker for triangulations in C, or in short, a blocker. Sometimes we will abuse
notation and identify T and B with the sets of their edges.

We denote by C \ {i} the polygon obtained from C by deleting the vertex i and adding the
edge (i − 1, i + 1), and by B \ {i} the restriction of a blocker B to the polygon C \ {i} (i.e,
B \ {i} = B \ {(i, j) ∈ E(B)|0 ≤ j ≤ n− 1} ).

Two canonical examples of blocking sets are:

1. A ‘sun’ – a collection of all diagonals of C that emanate from a fixed vertex i ∈ P , along
with the ear-cover (i− 1, i + 1) (see Figure 2(a)).

2. A ‘boundary net’ – a collection of n− 2 consecutive ear-covers (see Figure 2(b)).

Clearly, the ‘sun’ is a blocking set. The ‘net’ is indeed a blocking set, since any triangu-
lation of C contains at least two non crossing ear-covers. In Theorem 1.1 we present a full
characterization of the blockers, proving that any blocker is, in some sense, a hybrid of these
two canonical blocking sets.

3



0
1

2n-2

n-1

(a)

0
1

2n-2

n-1

(b)

Figure 2: The two canonical examples of blockers: (a) is a ‘sun’ and (b) is a ‘net’.

In the notations of Theorem 1.1, we call the set B1 the boundary net of B, and the set B2

the beams of B. The vertices 1, 2, . . . ,m + 1 will be called interior vertices of the boundary net
of B. We also say that a beam (m + j + 2, ij) emanates from ij , where ij is its endpoint that
is an interior vertex of the boundary net of B.

3 Observations

In this section we present a sequence of observations that will be used in the proof of our main
theorem.

Observation 3.1. No blocker B contains an isolated vertex.

Proof. If B contains an isolated vertex i, then it misses the star triangulation T which consists
of all diagonals that emanate from i.

Observation 3.2. The size of each blocker is n− 2.

Proof. As the ‘sun’ and the ‘net’ blocking sets presented above consist of n − 2 edges, it is
sufficient to prove that any blocker has at least n− 2 edges. We will prove this by induction on
n = |P |.

For |P | = n = 4, any blocker must contain both diagonals of C.
For n > 4, assume that any blocker B′ for a convex polygon of size n′ < n satisfies |E(B′)| =

n′ − 2. Let C be a convex polygon of size n and let B be a blocker of C. By the minimality of
B, we know that |B| ≤ n− 2 < n, and thus, among the n ear-covers, there exists an ear-cover
(i − 1, i + 1), that is not contained in B. This implies that B \ {i} is a blocker for C \ {i}, as
otherwise, a triangulation of C\{i} together with the edge (i−1, i+1) forms a triangulation of C
that misses B (i.e. has no common edge with B), a contradiction. By the induction hypothesis,
we have |B \ {i}| ≥ n− 3. Finally, since B does not have isolated vertices by Observation 3.1,
we have |B| ≥ |B \ {i}|+ 1 ≥ n− 2. This completes the proof.

Observation 3.3. If B is a blocker and i ∈ V (B) satisfies degB(i) ≥ 2, then (i−1, i+1) ∈ E(B).

Proof. Assume to the contrary that (i−1, i+1) /∈ E(B). By the assumption, we have |B\{i}| =
(n−2)−degB(i) ≤ n−4, and thus, by Observation 3.2, B\{i} is not a blocker for triangulations
in C \ {i}. Hence, let T ′ be a triangulation of C \ {i} such that T ′ ∩ (B \ {i}) = ∅. Let
T = T ′ ∪ {(i− 1, i + 1)}. Then T is a triangulation of C that misses B, a contradiction.

Observation 3.4. If B is a blocker and (i, j) ∈ E(B), then either i or j (or both) is covered
by an ear-cover in B.
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Figure 3: The bold lines constitute a triangulation of C that can be constructed when degB(i) =
degB(j) = 1 and (j − 1, j + 1) /∈ B.

Proof. If degB(i) ≥ 2 then by Observation 3.3, (i−1, i+1) ∈ E(B) and we are done. Otherwise,
by Observation 3.1 we have degB(i) = 1. Hence, if (j − 1, j + 1) /∈ E(B) then B misses the
triangulation T = {(i, k)|0 ≤ k ≤ n− 1∧ k /∈ {i− 1, i, i+ 1, j}} ∪ {(j − 1, j + 1)} (see Figure 3),
a contradiction.

Corollary 3.5. Any blocker contains at least two ear-covers.

Proof. Let e = (i, j) ∈ E(B). By Observation 3.4, at least one of its endpoints is covered (in
B) by an ear-cover, say (i− 1, i+ 1) ∈ E(B). If j = i+ 2 or j = i− 2, we are done as e itself is
an ear-cover. Otherwise, e is not an ear-cover, and by Observation 3.4, one of the endpoints of
(i− 1, i + 1) is covered by another ear-cover.

4 Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. Since the collection of blockers is invariant
under rotations of P , we will describe the set of blockers up to these rotations. We start with
a characterization of the boundary nets of the blockers.

Notation 4.1. Let B be a blocker. The set of all ear-covers in B is denoted by

Ears(B) = {e ∈ E(B)|o(e) = 2}.

Proposition 4.2. Let B be a blocker. There exists a vertex a ∈ V (B) and an integer 1 ≤ m ≤
n− 3, such that Ears(B) = {(a, a + 2), (a + 1, a + 3), . . . , (a + m, a + m + 2)}.

Proof. First, by Corollary 3.5, Ears(B) 6= ∅. If i ∈ V (B) satisfies (i−2, i), (i, i+2) ∈ Ears(B),
then degB(i) ≥ 2, and therefore, by Observation 3.3, (i−1, i+ 1) ∈ Ears(B). This implies that
each connected component of Ears(B) (in the topological sense in R2) is a set of consecutive
ear-covers, i.e., ear-covers emanating from consecutive vertices. We thus have to show that
Ears(B) is connected.

Assume to the contrary that Ears(B) has at least two connected components, one of them
with endpoints w, x and another with endpoints y, z. Assume that the cyclic order of w, x, y, z
on P is 〈w, x, y, z〉 (see Figure 4). By Observation 3.3, we have degB(w) = degB(x) = degB(y) =
degB(z) = 1.

Therefore, one can construct a triangulation T in the following way: Connect x to z, and to
all the vertices on the same side of (x, z) like y. Then connect z to all other vertices (that are on
the same side of (x, z) like w). This construction implies that B misses T , a contradiction.
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Figure 4: An example of a triangulation of C that can be constructed when there are two
connected components in Ears(B). The triangulation is depicted in bold lines and Ears(B) is
depicted in dashed lines.

Since we are interested in characterizing the blockers only up to rotation of the vertices, we
can assume from now on that a from Proposition 4.2 is 0. In this way, Proposition 4.2 gives us
the description of the boundary net of a blocker, which is the set B1 from Theorem 1.1.

We now prove that the remaining edges of a blocker are exactly the beams described in
Theorem 1.1.

Proposition 4.3. Let B be a blocker with a boundary net B1 = {(0, 2), (1, 3), . . . , (m,m +
2)}. Then there exist n − 3 − m integers i1, i2, . . . , in−3−m ∈ {1, 2, . . . ,m + 1} (possibly with
repetitions), s.t. B \ B1 = {(m + 3, i1), (m + 4, i2), . . . , (n − 1, in−3−m)}, and in addition, if
|ij − ik| ≥ 2 then the diagonals (m + j + 2, ij) and (m + k + 2, ik) do not cross.

Proof. The first part follows immediately from the observations presented above. Indeed, by
Observation 3.2 we have |B\B1| = n−3−m. By Observation 3.4 and Proposition 4.2 (with a = 0
as discussed), any edge in B \ B1 emanates from one of the vertices 1, ...,m + 1. On the other
hand, by Observation 3.1, B has no isolated vertices, and thus, each vertex in m + 3, ..., n− 1
is incident to at least one (and thus, to exactly one) edge of B.

Now, let (m+j+2, ij), (m+k+2, ik) ∈ B\B1 be such that (w.l.o.g.) ij−ik ≥ 2, and assume
to the contrary that these edges cross each other. Let x ∈ V (B) be such that ik < x < ij .
(Note that such an x exists since ij − ik ≥ 2.) Construct a triangulation T in the following way
(demonstrated in Figure 5): Connect the vertices x,m + j + 2,m + k + 2 to form a ‘central’
triangle. Then, connect the vertex m+ j+2 to all the vertices on the same side of (m+ j+2, x)
as ik, and the vertex m + k + 2 to all the vertices on the same side of (m + k + 2, x) as ij . The
vertices between m + k + 2 and m + j + 2 can be all connected (arbitrarily) to m + k + 2 too.

It is clear from the first part of this proof that T misses B, a contradiction.

Propositions 4.2 and 4.3 complete the proof of one direction of Theorem 1.1. On the other
hand, the following Proposition shows that any subgraph B that satisfies the requirements of
Theorem 1.1 is indeed a blocker.

Proposition 4.4. In the notations of Theorem 1.1, any subgraph B of the type B = B1 ∪ B2

satisfies E(B) ∩ E(T ) 6= ∅ for any triangulation T of C, and thus, is a blocker.

Proof. By induction on the size n of C.
If n = 4 then B contains both diagonals of C and thus meets any triangulation T of C.

Suppose we proved the assertion for n−1 and let C be a convex polygon of size n. Let B be
a subgraph of the type B = B1∪B2, as described in Theorem 1.1. Assume to the contrary that
there exists a triangulation T of C that misses B. Since any triangulation contains an ear-cover,
assume that (i − 1, i + 1) ∈ T (and thus, (i − 1, i + 1) 6∈ E(B)). By the definition of B1, B2 it

6
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Figure 5: A triangulation of C that can be constructed when ij − ik ≥ 2 and (m+ j + 2, ij) and
(m + k + 2, ik) cross. The dashed edges represent the edges of B and the bold edges represent
the triangulation.
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Figure 6: An example of a part from a blocker in Bk,j,t
n , where n = 10, k = 4, j = 3 and t = 2.

follows that degB(i) = 1, and thus, in the notations of Theorem 1.1, either m + 2 ≤ i ≤ n − 1
or i = 0. Hence, B \ {i} satisfies the requirements of Theorem 1.1 w.r.t. the graph C \ {i}. Let
T ′ be the triangulation of C \ {i} obtained from T by omitting the diagonal (i − 1, i + 1). By
the induction hypothesis, B \ {i} is a blocker of C \ {i}. As T ′ is a triangulation of C \ {i}, this
implies E(B \ {i}) ∩ E(T ′) 6= ∅. A contradiction.

Combining Propositions 4.2 – 4.4 together, completes the proof of Theorem 1.1.

5 The Number of Blockers

For n ≥ 4, we denote by f(n) the number of blockers for triangulations of a convex n-gon,
up to rotations. Recall that the Fibonacci sequence {Fn}∞n=1 is defined by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for all n ≥ 3. For sake of convenience, we set F0 = 1 (note that this differs
from the natural extension of the Fibonacci sequence).

In this Section we prove Theorem 1.2, namely, that for any n ≥ 4 we have f(n) = F2n−8.

Since f(n) counts blockers up to rotations, we suppose w.l.o.g. that the boundary net of any
blocker we consider starts at the vertex 0 clockwise. Denote by Bk

n the set of blockers whose
boundary-net consists of k ear-covers, and set fk(n) = |Bk

n|. For a, b ∈ {0, 1, 2, . . . , n− 1} such
that a ≤ b we denote by [a, b] the set {a, a + 1, a + 2, . . . , b}. (If a > b then [a, b] = ∅.)

We will use the following simple observations:

Observation 5.1. For n ≥ 4, f(n) =
∑n−2

k=2 f
k(n).
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Observation 5.2. For n ≥ 4, fn−2(n) = 1.

Observation 5.3. For n ≥ 4,

F2n =
n∑

k=1

F2n−2k.

Observations 5.1, 5.2 are trivial. Observation 5.3 is a well known property of the Fibonacci
sequence that can be easily proved by induction.

The following Lemma is crucial for the proof of Theorem 1.2.

Lemma 5.4. Let n ≥ 6 and 2 ≤ k ≤ n− 4. Then

fk(n) =
k∑

j=2

n−1+j−k∑
i=j+2

f j(i).

Proof. In any B ∈ Bk
n, the vertex k+2 is connected to one of the vertices {1, 2, . . . , k−1} (note

that k + 2 can be connected to 1 since k ≤ n− 4). For any 2 ≤ j ≤ k, let Bk,j
n ⊂ Bk

n consist of
the blockers in Bk

n in which the vertex k + 2 is connected to the vertex j − 1. We claim that

|Bk,j
n | =

n−1+j−k∑
i=j+2

f j(i).

In order to prove this, we further sub-divide Bk,j
n as follows. For any 3 ≤ j ≤ k and

0 ≤ t ≤ n− 3− k, we let

Bk,j,t
n := {B ∈ Bk,j

n : (k + 3, j), (k + 4, j), . . . , (k + t + 2, j) ∈ B ∧ (k + t + 3, j) 6∈ B}.

For j = 2, we use the same definition, with the exception (for t = n− 3− k) Bk,2,n−3−k
n = {B ∈

Bk,2
n : (k + 3, 2), . . . , (n− 1, 2) ∈ B} (see Figure 6).

By Theorem 1.1, two beams of a blocker that emanate from non-consecutive vertices do not
cross. Hence, none of the vertices in [k + 3 + t, n− 1] is adjacent to any vertex whose index is

greater than j. Thus, there exists a bijection from Bk,j,t
n to Bj

j+n−1−k−t obtained by deleting
the vertices [j + 1, k + 1 + t] and adding the edge (j − 1, k + t + 2). This implies that

|Bk,j,t
n | = f j(j + n− 1− k − t).

Therefore,

|Bk,j
n | =

n−k−3∑
t=0

|Bk,j,t
n | =

n−k−3∑
t=0

f j(j + n− 1− k − t) =

n−1+j−k∑
i=j+2

f j(i),

where the last equality is obtained by changing the index of summation. Note that all terms
f j(i) in this summation are positive, except for f2(5) = 0.

Thus, for 2 ≤ k ≤ n− 4 we have

fk(n) = |Bk
n| =

k∑
j=2

n−1+j−k∑
i=j+2

f j(i),

as asserted.

Lemma 5.4 yields a recursive formula for fk(n), for all 2 ≤ k ≤ n− 4. The following claim
allows to insert into the recursive formula the cases k = n− 3, n− 2.
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Claim 5.5. For all all n ≥ 5, we have

fn−3(n) + fn−2(n) =
n−3∑
j=2

f j(j + 2) = n− 4.

Proof. The right hand side is equal to n − 4, by Observation 5.2. As for the left hand side,
fn−3(n) counts the blockers with n−3 ear-covers, in which the only vertex that is not contained
in the boundary-net is n−1. This vertex can be connected to one of the n−5 vertices of [2, n−4].
(Recall that we assume that the boundary-net of the blocker starts in the vertex 0, and thus, the
vertex n− 1 cannot be connected to the vertex 1.) Hence, fn−3(n) = n− 5. Since fn−2(n) = 1
by Observation 5.2, the left hand side is equal to n− 4, as asserted.

Now we are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Direct computations shows that the assertion of the theorem holds for
small values of n. Hence, due to Observation 5.3, it is sufficient to prove that

f(n) =

n−4∑
k=1

kf(n− k)

. Using Observation 5.1, Lemma 5.4 and Claim 5.5, we get

f(n) =

n−2∑
k=2

fk(n) =

n−4∑
k=2

fk(n) + (fn−3(n) + fn−2(n))

=
n−4∑
k=2

k∑
j=2

n−1+j−k∑
i=j+2

f j(i) +
n−3∑
j=2

f j(j + 2) =
n−3∑
k=2

k∑
j=2

n−1+j−k∑
i=j+2

f j(i).

Rearranging terms according to the index i yields:

f(n) =
n−3∑
j=2

f j(n− 1) + 2
n−4∑
j=2

f j(n− 2) + 3
n−5∑
j=2

f j(n− 3) + · · ·+ (n− 4)
2∑

j=2

f j(4)

= f(n− 1) + 2f(n− 2) + 3f(n− 3) + · · ·+ (n− 4)f(4) =

n−4∑
k=1

kf(n− k).

This completes the proof.

6 An Application to a Geometric Maker-Breaker Game

Maker-Breaker games were introduced by Erdős and Selfridge [6] in 1973. In the most common
formulation of Maker-Breaker games (see [18]), the parameters of the game are a board X (which
is a finite set), a hypergraph F on X whose elements are called winning sets, and two integers
m, b which denote the numbers of moves of the players in each turn. In the (m : b)-biased
Maker-Breaker game on X with respect to F , two players, called Maker and Breaker, take
turns in alternately occupying a previously unoccupied vertices from X. Maker goes first and
occupies m vertices in each turn, and Breaker responses by occupying b vertices in each turn.
The (1 : 1) game is called the unbiased Maker-Breaker game, and the threshold bias of the
game is the minimal b such that Breaker wins the (1 : b) game. Determining the threshold bias
of a game is often considered the central goal in its study (see [18, Section 5]). Another goal
is determining the minimal number of moves required for Maker (or Breaker) to secure a win
(see [8]).
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A central result in the study of unbiased Maker-Breaker games is the Erdős-Selfridge The-
orem [6] which states that if

∑
A∈F 2−|A| < 1

2 then Breaker has a winning strategy. Beck [2]
proved a generalization for (m : b)-games (sometimes called the biased Erdős-Selfridge Theorem)
which states that if ∑

A∈F
(b + 1)−

|A|
m <

1

b + 1
,

then Breaker has an explicit winning strategy.
In this section we consider the triangulation Maker-Breaker game in which the board X is

the set of diagonals of a convex n-gon C and F is the family T of triangulations of C.2

Theorem 6.1. Consider the triangulation (m : b)-biased Maker-Breaker game played on a
convex polygon on n vertices.

1. For all n ≥ 4, in the (1 : 1) game, Maker can ensure a win within n− 3 moves.

2. For all n ≥ 5, in the (1 : 2) game, Breaker can ensure a win within n − 3 moves. This
statement holds also in a stronger version, in which Breaker occupies 2 vertices of V only
in his first move, and a single vertex in each other move.

In particular, the threshold bias of the triangulation Maker-Breaker game for n ≥ 5 is 2.

Before we present the proof, a few remarks are due:

1. Obviously, the winning strategy in Part (1) of the theorem, as well as in the stronger
version of Part (2), is the fastest possible.

2. In the proof of Part (1), we show a slightly stronger statement: Maker wins even if Breaker
makes the first move.

3. One can easily verify that the win of Breaker in the (1 : 2) game (proved in Part (2) of
the theorem) does not follow from the biased Erdős-Selfridge Theorem.

Proof of Theorem 6.1. Consider first the (1 : 1) game. We prove by induction on the number n
of vertices in the polygon C that Maker wins, assuming that Breaker moves first. (Of course,
there is no loss of generality in this assumption.) For n = 4, the assertion is straightforward.
Suppose that n > 4 and that at the first move, Breaker occupies the diagonal (x, y). Then,
Maker occupies the diagonal (x− 1, x + 1). By the induction hypothesis, in the game induced
on the board C \ {x}, Maker has a winning strategy within n− 4 moves. (Note that if Breaker
occupies a diagonal that emanates from x, then Maker is able to occupy any ear-cover of C\{x}.)
Therefore, after n− 3 moves, Maker completes occupying a triangulation and wins.

Now we consider a variant of the (1 : 2) game in which Breaker makes two moves only
after the first move of Maker. (Clearly, this implies that Breaker wins the standard (1 : 2)
game within the same number of moves, or even faster.) After the first move of Maker, Breaker
occupies two consecutive ear-covers (a, a + 2), (a + 1, a + 3), such that neither a + 1 nor a + 2
is an endpoint of the diagonal occupied by Maker. (This is always possible since n ≥ 5; for
n = 4, Maker wins at the first move, regardless of the move she makes.) From now on, Breaker
aims at constructing a blocker whose boundary-net is these two ear-covers. For any move of
Maker in which she occupies (x, a+1), Breaker answers by occupying (x, a+2) (if this diagonal
was not previously occupied), and vice versa – if Maker occupies (x, a+ 2), Breaker answers by
occupying (x, a+ 1) (if it was not previously occupied). For any other choice of Maker, Breaker

2Naturally, for any family F , characterization of blockers with respect to F may help to supply a good strategy
for Breaker, in a game where Maker’s goal is to occupy an element of F . Such strategies for general geometric
Maker-Breaker games will be discussed in a separate paper; here we present only a specific result regarding the
triangulation Maker-Breaker game.

10



chooses a vertex x such that neither (x, a + 1) nor (x, a + 2) were previously occupied, and
occupies the diagonal (x, a + 1).

It is clear that after n − 3 turns Breaker occupies a blocker, for any choice of the moves
of Maker. In particular, this implies that Maker is not able to occupy a triangulation in his
(n− 3)’th move, since any triangulation shares an edge with the blocker occupied by Breaker,
and so cannot be fully occupied by Maker. This completes the proof.
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