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A HARMONIC ANALYSIS PROOF OF THE BOUNDARY

OBSERVABILITY INEQUALITY FOR THE WAVE EQUATION

AND VISCO-ELASTIC EQUATION

WALTON GREEN, SHITAO LIU, AND MISHKO MITKOVSKI

Abstract. In this paper, we give a harmonic analysis proof of the Neumann
boundary observability inequality for the wave equation in an arbitrary space
dimension. Our proof is elementary in nature and gives a simple, explicit
constant. We also extend the method to prove the observability inequality of
a visco-elastic wave equation.

1. Introduction

Let Ω ⊆ Rd be an open, bounded domain with smooth boundary ∂Ω. Consider
the following backwards wave equation generated at final time T .

(1.1)







wtt(x, t)−∆w(x, t) = 0 in Ω× [0, T ]
w(x, T ) = w0(x) wt(x, T ) = w1(x) in Ω
w(x, t) = 0 on ∂Ω× [0, T ]

where w0 ∈ H1
0 (Ω) and w1 ∈ L2(Ω). The problem we are interested in is the

boundary observability inequality: There exists c > 0 such that for all (w0, w1) ∈
H1

0 (Ω)× L2(Ω),

(1.2) c

∫

Ω

|∇w0(x)|
2 + |w1(x)|

2 dx ≤

∫ T

0

∫

∂Ω

∣

∣

∣

∣

∂w

∂ν
(x, t)

∣

∣

∣

∣

2

dS(x) dt

It is well known (e.g. by the Hilbert Uniqueness Method [17]) that the observability
inequality (1.2) is equivalent to the exact controllability of the dual equation to
(1.1):

(1.3)







utt(x, t) −∆u(x, t) = 0 in Ω× [0, T ]
u(x, 0) = u0(x) ut(x, 0) = u1(x) in Ω
u(x, t) = f(x, t) on ∂Ω× [0, T ]

for f ∈ L2(∂Ω× [0, T ]) and (u0, u1) ∈ L2(Ω)×H−1(Ω). Exact controllability refers
to the question: Given initial states (u0, u1) and final states (uT , u

′
T ), does there

exist T > 0 and f ∈ L2(∂Ω × [0, T ]) such that u(x, T ) = uT (x) and ut(x, T ) =
u′T (x)?

There exists an extensive body of literature about the exact boundary control-
lability for the wave equation (or other typed hyperbolic equations). The problem
has been very well studied and we refer to the books [11, 14, 16, 19], and the refer-
ences therein for a literature review of the problem. The typical method is to use
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the duality and transfer the controllability problem for the wave equation into the
observability question of the dual problem.

Even though such equivalence between the controllability and observability was
long noticed [4], it is not until the mid 80s that mathematicians started to develop
systematic methods to prove the observability inequality, especially in the general
multidimensional setting. It is well known by now that the observability inequality
(1.2) may be proved using microlocal analysis [2], the multiplier method [9, 17],
or Carleman estimates. The latter is especially powerful and has become a major
tool to prove observability inequalities since it can deal with the situations where
there are lower-order terms or variable principle coefficients appearing in the wave
equation. We cite only a few references here [6,15,27] and refer to the other works
quoted in these papers for readers who are interested in the details of this method.

The idea of using harmonic analysis to prove the observability inequality origi-
nated much earlier. It seems that Russell [23] was the first person who systemat-
ically explored the relationship between control problems and harmonic analysis.
The moment method of Russell has been extended in different directions [7, 12, 18,
20], but the common feature of all these results has been the requirement for the
space dimension to be equal to one. Probably, the most comprehensive treatment,
to date, on the use of complex exponentials and harmonic analysis in control prob-
lems is the monograph [1] where, in addition, approximate controllability results
(even in higher space dimension) are obtained using complex exponentials in con-
cert with standard uniqueness results. Still, to the best of our knowledge, nobody
has given a harmonic analysis proof of the exact controllability (and observabil-
ity) of the wave equation in higher space dimensions. In this note, we complete
this gap by providing a proof of the observability inequality in an arbitrary spatial
dimension using the harmonic analysis method.

We also apply this method to show observability for a wave equation with mem-
ory kernel, also known as the visco-elastic wave equation, which is of the form

(1.4) ytt −∆y =

∫ t

0

M(t− s)∆y(s) ds.

Our motivation is from [18, 21] in which exact controllability of (y, yt) is achieved
but only for dimension d ≤ 3 using the moment method of Russell. In section 4 we
extend this to an arbitrary space dimension. Carleman estimates have been applied
to the heat equation with memory kernel (same as (1.4) but only first-order in time)
[5], but we are not aware of the use of Carleman estimates to prove the observability
for the visco-elastic equation (1.4). A separate noteworthy contribution to this
problem is [10] in which exact controllability is established in arbitrary dimension
using the classical compactness-uniqueness argument.

The paper is organized as follows. In section 2, we reformulate the observability
inequality as a Riesz sequence property for a suitably chosen system of functions.
This property is then established for the regular wave equation (1.1) in section 3
and extended to the visco-elastic wave equation (1.4) in section 4.

2. Harmonic Analysis Reformulation

The standard one-dimensional moment method focuses on estimates concerning
sequences of complex exponentials. In order to extend it to higher spatial dimen-
sions, we need to consider the following system of functions.
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Let {φn}
∞
n=1 be an orthonormal basis in L2(Ω) of eigenfunctions of the Dirichlet

Laplacian. In other words,

(2.1)

{

−∆φn = λ2nφn in Ω

φn = 0 on ∂Ω

It is well known that 0 < λ1 ≤ λ2 ≤ · · · and λn → ∞. For simplicity, we set
λn = sgn(n)λ|n| and

(2.2) ψn =
1

λn

∂φ|n|
∂ν

on ∂Ω

for n ∈ Z\{0} (henceforth Z0), denoting by ν(x) the outward normal vector to ∂Ω
at x.

This system of functions {ψn} has been investigated as far back as the 1940’s by
Rellich [22]. More recently, Hassel and Tao [8] reinvigorated the interest in this sys-
tem from the harmonic analysis perspective. As a consequence, much more precise
linear independence results about it were obtained (which extend the independence
results that follow from the observability inequality) [3, 24, 25]. Our treatment of
the system {ψn} is directly influenced by this more recent work. The following two
features enter in our proof: 1) the system {ψn} is linearly independent in certain
small spectral windows (for close values of λn); 2) complex exponentials are inde-
pendent for λn with large enough gap. Thus, when combined together, we achieve
independence without restrictions on λn. The notion of independence we use is
stronger than the classical linear independence. It is given precisely by the notion
of a Riesz-Fischer sequence (see e.g. [1], [26]).

Definition 2.1. A sequence {en} in a Hilbert space H is said to be a Riesz-Fischer
sequence if there exists a constant c > 0 such that

(2.3) c
∑

|an|
2 ≤

∥

∥

∥

∑

anen

∥

∥

∥

2

H

for all finite sequences {an}.

We now state the relationship between Riesz-Fischer sequences and the observ-
ability inequality. This relationship is well-known to the experts in the field, but
since we were not able to find a good reference, we decided to include a short proof
of it.

Proposition 2.2. The observability inequality (1.2) holds for all (w0, w1) ∈ H1
0 (Ω)×

L2(Ω) if {ψne
iλnt}n∈Z0

is a Riesz-Fischer sequence in L2(∂Ω × [0, T ]), i.e. there
exists c > 0 such that

(2.4) c
∑

|an|
2 ≤

∫ T

0

∫

∂Ω

∣

∣

∣

∑

anψn(x)e
iλnt

∣

∣

∣

2

dS(x) dt

for all {an}n∈Z0
∈ ℓ2.

Proof. Let (w0, w1) ∈ H1
0 (Ω)×L2(Ω). We will represent the solution w to (1.1) by

separation of variables. In the space variable, we expand onto {φn}. There exist
{ξn}, {ηn} ∈ ℓ2 such that

w0 =

∞
∑

n=1

ξnφn w1 =

∞
∑

n=1

ηnφn
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Since w0 ∈ H1
0 (Ω), by the orthonormality of {φn},

∫

Ω

|∇w0(x)|
2 dx = −

∫

Ω

w0∆w0 dx =

∫

Ω

(

∑

ξnφn

)(

∑

λ2nξnφn

)

=
∑

|λnξn|
2

therefore {λnξn} ∈ ℓ2. Set ξ̃n = λnξn. Then,

w0 =
∑ ξ̃n

λn
φn

Additionally, we consider the following ordinary differential equation to account for
the time variable.

(2.5)







z′′jn(t) + λ2nzjn(t) = 0 t ∈ [0, T ] j = 1, 2
z1n(T ) = 1 z′1n(T ) = 0 t = T
z2n(T ) = 0 z′2n(T ) = −λn t = T

Solutions to (2.5) are of the form z1n(t) = cos(λn(T−t)) and z2n(t) = sin(λn(T−t)).
Thus, we can represent w solving (1.1) as

(2.6) w(x, t) =
∑

[

ξ̃n
λn

cos(λn(T − t))−
ηn
λn

sin(λn(T − t))

]

φn(x)

Then the observability inequality (1.2) takes the following form:

c
∑

|ξ̃n|
2 + |ηn|

2

≤

∫ T

0

∫

∂Ω

∣

∣

∣

∣

∑

[

ξ̃n cos(λn(T − t))− ηn sin(λn(T − t))
] 1

λn

∂φn
∂ν

(x)

∣

∣

∣

∣

2

dS(x) dt

(2.7)

Using the Euler formula and setting an = ξ̃|n| + i sgn(n)η|n| for n ∈ Z0, (1.2) and
(2.7) are equivalent to

c
∑

|an|
2 ≤

∫ T

0

∫

∂Ω

∣

∣

∣

∑

anψne
iλnt

∣

∣

∣

2

dS dt

�

3. Main Result

Theorem 3.1. Let R > 0 such that Ω ⊆ B(x0, R) for some x0 ∈ Rd. Then, for
T > 2R, there exists c > 0 such that

(3.1) c
∑

|an|
2 ≤

∫ T

0

∫

∂Ω

∣

∣

∣

∑

anψn(x)e
iλnt

∣

∣

∣

2

dS(x) dt

for all {an} ∈ ℓ2. Moreover, c =
2(T − 2R)

CΩ
where CΩ is a positive constant

dependent only on Ω.

We first state two preliminary lemmas concerning the functions {ψn}. Define
the following operator A : H1

0 (Ω) → L2(Ω) which connects the boundary terms ψn

with the interior eigenfunctions φn.

(3.2) (Au)(x) = m(x) · ∇u(x) where m(x) = x− x0

for u ∈ H1
0 (Ω) and x ∈ Ω.
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Lemma 3.2. Let A and m be defined by (3.2). Then, for all j, k ∈ Z0,

(3.3)

∫

∂Ω

(m · ν)ψjψk dS =























λ2j − λ2k
λjλk

∫

Ω

Aφ|j|φ|k| dx if |j| 6= |k|;

2 if j = k;

−2 if j = −k

Proof. We use the fact that

Aφj(x) = (m · ν)
∂φj
∂ν

(x), ∀x ∈ ∂Ω, j ∈ N

as in [22] since φj = 0 on ∂Ω. Applying Green’s Theorem and the fact that
∆A−A∆ = 2∆,

∫

∂Ω

(m · ν)ψj(x)ψk(x) dS =
1

λjλk

∫

∂Ω

Aφ|j|
∂φ|k|

∂ν
dS

=
1

λjλk

∫

Ω

Aφ|j|∆φ|k| −∆(Aφ|j|)φ|k| dx

=















λ2j − λ2k
λjλk

∫

Ω

Aφ|j|φ|k| dx if |j| 6= |k|;

1

λjλk

∫

Ω

2λ2j |φ|j||
2 dx = ±2 if |j| = |k|.

�

Lemma 3.3. The sequence {λ−1
j Aφ|j|}j∈Z0

is quasi-orthogonal in L2(Ω). More

precisely, for all u ∈ ℓ2(Z0),

(3.4)

∫

Ω

∣

∣

∣

∣

∣

∣

∑

j

uj
Aφ|j|

λj

∣

∣

∣

∣

∣

∣

2

≤ R2
∑

j

(

|uj|
2 − ujū−j

)

Secondly,

(3.5)

∫

Ω

Aφ|j|φ|k| = −

∫

Ω

φ|j|Aφ|k|

for |j| 6= |k|.

Proof. Notice that the system {λ−1
j ∇φ|j|}j∈Z0

has some sense of orthogonality.
Indeed, for each j, k ∈ Z0,

∫

Ω

∇φ|j| · ∇φ|k|

λjλk
= −

∫

Ω

φ|j|∆φ|k|

λjλk
=







0 |j| 6= |k|
1 j = k

−1 j = −k

Then, using the definition of A in (3.2) and the Cauchy-Schwarz Inequality, we
obtain for {uj} ∈ ℓ2(Z0)

∫

Ω

∣

∣

∣

∣

∣

∣

∑

j

uj
Aφj
λj

∣

∣

∣

∣

∣

∣

2

≤ R2

∫

Ω

∣

∣

∣

∣

∣

∣

∑

j

uj
∇φj
λj

∣

∣

∣

∣

∣

∣

2

= R2





∑

j

|uj|
2 −

∑

j

ujū−j
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Now we proceed to the second statement in the lemma. Recalling m from (3.2)
and using ∂i to denote ∂

∂xi
,

mi∂iφjφk = ∂i(miφjφk)− (∂imi)φjφk −miφj∂iφk

Summing over i = 1, . . . , d and integrating over Ω yields

(3.6)

∫

Ω

Aφjφk =

∫

Ω

∇ · (mφjφk)− d

∫

Ω

φjφk −

∫

Ω

φjAφk

which gives the desired identity since φj = 0 on ∂Ω and {φj} are orthonormal. �

Now we complete the proof of Theorem 1. To be concise, all sums are assumed
to be taken over Z0 unless otherwise stated. For CΩ := maxx∈∂Ω[m(x) · ν(x)] ≤ R,
we have the following estimate using Lemma 3.2.

CΩ

∫

∂Ω

∫ T

0

∣

∣

∣

∣

∣

∣

∑

j

aje
iλj tψj(x)

∣

∣

∣

∣

∣

∣

2

dt dS ≥
∑

j

∑

k

aj āk

∫ T

0

ei(λj−λk)t dt

∫

∂Ω

(m · ν)ψjψk dS

= 2T
∑

j

|aj |
2 −

∑

j

aj ā−j
ei2λjT − 1

iλj

+
∑

j

∑

k 6=±j

ajāk

(

1

iλj
+

1

iλk

)

(

ei(λj−λk)T − 1
)

∫

Ω

Aφjφk dx

(3.7)

Notice when k = j, the terms in the double summation actually have zero value.
Thus we may include them in the summation. Moreover, applying the second
statement in Lemma 3.3,

∑

j

∑

k 6=±j

aj āk

(

1

iλj
+

1

iλk

)

(

ei(λj−λk)T − 1
)

∫

Ω

Aφjφk dx

= 2Re





∑

j

∑

k 6=−j

aj āk

(

ei(λj−λk)T − 1
)

∫

Ω

Aφj
iλj

φk dx





Wewill now include the terms when k = −j. Notice that by (3.6), 2 Re
(∫

ΩAφ|j|φ̄|−j|

)

=
−d. Thus we can rewrite the second two terms in the original inequality (3.7) as

(d− 1)Re





∑

j

aj ā−j
ei2λjT − 1

iλj





+ 2Re





∑

j

∑

k

aj āk

(

ei(λj−λk)T − 1
)

∫

Ω

Aφj
iλj

φk dx





Additionally, we have the following identity for the single sum:

∑

j

aj ā−j
ei2λjT − 1

iλj

=

∫

Ω





∑

j

aje
iλjT

φ|j|

iλj





(

∑

k

akeiλkTφ|k|

)

−





∑

j

aj
φ|j|

iλj





(

∑

k

akφ|k|

)

dx
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Then we split the double sum into two terms (one with ei(λj−λk)T and one with
−1) and estimate each with the corresponding portion in the above identity.

∣

∣

∣

∣

∣

∣

∫

Ω

(d− 1)





∑

j

aje
iλjT

φ|j|
iλj





(

∑

k

akeiλkTφ|k|

)

+ 2
∑

j

∑

k

aj āke
i(λj−λk)T

∫

Ω

Aφ|j|
iλj

φ|k|

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Ω



(d− 1)
∑

j

aje
iλjT

φ|j|

λj
+ 2

∑

j

aje
iλjT

Aφ|j|

λj





(

∑

k

akeiλkTφ|k|

)

∣

∣

∣

∣

∣

∣

≤
1

4R

∫

Ω

∣

∣

∣

∣

∣

∣

(d− 1)
∑

j

aje
iλjT

φ|j|

λj
+ 2

∑

j

aje
iλjT

Aφ|j|

λj

∣

∣

∣

∣

∣

∣

2

+R

∣

∣

∣

∣

∣

∑

k

ake
iλkTφ|k|

∣

∣

∣

∣

∣

2

(3.8)

Note that by (3.6), for any u ∈ H1
0 (Ω),

‖(d− 1)u+ 2Au‖2 = (d− 1)2‖u‖2 + 4(d− 1)Re(u,Au) + 4‖Au‖2

= (−1− d)(d− 1)‖u‖2 + 4‖Au‖2 ≤ 4‖Au‖2

where ‖ · ‖ and (·, ·) denote the L2(Ω) norm and inner product. Apply this to (3.8)
with u =

∑

aje
iλjTφ|j|λ

−1
j . Then, applying (3.4) from Lemma 3.3, we have

(3.9)
1

R

∫

Ω

∣

∣

∣

∣

∣

∣

∑

j

aje
iλjT

Aφ|j|
λj

∣

∣

∣

∣

∣

∣

2

+R

∫

Ω

∣

∣

∣

∣

∣

∑

k

ake
iλkTφ|k|

∣

∣

∣

∣

∣

2

≤ R
∑

j

(

|aj |
2 − aj ā−je

i2λjT
)

+R
∑

k

(

|ak|
2 + akā−ke

i2λkT
)

= 2R
∑

j

|aj |
2

The other term (with ei(λj−λk)T replaced by −1) is estimated in a manner similar
to (3.8) and (3.9). Substituting (3.9) and the corresponding estimate for −1 into
the original inequality gives the desired result:

CΩ

∫ T

0

∫

∂Ω

∣

∣

∣

∣

∣

∣

∑

j

aje
iλj tψj(x)

∣

∣

∣

∣

∣

∣

2

dS dt

≥ 2T
∑

j

|aj |
2 +

∑

j

aj ā−j
ei2λjT − 1

iλj

+
∑

j

∑

k 6=±j

aj āk

(

1

iλj
+

1

iλk

)

(

ei(λj−λk)T − 1
)

∫

Ω

Aφ|j|φ|k|

≥ 2T
∑

j

|aj |
2 − 4R

∑

j

|aj |
2 = 2 (T − 2R)

∑

j

|aj |
2.

�
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4. Application to the Visco-Elastic Equation

Let Ω ⊆ R
d be an open, bounded domain with smooth boundary. Consider the

following visco-elastic wave equation:

(4.1)



















ytt(x, t) −∆y(x, t) =

∫ T

t

M(s− t)∆y(x, s) ds in Ω× [0, T ]

y(x, T ) = y0(x) yt(x, T ) = y1(x) in Ω

y(x, t) = 0 on ∂Ω× [0, T ]

for given M ∈ H2(0, T ), y0 ∈ H1
0 (Ω) and y1 ∈ L2(Ω). By a similar argument

to the one presented section 2, the boundary observability inequality (analogous
to (1.2)) for (4.1) will be acheived if it can be established that {zn(t)ψn(x)} ⊆
L2(∂Ω× [0, T ]) is a Riesz-Fisher sequence where ψn is as defined in (2.2) and zn
satisfies the following time ODE (compare with (2.5)) for each n ∈ Z0.

(4.2)











z′′n(t) + λ2nzn(t) = −λ2n

∫ T

t

M(s− t)zn(s) ds t ∈ [0, T ]

zn(T ) = 1 z′n(T ) = iλn

This formulation is thoroughly carried out in [18] and [21] where the following
Riesz sequence property (4.3) is obtained for space dimension d = 1 and d ≤ 3
respectively. Here we extend this to the general case d ≥ 1.

Theorem 4.1. Let R > 0 such that Ω ⊆ B(x0, R) for some x0 ∈ Rd. If T > 2R,
then for {zn} solving (4.2) and {ψn} as defined in (2.2), {znψn} is a Riesz sequence
in L2(∂Ω× [0, T ]). In other words, there exists c, C > 0 such that

(4.3) c
∑

|an|
2 ≤

∫ T

0

∫

∂Ω

∣

∣

∣

∑

anzn(t)ψn(x)
∣

∣

∣

2

dS(x) dt ≤ C
∑

|an|
2

for all finite sequences {an}.

The notion of a Riesz sequence is slightly stronger than that of a Riesz-Fisher
sequence (2.3), we simply add the upper inequality. Nonetheless, the lower inequal-
ity is enough to imply observability of (4.1) which gives exact controllability for the
dual system.

Our approach is similar to [18] and [21] in the sense that we will argue that
{znψn} is in a certain sense “close” to {eiλntψn} which we already know to be a
Riesz-Fisher sequence (Theorem 3.1). In [18], it is shown that there exists C1 > 0
such that

(4.4)

∫ T

0

|zn(t)− e(γ+iλn)t|2 dt ≤
C1

λ2n
∀ t ∈ [0, T ]

for some γ ∈ C in the special case where λn = n. However, there is no crucial role
played by n in the computations so (4.4) can be easily verified with general λn.
The key in [18] is that when λn = n, {zn} and {eγ+iλnt} are quadratically close,
which means

∑

n

∫ T

0

|zn(t)− e(γ+iλn)t|2 dt <∞

In [21], the decay (4.4) is improved to λ−4
n so quadratically closeness follows from

Weyl’s lemma when d ≤ 3. We do not expect to be able to extend the quadratically
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close property to arbitrary dimensions. Rather, we incorporate the estimates on
{ψn} given below in Lemma 4.3 to show that {znψn} and {e(γ+iλn)tψn} are Paley-
Weiner close. The Theorem 4.1 will then become a consequence of the following
variation of the classical Paley-Weiner theorem [26]:

Lemma 4.2. Let {en} be a Riesz sequence in a Hilbert space H and {fn} ⊆ H
be an ℓ2-independent sequence, i.e. any {cn} ∈ ℓ2 such that

∑

cnfn = 0 implies
cn = 0 for all n. If there exists q ∈ (0, 1) and a finite set of indices J such that

(4.5)

∥

∥

∥

∥

∥

∥

∑

n6∈J

an(en − fn)

∥

∥

∥

∥

∥

∥

2

≤ q

∥

∥

∥

∥

∥

∑

n

anen

∥

∥

∥

∥

∥

2

for all finite sequences {an}, then {fn} is also a Riesz sequence.

Thus the Theorem 4.1 will be established if we can show three conditions hold:

(i) {e(γ+iλn)tψn} is a Riesz sequence.
(ii) {znψn} is an ℓ2-independent sequence.
(iii) There exists q ∈ (0, 1) and a finite set of indices J such that,

∥

∥

∥

∥

∥

∥

∑

n6∈J

anψn

(

zn − e(γ+iλn)t
)

∥

∥

∥

∥

∥

∥

2

≤ q

∥

∥

∥

∥

∥

∑

n

anψne
(γ+iλn)t

∥

∥

∥

∥

∥

2

for all finite sequences {an} ( Here and henceforth ‖·‖ denotes the L2(∂Ω× [0, T ])
norm).

Proof of (i). We first claim that when T > 2R, {ψne
iλnt} is actually a Riesz se-

quence, i.e. in addition to the lower inequality from Theorem 3, there exists C2 > 0
such that

∫ T

0

∫

∂Ω

∣

∣

∣

∑

anψn(x)e
iλnt

∣

∣

∣

2

dS dt ≤ C2

∑

|an|
2

for all finite sets of scalars {an}. This can be established in a similar manner to
Theorem 3.1 but with the operator A (3.2) replaced by V from the proof of Lemma
4.3 below. Alternatively, in the setting of Proposition 2.2, it is equivalent to the
following regularity estimate for w solving (1.1) which is well-known [13]:

∫ T

0

∫

∂Ω

∣

∣

∣

∣

∂w

∂ν
(x, t)

∣

∣

∣

∣

2

dS dt ≤ C2

∫

Ω

|∇w0(x)|
2 + |w1(x)|

2 dx

This is then extended to {e(γ+iλn)tψn} by noticing that

max{1, eRe(γ)T }
∥

∥

∥

∑

anψne
iλnt

∥

∥

∥

2

≥
∥

∥

∥

∑

anψne
(γ+iλn)t

∥

∥

∥

2

(4.6)

≥ min{1, eRe(γ)T }
∥

∥

∥

∑

anψne
iλnt

∥

∥

∥

2

for all finite sequences {an}. �

Proof of (ii). Consider a solution y =
∑

cnznφnλ
−1
n to the equation (4.1). In [10],

the following unique continuation property is shown:

Let y be a solution to (4.1) such that

∂y

∂ν
= 0 on ∂Ω× [0, T ]

If T > 2R, then y = 0 on Ω× [0, T ].
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This, in turn, gives y(x, T ) = yt(x, T ) = 0 for x ∈ Ω so

0 =

∫

Ω

|∇y(x, T )|2 + |yt(x, T )|
2 dx =

(

∑

|cn|
2 − cnc̄−n

)

+
(

∑

|cn|
2 + cnc̄−n

)

Therefore cn = 0 for all n. �

We now give the key lemma in establishing (iii).

Lemma 4.3. Let {ψn} be defined as in (2.2). Then there exists Cα dependent only
the domain Ω such that for any finite sequence of scalars {an},

(4.7)

∫

∂Ω

∣

∣

∣

∑

anψn(x)
∣

∣

∣

2

dS(x) ≤ Cα

(

∑

|an|
2
)1/2 (∑

|λnan|
2
)1/2

The estimate (4.7) may be viewed as stating some degree of orthogonality for
{ψn}. In proving this, we follow the techniques in [3, 25] utilizing the following
lemma.

Lemma 4.4 ([3] Appendix A). Let Ω be bounded with piecewise smooth boundary.
Then, there exists a smooth vector field α, defined on a neighborhood of Ω such that

α(x) · ν(x) ≥ 1

for almost every x ∈ ∂Ω.

Proof of Lemma 4.3. Define V : H1
0 (Ω) → L2(Ω) by (V u)(x) = α(x) · ∇u(x). First

we claim that there exists Cα > 0 such that

∣

∣

∣

∣

∫

Ω

u[V,∆]ū dx

∣

∣

∣

∣

≤ Cα‖∇u‖
2

for any u ∈ H3(Ω) ∩H1
0 (Ω). Indeed, using Einstein notation summing over i, j =

1, 2, . . . , d

∆V u = ∂ii (αj(∂ju))

= (∂iiαj)(∂ju) + 2(∂iαj)(∂iju) + αj(∂jiiu)

= V∆u+ (∂iiαj)(∂ju) + 2(∂iαj)(∂iju)

Integrating by parts once and applying the Poincaré inequality yields

∣

∣

∣

∣

∫

Ω

uV∆ū− u∆V ū dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

u(∂iiαj)(∂j ū) + 2u(∂iαj)(∂ij ū) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

u(∂iiαj)(∂j ū)− 2 [(∂iū)(∂iαj) + u(∂iiαj)] (∂j ū) dx

∣

∣

∣

∣

≤ Cα

∫

Ω

|∇u|2 dx

Take u =
∑

anφnλ
−1
n for a finite set of scalars {an}. Notice that ‖∇u‖

2 ≤ 2
∑

|an|
2

and ‖∆u‖2 ≤ 2
∑

|λnan|
2 (the factor of 2 is due to the negative indices as in Lemma
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3.3). Then, using Cauchy-Schwartz and the above estimates on V , we have
∫

∂Ω

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

2

dS ≤

∫

∂Ω

(α · ν)

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

2

dS =

∫

∂Ω

∂u

∂ν
V ū dS

=

∫

Ω

∆uV ū− u∆V ū dx

=

∫

Ω

∆uV ū− uV∆ū+ u[V,∆]ū dx

=

∫

Ω

∆uV ū+ (∇ · α)u∆ū+ V u∆ū+ u[V,∆]ū dx

≤ Cα

(

∑

|an|
2
)1/2 (∑

|λnan|
2
)1/2

�

Proof of (iii). Let cγ = (T−2R)min{1, eRe(γ)T}/CΩ be the constant from the lower

Riesz sequence inequality (4.6) for {e(γ+iλn)tψn}. Since λn → ∞, there exists k ∈ N

such that
c−1
γ CαC1

λk
< 1

Take J = {j : |j| < k}. Applying Lemma 4.3 and then the estimate (4.4), we have

∫ T

0

∫

∂Ω

∣

∣

∣

∣

∣

∣

∑

|n|≥k

anψn(x)
(

zn(t)− e(γ+iλn)t
)

∣

∣

∣

∣

∣

∣

2

≤ Cα





∫ T

0

∑

|n|≥k

|an(zn − e(γ+iλn)t)|2





1/2



∫ T

0

∑

|n|≥k

|λnan(zn − e(γ+iλn)t)|2





1/2

≤ CαC1λ
−1
k

∑

|an|
2

≤ CαC1c
−1
γ λ−1

k

∥

∥

∥

∑

ane
(γ+iλn)tψn

∥

∥

∥

2

�
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