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Isoparametric functions on Rn ×Mm

Jurgen Julio-Batalla∗

Abstract

We classify the isoparametric functions on R
n ×M

m, n,m ≥ 2, with compact

level sets, where M
m is a connected, closed Riemannian manifold of dimension

m. Also, we classify the isoparametric hypersurfaces in S
2 × R

2 with constant

principal curvatures.

Key words and phrases. Isoparametric functions; focal varieties; constant principal
curvatures; minimal submanifolds.

1 Introduction

Let (N, h) be a connected Riemannian manifold. A non-constant smooth function
f : N → R is called isoparametric if there exist smooth functions a, b : R → R such
that

(1) |∇f |2 = a(f) and (2) ∆f = b(f).

The smooth hypersurfaces Mt = f−1(t) for t regular value of f are called isoparametric

hypersurfaces. The condition (1) means that the hypersurfaces Mt are parallel and
the condition (2) says that these hypersurfaces have constant mean curvatures. The
preimage of the maximum and minimum of the isoparametric function f are denoted
by M+ and M− (resp.), they are called focal varieties of f .
The problem of classification of the isoparametric hypersurfaces in Riemannian mani-
folds started with the works of É. Cartan who proved in [4] that, when the ambient
manifolds has constant curvature, a hypersurface is isoparametric if and only if has
constant principal curvatures. A complete classification in Euclidean and real hyper-
bolic spaces followed, but the case of the spheres was richer much more difficult, and
only recently a complete classification was obtained [8]. Cartan classified the isopa-
rametric hypersurfaces in the sphere with l ∈ {1, 2, 3} different principal curvatures.
Later, Münzner [14] proved that, an isoparametric hypersurface in Sn ⊂ Rn+1 with l
distinct principal curvatures is contained in a level set of a homogeneous polynomial
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of degree l on Rn+1 satisfying certain equations known now as the Cartan–Münzner
differential equations. He used this to prove that the number l of distinct principal
curvatures can only be 1; 2; 3; 4, or 6. Then several authors worked on the difficult
cases of l = 4 or 6 distinct principal curvatures: see for instance [7, 6, 12, 8]. For a
more detailed study of isoparametric hypersurfaces on space forms see for instance [5].
The study of isoparametric functions on general Riemannian manifolds started with
the work of Q. M. Wang in [20]. Many interesting results have been obtained recently
about isoparametric hypersurfaces on different spaces [10, 16, 17, 18, 19].
Isoparametric hypersurfaces allow to reduce certain systems partial differential equa-
tions to ordinary differential equations, which can help to find explicit solutions. This
is one of the reasons for which it is important to investigate exist of such functions.
For instance it has been applied to the study of multiplicity of solutions to the Yamabe
problem on the Riemannian manifold (Mm, g) (see [11]), which consists of finding me-
trics of constant scalar curvature conformal to g. If the scalar curvature of g (denote

sg) is constant, then writing a conformal metric as h = u
4

m−2 g (for a positive function
u) we have that h has constant scalar curvature λ if and only if u is a positive solution
of the Yamabe equation

−4(m− 1)

m− 2
∆gu+ sgu = λu

m+2

m−2 .

If there is an isoparametric function f on (M, g) then one can look for solutions of the
form u = ϕ ◦ f . It follows that u solves the Yamabe equation if ϕ solves the ordinary
differential equation

−4(m− 1)

m− 2
(ϕ′′a+ ϕ′b) + sgϕ = λϕ

m+2

m−2 for a, b given by (1), (2).

In the case of a Riemannian product (M×N, g+h) an isoparametric function on any of
the factors gives an isoparametric function in the product. However, there are examples
of products with mixed isoparametric functions. The trivial examples are the radial
functions on R

n, but there are also examples for instance in S
2 × S

2 (see [18]).
We will be interested in this article in products with Euclidean space, namely (M ×
Rn, g + dx2). It is an important problem to understand the finite energy solutions to
the Yamabe equation in such products (see for instance [1, 2]). Note that positive finite
energy solutions (which have to vanish at infinity) must have compact level sets. There
is a well-known such solution which is a radial function on R

n (see [1]). Are there other
solutions? It is conjectured that the answer is NO under certain conditions, for instance
if g is Einstein. The case when M = Sm is particularly important. For instance, when
n = m = 2 if there exist no such solution then one would prove that the Yamabe
invariant of S2 × S2 is strictly greater than the one of CP2.
Our first result says that such solutions could not be built by an isoparametric function:
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Theorem 1.1. An isoparametric function on Rn ×Mm, n,m ≥ 2, with compact level

sets (where Mm is a closed Riemannian manifold) is a radial function of Rn.

Another interesting fact is related with rigidity of gradient Ricci solitons (see [15, 9]).
A gradient Ricci soliton is a Riemannian manifold (M, g) together a smooth function f
that satisfies Ric+Hessf = λg, where λ is a real constant, Hessf is the Hessian of the
function f (which is called the potential of the soliton). Taking a product N ×Rk with
N being Einstein with Einstein constant λ and f = λ|x|2/2 on Rk yields a gradient
Ricci soliton. We say that a gradient soliton is rigid if it is isometric to a quotient of
N × Rk, where N,Rk and f as above. Now, if (M, g, f) is a gradient Ricci soliton for
λ 6= 0 then ∇(sg + |∇f |2) = 2λ∇f (see [15]) and ∆f = nλ − sg: so if sg is constant
then f is an isoparametric function. Our first result also implies that, a gradient Ricci
soliton of constant scalar curvature of the form (N × Rk, h + dx2, f) with N compact
and such that each level set of f is also compact, is rigid (but this can also be proved
directly without using the theorem).

Without the compactness condition on the level sets of the isoparametric function one
would still like to know if there could be examples which do not come from isoparametric
functions on M . We will only consider the case of S2 × R2. Using the ideas developed
by Urbano in [18] for the case S2 × S2, we will prove

Theorem 1.2. The isoparametric hypersurfaces with constant principal curvatures in

S2 × R2 are of the form S2 × S1(r) (for r ∈ R+) or S1(t)× R2 (for t ∈ (0, 1)).

Note that in general, there are examples of isoparametric hypersurfaces with non-
constant principal curvatures, as in the examples in [19] for certain complex projective
spaces.

Acknowledgements. The author would like to thank Jimmy Petean for many useful
comments and support during preparation of this paper.

2 Compact isoparametric hypersurfaces in R
n×M

m

In this section we will prove Theorem 1.1. We start by recalling some structural results
for isoparametric functions on general Riemannian manifolds.

Let f be an isoparametric function on a connected complete Riemannian manifold L.
Then

1. The focal varieties of f are smooth submanifolds of L (Theorem A, [20]);

2. The interior of f(L) only has regular values (Lemma 3, [20]);

3. Each regular level set of f is a tube over either of the focal varieties (Theorem A,
[20]);
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4. The focal varieties are pure minimal submanifolds (Theorem 1.3, [13]).

Now, Let Mm be a connected, closed Riemannian manifold. We consider a family
of compact isoparametric hypersurfaces Mt in Rn × Mm with n,m ≥ 2, i.e. exist an
isoparametric function f : Rn ×M

m → R such that each Mt = f−1(t) is compact.

If the focal varieties of f are empty (i.e. M− = M+ = φ) then, from Theorem 1.1 in
[13] and the fact that Rn ×Mm can not be an S1 bundle over some Mt (since each Mt

are compact), Rn×Mm is a rank one vector bundle over some Mt regular hypersurface.
It is well-known that exits a deformation retract of the total space over the base space
of a vector bundle. This implies that, the homology group of Mt and R

n × M
m are

equivalent. In particular, we obtain 0 = Hm+n−1(M
m) = Hm+n−1(Mt) since n− 1 > 0,

which is a contradiction. Therefore there is a non-empty focal variety.
In the case that f has M− 6= φ and M+ 6= φ, again by Theorem 1.1 in [13] we have that
Mm ×Rn is diffeomorphic to a union of two disk bundles over M+ and M−. Since that
M− and M+ are compact, Rn ×M

m would be compact.
Without loss of generality, we can assume that the set M− of minimum points of f it
is non-empty and M+ = φ.
Since Rn × Mm cannot be the union of two disk bundles over compact submanifolds,
we have that Rn ×Mm is a vector bundle over M− (Theorem 2 in [3]).

Now, we point out a fact about minimal submanifolds. See [21] for more details.

Lemma 2.1. Let Φ : Ln → Rk be an isometric immersion with the mean curvature

vector H, then

∆Φ = nH,

where ∆Φ = (∆Φ1, · · · ,∆Φk).

Proof. Let {ei} be a local orthonormal frame field of L. Then

∆Φ =
∑

i

∇Rk

Φ∗ei
Φ∗ei − Φ∗∇L

ei
ei

=
∑

i

(∇Rk

Φ∗ei
Φ∗ei)

⊥ = nH.

On the other hand, let L → L̄ ⊂ ¯̄L be isometric immersions with connections ∇, ∇̄
and ¯̄∇ respectively. Denote H and H̄ to be the mean curvatures of L in L̄ and L in ¯̄L
respectively. Then

nH =
∑

(∇̄eiei)
⊥

= (
∑

( ¯̄∇eiei)
T L̄)⊥

= (
∑

( ¯̄∇eiei)
⊥)T L̄ = nH̄T L̄.
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In our situation, Φ : M− → Rn ×Mm ⊂ Rn+k is minimal for some k. Thus

∆Φ ⊥ T (Rn ×M
m).

Hence, (∆Φ1, · · · ,∆Φn) = 0.
Since M− is compact it follows that the functions Φj are constant for all j = 1, . . . , n.
Thus, the focal variety of f is of the form M− = {p} × V , where V ⊆ Mm is a
submanifold and p ∈ Rn.

Since that the submanifold V and Rn ×Mm are homotopy equivalent, we have

Hm(M
m) = Hm(V ).

Therefore, dim(V ) = m and
M− = {p} ×M

m.

But since the level sets Mt are tubes over M− this of course implies Theorem 1.1.

3 Isoparametric hypersurfaces with constant prin-

cipal curvatures in S
2 × R

2

In this section we will prove Theorem 1.2. Denotation and background will be the same
as in [18] and we refer the reader to this article for more details.
Let S2, R2 be space forms with curvatures 1 and 0 respectively. We define the complex
structures L1 and L2 by:

L1 : TS
2 → TS2

v 7→ L1(v) := p ∧ v for p ∈ S
2, v ∈ TpS

2;

L2 : R
2 → R

2

(q1, q2) 7→ L2((q1, q2)) := (−q2, q1).

We consider S2×R
2 with the product metric and the complex structures J1 = (L1, L2),

J2 = (L1,−L2). We notice that the product structure P in S2×R2 defined by P (v1, v2) =
(v1,−v2) satisfies that P = −J1J2 = −J2J1, moreover, P is parallel with respect of the
Levi-Civita connection of S2 × R2.

Let M3 ⊂ S2×R2 be an oriented hypersurface with N = (N1, N2) a unit normal vector
field to M3. We consider the function C and vector field X tangent to M3 given by:

C := 〈PN,N〉 and X := PN − CN.

Lemma 3.1. Let f : S2 × R2 → R be an isoparametric function. If each regular hy-

persurfaces Mt = f−1(t) has constant principal curvatures, then the function Ct corres-

ponding to each Mt is constant.
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Proof. By condition (1) of the definition of isoparametric function the unit vector field
N = ∇f

|∇f |
is a geodesic field. Since the product structure P is parallel, the func-

tion Ct is independent of the regular hypersurfaces Mt (since N(Ct) = 〈∇NN,PN〉 +
〈N,P∇NN〉 = 0).
Now, we consider the open set U = {p ∈ Mt/C

2(p) < 1}. If U is not empty then we
can consider on U the local orthonormal frame field,

B =

{

B1 =
X√

1− C2
, B2 =

J1N + J2N
√

2(1 + C)
, B3 =

J1N − J2N
√

2(1− C)

}

.

From the Radial Curvature Equation we have

−∇NSt + S2

t = −RN ,

where St is the shape operator of Mt corresponding to N and RN(·) = R(·, N)N .
Taking trace we obtain that

−tr(RN ) = −tr(∇NSt) + tr(S2

t ) = −∇N trSt + tr(S2

t ) = −3H ′(t) + tr(S2

t ).

We are assuming that the principal curvatures µ1(t), µ2(t) and µ3(t) of Mt are constant,
then we have that tr(S2

t ) = µ2
1 + µ2

2 + µ2
3 is constant. Therefore tr(RN) is constant in

Mt.
Now we compute tr(RN) in the frame B

RN(B1) =
1

4
√
1− C2

RS2(PX +X,PN +N)N

=
1

4
√
1− C2

RS2(N +X − C(X + CN), N +X + CN)N

=
1

4
√
1− C2

{RS2(N +X,CN)N +RS2(−C(X + CN), N)N}

=
1

4
√
1− C2

{RS2(X,CN)N +RS2(−C(X + CN), N)N} = 0;

RN(B3) = RR2

(B3, N2)N = 0;

RN(B2) =
J1N + J2N
√

2(1 + C)
|N1|2.

Thus tr(RN) =
1+C
2

and the Lemma follows.

Theorem 1.2 is equivalent to the following:
Claim: The isoparametric functions on S

2 × R
2 with regular level sets of constant

principal curvatures only depend on one factor, i.e. C2 = 1.
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Proof. Let f be an isoparametric function on S2 × R2 with Mt = f−1(t) of constant
principal curvatures. The Lemma 2.1 implies that the function C is constant.
Assume that C ∈ (−1, 1).
We are going to express the shape operator S0 = S and tangential component of the
product structure P T in the orthonormal frame field

B =

{

B1 =
X√

1− C2
, B2 =

(J1 + J2)N
√

2(1 + C)
, B3 =

(J1 − J2)N
√

2(1− C)

}

.

Note that,

〈∇C, Y 〉 = ∇Y 〈N,PN〉 = 〈∇YN,PN〉+〈N,P∇YN〉 = 2〈PN,−S(Y )〉 = 〈−2S(X), Y 〉

for Y ∈ Γ(M). Then S(X) = −∇C/2 = 0 and we can write

S =





0 0 0
0 σ22 σ23

0 σ23 σ33



 .

On the other hand,

PB1 =
1√

1− C2
(−CX +N(1 − C2)) , PB2 = B2 , PB3 = −B3,

thus

P T =





−C 0 0
0 1 0
0 0 −1



 .

By a direct computation, we obtain that

∆C = −6〈X,∇H〉 − 2tr(S2)C + 2tr(P TS2).

Then we have

tr(S2)C = tr(P TS2) = σ2

22 − σ2

33 = 3H(σ22 − σ33).

Assume now that H 6= 0.
From the expression

σ22 − σ33 =
C

3H
tr(S2),

we see that σ22 − σ33 must be constant.

Then σ2
22 + σ2

23 is also constant since tr(S2) + 3H{σ22 − σ33} = 2σ2
22 + 2σ2

23.
And since

tr(S2) + 9H2 = 2σ2

22 + 2σ2

23 + 2σ2

33 + 2σ22σ33,
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we have that 2σ33(σ33 + σ22) is constant.
Since H 6= 0, σ33 must be constant, and hence σ22 is also constant. It follows that each
σij is constant.

Now, we compute X(σ22) and X(σ33).
Before we remember the Codazzi equation of M and the Hessian of the function C
respectively:

∇S(V,W,Z)−∇S(W,V, Z) =
1

4
〈V,X〉〈PW +W,Z〉 − 1

4
〈W,X〉〈PV + V, Z〉;

∇2C(V,W ) = −2∇S(V,X,W )− 2C〈SV, SW 〉+ 2〈PSV, SW 〉.
Since Ji are parallel, we have ∇XBj = 0 for j = 1, 2, 3.
Thus,

X(σ22) = ∇S(X,B2, B2)

= ∇S(B2, X,B2) +
|X|2
2

=
|X|2
2

+ 〈PSB2, SB2〉 − C〈SB2, SB2〉

=
1− C2

2
+ (1− C)σ2

22 − (1 + C)σ2
23,

X(σ33) = ∇S(X,B3, B3)

= ∇S(B3, X,B3)

= 〈PSB3, SB3〉 − C〈SB3, SB3〉
= (σ2

23 − σ2

33)− C(σ2

23 + σ2

33)

= (1− C)σ2

23 − (1 + C)σ2

33.

From the equation (σ2
22 + 2σ2

23 + σ2
33)C = tr(S2)C = 3H(σ22 − σ33) = σ2

22 − σ2
33, we

obtain
(C − 1)σ2

22 + (C + 1)σ2

33 = −2Cσ2

23.

By combining the last expression with X(σ33) = 0, we get

(C − 1)σ2

22 = −(1 + C)σ2

23.

But X(σ22) = 0 allow us to get 1− C2 = 0.

The above argument means that the family of isoparametric hypersurfaces with constant
function C ∈ (−1, 1) are all minimal.
But, if we assume that the family Mt are all minimal, then from the trace of the Radial
Curvature Equation we have

0 = 3H ′(t) = tr(S2
t ) + tr(RN) = tr(S2

t ) +
1 + C

2
> 0.
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This argument allow us to conclude that C2 = 1.
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(1980) 57–71;
M.F. Münzner, Isoparametrische Hyperflächen in Sphären II, Math. Ann. 256
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