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Abstract—This paper is concerned with asymptotic diversity
analysis for millimeter-wave (mmWave) massive MIMO systems.
First, for a single-user mmWave system employing distributed
antenna subarray architecture in which the transmitter and
receiver consist of Kt and Kr subarrays, respectively, a diversity
gain theorem is established when the numbers of antennas at
subarrays go to infinity. Specifically, assuming that all subchan-
nels have the same number of propagation paths L, the theorem
states that by employing such a distributed antenna-subarray
architecture, a diversity gain of KrKtL−Ns+1 can be achieved,
where Ns is the number of data streams. This result means
that compared to the co-located antenna architecture, using
the distributed antenna-subarray architecture can scale up the
diversity gain or multiplexing gain proportionally to KrKt. The
diversity gain analysis is then extended to the multiuser scenario
as well as the scenario with conventional partially-connected RF
structure in the literature. Simulation results obtained with the
hybrid analog/digital processing corroborate the analysis results
and show that the distributed subarray architecture indeed yields
significantly better diversity performance than the co-located
antenna architectures.

Index Terms—Millimeter-wave communications, massive
MIMO, diversity gain, multiplexing gain, diversity-multiplexing
tradeoff, distributed antenna-subarrays, hybrid precoding.

I. INTRODUCTION

Recently, millimeter-wave (mmWave) communication has

gained considerable attention as a candidate technology for

5G mobile communication systems and beyond [1]–[3]. The

main reason for this is the availability of vast spectrum

in the mmWave band (typically 30-300 GHz) that is very

attractive for high data rate communications. However, com-

pared to communication systems operating at lower microwave

frequencies (such as those currently used for 4G mobile

communications), propagation loss in mmWave frequencies is

much higher, in orders of magnitude. Fortunately, given the

much smaller carrier wavelengths, mmWave communication

systems can make use of compact massive antenna arrays to

compensate for the increased propagation loss.

Nevertheless, the large-scale antenna arrays together with

high cost and large power consumption of the mixed ana-
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log/digital signal components make it difficult to equip a sep-

arate radio-frequency (RF) chain for each antenna element and

perform all the signal processing in the baseband. Therefore,

research on hybrid analog-digital processing of precoder and

combiner for mmWave communication systems has attracted

very strong interests from both academia and industry [4] −
[16]. In particular, a large body of work has been performed

to address challenges in using a limited number of RF chains

for massive antenna arrays. For example, the authors in [4]

considered single-user precoding in mmWave massive MIMO

systems and established the optimality of beam steering for

both single-stream and multi-stream transmission scenarios. In

[7], the authors showed that the hybrid processing can realize

any fully digital processing exactly if the number of RF chains

is twice the number of data streams.

Two architectures for connecting the RF chains in the hybrid

processing that have been studied in the literature are full-

connected and partially-connected. In the former, each RF

chain is connected to all the antenna elements, while only

a subset of antenna elements is connected to each RF chain in

the later. The partially-connected architecture is more energy-

efficient and implementation-friendly since it can reduce the

number of required phase shifters without significant perfor-

mance loss. In the conventional partially-connected architec-

ture [8]–[12] the antenna array is partitioned into a number of

smaller disjoint subarrays, each of which is driven by a single

transmission chain. More recently, a more general partially-

connected architecture, referred to as hybridly-connected in

[13] and overlapped subarray-based in [14], has been pro-

posed. In such a hybridly-connected structure, each sub-array

is connected to multiple RF chains, and each RF chain is

connected to all the antennas corresponding to the sub-array

in question. In particular, the authors in [13] demonstrate that

the spectral efficiency of the hybridly-connected structure is

better than that of the partially-connected structure and that

its spectral efficiency can approach that of the fully-connected

structure with the increase in the number of RF chains.

Nevertheless, due to the facts that the antenna arrays in

the above-mentioned RF architectures are co-located and

mmWave signal propagation has an important feature of

multipath sparsity in both the temporal and spatial domains

[17], [18], it is expected that the potentially available diversity

and multiplexing gains are not large for the co-located antenna

deployment. In order to enlarge diversity/multiplexing gains in

mmWave massive MIMO communication systems, this paper

considers a more general antenna array architecture, called

distributed antenna subarray architecture, which includes

co-located array architecture as special cases. It is pointed

http://arxiv.org/abs/1801.00387v1
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out that, deploying distributed antennas has been shown a

promising technique to increase spectral efficiency and expand

coverage of wireless communication networks [19]– [23]. As

such, it is of great interest to consider distributed antenna de-

ployment in the context of mmWave massive MIMO systems.

The diversity-multiplexing tradeoff (DMT) is a compact and

convenient framework to compare different MIMO systems

in terms of the two main and related system indicators: data

rate and error performance [24]–[27]. This tradeoff was origi-

nally characterized in [24] for MIMO communication systems

operating over independent and identically distributed (i.i.d.)

Rayleigh fading channels. The framework has then ignited a

lot of interests in analyzing various communication systems

and under different channel models. For a mmWave massive

MIMO system, how to quantify the diversity performance and

characterize its DMT is a fundamental and open research

problem. In particular, to the best of our knowledge, until

now there is no unified diversity gain analysis for mmWave

massive MIMO systems that is applicable to both co-located

and distributed antenna array architectures.

To fill this gap, this paper investigates the diversity per-

formance of mmWave massive MIMO systems with the

proposed distributed subarray architecture (the multiplexing

performance will be investigated in another paper). The focus

is on the asymptotical diversity gain analysis in order to find

out the potential diversity advantage provided by multiple

distributed antenna arrays. The obtained analysis can be used

conveniently to compare various mmWave massive MIMO

systems with different distributed antenna array structures.

The main contributions of this paper are summarized as

follows: First, for a single-user system employing the proposed

distributed subarray architecture, a diversity gain expression

is obtained when the number of antennas at each subarray

increases without bound. This expression clearly indicates that

one can obtain a large diversity gain and/or multiplexing gain

by employing the proposed distributed subarray architecture.

Second, the diversity gain analysis is extended to the multiuser

scenario with downlink and uplink transmission, as well as

the single-user system employing the conventional partially-

connected RF structure based on the distributed subarrays.

Simulation results are provided to corroborate the analysis

results and show that the distributed subarray architecture

yields significantly better diversity performance than the co-

located single-array architecture.

The remainder of this paper is organized as follows. Section

II describes the massive MIMO system model and hybrid pro-

cessing with the distributed subarray architecture in mmWave

fading channels. Section III provides the asymptotical diversity

analysis for the single-user mmWave system. In Sections IV

and V, the diversity gain analysis is extended to the multiuser

scenario and the scenario with the conventional partially-

connected RF architecture, respectively. Numerical results are

presented in Section VI. Section VII concludes the paper.

Throughout this paper, the following notations are used.

Boldface upper and lower case letters denote matrices and

column vectors, respectively. The superscripts (·)T and (·)H
stand for transpose and conjugate-transpose, respectively.

diag{a1, a2, . . . , aN} stands for a diagonal matrix with di-

agonal elements {a1, a2, . . . , aN}. The expectation operator

is denoted by E()̇. [A]ij gives the (i, j)th entry of matrix A.

A
⊗

B is the Kronecker product of A and B. We write a

function a(x) of x as o(x) if limx→0 a(x)/x = 0. Finally,

CN (0, 1) denotes a circularly symmetric complex Gaussian

random variable with zero mean and unit variance.

II. SYSTEM MODEL

Consider a single-user mmWave massive MIMO system as

shown in Fig. 1. The transmitter is equipped with a distributed

antenna array to send Ns data streams to a receiver, which

is also equipped with a distributed antenna array. Here, a

distributed antenna array means an array consisting of several

remote antenna units (RAUs) (i.e., antenna subarrays) that are

distributively located, as depicted in Fig. 2. Specifically, the

antenna array at the transmitter consists of Kt RAUs, each of

which has Nt antennas and is connected to a baseband pro-

cessing unit (BPU) by fiber. Likewise, the distributed antenna

array at the receiver consists of Kr RAUs, each having Nr
antennas and also being connected to a BPU by fibers. Such

a MIMO system shall be referred to as a (Kt,Nt,Kr,Nr)
distributed MIMO (D-MIMO) system. When Kt = Kr = 1,

the system reduces to a conventional co-located MIMO (C-

MIMO) system.

The transmitter accepts as its input Ns data streams and is

equipped with N
(rf)
t RF chains, where Ns ≤ N

(rf)
t ≤ NtKt.

Given N
(rf)
t transmit RF chains, the transmitter can apply a

low-dimension N
(rf)
t ×Ns baseband precoder, Wt, followed

by a high-dimension KtNt × N
(rf)
t RF precoder, Ft. Note

that amplitude and phase modifications are feasible for the

baseband precoder Wt, while only phase changes can be made

by the RF precoder Ft through the use of variable phase

shifters and combiners. The transmitted signal vector can be

written as

x = FtWts, (1)

where s is the Ns × 1 symbol vector such that E[ssH ] =
P
Ns

INs
. Thus P represents the average total input power.

Considering a narrowband block fading channel, the KrNr×1
received signal vector is

y = HFtWts+ n (2)

where H is KrNr×KtNt channel matrix and n is a KrNr×1
vector consisting of i.i.d. CN (0, 1) noise samples. Throughout

this paper, H is assumed known to both the transmitter and

receiver. Given that N
(rf)
r RF chains (where Ns ≤ N

(rf)
r ≤

NrKr) are used at the receiver to detect the Ns data streams,

the processed signal is given by

z = WH
r FHr HFtWts+WH

r FHr n (3)

where Fr is the KrNr×N (rf)
r RF combining matrix, and Wr

is the N
(rf)
r ×Ns baseband combining matrix.

Furthermore, according to the architecture of RAUs at the

transmitting and receiving ends, H can be written as

H =







√
g11H11 · · · √

g1Kt
H1Kt

...
. . .

...√
gKr1HKr1 · · · √

gKrKt
HKrKt






. (4)
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Fig. 1. Block diagram of a mmWave massive MIMO system with distributed antenna arrays.

Fig. 2. Illustration of distributed antenna array deployment.

In the above expression, gij represents the large scale fading

effect between the ith RAU at the receiver and the jth RAU

at the transmitter, which is assumed to be constant over many

coherence-time intervals. The normalized subchannel matrix

Hij represents the MIMO channel between the jth RAU at

the transmitter and the ith RAU at the receiver.

A clustered channel model based on the extended Saleh-

Valenzuela model is often used in mmWave channel modeling

and standardization [4], [12], [13] and it is also adopted in this

paper. For simplicity of exposition, each scattering cluster is

assumed to contribute a single propagation path.1 Using this

model, the subchannel matrix Hij is given by

Hij =

√

NtNr
Lij

Lij
∑

l=1

αlijar(φ
rl
ij , θ

rl
ij)a

H
t (φtlij , θ

tl
ij), (5)

where Lij is the number of propagation paths, αlij is the

complex gain of the lth ray, and φrlij (θrlij ) and φtlij (θtlij) are

its random azimuth (elevation) angles of arrival and departure,

respectively. Without loss of generality, the complex gains αlij

1This assumption can be relaxed to account for clusters with finite angular
spreads and the results obtained in this paper can be readily extended for such
a case.

are assumed to be CN (0, 1). 2 The vectors ar(φ
rl
ij , θ

rl
ij) and

at(φ
tl
ij , θ

tl
ij) are the normalized receive/transmit array response

vectors at the corresponding angles of arrival/departure. For an

N -element uniform linear array (ULA) , the array response

vector is

aULA(φ) =
1√
N

[

1, ej2π
d
λ
sin(φ), . . . , ej2π(N−1) d

λ
sin(φ)

]T

(6)

where λ is the wavelength of the carrier and d is the inter-

element spacing. It is pointed out that the angle θ is not

included in the argument of aULA since the response for an

ULA is independent of the elevation angle. In contrast, for a

uniform planar array (UPA), which is composed of Nh and

Nv antenna elements in the horizontal and vertical directions,

respectively, the array response vector is represented by

aUPA(φ, θ) = aULA
h (φ) ⊗ aULA

v (θ), (7)

where

aULA
h (φ) =

1√
Nh

[

1, ej2π
dh
λ

sin(φ), . . . , ej2π(Nh−1)
dh
λ

sin(φ)
]T

(8)

and

aULA
v (θ) =

1√
Nv

[

1, ej2π
dv
λ

sin(θ), . . . , ej2π(N
v
−1) dv

λ
sin(θ)

]T

.

(9)

III. DIVERSITY GAIN ANALYSIS

The most common performance metric of a digital commu-

nication system is the error probability, which can be defined

either as the probability of symbol error or the probability of

bit error (i.e., the bit error rate (BER)). When communicating

over a fading channel, errors obviously depend on specific

channel realizations. As such, the random behavior of a

fading channel needs to be taken into account, leading to the

concept of average error probabilities [28]. Determining exact

expressions for the average error probabilities for a digital

communication system operating over a certain fading channel

is usually tedious and might not give a clear insight about

the system behavior. As such, there is a need to characterize

the performance of a communication system in a simple

and insightful way. A popular approach is to shift the focus

2The different variances of αl
ij can easily accounted for by absorbing into

the large scale fading coefficients gij .
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from exact performance analysis to asymptotic performance

analysis, i.e., analyzing performance at the high signal-to-noise

(SNR) region, as done in [29]. This is a reasonable approach

since the performance of practical interest is in the high SNR

region and in such a region, good approximation can be made

on the exact analysis.

In the high-SNR region, the average BER function can be

approximated in most cases as [29]

BER ≈ (Gc · γ̄)−Gd (10)

where Gd and Gc are referred to as the diversity and coding

gains, respectively, and γ̄ is the average receive SNR. The

diversity gain determines the slope of the BER curve versus

γ̄ at high SNR in a log-log scale, whereas the coding gain

determines how the curve is shifted along the horizontal axis

with respect to a benchmark BER curve γ̄−Gd . This yields a

simple parameterized average BER characterization for high

SNR, which can provide meaningful insights on the system

performance behavior.

In this section, the diversity gain is first examined for

a generalized selection combining. The main result is then

invoked in the diversity analysis of the distributed mmWave

massive MIMO system studied in this paper.

A. Diversity Gain of Generalized Selection Combining

Selection combining (SC) is the most popular low-

complexity combining scheme. With selection combining, the

receiver estimates the SNRs of all available diversity branches

and then select the one with the highest SNR for detection.

For generalized selection combining (GSC) considered here,

the receiver also estimates the SNRs of all available diversity

branches. However, instead of selecting the branch with the

highest SNR, it selects a branch with the lth highest SNR for

detection. It is pointed out that, while such a GSC scheme

has no practical interest in its own right, its diversity analysis

can be used in performance analysis of the mmWave massive

MIMO system considered in this paper.

Lemma 1: Consider a GSC system with L receive antennas

operating over i.i.d. Rayleigh fading channels. If the receiver

selects the branch with the lth highest SNR for detection then

the system achieves diversity gain

Gd = L− l + 1. (11)

Proof: Let F (γ) and f(γ) be the probability density func-

tion (PDF) and cumulative distribution function (CDF) of the

instantaneous SNRs in all branches, respectively. Let γ̄ denote

the average receive SNR of each branch. With Rayleigh fading,

it follows from [29] that F (γ) and f(γ) can be written as

F (γ) = 1− e−
γ
γ̄ =

γ

γ̄
+ o

(

γ

γ̄

)

(12)

and

f(γ) =
1

γ̄
e−

γ
γ̄ =

1

γ̄
− γ

γ̄2
+ o

(

γ

γ̄

)

. (13)

If the receiver selects the branch with the lth highest SNR for

detection, then based on the theory of order statistics [30], the

PDF of the instantaneous receive SNR at the receiver, denoted

γl, is given by

fl:L(γl) =
L!

(L− l)!(l − 1)!
[F (γl)]

L−l[1− F (γl)]
l−1f(γl)

=
L!

(L − l)!(l − 1)!

1

γ̄

(

γl
γ̄

)L−l

+ o

(

(

γl
γ̄

)L−l
)

. (14)

Applying the above PDF in Proposition 1 in [29] leads to the

desired result. �

Lemma 1 can be extended to the case of independent but

not identically distributed (i.n.i.d.) Rayleigh fading channels

and the result is stated in the next lemma.

Lemma 2: Suppose that the GSC system with L receive

antennas operates over the i.n.i.d. Rayleigh fading channels.

If it selects the path with the lth highest SNR for detection,

then it can achieve diversity gain

Gd = L− l + 1. (15)

Proof: Let γ̄min and γ̄max denote the maximum and min-

imum values of the average receive SNRs of all these L
diversity paths, respectively. Furthermore, let A and B denote

two GSC systems, each equipped with L receive antennas and

operating over i.i.d. Rayleigh fading channels such that the

average receive SNRs equal to γ̄max and γ̄min, respectively.

It is known from Lemma 1 that the diversity gains of these

two systems are the same and equal to L − l + 1 if both

systems select the branch with the lth highest instantaneous

SNR for detection. Furthermore, since the GSC system under

consideration cannot have better diversity performance than

System A and cannot have worse diversity performance than

System B, it can then be concluded that the i.n.i.d. system

must also achieve the diversity gain of L− l + 1. �

B. Diversity Gain Analysis of the Distributed mmWave Mas-

sive MIMO System

From the structure and definition of the channel matrix

H in Section II, there is a total of Ls =
∑Kr

i=1

∑Kt

j=1 Lij
propagation paths. Naturally, H can be decomposed into a

sum of Ls rank-one matrices, each corresponding to one

propagation path. Specifically, H can be rewritten as

H =

Kr
∑

i=1

Kt
∑

j=1

Lij
∑

l=1

α̃lij ãr(φ
rl
ij , θ

rl
ij)ã

H
t (φtlij , θ

tl
ij), (16)

where

α̃lij =

√

gij
NtNr
Lij

αlij , (17)

ãr(φ
rl
ij , θ

rl
ij) is a KrNr × 1 vector whose bth entry is defined

as

[ãr(φ
rl
ij , θ

rl
ij)]b =

{

[ar(φ
rl
ij , θ

rl
ij)]b−(i−1)Nr

, b ∈ Qri
0, b /∈ Qri

(18)

where Qri = ((i− 1)Nr, iNr]. And ãt(φ
tl
ij , θ

tl
ij) is a KtNt× 1

vector whose bth entry is defined as

[ãt(φ
tl
ij , θ

tl
ij)]b =

{

[at(φ
tl
ij , θ

tl
ij)]b−(j−1)Nt

, b ∈ Qtj
0, b /∈ Qtj.

(19)
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where Qtj = ((j − 1)Nt, jNt].
Lemma 3: Suppose that the antenna configurations at

all RAUs are either ULA or UPA. Then all Ls vectors

{ãr(φrlij , θrlij)} are orthogonal to each other when Nr → ∞.

Likewise, all Ls vectors {ãt(φtlij , θtlij)} are orthogonal to each

other when Nt → ∞.

Proof: It follows immediately from (18) and (19) that if

u 6= v, then vectors {ãr(φrlup, θrlup)} and {ãr(φrlvq , θrlvq)} are

orthogonal. On the other hand, when u = v and p 6= q, it is

known from Lemma 1 and Corollary 2 in [4] (also see [31])

that vectors {ãr(φrlup, θrlup)} and {ãr(φrlvq , θrlvq)} are orthogonal.

The proof that {ãt(φtlij , θtlij)} is a set of orthogonal vectors can

be shown similarly. �

Theorem 1: Suppose that both sets {ãr(φrlij , θrlij)} and

{ãt(φtlij , θtlij)} are orthogonal vector sets when Nr → ∞ and

Nt → ∞. Let Ns ≤ Ls. Then the distributed massive MIMO

system with large Nr and Nt can achieve a diversity gain of

Gd = Ls −Ns + 1. (20)

Proof: The distributed massive MIMO system can be consid-

ered as a co-located massive MIMO system with Ls paths

that have complex gains {α̃lij}, receive array response vectors

{ãr(φrlij , θrlij)} and transmit response vectors {ãt(φtlij , θtlij)}.

Furthermore, order all paths in a decreasing order of the

absolute values of the complex gains {α̃lij}. Then the channel

matrix can be written as

H =

Ls
∑

l=1

α̃lãr(φ
rl, θrl)ãt(φ

tl, θtl)H , (21)

where α̃1 ≥ α̃2 ≥ · · · ≥ α̃Ls . One can rewrite H in a matrix

form as

H = ArDAH
t (22)

where D is a Ls × Ls diagonal matrix with [D]ll = α̃l, and

Ar and At are defined as follows:

Ar = [ãr(φ
r1, θr1), ãr(φ

r2, θr2), . . . , ãr(φ
rLs , θrLs)] (23)

and

At = [ãt(φ
t1, θt1), ãt(φ

t2, θt2), . . . , ãt(φ
tLs , θtLs)]. (24)

Since both {ãr(φrl, θrl)} and {ãt(φtl, θtl)} are orthogonal

vector sets when Nr → ∞ and Nt → ∞, Ar and At are

asymptotically unitary matrices. Then one can form a singular

value decomposition (SVD) of matrix H as

H = UΣVH = [Ar|A⊥

r ]Σ[Ãt|Ã⊥

t ]
H (25)

where Σ is a diagonal matrix containing all singular values

on its diagonal, i.e.,

[Σ]ll =

{

|α̃l|, for 1 ≤ l ≤ Ls
0, for l > Ls

(26)

and the submatrix Ãt is defined as

Ãt = [e−jψ1 ãt(φ
t1, θt1), . . . , e−jψLs ãt(φ

tLs , θtLs)] (27)

where ψl is the phase of complex gain α̃l corresponding to

the lth path.

Based on (25), the optimal precoder and combiner are

chosen, respectively, as

[FtWt]opt = [e−jψ1 ãt(φ
t1, . . . , e−jψLs ãt(φ

tNs , θtNs)] (28)

and

[FrWr]opt = [ãr(φ
r1, . . . , ãr(φ

rNs , θrNs)]. (29)

To summarize, when Nt and Nr are large enough, the

massive MIMO system can employ the optimal precoder and

combiner given in (28) and (29), respectively. Then it follows

from the above SVD analysis that the instantaneous SNR of

the lth data stream is given by

SNRl =
P

Ns
|α̃l|2, l = 1, 2, . . . ,Ns. (30)

Now the detection of the lth data stream is equivalent to the

detection in a generalized selection combining system, which

selects the path with the lth highest SNR for detection. There-

fore, it follows from Lemma 2 that the detection performance

of the lth data stream has a diversity gain Ls− l+1. Since the

overall BER is the arithmetic mean of individual BERs, i.e.,

BER = 1
Ns

∑Ns

l=1 BER(l), the system’s diversity gain equals

to the diversity gain in detecting the Nsth data stream, which

is the worst among all data streams. Therefore, the result in

(20) is obtained. �

Remark 1: When Nt and Nr are large enough, (25) indicates

that the system multiplexing gain is at most equal to Ls. This is

reasonable since there exist only Ls effective singular values in

the channel matrix H. Theorem 1 provides a simple diversity-

multiplexing tradeoff of a mmWave massive MIMO system:

adding one data stream to the system decreases the diversity

gain by one, whereas removing one data stream increases the

diversity gain by one. Such a tradeoff is useful in designing

a system to meet requirements on both data rate and error

performance.

Remark 2: Under the case where Nt and Nr are large

enough, it can be deduced from the proof of Theorem 1 that

the diversity performance of the mmWave massive MIMO

system only depends on the singular value set {α̃l} and is

not influenced by how sub-matrices {√gijHij} are placed in

the channel matrix H (see further discussion of Fig. 10 on

this point).

Corollary 1: Consider the scenario that the antenna config-

uration at each RAU is ULA. Also assume that Lij = L for

any i and j. Let Ns ≤ KrKtL. When both Nt and Nr are

very large, the distributed massive MIMO system can achieve

a diversity gain

Gd = KrKtL−Ns + 1. (31)

In particular, when Kr = Kt = 1, the massive MIMO system

with co-located antennas arrays can achieve a diversity gain

Gd = L−Ns + 1 (32)

Remark 3: Corollary 1 implies that for a mmWave co-

located massive MIMO system, its diversity gain and mul-

tiplexing gain are limited and at most equal to the number of

paths L. However, these gains can be increased by employing

the distributed antenna architecture and can be scaled up

proportionally to KrKt.
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IV. DIVERSITY GAIN ANALYSIS WITH THE

CONVENTIONAL PARTIALLY-CONNECTED STRUCTURE

The previous section has analyzed the diversity gain for the

massive MIMO system with the general fully-connected RF

architecture. This section focuses on a massive MIMO system

employing the conventional partially-connected RF architec-

ture as illustrated in Fig. 3. Here the transmitter equipped

with Kt RF chains sends Ns data streams to the receiver

equipped with Kr RF chains. Each RF chain at the transmitter

or receiver is connected to only one RAU. It is assumed

that Ns ≤ min{Kt,Kr}. The numbers of antennas per each

RAU at the transmitter and receiver are fixed as Nt and Nr,
respectively. Note that Nt ≫ Ns and Nr ≫ Ns. Both the

transmitter and receiver employ very small digital processors

and very large analog processors, represented respectively by

Wt and Ft for the transmitter, and Wr and Fr for the

receiver.

As before, denote by s the transmitted symbol vector, by

H the fading channel matrix, and by n the noise vector.

Then at the receiver the processed signal vector z is given

by (3), whereas H is described as in (4). Due to the partially-

connected RF architecture, the analog processors Ft and Fr
are block diagonal matrices, expressed as

Ft = diag{ft1, ft2, . . . , ftKt
} (33)

and

Fr = diag{fr1, fr2, . . . , frKr
} (34)

where fti denotes the Nt× 1 steering vector of phases for the

ith RAU at the transmitter, and frj the Nr× 1 steering vector

of phases for the jth RAU at the transmitter.

Theorem 2: Consider the case that the antenna array config-

uration at each RAU is ULA and Lij = L for any i and j. In

the limit of large Nt and Nr, the distributed massive MIMO

system with partially-connected RF architecture can achieve a

diversity gain

Gd = (Kt −Ns + 1)(Kr −Ns + 1)L. (35)

Proof: When Nt and Nr are very large, the diversity gain

analysis is similar to that in Theorem 1. For the first data

stream that enjoys the best path, it is simple to see that its di-

versity gain is the largest and equal to KrKtL. This is because

the detection of the first data stream is equivalent to a selection

combining system operating with KrKtL paths. However, for

the second data stream, due to the structure of Ft and Fr,

its detection is equivalent to a selection combining system

operating with (Kr − 1)(Kt− 1)L paths. Therefore, it can be

inferred that its diversity gain is equal to (Kr− 1)(Kt− 1)L.

Similarly, for the last data stream among the Ns data streams,

its diversity gain is (Kr − Ns + 1)(Kt − Ns + 1)L. It then

follows that the diversity gain of the whole system is just

(Kr −Ns + 1)(Kt −Ns + 1)L. �

Remark 4: Comparing the diversity gain given in Corollary

1 with that given in Theorem 2 reveals that when Ns = 1 the

diversity gains with the two systems under consideration are

the same. However, when Ns > 1, the proposed distributed

antenna system with fully-connected RF architecture achieves

a higher diversity gain than the system with the partially-

connected architecture, and the gap between the two diversity

gains is (Ns − 1)[(Kr +Kt −Ns + 1)L− 1].

V. DIVERSITY GAIN ANALYSIS FOR THE MULTIUSER

SCENARIO

This section considers the downlink communication in a

massive multiuser MIMO system as illustrated in Fig. 4. Here

the base station (BS) employs Kb RAUs with each having Nb
antennas and N

(rf)
b RF chains to transmit data streams to Ku

mobile stations. Each mobile station (MS) is equipped with

Nu antennas and N
(rf)
u RF chains to support the reception of

its own Ns data streams. This means that there is a total of

KuNs data streams transmitted by the BS. The numbers of

data streams are constrained as KuNs ≤ N
(rf)
b ≤ KbNb for

the BS, and Ns ≤ N
(rf)
u ≤ Nu for each MS.

At the BS, denote by Fb the KbNb × N
(rf)
b RF precoder

and by Wb the N
(rf)
b ×NsKu baseband precoder. Then under

the narrowband flat fading channel model, the received signal

vector at the ith MS is given by

yi = HiFbWbs + ni, i = 1, 2, . . . ,Ku (36)

where s is the signal vector for all Ku mobile stations,

which satisfies E[ssH ] = P
KuNs

IKuNs
and P is the average

transmit power. The Nu×1 vector ni represents additive white

Gaussian noise, whereas the Nu × KbNb matrix Hi is the

channel matrix corresponding to the ith MS, whose entries

Hij are described as in Section II. Furthermore, the signal

vector after combining can be expressed as

zi = WH
uiF

H
uiHiFbWbs +WH

uiF
H
uini, i = 1, 2, . . . ,Ku

(37)

where Fui is the Nu ×N
(rf)
u RF combining matrix and Wui

is the N
(rf)
u ×Ns baseband combining matrix for the ith MS.

Theorem 3: Consider the case that all antenna array config-

urations for the downlink transmission are ULA and Lij = L
for any i and j (i.e., all subchannels Hij have the same number

of propagation paths). In the limit of large Nb and Nu, the

downlink transmission in a massive MIMO multiuser system

can achieve a diversity gain

Gd = KbL−Ns + 1. (38)

Proof: For the downlink transmission in a massive MIMO

multiuser system, the overall equivalent multiuser basedband

channel can be written as

Heq =











FHu1 0 · · · 0
0 FHu2 · · · 0
...

...
. . .

...

0 0 · · · FHuKu





















H1

H2

...

HKu











Fb. (39)

On the other hand, when both Nb and Nu are very large, both

receive and transmit array response vector sets, {ãr(φrlij , θrlij)}
and {ãt(φtlij , θtlij)}, are asymptotically orthogonal. Therefore

the diversity performance for the ith user depends only on

the subchannel matrix Hi and the choices of Fui and Fb.

The subchannel matrix Hi has a total of KbL propagation

paths. Similar to the proof of Theorem 1, by employing the
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Fig. 3. Block diagram of a mmWave massive MIMO system with the conventional partially-connected RF architecture.
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Fig. 4. Block diagram of a multiuser mmWave system with distributed antenna arrays.

optimal RF precoder and combiner for the ith user, the user

can achieve a maximum diversity gain KbL − Ns + 1. It is

then concluded that the downlink transmission can achieve a

diversity gain Gd = KbL−Ns + 1. �

Remark 5: Theorem 3 implies that when Nb and Nu are

large enough, the available diversity gain Gd does not depend

on the number of mobile users Ku.

Remark 6: In a similar fashion, it is easy to prove that the

uplink transmission in a massive MIMO multiuser system can

also achieve a diversity gain Gd = KbL−Ns + 1. Moreover,

it can also be proved that when L = 1, the system diversity

gain is equal to Gd = Kb for the case Nu = 1, i.e., each MS

has only one antenna.

VI. SIMULATION RESULTS

For all simulation results presented in this section, it is

assumed that each subchannel matrix Hij consists of Lij =
L = 3 paths, each of the large scale fading coefficients

gij equals to g = −20 dB (except for Fig. 10), and the

numbers of transmit and receive RF chains are twice the

number of data streams [7] (i.e., N
(rf)
t = N

(rf)
r = 2Ns). It is

further assumed that the variance of AWGN samples is unity

and hence the input SNR is the same as the average input

power P/Ns. For simplicity, only ULA array configuration

with d = 0.5 is considered at RAUs and BPSK modula-

tion is employed for each data stream. With such system

configurations, the instantaneous BER is given by Q(
√
2γ)

[32], where γ denotes the instantaneous receive SNR and

the Q-function is defined as Q(x) =
∫

∞

x
exp

(

− y2

2

)

dy. For

ease of comparison and discussion, introduce the concept of

designed SNR as SNRdg = PNrNt/(NsL). This means

that P = SNRdgNsL/(NrNt) for a given designed SNR

SNRdg. In fact, there exists a power scaling law for mmWave

communications which states that the data transmit power P
can be scaled down proportionally to 1/(NrNt) to maintain a

desirable BER performance [33].

In all simulations, unless stated otherwise, there are three

main steps for hybrid digital-analog processing as follows:

(a) Perform the SVD for channel matrix H and find the

optimal overall digital precoder and combiner for Ns data

streams.

(b) Form an analog precoder and an analog combiner based

on the optimal overall digital precoder and combiner,

respectively.

(c) Perform zero-forcing (ZF) digital detection based on the

analog precoder and analog combiner and complete the

data detection operation.

First, the singular values of channel matrix H are studied.

Let Kr = Kt = K . It is expected that when Nt and Nr are

large enough, the number of the effective singular value for

the cases K = 2 and K = 1 should be equal to Ls = 12 and

Ls = 3, respectively. To confirm this, Fig. 5 plots the 1st, the

12th and 13th singular values for K = 2, and the 1st, the 3th

and 4th singular values for K = 1, when Nr increases from

10 to 100, It can be seen from this figure that as Nr increases,

all six singular values slowly increases, but the difference at
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Fig. 5. Behavior of singular values of channel matrix H for K = 1 and
K = 2.
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Fig. 6. BER versus designed SNR: Comparison between distributed and co-
located antenna array architectures.

Nr = 10 and Nr = 100 is small. The 13th singular value is

very much smaller than the 12th singular value when K = 2
and it is almost equal to zero. Likewise, the 4th singular value

is much smaller than the 3th singular value when K = 1 and

it is almost zero. On the other hand, the 12th singular value

under K = 2 and the 3th singular value under K = 1 are quite

close to their corresponding largest singular values. Thus this

figure verifies that the multiplexing gain is in fact at most

equal to Ls as stated in Remark 1.

Studied next is the diversity performance of a mmWave

MIMO system with distributed antenna arrays. With Nr =
Nt = N = 50 and Kr = Kt = K = 2, Fig. 6 plots

BER curves versus the designed SNR for different numbers

of data streams, Ns = 2, 4, 6. For comparison, the BER curve

obtained in the case of co-located antenna arrays are also

plotted for Ns = 1, 2, 3. It can be seen that even for the
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Ns = 2, K = 1
DGV: Gd = 2
Ns = 2, K = 2
DGV: Gd = 11
Ns = 6, K = 2
DGV: Gd = 7

Fig. 7. BER versus designed SNR: Verifying diversity gain.

larger number of data streams, the BER performance with

distributed antenna arrays is clearly better than that with co-

located antenna arrays. Furthermore, as Ns decreases, the

BER performance with either distributed or co-located antenna

arrays is improved. These observations are expected and agree

with Corollary 1, which states that using distributed antenna

arrays yields higher diversity gains than using co-located an-

tenna arrays. To verify exactly the diversity gain result given in

Corollary 1, Fig. 7 plots diversity gain verifying (GDV) curves

produced by simulating the generalized selection combining

(GSC) systems. It can be seen that in the high SNR region, a

BER curve with either distributed or co-located antenna arrays

has the same slope as the corresponding GDV curve.

Illustrated in Fig. 8 is the performance with the conventional

partially-connected (PC) RF architecture analyzed in Section

IV. With this structure, one first carries out the SVDs for

subchannel matrices {Hij} rather than for the whole channel

matrix H and then forms the analog precoder and analog

combiner. Let Kr = Kt = K . With Nr = Nt = N = 50,

Fig. 8 plots the BER curves for the following four cases:

(K = 1,Ns = 1), (K = 2,Ns = 2), (K = 3,Ns = 3),
and (K = 4,Ns = 4). It is known from Theorem 2 that the

diversity gains for the four cases are identical and equal to

Gd = L = 3. To illustrate this, a DGV curve with diversity

gain Gd = 3 is also plotted in this figure. It can be seen that

the system with the conventional PC structure for the four

cases can achieve the full diversity gain 3, while the coding

gain increases when both K and Ns increase. For comparison,

the BER curve obtained with the general fully-connected (FC)

RF structure when Ns = 4 and K = 2 is also plotted. The

theoretical limit on the diversity gain in this case is 9, which

agrees well with the DGV curve having Gd = 9. Observe

that in the high SNR region the general FC structure yields

significantly better diversity performance than the conventional

PC structure.

Next, when Ns = 1, we consider the diversity performance

with the multiuser downlink scenario where there are 5 or 10
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Fig. 8. BER versus designed SNR: Conventional partially-connected archi-
tectures with different numbers of data streams.

mobile users, each having 10 antennas and each RAU at the BS

is equipped with 50 antennas. Due to the fact that there is no

cooperation among the users, one first carries out the SVDs for

subchannel matrices {Hi} rather than for the whole channel

matrix H and then forms the analog precoder for the BS and

analog combiners for the users. Note that the BS needs to carry

out ZF digital preprocessing before transmitting data. Fig. 9

plots the BER curves versus the designed SNR for different

numbers of subarrays at the BS, namely Kb = 1, 3, 5. It can

be observed from this figure that as Kb increases, the diversity

performance of the multiuser system improves remarkably.

This is because, as established in Theorem 3, the diversity

gain becomes larger with increasing Kb. Furthermore, it can

be seen from Fig. 9 that the system has the same diversity gain

for different numbers of users while the coding gain increases

as Ku decreases. This observation agrees with Remark 5.

Finally, the diversity performance of the single-user

mmWave massive MIMO system is examined under the sce-

nario that the distributions of large scale fading coefficients,

{gij}, are inhomogeneous. To this end, let G = [gij (dB)]
denote the large scale fading coefficient matrix. When Nr =
Nt = N = 50 and Kr = Kt = K = 2, simulation is

performed for the following six inhomogeneous G:

G1 =

[

−25 −20
−20 −25

]

, G2 =

[

−20 −20
−25 −25

]

,

G3 =

[

−20 −25
−25 −20

]

, G4 =

[

−20 −25
−20 −25

]

,

G5 =

[

−25 −25
−20 −20

]

, G6 =

[

−25 −20
−25 −20

]

.

It can be found that the diversity performance for the six

inhomogeneous cases are almost the same (see Remark 2).

In order to illustrate this interesting phenomenon, Fig. 10

plots the BER curves versus the designed SNR with G1 and

G2, respectively. For comparison, the two BER curves for the

homogeneous distributions with g = −20dB and g = −25dB
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Fig. 9. BER versus designed SNR: Multiuser scenario with different numbers
of subarrays.

18 20 22 24 26 28 30 32 34 36 38

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNRdg (dB)

B
E
R

 

 

Homogeneous, Case I
Inhomogeneous, Case I
Inhomogeneous, Case II
Homogeneous, Case II

Fig. 10. BER versus designed SNR: Comparison between homogeneous dis-
tributions and inhomogeneous distributions for large scale fading coefficients
{gij}.

are also plotted. As expected, the BER curves with the

inhomogeneous coefficient distributions are between the two

BER curves with homogeneous coefficient distributions. It can

be concluded from this figure that the case of inhomogeneous

coefficient distributions has the same diversity gain as in the

case of homogeneous coefficient distributions.

VII. CONCLUSIONS

This paper has provided asymptotical diversity analysis

for mmWave massive MIMO systems with co-located and

distributed antenna architectures when the number of antennas

at each subarray goes to infinity. Theoretical analysis shows

that with a co-located massive antenna array, scaling up the

number of antennas of the array can increase the coding gain

(array gain), but not the diversity gain. However, if the array
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is built from distributed subarrays (RAUs), each having a very

large number of antennas, then increasing the number of RAUs

does increase the diversity gain and/or multiplexing gain.

As such, the analysis leads to a novel approach to improve

the diversity and multiplexing gains of mmWave massive

MIMO systems. It is acknowledged that the asymptotical

diversity analysis obtained in this paper is under the idealistic

assumption of having perfect CSI. Performing the diversity

analysis for mmWave massive MIMO systems under imperfect

CSI is important and deserves further research.
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