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Abstract—This paper studies the downlink of a cloud radio
access network (C-RAN) in which a centralized processor (CP)
communicates with mobile users through base stations (BSs)
that are connected to the CP via finite-capacity fronthaul links.
Information theoretically, the downlink of a C-RAN is modeled
as a two-hop broadcast-relay network. Among the various trans-
mission and relaying strategies for such model, this paper focuses
on the compression strategy, in which the CP centrally encodes
the signals to be broadcast jointly by the BSs, then compresses
and sends these signals to the BSs through the fronthaul links.
We characterize an achievable rate region for a generalized
compression strategy with Marton’s multicoding for broadcasting
and multivariate compression for fronthaul transmission. We
then compare this rate region with the distributed decode-
forward (DDF) scheme, which achieves the capacity of the general
relay networks to within a constant gap, and show that the
difference lies in that DDF performs Marton’s multicoding and
multivariate compression jointly as opposed to successively as
in the compression strategy. A main result of this paper is that
under the assumption that the fronthaul links are subject to a
sum capacity constraint, this difference is immaterial; so, for the
Gaussian network, the compression strategy based on successive
encoding can already achieve the capacity region of the C-RAN
to within a constant gap, where the gap is independent of the
channel parameters and the power constraints at the BSs. As a
further result, for C-RAN under individual fronthaul constraints,
this paper also establishes that the compression strategy can
achieve to within a constant gap to the sum capacity.

Index Terms—Cloud radio access network (C-RAN), compres-
sion, distributed decode-forward, fronthaul, relay channel.

I. INTRODUCTION

This paper studies the downlink of a cloud radio access net-
work (C-RAN) in which the base stations (BSs) are connected
to a centralized cloud-computing-enabled processor through
wired or wireless fronthaul links [1]. Information theoretically,
the downlink C-RAN can be modeled as a broadcast-relay
channel: the CP broadcasts the user messages to the BSs via
the fronthaul links and the BSs act as relays for the mobile
users. This paper considers the C-RAN model where the BSs
are connected to the CP through noiseless digital fronthaul
links of finite capacities and there are no direct links between
the CP and the mobile users. In the ideal case where the
capacities of the fronthaul links are infinite, downlink C-
RAN model reduces to a multi-antenna broadcast channel.
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The optimal transmission strategy in this case is cooperative
beamforming combined with dirty-paper coding (DPC) [2].
For the practical situation where the fronthaul links have
finite capacities, the optimal coding strategy must combine
both broadcasting and relaying, and is highly non-trivial; the
characterization of the capacity region is still an open problem.
This paper makes progress in establishing the achievable rate
region of a generalized compression strategy and in showing
that it is approximately optimal for the downlink C-RAN under
certain conditions.

A. Coding Strategies

While the C-RAN architecture has been originally mo-
tivated by the radio-over-fiber concept [1], the information
theoretical study of the downlink C-RAN model belongs
to that of relay channels, and more specifically relates to
the so-called diamond relay channels for which there is an
extensive literature, e.g., [3], [4], [5], [6], [7]. In the C-
RAN context, there are two main classes of transmission
and relaying strategies available in the literature: the data-
sharing and the compression strategies. In the data-sharing
strategy, individual user messages are sent directly via the
digital fronthaul to the BSs, which then perform cooperative
beamforming to the users. The capacity constraints of the
fronthaul links limit the number of users whose messages can
be sent to each BS, hence limiting the cooperation BS cluster
size for each user. Among the data-sharing schemes, joint
encoding at the BSs can be done using linear beamforming
with the sharing of the entire messages [8] or with message
splitting [9]. Generalized versions of the data-sharing strategy
using Marton’s broadcast coding have been proposed for a 2-
user 2-BS C-RAN in [10], and improved upon in [11], [12] by
using a common message, and further generalized in [13] for
arbitrary number of users and BSs. Although the data-sharing
strategy does not necessarily achieve the capacity in general,
there are some special cases for which it does. For example,
the achievable rate based on Marton’s coding proposed in
[14] for a C-RAN with a single user (but any number of
BSs) can be shown to achieve the capacity in some interesting
regimes of operation. Upper bounds on the sum rate of some
other specific cases of C-RAN model are studied in [15].
We also mention here that instead of sharing the individual
user messages directly, the CP may send a function of user
messages to the BSs. For example, in the reverse compute-
forward strategy [16], a function of the messages is relayed
to the BSs using lattice codes. As an alternative to the data-
sharing strategy, the capacity limitation of the fronthaul links
can also be dealt with using a compression strategy [17], in
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which the encoding is performed at the CP as a function of
the messages of all users, but in order to accommodate the
capacity constraints of the fronthaul links, the encoded analog
signals are compressed and sent to the BSs. The BSs then
transmit the encoded signals to the users after decompressing
the received compression bits. We note here that a hybrid
scheme combining the data sharing and compression strategies
is also possible [18].

This paper aims to understand the information theoretical
optimality of the compression strategy for C-RAN. As pointed
out earlier, if the fronthaul capacity is infinite, the downlink
C-RAN reduces to the well-known vector Gaussian broadcast
channel, for which DPC achieves the capacity region. For
the finite fronthaul case, DPC and linear precoding schemes
cannot be applied directly. A compressed version of DPC
using independent compression across the BSs is introduced in
[19] and the achievable user rates are derived for a simplified
Wyner type model. The independent compression scheme
can be further improved by using a multivariate compression
strategy across all the BSs [20]. The idea is to correlate the
quantization noises at the different BSs to better control the
effect of quantization at the users. The achievable rate expres-
sions under linear beamforming and multivariate compression
for the Gaussian C-RAN model are given in [20] and the
corresponding achievable rate region using dirty paper coding
followed by multivariate compression is given in [1].

Can either the data-sharing or compression strategy ap-
proach the information theoretic capacity region of the C-
RAN model? Toward answering this question, this paper draws
inspiration from a new coding strategy named distributed
decode-forward (DDF) [21] for broadcasting multiple mes-
sages over a general relay network, which has been shown to
achieve the capacity region of the general Gaussian broadcast
relay network to within a constant gap, which is linear in the
number of nodes in the network but is independent of the
channel parameters and the power constraints. We remark that
when specialized to the downlink C-RAN model, the gap can
be improved from linear to logarithmic in the number of users
and BSs [22]. Further, it may be possible to further enlarge the
rate region of the DDF strategy by incorporating a common
codeword, as shown for a two-user two-BS C-RAN model
with BS corporation in [11], [12].

B. Contributions

This paper makes an observation that when specialized to
the C-RAN model, the DDF strategy resembles the compres-
sion strategy for C-RAN, but with a crucial difference that
instead of performing the compression followed by Marton’s
multicoding, the DDF performs both the Marton’s coding
and multivariate compression jointly at the CP. As practical
implementation for performing successive Marton’s coding
and multivariate compression would likely be easier, we ask
in this paper whether there are conditions under which the
difference is immaterial. One of the main results of this
paper is that under a sum fronthaul constraint, this is indeed
true. Thus, for the Gaussian C-RAN under the sum fronthaul
constraint, the compression strategy can already achieve the

capacity region to within a constant gap. As a further result, for
the Gaussian C-RAN under individual fronthaul constraints,
this paper also shows that Marton’s encoding followed by
multivariate compression can achieve the sum capacity to
within a constant gap. More specifically, this paper makes the
following contributions:

1) We provide the achievable rate region of a general
form of the compression strategy that includes Marton’s
multicoding followed by multivariate compression for
the C-RAN model with digital fronthaul in the first hop
and a general discrete memoryless channel (DMC) in
the second hop.

2) We specialize the DDF strategy to the C-RAN model and
compare the coding strategies of the above generalized
compression strategy and the DDF strategy. We observe
that DDF is a further generalization in that the Marton’s
coding and multivariate compression are done jointly.

3) We analyze the conditions under which such a general-
ization of the compression strategy in the DDF strategy
does not strictly enlarge the achievable rate region.

a) With any DMC on the second hop, the generalized
compression strategy and the DDF strategy achieve
the same rate region under a sum fronthaul con-
straint.

b) With a Gaussian network on the second hop, the
sum rate achieved by the above general compres-
sion strategy is within a constant gap to the sum
capacity of C-RAN, where the gap is independent
of the network parameters.

C. Notation and organization

Random variables are denoted by uppercase letters, their re-
alizations by lowercase letters, and the probability distributions
by p(·). Sets are denoted by calligraphic letters, while [1 : n]
denotes the set {1, . . . , n} for all natural numbers n. A sub-
script for a random variable and its realization denotes its node
index. A superscript for a random variable or its realization
is a time index that denotes a sequence of random variables
or its realizations till that index (e.g., Xn

l = (X1
l , . . . , X

n
l )

or xnl = (x1l , . . . , x
n
l )). Random variables can be indexed

with sets (e.g., X(S) = (Xl : l ∈ S)). Bold-face lower case
letters are used to denote vectors and bold-face upper case
letters are used to denote random vectors or matrices. The
standard notations for entropy, H(X), and mutual information,
I(X;Y ), are used. Total correlation between a group of
random variables is denoted by T (·) and is defined as

T (X(S)) =
∑
l∈S

H(Xl)−H(X(S)). (1)

See [23] for motivation of such a definition and some of its
properties. We follow the typicality notation of [24] and use
T (n)
ε to denote the set of typical sequences of length n with

parameter ε.
The rest of the paper is organized as follows. Section II

provides a mathematical model for the downlink C-RAN.
Section III provides the achievable rate region results of the
generalized compression strategy. Section IV specializes the
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Fig. 1. Downlink C-RAN with L BSs, K users, and a channel
p(y1, . . . , yK |x1, . . . , xL) between the BSs and the users.

distributed decode-forward strategy to the downlink C-RAN
model under consideration. In Section V, we compare the rate
regions achieved by the two strategies and provide conditions
under which the two coincide. Section VI concludes the paper.

II. SYSTEM MODEL

Consider the downlink of a C-RAN comprising of a CP
and L BSs serving K users as shown in Fig. 1. The CP
communicates with BSs through noiseless fronthaul links of
finite capacities, denoted by Cl for BS l, l ∈ L := [1 : L].
We assume a discrete memoryless channel (X1 × · · · ×
XL, p(y1, . . . , yK |x1, . . . , xL),Y1×· · ·×YK) between the BSs
and the users. Let the intended message for user k be denoted
by Mk, k ∈ K := [1 : K]. A (2nR1 , . . . , 2nRK , n) code for the
downlink C-RAN consists of a mapping at the CP from the K
user messages (m1, . . . ,mK) ∈ [1 : 2nR1 ]× · · · × [1 : 2nRK ]
to L indices (t1, . . . , tL) ∈ [1 : 2nC1 ] × · · · × [1 : 2nCL ],
encoders at the L BSs that map the index tl to a codeword
xnl (tl), and decoders at the K users that estimate m̂k based
on the received signals ynk . The average probability of error
is defined as P (n)

e = P{m̂k 6= mk for some k ∈ K}. A rate
tuple (R1, . . . , RK) is achievable if there exists a sequence of
codes such that limn→∞ P

(n)
e = 0.

Of particular interest is the special case where the channel
between the BSs and the users is a Gaussian channel such that

Y = HX + Z, (2)

where Y = [Y1, . . . , YK ]
T are the received signals at the K

users, X = [X1, . . . , XL]
T are the transmitted signals from

the L BSs, H = [h1, . . . ,hk]T is the K × L channel matrix
consisting of channel vectors h1 to hk for users 1 to K,
respectively, and Z = [Z1, . . . , ZK ]T ∼ N (0, σ2I) is the
additive white Gaussian noise. We assume all the BSs have
an average power constraint of P without loss of generality.
For simplicity, both the BSs and the users are assumed to be
equipped with a single antenna in this paper.

III. GENERALIZED COMPRESSION STRATEGY

The compression strategy has been extensively studied in
the literature [17], [19], [20]. The coding strategy involves two
steps. First, the CP jointly encodes the user messages. Second,
the encoded signals are compressed in order to accommodate

them through the fronthaul links. Different options for joint
encoding include linear beamforming strategies such as zero-
forcing or regularized zero-forcing, or non-linear beamforming
strategy such as dirty paper coding. Different options for
compression include independent compression or multivariate
compression. The main point of this section is to show that
these specific compression strategies previously studied in
[17], [19], [20] are special forms of a generalized compression
strategy in which joint encoding is performed via Marton’s
multicoding. The coding strategy proposed in this paper does
not, however, incorporate the possibility of a common code-
word, as done in [11], [12].

Theorem 1. A rate tuple (R1, . . . , RK) is achievable for the
downlink C-RAN using the compression strategy with Marton’s
multicoding followed by multivariate compression if∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (3)

for all D ⊆ K such that∑
l∈S

Cl > I(U(K);X(S)) + T (X(S)) (4)

for all S ⊆ L for some distribution p(u1, . . . , uK , x1, . . . , xL).

The proof of achievibility is in Appendix A. The set
of inequalities (3) represents the achievable user rates us-
ing Marton’s multicoding for broadcast channels. In linear
beamforming, the U ’s are just the messages and are thus
independent of each other. The advantage of using Marton’s
multicoding is to introduce correlation among U ’s for the
possibility of increased rates. But doing so incurs a penalty
that depends on the total correlation present among U ’s. DPC
is an example of such Marton’s coding.

One way to implement Marton’ coding is through suc-
cessive encoding of user messages. Assuming without loss
of generality that the encoding order is user 1, . . . ,K.
The achievable rate for user 1 is I(U1;Y1). Treating user
1’s message as known interference, user 2 achieves a rate
of I(U2;Y2) − I(U1;U2); and user k achieves a rate of
I(Uk;Yk)− I(Uk;Uk−1, . . . , U1). We remark that, as pointed
out in [25], there is a subtle issue that such successive encoding
may not achieve the entire Marton’s region. The reason is
that even though the set function

∑
k∈D I(Uk;Yk)−T (U(D))

satisfies the submodular property, it is not guaranteed that it
satisfies the monotone property that the successive user rates
I(Uk;Yk) − I(Uk;Uk−1, . . . , U1) are always non-negative.
Hence, the Marton’s region itself is not guaranteed to be a
polymatroid. The rest of this paper ignores this subtlty and
assumes that the Marton’ rate region is polymatroid so that
we can use successive encoding to achieve the corner points
of the rate region.

The set of inequalities (4) represents the multivariate com-
pression of U(K) into X’s that are transmitted by the BSs.
If the BSs were co-located and can cooperate, the amount
of quantization needed for compression is simply the first
term I(U(K);X(S)). If the BSs are distributed and cannot
cooperate, there is a penalty in terms of the correlation
between the signals transmitted by the BSs.
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Similar to the successive encoding for the Marton’s region,
the multivariate compression can also be implemented in
a successive manner [20]. Without loss of generality, let’s
assume that the encoding order is BS 1, . . . , L. The fronthaul
required to compress the signal for BS 1 is I(U(K);X1). After
compressing the signal for BS 1, the fronthaul required to
compress BS 2’s signal is given by I(U(K);X2)+I(X2;X1);
and for any BS l the fronthaul required is I(U(K);Xl) +
I(Xl;Xl−1, . . . , X1). It can be verified that the fronthaul
region in general is a contra-polymatroid [25].

The above achievability region has been presented at [26]
and is subsequently generalized in [11] to the case with
common information and BS cooperation where there are
two BSs in the C-RAN. We now specialize the generalized
compression strategy for Gaussian C-RAN (2) using various
choices for the distribution p(u1, . . . , uK , x1, . . . , xL) and
show how it results in the known compression strategies in
the literature. We assume 2 BSs and 2 users for simplicity.

Consider the strategy of linear beamforming followed by
compression. In this case, we choose the messages U ’s as
independent Gaussian random variables, compute the beam-
formed signals to be transmitted by the BSs at the cloud, then
compress using either independent compression or multivari-
ate compression. Mathematically, we express the distribution
p(u1, u2, x1, x2) as

X = WU + N, (5)

where W = [w1,w2] is a beamforming matrix with beam-
formers w1 and w2 for users 1 and 2, respectively, and N
is the quantization noise, assumed to be a Gaussian vector
N (0,Q). Here, U = [U1, U2]T ∼ N (0, I) are the independent
message signals for the two users. The achievable user rates
of the generalized compression strategy with this choice of U
are given by

Rlinear
1 = I(U1;Y1) (6)

=
1

2
log

(
1 +

hT1 w1w
T
1 h1

hT1 w2wT
2 h1 + hT1 Qh1 + σ2

)
(7)

for user 1, and similarly for user 2

Rlinear
2 = I(U2;Y2) (8)

=
1

2
log

(
1 +

hT2 w2w
T
2 h2

hT2 w1wT
1 h2 + hT2 Qh2 + σ2

)
. (9)

Note that the covariance matrix of N enters the rate expression
as an additional noise term. Depending on the compression
strategy used, Q is either diagonal in case of independent
compression owing to independent noise components among
the compressed BS signals, or a full matrix in case of multi-
variate compression, due to the introduced correlation among
the noise components of N. In the independent compression
case, let Q = diag(q11, q22), and w1 = [w11, w12]T and
w2 = [w21, w22]T . The amount of fronthaul needed to support
compression at BS 1 is

C linear,indep
1 = I(X1;U1, U2) (10)

=
1

2
log

(
1 +

w2
11 + w2

21

q11

)
, (11)

and similarly for BS 2,

C linear,indep
2 = I(X2;U1, U2) (12)

=
1

2
log

(
1 +

w2
12 + w2

22

q22

)
. (13)

For the multivariate compression, the required fronthaul rates
(C1, C2) must be inside a rate region. A corner point of the
region assuming a successive compression strategy with the
order of compression to be BS 1 followed by BS 2 is as
following. For BS 1, C linear,multi

1 is exactly the same as the
independent compression case (11), but for BS 2, we have

C linear,multi
2 = I(X2;U1, U2|X1) + I(X1;X2) (14)

= I(X2;U1, U2) + I(X1;X2|U1, U2) (15)

=
1

2
log

(
1 +

w2
12 + w2

22

q22

)
+

1

2
log

(
q22

q22 − q21q−111 q12

)
(16)

where Q =

[
q11 q12
q21 q22

]
is a full matrix whose correlation

structure, although leading to higher (C1, C2), nevertheless
allows possible reduction in the effective noise in the achiev-
able rates (7) and (9), thereby potentially providing an overall
benefit. These derived rate expressions can be shown to be
equivalent to that in [20].

The linear beamforming strategy can be improved by in-
troducing correlation between the U ’s. One example of using
such correlation is DPC, which is capacity achieving for the
Gaussian vector broadcast channel (i.e., with infinite C1 and
C2). With DPC, the U ’s are now random vectors. Although
using the U ’s designed for the broadcast channel for C-RAN
is not necessarily optimal when C1 and C2 are finite, it is
nevertheless instructive to write down the rate expressions to
gain some insight. Assume an ordering of DPC with user
1 followed by user 2. The auxiliary random variables for
DPC can be constructed as follows. Let S1 and S2 be two
independent Gaussian vectors with covariance matrices K1

and K2. Fix N ∼ N (0,Q). We choose

U1 = S1,U2 = S2 + AS1,X = S1 + S2 + N, (17)

where A = K2h2

(
hT2 (K2 + Q)h2 + σ2

)−1
hT2 and N is

the quantization noise. This choice of the auxiliary variables
allows the interference from user 1 to be completely pre-
subtracted from user 2 [27], resulting in the following achiev-
able user rates

RDPC
1 = I(U1;Y1) (18)

=
1

2
log

(
1 +

h1K1h
T
1

h1K2hT1 + h1QhT1 + σ2

)
(19)

for user 1 who sees user 2 as noise, and

RDPC
2 = I(U2;Y2)− I(U1;U2) (20)

= I(X;Y2|S1) (21)

=
1

2
log

(
1 +

h2K2h
T
2

h2QhT2 + σ2

)
(22)



5

for user 2, who no longer sees user 1 as interference. The re-
quired fronthaul rates depend on whether independent or mul-
tivariate compression is performed. Let the covariance matrix

of S1 +S2 be K1 +K2 =

[
Σ11 Σ12

Σ21 Σ22

]
and the covariance

matrix of the quantization noise N be Q =

[
q11 q12
q21 q22

]
.

With independent compression, we have q12 = q21 = 0 and

CDPC,indep
1 = I(X1;U1,U2) (23)

=
1

2
log

(
1 +

Σ11

q11

)
(24)

CDPC,indep
2 = I(X2;U1,U2) (25)

=
1

2
log

(
1 +

Σ22

q22

)
. (26)

For multivariate compression, assuming the corner point of the
fronthaul rate region with the ordering of compression to be
BS 1 followed by BS 2, we have CDPC,multi

1 for BS 1 exactly
the same as in the case of independent compression (23), but
for BS 2, we need additional fronthaul capacity given by

CDPC,multi
2 = I(X2;U1,U2|X1) + I(X1;X2) (27)

= I(X2;U1,U2) + I(X1;X2|U1,U2) (28)

=
1

2
log

(
1 +

Σ22

q22

)
+

1

2
log

(
q22

q22 − q21q−111 q12

)
. (29)

These rate expressions for DPC over C-RAN are equivalent
to the ones given in [1]. They can be interpreted as the
compression of X at the CP for transmission to the BSs. The
above more rigorous derivation is based on transmitting U to
the BSs via compression.

IV. DISTRIBUTED DECODE-FORWARD

The main objective of this paper is to understand whether
the generalized compression strategy can approximately
achieve the capacity region of the Gaussian C-RAN model.
Toward this end, we examine the DDF strategy [21], which is
a general coding scheme for broadcasting multiple messages
over a general relay network that combines Marton’s coding
for the broadcast channel with partial decode-forward for the
relay channel. The coding scheme involves using auxiliary
random variables at each node in the network that implicitly
carry information about the user messages. By specializing
the DDF strategy to the C-RAN setup, we write down a
succinct form of the achievable rate region using DDF and a
simplified coding strategy that can be readily compared with
the generalized compression strategy.

Theorem 2 ([21]). A rate tuple (R1, . . . , RK) is achievable
for the downlink C-RAN using the DDF strategy if∑
k∈D

Rk <
∑
k∈D

I(Uk;Yk) +
∑
l∈S

Cl − T (U(D), X(S)) (30)

=
∑
k∈D

I(Uk;Yk)− T (U(D))

+
∑
l∈S

Cl − I(U(D);X(S))− T (X(S)) (31)

for all D ⊆ K and S ⊆ L for some distribution
p(u1, . . . , uK , x1, . . . , xL).

The proof of achievibility is in Appendix B. Comparing
the DDF coding strategy of Theorem 2 with that of the
generalized compression strategy of Theorem 1, we observe
that the DDF strategy generalizes the compression strategy
by combining Marton’s multicoding with multivariate com-
pression and jointly encoding the Marton’s and compression
codewords. The key difference is that, in the compression
strategy, Marton’s codewords are formed first, then the multi-
variate compression codewords are computed in a sequential
order. Note that the rate region in Theorem 1 is in general
a subset of the rate region in Theorem 2 as any distri-
bution p(u1, . . . , uK , x1, . . . , xL) satisfying the multivariate
compression constraints (4) results in generalized compression
rates (3) which are also achievable in the form (31) using the
DDF strategy.

A key advantage of enlarging the allowable distributions
to beyond the ones that explicitly satisfy the fronthaul con-
straints is that it permits a proof of the result that the DDF
strategy can achieve to within a constant gap to the cut-
set bound of the general Gaussian broadcast relay channel
[21]. The ingenious choice of p(u1, . . . , uK |x1, . . . , xL) pro-
posed in [21] that accomplishes this task is a distribution for
p(u1, . . . , uK |x1, . . . , xL) that tries to mimic the Gaussian
channel distribution p(y1, . . . , yK |x1, . . . , xL). We now spe-
cialize the result of [21] to the C-RAN setup (2). The DDF
strategy can be shown to achieve to within a constant gap
to the cut-set outer bound by choosing X to be a vector of
L independent Gaussian random variables N (0, P ) and by
choosing

U = HX + Z̃, (32)

where Z̃ ∼ N (0, σ2I) is independent of Z. With this choice
of p(u1, . . . , uK |x1, . . . , xL), we have

Corollary 1 ([22]). With Gaussian p(y1, . . . , yK |x1, . . . , xL)
on the second hop of the C-RAN model and individual fron-
thaul constraints (C1, . . . , CK), the DDF strategy achieves
a rate region within a constant gap to the capacity region
of C-RAN, where the gap is independent of the channel, the
BS power constraints, and the fronthaul constraints, and only
depends on the number of BSs and users.

A natural question at this point is whether we can use the
generalized compression strategy to accomplish the same. The
next section gives some partial answers in the affirmative but
under specific conditions.
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V. COMPRESSION VERSUS DDF

DDF generalizes the compression strategy, so the achievable
rate region of the generalized compression strategy is a subset
of the DDF region in general. This section asks the question
of whether this subset inclusion is strict. The main result here
is that, under certain conditions, the rate regions of the two
strategies actually coincide. Specifically, we show that under a
sum fronthaul constraint, the rate regions of the two strategies
coincide for any discrete memory channel on the second hop
of C-RAN. In other words, under a sum fronthaul constraint,
performing Marton’s coding and multivariate compression
separately does not reduce the achievable user rates. As a
second result of this section, we show that in the special case
of Gaussian networks but under individual fronthaul constraint,
the compression strategy achieves the sum capacity of C-RAN
to within a constant gap. These results are useful, because
successive Marton’s coding and multivariate compression is
likely easier to implement than the joint encoding for DDF.
For example, an architecture based on successive estimation
of minimum mean-squared error and per-BS compression to
achieve the multivariate compression region is proposed in
[17], while polar coding based scheme to achieve the general
Marton’s region for a 2-user broadcast channel is proposed in
[28].

A. Rate Region Under Sum Fronthaul Constraint

Definition 1. Consider the closure of the convex hull of
achievable rate-fronthaul tuples (R1, . . . , RK , C1, . . . , CL)
using the generalized compression strategy satisfying (3)-
(4) over all joint distributions p(u1, . . . , uK , x1, . . . , xL) sat-
isfying possibly input constraints on (x1, . . . , xL). Define
Rs

COM(C) to be the projection of the above set along a sum
fronthaul constraint C, i.e., the set of rate tuples (R1, . . . , RK)
such that Cl ≥ 0 and

∑
l Cl ≤ C.

Definition 2. Consider the closure of the convex hull of
achievable rate-fronthaul tuples (R1, . . . , RK , C1, . . . , CL)
using the DDF strategy satisfying (31) over all joint distribu-
tions p(u1, . . . , uK , x1, . . . , xL) satisfying possibly input con-
straints on (x1, . . . , xL). Define Rs

DDF(C) to be the projection
of the above set along a sum fronthaul constraint C, i.e., the set
of rate tuples (R1, . . . , RK) such that Cl ≥ 0 and

∑
l Cl ≤ C.

Let us write down the two rate regions Rs
COM(C)

and Rs
DDF(C) defined above more explicitly. For the

compression strategy, under a fixed joint distribution
p(u1, . . . , uK , x1, . . . , xL) and a fixed sum fronthaul con-
straint C, only the constraint for S = L is active in
(4). Therefore, the set of (R1, . . . , RK) that satisfies the
sum fronthaul constraint C under a fixed joint distribution
p(u1, . . . , uK , x1, . . . , xL) is described by the constraints∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (33)

C > I(U(K);X(L)) + T (X(L)) (34)

over all D ⊆ K. The set Rs
COM(C) is then the projection of the

closure of the convex hull of these (R1, . . . , RK , C) tuples,

where the convex hull is taken over both the distributions as
well as C.

Similarly, for the DDF strategy, under a fixed distribution
p(u1, . . . , uK , x1, . . . , xL) and a fixed sum fronthaul con-
straint C, the active constraints are those corresponding to
S = ∅ for the case when the sum fronthaul is large enough
to accommodate the compression of all BS signals (i.e.,
C > I(U(D);X(L)) + T (X(L))), which corresponds to the
Marton’s region, or S = L for the case when the sum fronthaul
is not large enough to accommodate the compression of all BS
signals; see [29] for a similar result. The set of (R1, . . . , RK)
that satisfies the sum fronthaul constraint C under a fixed joint
distribution p(u1, . . . , uK , x1, . . . , xL) is thus described by the
constraints∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (35)∑
k∈D

Rk <
∑
k∈D

I(Uk;Yk) + C − T (U(D), X(L)) (36)

=
∑
k∈D

I(Uk;Yk)− T (U(D))

+ C − I(U(D);X(L))− T (X(L)) (37)

over all D ⊆ K. The set Rs
DDF(C) is then the projection of the

closure of the the convex hull of the above (R1, . . . , RK , C)
tuples, where the convex hull (i.e., time-sharing) is taken over
both the distributions as well as C.

Theorem 3. For the downlink C-RAN with a general DMC
p(y1, . . . , yK |x1, . . . , xL) in the second hop and a sum fron-
thaul constraint C, we have Rs

COM(C) = Rs
DDF(C).

We briefly explain the main ideas of the proof using an
illustrative 2-BS 2-user example. Consider any given channel
p(y1, y2|x1, x2) in the second hop of C-RAN and a sum
fronthaul constraint C. The rate region using the generalized
compression strategy is given by

R1 < I(U1;Y1) (38)
R2 < I(U2;Y2) (39)

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2) (40)

under joint distributions p(u1, u2, x1, x2) that satisfy
I(U1, U2;X1, X2) + I(X1;X2) < C. For the DDF strategy,
the rate region under any fixed distribution p(u1, u2, x1, x2)
can be expressed as

R1 < I(U1, Y1)

+ min

{
0,

C − I(U1;X1, X2)− I(X1;X2)

}
(41)

R2 < I(U2, Y2)

+ min

{
0,

C − I(U2;X1, X2)− I(X1;X2)

}
(42)

R1 +R2 < I(U1, Y1) + I(U2, Y2)− I(U1;U2)

+ min

{
0,

C − I(U1, U2;X1, X2)− I(X1;X2)

}
.

(43)
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To show that the generalized compression and DDF regions
coincide (after convex hull), we start with the DDF region
under some fixed distribution p(u1, u2, x1, x2). If the sum
fronthaul capacity is such that C > I(U1, U2;X1, X2) +
I(X1;X2) under a fixed distribution p(u1, u2, x1, x2), then
both rate regions are exactly the same. The interesting case
is when the distribution p(u1, u2, x1, x2) is such that C <
I(U1, U2;X1, X2) + I(X1;X2), which is allowed under the
DDF strategy but not under the generalized compression
strategy. But, we show that by time-sharing across varying
p(u1, u2, x1, x2), (specifically, the original p(u1, u2, x1, x2)
and one with either of the users shut off), the DDF achievable
rate region can nevertheless be achieved using time-sharing
of the generalized compression strategies while satisfying an
average fronthaul constraint. Intuitively, the penalty that the
DDF strategy pays to go beyond the fronthaul capacity is at
least as large as the penalty for shutting off the appropriate
users. The proof for the general case of arbitrary number
of users and BSs makes use of the polymatroidal structure
of the rate region to characterize all the corner points of
the rate region achieved by the DDF strategy and constructs
appropriate time-shared compression strategies to achieve all
such corner points. The full proof is relegated to Appendix C.

Since the DDF strategy is known to achieve the rate region
of the C-RAN to within a constant gap for the Gaussian
network, having the generalized compression rate region coin-
cide with the DDF region under the sum fronthaul constraint
immediately gives us the following corollary.

Corollary 2. With Gaussian p(y1, . . . , yK |x1, . . . , xL) on the
second hop of the C-RAN model and under a sum fronthaul
constraint C, the compression strategy achieves a rate region
to within a constant gap to the capacity region. The gap is
independent of the channel, the BS power constraints, and the
sum fronthaul constraint, and only depends on the number of
BSs and users.

As a remark, we wonder whether the generalized compres-
sion and DDF rate regions coincide not just under the sum
fronthaul constraint, but also individual fronthaul constraints.
While the answer to this question is not yet clear, we note
here that the successive coding strategy of computing Marton’s
codewords (U1, . . . , UK) first, then forming the compression
codewords (X1, . . . , XL) is not the only way to perform
successive encoding. There is also the possibility of breaking
the encoding into more than two steps. As an example,
consider a 2-BS 2-user C-RAN. The compression encoding
order that we consider in this paper encodes (U1, U2) jointly
first, and then (X1, X2) is computed. But it is possible to
encode (U1, X1) first, and then encode (U2, X2). Such a re-
ordering can potentially help user 2 because knowing the exact
signals to be transmitted to user 1 can benefit the search for
U2 to align its correlation with U1 to appropriately cancel the
interference at user 2. Thus, interleaving in the encoding of
U ’s and X’s is likely needed in order to achieve the same rate
region as DDF under arbitrary fronthaul constraints. However,
as shown in the next section, if we only consider the sum
rate, the two-step encoding of the generalized compression
strategy indeed achieves the sum capacity of C-RAN to within

a constant gap, even under individual fronthaul constraints, if
we assume a Gaussian channel p(y1, . . . , yK |x1, . . . , xL) and
use a Gaussian p(u1, . . . , uK , x1, . . . , xL) in the encoding.

It is worth pointing out that similar results exist for the
uplink C-RAN. In the uplink, by comparing the joint decod-
ing of quantized BS signals and user messages using noisy
network coding versus the successive decoding of quantized
signals followed by decoding of user messages, it is possible to
establish that the successive decoding of quantized signals and
user messages achieves the same sum rate as the noisy network
coding strategy (see [29], and also [30] under an “oblivious”
assumption), while successive decoding (that allows for inter-
leaving within successive quantized signal decoding and user
message decoding) achieves the same rate region as noisy
network coding under a sum fronthaul constraint [29]. Just
as in the downlink, it is still an open question as to whether
successive decoding can match the noisy network coding
rate region under arbitrary individual fronthaul constraints
by considering all possible interleaving combinations across
quantization and user messages, In fact, there is a duality
between uplink and downlink C-RAN. It can be shown under
the assumption of independent compression that the uplink and
downlink compression strategies achieve exactly the same rate
region for the C-RAN model [31]; a similar result is expected
to hold under the multivariate compression. This suggests an
even stronger connection between the generalized compression
strategies in the uplink and the downlink C-RAN.

B. Sum Rate Under Individual Fronthaul Constraints

In this section, we consider the general case of individual
fronthaul constraints instead of restricting to the sum fronthaul
constraint as in the previous section. However, we focus on the
sum rate only, and aim to find the approximate sum capacity
of C-RAN under arbitrary fronthaul constraints. The main
result of this section is that under a Gaussian C-RAN model,
the generalized compression strategy can achieve a sum rate
which is within a constant gap to the cut-set bound of C-
RAN under individual fronthaul constraints. More precisely,
consider the Gaussian C-RAN model specified in (2). For
the Gaussian channel, recall that if we set the distribution
p(u1, . . . , uK , x1, . . . , xL) according to (32), the DDF strategy
can be shown to achieve to within a constant gap to the
capacity region of the Gaussian C-RAN. For convenience, we
call the distribution in (32) the constant-gap distribution. We
show in this section that the sum rate achieved by the DDF
strategy for the Gaussian C-RAN under the constant-gap distri-
bution can also be achieved using the generalized compression
strategy under the same set of fronthaul constraints.

For each fixed distribution, we can write down the achiev-
able sum rate of the DDF and the generalized compression
strategies explicitly. The sum rate achieved by the DDF
strategy is given by R that satisfies

R <
∑
k∈K

I(Uk;Yk) +
∑
l∈S

Cl − T (U(K), X(S)), (44)

for all S ⊆ L under some distribution
p(u1, . . . , uK , x1, . . . , xL). The sum rate achieved by
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the generalized compression strategy is given by R that
satisfies

R <
∑
k∈K

I(Uk;Yk)− T (U(K)) (45)∑
l∈S

Cl > I(U(K);X(S))− T (X(S)), (46)

for all S ⊆ L under some joint distribution
p(u1, . . . , uK , x1, . . . , xL).

Definition 3. Consider the closure of the convex hull of
achievable sum-rate-fronthaul tuples (R,C1, . . . , CL) for the
C-RAN with the Gaussian channel model (2) using the DDF
strategy as expressed in (44) under the constant-gap distri-
bution (32) with the BS powers constrained by the power
constraint P . Define Rg

DDF to be the maximum sum rate under
individual fronthaul constraints (C1, . . . , CL) in this set.

Definition 4. Consider the closure of the convex hull of
achievable sum-rate-fronthaul tuples (R,C1, . . . , CL) of the
C-RAN with the Gaussian channel model (2) using the gen-
eralized compression strategy (45)-(46) under the constant
under the constant-gap distribution (32) with the BS powers
constrained by the power constraint P . Define Rg

COM to be
the maximum sum rate under individual fronthaul constraints
(C1, . . . , CL) in this set.

Comparing the sum rate of DDF in (44) with the sum rate of
generalized compression in (45)-(46), we clearly have Rg

COM ≤
Rg

DDF. We show in this section that actually Rg
COM = Rg

DDF.
As a consequence, we have the following main theorem of
this section.

Theorem 4. For the downlink C-RAN with a memoryless
Gaussian channel on the second hop, the compression scheme
achieves a sum rate to within a constant gap to the cut-set
bound under individual fronthaul constraints (C1, . . . , CL).
The gap is independent of the channel parameters, the BS
power constraints, and the individual fronthaul constraints,
and only depends on the number of BSs and users.

We briefly explain the key ideas of the proof again using
the illustrative 2-BS 2-user example. Under a fixed distribution
p(u1, u2, x1, x2), the sum rate achieved by the DDF strategy
is given by

R < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+ min


0,

C1 − I(U1, U2;X1),

C2 − I(U1, U2;X2),

C1 + C2 − I(U1, U2;X1, X2)− I(X1;X2)

 .

(47)

Likewise, for the generalized compression strategy, the sum
rate is given by

R < I(U1;Y1) + I(U2;Y2)− I(U1;U2) (48)
C1 > I(U1, U2;X1) (49)
C2 > I(U1, U2;X2) (50)

C1 + C2 > I(U1, U2;X1, X2) + I(X1;X2). (51)

Clearly, if the fronthaul capacity constraints C1 and C2 are
such that under the distribution p(u1, u2, x1, x2), the fronthaul
constraints (49)-(51) for the compression strategy are all
satisfied, then the sum rate for the compression strategy is
exactly equal to that of the DDF strategy. However, if either
C1 or C2 or both are not large enough so that some of the
fronthaul constraints are violated, then the DDF strategy can
still provide an achievable rate-tuple, but the sum rate would
be smaller than I(U1;Y1)+I(U2;Y2)−I(U1;U2) by a penalty
term equal to how large the maximum violation in the three
fronthaul constraints is. For the compression strategy, however,
whenever the fronthaul constraints are not satisfied, we can no
longer use the distribution p(u1, u2, x1, x2) directly. The idea
of the proof is that we can modify the distribution (specifically,
by time-sharing between the original p(u1, u2, x1, x2) and that
with one of the users turned off), so that under the new
distribution, we stay within the allowed fronthaul constraint
and achieve a sum rate I(U1;Y1) + I(U2;Y2) − I(U1;U2)
that is at least as large as the penalized sum rate of the DDF
strategy. The proof for the general case of arbitrary number
of users and BSs uses the contra-polymatroidal structure of
the fronthaul region to characterize the corner points for each
fixed sum rate R under the DDF strategy. Using appropriate
time-sharing schemes in the generalized compression strategy,
we show that each such corner point is achievable in the
compression strategy with a sum rate at least as large as R.
The complete proof is relegated to Appendix D.

As a final remark, we mention the work of [22], which
shows that the gap between the achievable rate region and
the cut-set bound for DDF can be refined, so that the gap
is logarithmic in the number of BSs and users, instead of
being linear as in [21]. The refinement uses a slightly modified
form of the constant-gap distribution. The equivalence result
shown in this section also works for this modified constant-
gap distribution. Thus, a similar refinement can be used to
conclude that the compression strategy can achieve the sum
capacity of the C-RAN network to within a constant gap which
is logarithmic in the number of BSs and users. A different
improvement in the gap for the DDF strategy is proved in
[11], and is also applicable to our result.

C. Sum Rate Under Sum Fronthaul Constraint

The previous two sections show that even though the DDF
strategy allows for distributions p(u1, . . . , uK , x1, . . . , xL)
that can compress beyond the fronthaul constraints, under
certain conditions, the compression strategy, which compresses
within the fronthaul constraints, can achieve the same rate-
region or the same sum rate if we allow time-sharing between
different achievable rate tuples of the compression strategy.
Applying this result to the Gaussian C-RAN gives us the con-
clusion that time-sharing of compression strategies can achieve
the sum capacity of Gaussian C-RAN to within a constant
gap. This section provides a slightly stronger statement. We
show that for maximizing the sum rate under the sum fronthaul
constraint, there exists a Gaussian compression strategy that
achieves to within a constant gap of the cut-set bound even
without time-sharing.
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Let us first write down the achievable sum rates for the DDF
and compression strategies under a sum fronthaul constraint
C. From (35) and (37), we have that the achievable sum rate
RsDDF for the DDF strategy under the sum fronthaul constraint
is

RsDDF <
∑
k∈K

I(Uk;Yk)− T (U(K))

+ min

{
0,

C − I(U(K);X(L))− T (X(L))

}
, (52)

for some distribution p(u1, . . . , uK , x1, . . . , xL). Similarly,
from (33), the achievable sum rate RsCOM using the compres-
sion strategy under the sum fronthaul constraint is given by

RsCOM <
∑
k∈K

I(Uk;Yk)− T (U(K)), (53)

for some distribution p(u1, . . . , uK , x1, . . . , xL) that satisfies

C > I(U(K);X(L)) + T (X(L)). (54)

Consider the channel model (2). We know that the DDF
strategy can achieve to within a constant gap to the capacity
region (and hence the sum capacity) of this Gaussian C-RAN
model under individual fronthaul constraints (and hence also
the sum fronthaul constraint) by using the distribution given by
(32). We now show that by using a (possibly) modified version
of this distribution, the compression strategy can achieve the
same sum rate under the sum fronthaul constraint.

We consider two cases. If under the distribution given in
(32), we have

C ≥ I(U(K);X(L)) + T (X(L)) (55)

=
1

2
log |I + PHHT |, (56)

then we can simply use the same distribution in the com-
pression strategy to achieve the same rate. If C < 1

2 log |I +
PHHT |, we propose to modify the distribution in (32) in such
a way that when used in the compression strategy, the fronthaul
constraint is satisfied, and further, it achieves a higher sum rate
than the DDF strategy. The proposed modification is to reduce
the power of X’s by a factor γ < 1. We find γ such that

C =
1

2
log |I + γPHHT |. (57)

This allows us to compress with the same sum fronthaul rate as
the DDF strategy. To show that compression with this modified
distribution actually improves upon the DDF sum rate, we
compare the sum rate achieved by the compression strategy to
that with DDF under the modified distribution as follows:

RsCOM =
∑
k∈K

I(U ′k;Y ′k)− T (U ′(K)) (58)

(a)
= I(U ′(K);X ′(L))−

∑
k∈K

I(U ′k;X ′(L)|Y ′k) (59)

= C −
∑
k∈K

1

2
log

(
1 +

∑L
l=1 h

2
k,lγP∑L

l=1 h
2
k,lγP + σ2

)
(60)

> C −
∑
k∈K

1

2
log

(
1 +

∑L
l=1 h

2
k,lP∑L

l=1 h
2
k,lP + σ2

)
(61)
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Fig. 2. Sum rate comparison of the zero-forcing, DDF, and compression
strategies, along with the cut-set outer bound. Note that the DDF and gener-
alized compression strategies are evaluated under their respective distributions
that achieve to within a constant gap to capacity for each strategy. In particular,
they are not evaluated under their respective optimal distributions, so the
numerical result does not imply that the compression strategy outperforms
DDF.

(b)

≥ I(U(K);X(L))−
∑
k∈K

I(Uk;X(L)|Yk) (62)

(c)
= RsDDF (63)

where (a) and (c) are due to Lemma 5 in Appendiex D, and
(b) is due to (55). Since the DDF sum rate achieves to within a
constant gap to the sum capacity of C-RAN, the above shows
that this choice of (non-time-shared) distribution also achieves
to within a constant gap to the sum capacity.

D. Numerical Example

We provide a numerical example that illustrates a per-
formance comparison between the compression and DDF
strategies, along with the more traditional beamforming based
strategy that takes fronthaul into account.

Consider the Gaussian channel (2) with 2 BSs and 2
users. As a baseline, we consider beamforming followed by
compression, where we use the zero-forcing beamformers in
the directions of W = H−1. We then allocate powers across
the two normalized beams w1 and w2, and also find the quan-
tization noise levels to maximize the sum rate by exhaustive
search, while satisfying the sum fronthaul constraint. For the
DDF strategy, the sum rate is calculated as given in (52). For
the generalized compression scheme, we construct the explicit
distribution that achieves the sum capacity to within a constant
gap as explained in the previous section. The parameter γ is
found using a line search between [0, 1].

Fig. 2 shows the sum rate achieved using these strategies
as a function of the sum fronthaul capacity available for a
fixed real-valued channel (generated at random according to a
Rayleigh fading distribution). Individual BS power constraints
of P = 100 and background noise σ2 = 1 are assumed. For
comparison, we also plot the cut-set bound. The figure shows



10

that the compression strategy performs nearly the same as the
DDF strategy for most of the sum fronthaul capacity range. It
performs slightly better than the DDF strategy at very low sum
fronthaul capacities because of the improvement in the gap as
a result of choosing γ < 1 to accommodate the fronthaul
capacity as shown from (58) to (63). We note that both the
compression and the DDF strategies are within a constant gap
to the cut-set bound. When C < 1

2 log |I+PHHT |, the gap is
at most 1 bit, while for higher values of C, the gap is at most 2
bits. As compared to the zero-forcing strategy, we observe that
the generalized compression strategy performs much better
at lower sum fronthaul capacities, because the zero-forcing
beam direction does not account for the quantization noise.
At higher sum fronthaul capacities, all three strategies saturate.
However, the zero-forcing strategy may achieve a higher sum
rate than the compression and DDF strategies, because the
latter does not explicitly null interference, but only aims to
provide a universal strategy that approximately achieves the
cut-set bound for all values of the sum fronthaul constraint.
The choice of U = HX + Z̃ for the channel Y = HX + Z
is in a sense trying to invert the channel, but not exactly.

Even though the generalized compression strategy achieves
to within a constant gap under certain conditions, it is
important to note that the gap depends on the number of
users and BSs, at least logarithmically. Therefore, the data-
sharing strategies might perform better than the generalized
compression strategy, especially in the low-power regime or
when the channel matrix is ill-conditioned; see [11] and [18]
for some numerical evidence along these lines.

VI. CONCLUSION

This paper investigates the compression strategy for the
downlink of a C-RAN from an information theoretic point
of view. The paper first generalizes the existing compression
strategies to include Marton’s multicoding followed by multi-
variate compression, then analyzes the resulting rate region
for a C-RAN with a general DMC between the BSs and
the users. When compared with the DDF strategy specialized
to the downlink C-RAN, it is pointed out that DDF is a
generalization of the compression strategy where the Marton’s
multicoding and the multivariate compression are done jointly
as opposed to successively in the compression strategy. The
paper then shows that under a sum fronthaul constraint, such
generalization does not lead to higher rates and the rate
regions of the two strategies coincide. Thus, for the Gaussian
C-RAN under a sum fronthaul constraint, the compression
strategy already achieves the capacity region to within a
constant gap. Furthermore, for the Gaussian C-RAN under
individual fronthaul constraints, the paper shows that the two-
phase compression strategy can achieve a sum rate that is
within a constant gap to the cut-set bound. These results
provide a justification for the practical choice of the two-phase
compression strategy for the downlink C-RAN.

APPENDIX A
PROOF OF THEOREM 1

We provide a proof sketch by first describing the coding
scheme, then establishing the conditions on the achievable

rates for vanishing probability of error P (n)
e .

Fix the distribution p(u1, . . . , uK , x1, . . . , xL). Let ε > 0.
1) Codebook generation: We generate a random codebook

for Marton’s multicoding according to unk (mk, lk) ∼∏n
i=1 pUk

(uki) for (mk, lk) ∈ [1 : 2nRk ] × [1 : 2nR̃k ],
k ∈ K. Similarly, we generate a random codebook
for multivariate compression according to xnl (tl) ∼∏n
i=1 pXl

(xli) for tl ∈ [1 : 2nCl ], l ∈ L.
2) Encoding at the CP: To send [m1 : mK ], we find

[l1 : lK ] such that [un1 (m1, l1) : unK(mK , lK)] ∈
T (n)
ε . Then, we find [t1 : tL] such that [un1 (m1, l1) :

unK(mK , lK), xn1 (t1) : xnL(tL)] ∈ T (n)
ε . Finally, we

forward tl to BS l.
3) Mapping at the BSs: BSs transmit xnl (tl) to users.
4) Decoding at the users: User k finds (m̂k, l̂k) such that

(unk (m̂k, l̂k), ynk ) ∈ T (n)
ε .

In order to show that the average probability of error P (n)
e

for the coding scheme vanishes as n→∞, we analyze three
sources of error. For encoding at the central processor, we
can find the incides [l1 : lK ] correctly with high probability
if
∑
k∈D R̃k > T (U(D)) due to the multivariate covering

lemma [24, Lemma 14.1]. Similarly, we can find the indices
[t1 : tL] correctly with high probability if

∑
l∈S Cl >

I(U(K);X(S)) + T (X(S)). Finally, the decoding at the user
side is successful with high probability if Rk+R̃k < I(Uk;Yk)
due to the joint typicality lemma [24, p. 29]. Using the Fourier-
Motzkin elimination, we project out the auxiliary rates R̃k to
obtain required the rate region.

APPENDIX B
PROOF OF THEOREM 2

We specialize the DDF coding scheme to the C-RAN model
as follows.

Fix the distribution p(u1, . . . , uK , x1, . . . , xL). Let ε > 0.
1) Codebook generation: We generate a random codebook

for Marton’s multicoding according to unk (mk, lk) ∼∏n
i=1 pUk

(uki) for (mk, lk) ∈ [1 : 2nRk ] × [1 : 2nR̃k ],
k ∈ K. Similarly, we generate a random codebook
for multivariate compression according to xnl (tl) ∼∏n
i=1 pXl

(xli) for tl ∈ [1 : 2nCl ], l ∈ L.
2) Encoding at the CP: To send [m1 : mK ], we

find [l1 : lK , t1 : tL] such that [un1 (m1, l1) :

unK(mK , lK), xn1 (t1) : xnL(tL)] ∈ T (n)
ε .

3) Mapping at the BSs: BSs transmit xnl (tl) to users.
4) Decoding at the users: User k finds (m̂k, l̂k) such that

(unk (m̂k, l̂k), ynk ) ∈ T (n)
ε .

Similar to the probability of error analysis in the com-
pression strategy, to show that the average probability of
error P (n)

e for the coding scheme vanishes as n → ∞, we
analyze two sources of error. For encoding at the CP, we
can find the indices [l1 : lK , t1 : tL] correctly with high
probability if

∑
k∈D R̃k +

∑
l∈S Cl > T (U(D), X(S)), due

to the multivariate covering lemma [24, Lemma 14.1]. The
decoding at the user side is successful with high probability if
Rk + R̃k < I(Uk;Yk) due to the joint typicality lemma [24,
p. 29]. Combining the two, we obtain the required rate region.
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APPENDIX C
PROOF OF THEOREM 3

We examine the set of achievable rate tuples (R1, . . . , RK)
of the generalized compression and the DDF strategies under
a sum fronthaul constraint C. Since the compression strat-
egy is a special case of the DDF strategy, we have that
Rs

COM(C) ⊆ Rs
DDF(C). The main part of the proof is to

show that Rs
DDF(C) ⊆ Rs

COM(C). The proof uses properties
of submodular optimization.

Take any achievable (R1, . . . , RK) using the DDF strategy
under a fixed distribution p(u1, . . . , uK , x1, . . . , xL) and under
the fixed sum fronthaul constraint C. By definition, it must
satisfy the inequalities (35) and (36). Define P(C) ∈ RK
to be the polytope formed by the inequalities (35) and (36).
We show that each extreme point of P(C) can be achieved
using the time-sharing of rate tuples under the generalized
compression strategy.

The inequalities (35)-(36) define P(C) to be set of
(R1, . . . , RK) for which

∑
k∈D

Rk ≤ min


∑
k∈D

I(Uk;Yk)− T (U(D)),∑
k∈D

I(Uk;Yk) + C − T (U(D), X(L))


(64)

for all D ⊆ K. First, we show that we can alternatively write
the above as

∑
k∈D

Rk ≤ min


∑
k∈D

I(Uk;Yk)− T (U(D)),∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L))


(65)

for all D ⊆ K. The reason is that for any set D ⊆ K, we
always have

∑
k∈D Rk ≤

∑
k∈KRk, since the user rates are

non-negative. But we already have the constraint∑
k∈K

Rk ≤
∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L)). (66)

So, we can add the constraint∑
k∈D

Rk ≤
∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L)) (67)

to (64) without affecting P(C). Now, it turns out that

∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L)) ≤∑
k∈D

I(Uk;Yk) + C − T (U(D), X(L)), (68)

so this new constraint is actually tighter than the second
constraint in (64). Therefore, (64) can be equivalently written
as (65).

To verify (68), we take the difference in summing over D
versus summing over K in (68) as below:

T (U(K), X(L))− T (U(D), X(L))−
∑
k∈Dc

I(Uk;Yk)

= I(U(Dc);U(D)) + T (U(Dc))

+ I(U(Dc);X(L)|U(D))−
∑
k∈Dc

I(Uk;Yk), (69)

where Dc = K \ D. This can be simplified as∑
k∈Dc

h(Uk|Yk)− h(U(Dc)|X(L), U(D)) (70)

(a)

≥
∑
k∈Dc

h(Uk|Yk)−
∑
k∈Dc

h(Uk|X(L)) (71)

(b)

≥
∑
k∈Dc

h(Uk|Yk)−
∑
k∈Dc

h(Uk|X(L), Yk) (72)

=
∑
k∈Dc

I(Uk, X(L)|Yk) (73)

≥ 0, (74)

where (a) follows from the fact that conditioning reduces
entropy and (b) follows since Uk → X(L) → Yk form
a Markov chain. This verifies (68), hence the equivalence
between (64) and (65).

Let us now define a set function f : 2K → R as

f(D) := min


∑
k∈D

I(Uk;Yk)− T (U(D)),∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L))


(75)

for each D ⊆ K. By construction, P(C) is the set of
(R1, . . . , RK) that satisfies∑

k∈D

Rk ≤ f(D). (76)

Since the second term in the min expression in (75) is a
constant that does not depend of D, it can be verified that
the function f is a submodular function [29], if the Marton’s
region is a polymatroid (which we assume in this paper).
This allows the rate region P(C) to have a polymatroid
structure. We remark that, although the Marton’s region may
not be polymatroid in general, for the constant gap Gaussian
distribution, we can guarantee a certain monotone property of
the Marton’s rate expression by appropriate choice of the noise
variance leading to a polymatroid rate region.

A result in submodular optimization [32] is that for a linear
ordering i1 ≺ i2 ≺ . . . ≺ iK of {1, . . . ,K}, an extreme point
of P(C) can be greedily computed as (R1, . . . , RK) where

Rij = f({i1, . . . , ij})− f({i1, . . . , ij−1}). (77)

Moreover, all extreme points of P(C) can be enumerated
by considering all linear orderings. Since each ordering of
{1, . . . ,K} is analyzed in the same manner, for notational
simplicity, we consider the natural ordering ij = j.
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Let j be the first index for which∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L)) <

j∑
k=1

I(Uk;Yk)− T (U1, . . . , Uj). (78)

Then, by construction, ∀k < j

Rk =

k∑
i=1

I(Ui;Yi)− T (U1, . . . , Uk)

−
k−1∑
i=1

I(Ui;Yi)− T (U1, . . . , Uk−1) (79)

= I(Uk;Yk)− I(Uk;Uk−1, . . . , U1). (80)

Furthermore, using the fact that the second term of f(D) does
not depend on D, so when the second term is the minimum,
i.e., ∀k > j, we have

Rk = 0. (81)

Finally, we express Rj as

Rj =
∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L))

−
j−1∑
k=1

I(Uk;Yk)− T (U1, . . . , Uj−1) (82)

= I(Uj ;Yj)− I(Uj ;Uj−1, . . . , U1)

+
∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L))

−
j∑

k=1

I(Uk;Yk) + T (U1, . . . , Uj) (83)

= (1− α) (I(Uj ;Yj)− I(Uj ;Uj−1, . . . , U1)) , (84)

where α can be written explicitly as below

T (U(K), X(L))− T (U1, . . . , Uj)− C −
K∑

k=j+1

I(Uk;Yk)

I(Uj ;Yj)− I(Uj ;Uj−1, . . . , 1)
.

(85)
Note that α ∈ (0, 1] due to (78) and the fact that Rj ≥ 0.

Now, we construct the time-sharing of two rate tuples
corresponding to the generalized compression strategy (33)
that achieves this above rate (R1, . . . , RK) as follows:

1) For (1− α) fraction of the time, transmit messages for
users 1, . . . , j, only, i.e., set p(u1, . . . , uj , x1, . . . , xL) to
be the marginal distribution of the original distribution,
but let Uj+1, . . . , UK be constants.

2) For the rest α fraction of time, transmit
messages for users 1, . . . , (j − 1) only, i.e., set
p(u1, . . . , uj−1, x1, . . . , xL) to be the marginal
distribution of the original distribution, but let
Uj , . . . , UK be constants.

By construction, the time-sharing of these two compression
schemes achieves the same rate tuple as the extreme point of
P(C), (80), (81), and (84).

To calculate the fronthaul capacity consumption of this
time-sharing scheme, we have

C̄ = (1− α) (I(U1, . . . , Uj ;X(L)) + T (X(L)))

α (I(U1, . . . , Uj−1;X(L)) + T (X(L))) (86)
= I(U1, . . . , Uj ;X(L)) + T (X(L))

− α(I(U1, . . . , Uj ;X(L))− I(U1, . . . , Uj−1;X(L)))
(87)

= I(U1, . . . , Uj ;X(L)) + T (X(L))− C

− I(U1, . . . , Uj ;X(L))− I(U1, . . . , Uj−1;X(L))

I(Uj ;Yj)− I(Uj ;Uj−1, . . . , U1)

·

T (U(K), X(L))− T (U1, . . . , Uj)− C

−
K∑

k=j+1

I(Uk;Yk)

+ C (88)

(a)

≤ I(U1, . . . , Uj ;X(L)) + T (X(L))− C
− T (U(K), X(L)) + T (U1, . . . , Uj) + C

+

K∑
k=j+1

I(Uk;Yk) + C (89)

=

(∑
k∈K

I(Uk;Yk) + C − T (U(K), X(L))

)

−

(
j∑

k=1

I(Uk;Yk) + C − T (U1, . . . , Uj , X(L))

)
+ C (90)

(b)

≤ C. (91)

The inequality (a) follows because

I(U1, . . . , Uj ;X(L))− I(U1, . . . , Uj−1;X(L))

− I(Uj ;Yj) + I(Uj ;Uj−1, . . . , U1) (92)
= h(Uj |Yj)− h(Uj |X(L), Uj−1, . . . , U1) (93)
≥ h(Uj |Yj)− h(Uj |X(L)) (94)
= h(Uj |Yj)− h(Uj |X(L), Yj) (95)
= I(Uj ;X(L)|Yj) (96)
≥ 0, (97)

where we used the fact that conditioning reduces entropy and
that Uj → X(L)→ Yj forms a Markov chain. Intuitively, this
holds because the contribution of Uj to the user rate is less
than the fronthaul required to support Uj . Note that the term
T (U(K), X(L)) − T (U1, . . . , Uj) − C −

∑K
k=j+1 I(Uk;Yk)

is positive from the assumption in (78). The inequality (b)
follows from (68).

Therefore, every extreme point (R1, . . . , RK) of P(C)
is achievable using time-sharing of generalized compression
strategies under the same average fronthaul constraint.
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APPENDIX D
PROOF OF THEOREM 4

The proof is based on comparing the sum rate achieved by
the compression strategy with that by the DDF strategy. Recall
that, from the result in [21], for the DDF strategy the following
choice of the distribution achieves to within a constant gap to
the cut-set bound of a Gaussian relay broadcast network: Let
X to be a vector of L i.i.d. N (0, P ) random variables and
U = HX+Z̃, where Z̃ ∼ N (0, σ2I) is independent of Z. We
show that under such a choice of distribution Rg

DDF = Rg
COM.

Then it follows that the compression strategy also achieves the
sum rate to within a constant gap to the cut-set bound.

Consider the set of (R,C1, . . . , CL) achievable using the
DDF strategy under such a constant-gap distribution. For fixed
R, we define P(R) ⊆ RL to be the polytope defined by
inequalities (44) under the said distribution. We now show
that each extreme point of P(R) is dominated by some time-
sharing of points in the compression region.

Let us define a set function g : 2L → R as

g(S) := max

T (U(K), X(S)) +R−
∑
k∈K

I(Uk;Yk),

0


(98)

for each S ⊆ L. By construction, then P(R) is equal to the
set of (C1, . . . , CL) that satisfy∑

l∈S

Cl ≥ g(S). (99)

Since the second term in the max expression in (98) is a
constant, it can be verified that the function g is a supermod-
ular function [33] and as a consequence the P(R) region is a
contra-polymatroid [25]. Similar to the case of submodular
optimization, for a linear ordering i1 ≺ i2 ≺ . . . ≺ iK
of {1, . . . ,K}, an extreme point of P(R) can be greedily
computed as

Cij = g({i1, . . . , ij})− g({i1, . . . , ij−1}). (100)

Furthermore, all the extreme points of P(R) can be com-
puted by considering all linear orderings. Each ordering of
{1, . . . ,K} is analyzed in the same manner, hence for nota-
tional simplicity we consider the natural ordering ij = j.

Let j be the first index for which Cj > 0. Then, by
construction,

Cl = 0, ∀l < j (101)

and

Cl = I(Xl;U(K)|Xl−1, . . . , X1), ∀l > j. (102)

Note that the term T (X(S)) vanishes because of the assump-
tion of independence of X’s in the constant-gap distribution.

Finally, we express Cj as

Cj = I(Xj , . . . , X1;U(K))

+R−
∑
k∈K

I(Uk;Yk) + T (U(K)) (103)

= I(Xj ;U(K)|Xj−1, . . . , X1) + I(Xj−1, . . . , X1;U(K))

+R−
∑
k∈K

I(Uk;Yk) + T (U(K)) (104)

= (1− β)I(Xj ;U(K)|Xj−1, . . . , X1), (105)

where β is defined as

−
(
I(Xj−1, . . . , X1;U(K))+R−

∑
k∈K I(Uk;Yk) + T (U(K))

)
I(Xj ;U(K)|Xj−1, . . . , X1)

(106)

It is not difficult to see that β ∈ (0, 1]. This is because j is the
first index for which Cj > 0, so Cj−1 = 0. By definition of
Cj , it is easy to see that g({1, . . . , j − 1}) = 0. Observe that
the numerator in the expression for β is the negative of the first
term in the definition of g({1, . . . , j − 1}), so the numerator
must be positive, hence β > 0. Further, by (104) and the fact
that Cj ≥ 0, we have β ≤ 1.

Now, consider the following time-sharing of two compres-
sion schemes. Starting with the fixed constant-gap distribution
p(u1, . . . , uK , x1, . . . , xL), we modify the distribution as fol-
lows:

1) For (1− β) fraction of the time, keep the BSs j, . . . , L
active, i.e., for (1 − β) fraction of the time, keep
Xj , . . . , XL the same and set X1 = . . . = Xj−1 = 0;
denote this distribution as p(u′1, . . . , u

′
K , x

′
1, . . . , x

′
L).

2) For the remaining β fraction of the time, keep the BSs
j+ 1, . . . , L active, i.e., for β fraction of the time, keep
Xj+1, . . . , XL the same and set X1 = . . . , Xj = 0;
denote this distribution as p(u′′1 , . . . , u

′′
K , x

′′
1 , . . . , x

′′
L).

We first verify that the average fronthaul capacities required
for this time-sharing of two compression schemes, denoted
here as C̄1, . . . , C̄L, are exactly the same as the fronthaul
capacities C1, . . . , CL under the DDF strategy. For the inactive
BSs from 1 to j − 1 the fronthaul capacities used is zero, i.e.,

C̄l = 0 = Cl, ∀l = 1, . . . , j − 1. (107)

We use the modified distributions under the compression
strategy to calculate the fronthaul needed for the active BSs.
Note that under the constant-gap distribution (or its modified
form), a corner point of the fronthaul region (46) is just

Cl = I(Xl;U(K)|Xl−1, . . . , X1) (108)

where the term T (X(S)) vanishes because of the assumed
independence of X’s in the constant-gap distribution.

Now for BS j, since X ′1 = . . . = X ′j−1 = 0, the fronthaul
used by the compression strategy is just

C̄j = (1− β)I(X ′j ;U
′(K)) (109)

= (1− β)I(Xj ;U(K)|Xj−1, . . . , X1) = Cj , (110)

where the equality is due to the form of the Gaus-
sian p(u1, . . . , uK , x1, . . . , xL) in which conditioning on
Xj−1, . . . , X1 is the same as setting them to be zero.
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For BS l = (j + 1), . . . , L, the fronthaul capacity used by
the generalized compression strategy is given by

C̄j = (1− β)I(X ′l ;U
′(K)|X ′l−1, . . . , X ′j)

+ βI(X ′′l ;U ′′(K)|X ′′l−1, . . . , X ′′j+1) (111)

= (1− β)I(Xl;U(K)|Xl−1, . . . , Xj , Xj−1, . . . , X1)

+ βI(Xl;U(K)|Xl−1, . . . , Xj+1, Xj , . . . , X1)
(112)

= I(Xl;U(K)|Xl−1, . . . , X1) = Cj , (113)

This verifies that the time-sharing strategy uses the same
amount of fronthaul as DDF.

As a final step, we show that the time-sharing of the two
compression schemes achieves a sum rate no less than the DDF
strategy. First, we re-write the sum rate expression under the
constant-gap distribution (or its modified version) in a form
that shows explicit dependence on the X variables.

Lemma 5. Suppose that X is a vector of indepedent variables,
and Y = HX+Z, Y = GY + Z̃, where H and G are fixed
matrices and Z and Z̃ are vectors of independent variables
that are also independent of each other and of X. Then,∑

k∈K

I(Uk;Yk)− T (U(K)) =

I(U(K);X(L))−
∑
k∈K

I(Uk;X(L)|Yk) (114)

Proof.∑
k∈K

I(Uk;Yk)− T (U(K)) (115)

= h(U(K))−
∑
k∈K

h(Uk|Yk) (116)

= h(U(K))− h(U(K)|X(L)) + h(U(K)|X(L))

−
∑
k∈K

h(Uk|Yk) (117)

(a)
= I(U(K);X(L)) +

∑
k∈K

(h(Uk|X(L), Yk)− h(Uk|Yk))

(118)

= I(U(K);X(L))−
∑
k∈K

I(Uk;X(L)|Yk), (119)

where in (a) we used the fact that U(K) → X(K) → Y (K)
forms a Markov chain and that conditioned on X(L) the U ’s
are independent.

Based on the Lemma, the sum rate achieved using the time-
sharing of the two generalized compression schemes with the
modified constant-gap distributions can be written as

R̄ = (1− β)
(
I(X ′j , . . . , X

′
L;U ′(K))

−
∑
k∈K

I(U ′k;X ′j , . . . , X
′
L|Y ′k)

)
+ β

(
I(X ′′j+1, . . . , X

′′
L;U ′′(K)) (120)

−
∑
k∈K

I(U ′′k ;X ′′j+1, . . . , X
′′
L|Y ′′k )

)
(a)
= (1− β)I(Xj , . . . , XL;U(K)|Xj−1, . . . , X1)

+ βI(Xj+1, . . . , XL;U(K)|Xj , . . . , X1)

− (1− β)
∑
k∈K

I(U ′k;X ′j , . . . , X
′
L|Y ′k)

− β
∑
k∈K

I(U ′′k ;X ′′j+1, . . . , X
′′
L|Y ′′k ) (121)

= (1− β)
(
I(U(K);Xj |Xj−1, . . . , X1)

+ I(U(K);Xj+1, . . . , XL|Xj , . . . , X1)
)

+ βI(U(K);Xj+1, . . . , XL|Xj , . . . , X1)

− (1− β)
∑
k∈K

I(U ′k;X ′j , . . . , X
′
L|Y ′k)

− β
∑
k∈K

I(U ′′k ;X ′′j+1, . . . , X
′′
L|Y ′′k ) (122)

(b)
= I(U(K);X1, . . . , XL) +R−

∑
k∈K

I(Uk;Yk) + T (U(K))

− (1− β)
∑
k∈K

I(U ′k;X ′j , . . . , X
′
L|Y ′k)

− β
∑
k∈K

I(U ′′k ;X ′′j+1, . . . , X
′′
L|Y ′′k ) (123)

(c)

≥ I(U(K);X1, . . . , XL) +R−
∑
k∈K

I(Uk;Yk) + T (U(K))

−
∑
k∈K

I(Uk;X(L)|Yk) (124)

(d)
= R. (125)

The equality (a) holds, because as mentioned before, for
the constant-gap distribution, shutting down a BS is the
same as conditioning on the corresponding random variable.
For the first (1 − β) fraction of time, we condition on
X1, . . . , Xj−1, and for the rest β fraction of the time, we
condition on X1, . . . , Xj . The equality (b) holds from the
relation (105). The inequality (c) follows because under the
modified constant-gap distribution,

I(U ′k;X ′j , . . . , X
′
L|Y ′k)

= h(U ′k|Y ′k)− h(U ′k|X ′j , . . . , X ′L, Y ′k) (126)

= h(U ′k, Y
′
k)− h(Y ′k)− h(Z̃k) (127)

=
1

2
log

(
1 +

∑L
l=j h

2
k,lP∑L

l=j h
2
k,lP + σ2

)
(128)

<
1

2
log

(
1 +

∑L
l=1 h

2
k,lP∑L

l=1 h
2
k,lP + σ2

)
(129)

= I(Uk;X(L)|Yk), (130)

and similarly I(U ′′k ;X ′′j+1, . . . , X
′′
L|Y ′′k ) < I(Uk;X(L)|Yk).

Finally, the equality (d) follows from the equivalent way of
writing the sum rate as shown in Lemma 5.

Therefore, for every extreme point (C1, . . . , CL) of P(R),
the time-shared compression strategy achieves a sum rate at
least as large as the DDF strategy. This completes the proof.
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