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Abstract

We describe algorithms for computing maximal determinants of
binary circulant matrices of small orders. Here “binary matrix” means
a matrix whose elements are drawn from {0, 1} or {−1, 1}. We describe
efficient parallel algorithms for the search, using Duval’s algorithm
for generation of necklaces and the well-known representation of the
determinant of a circulant in terms of roots of unity. Tables of maximal
determinants are given for orders 6 53. Our computations extend
earlier results and disprove two plausible conjectures.

1 Introduction

A circulant matrix A = (aj,k) of order n is an n× n matrix whose elements
aj,k depend only on (k − j) mod n. Thus, an n × n circulant is a matrix of
the form A = (a(k−j) mod n) 06j,k<n. Circulants arise in various applications
in signal processing and combinatorics, and have a close connection with
Fourier transforms. The set of all circulants of order n (with elements in
some fixed ring R) form a commutative algebra, since the sum and product
of two circulants is a circulant, and it is easy to see that multiplication of
circulants is commutative.
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We write circ(a0, a1, . . . , an−1) for the circulant (a(k−j) mod n) 06j,k<n whose
first row is (a0, a1, . . . , an−1).

By a binary matrix we mean a matrix whose elements are in one of the
sets S01 := {0, 1} or S±1 := {−1, 1}. It will be clear from the context which of
these two cases is being considered. A binary circulant is a circulant matrix
whose elements are in S01 or S±1.

There is a natural one-to-one correspondence between the integers
{0, 1, . . . 2n − 1} and the binary circulant matrices of order n. More pre-
cisely, if N ∈ {0, 1, . . . , 2n − 1} has the representation

N =
n−1∑
j=0

2n−1−j bj,

so may be written in binary as b0 . . . bn−1, we associateN with circ(a0, . . . , an−1),
where aj = bj in the case of S01, and aj = 2bj − 1 in the case of S±1.

The maximal determinant problem is concerned with the maximal value
of | detA| for an n × n binary matrix A. The Hadamard bound [22] states
that, in the case of binary matrices A over {±1}, we have

| detA| 6 nn/2. (1)

Moreover, Hadamard’s inequality is sharp for infinitely many n, for example
powers of two (Sylvester [40]) or n of the form q+1 where q is a prime power
and q ≡ 3 mod 4 (Paley [33]).

There is a well-known connection between the determinants of {0, 1}-
matrices of order n and {±1}-matrices of order n + 1. This implies that an
(n + 1) × (n + 1) {±1}-matrix always has determinant divisible by 2n. See
[30] for details. We give an example with n = 3, starting with an n × n
binary matrix B and ending with an (n+ 1)× (n+ 1) {±1}-matrix A, with
detA = 2n det(B).

B =

 1 0 1
1 1 0
0 1 1

 double

−→

 2 0 2
2 2 0
0 2 2



border

−→


1 1 1 1
0 2 0 2
0 2 2 0
0 0 2 2

 subtract

−→
first row


1 1 1 1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1

 = A.
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The doubling step is the only step where the determinant changes, and there
it is multiplied by 2n.

Thus, Hadamard’s bound (1) gives the bound

| detB| = 2−n| detA| 6 2−n(n+ 1)(n+1)/2, (2)

which applies for all {0, 1}-matrices B of order n. We shall refer to both
(1) and (2) as Hadamard’s inequality, since it will be clear from the context
which inequality is intended.1

The mapping from {0, 1}-matrices to {±1}-matrices is reversible if we
are allowed to normalise the first row and column of the {±1}-matrix by
changing the signs of rows/columns as necessary.

The transformation illustrated above (or its reverse) does not preserve
any circulant structure.

Hadamard matrices are square matrices with entries in S±1 and mutually
orthogonal rows. The order of a Hadamard matrix is 1, 2, or a multiple of
4. It is not known whether a Hadamard matrix of order 4k exists for every
positive integer k (this is the Hadamard conjecture).

Various constructions for Hadamard matrices use circulant matrices. For
example, the first Paley construction [33] uses a circulant matrix of order p,
where p is a prime, p ≡ 3 mod 4, to construct a Hadamard matrix of order
p+ 1. (The Paley construction also works for prime powers, e.g. 27 = 33, but
does not involve circulants in such cases.) Fletcher, Gysin and Seberry [18]
use two circulants and a border of width two to construct Hadamard matri-
ces. The Williamson construction [43] requires four matrices A, . . . , D which
satisfy certain conditions, and for computational reasons these matrices are
usually taken to be circulants.

Circulant matrices also play an important role in noisy convolutional
Gaussian channels. Given a channel in which the output vector is given
by the convolution of the input vector with a chosen mask vector, in the
presence of additive Gaussian noise, the choice of mask that maximizes the
mutual information of the channel in high-SNR regimes is the first row of a
{0, 1}-circulant with near-flat Fourier spectrum, and this circulant is often
one with maximal or close to maximal determinant. This has important
applications in X-ray and gamma ray astronomy, optics, and computational
imaging [1, 4, 13, 17, 27, 45].

1In fact, Hadamard in [22] proved a more general inequality than (1), and as far as we
are aware he never stated (2) explicitly. A simple proof of (1) is given by Cameron [11].
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It is well-known that the (unnormalised) eigenvectors of circ(a0, . . . , an−1)
are given by vj = (1, ωj, ω2j, . . . , ω(n−1)j)T , 0 6 j < n, where ω is a primitive
n-th root of unity. For example, in C we can take ω := exp(2πi/n). It follows
that the eigenvalues are

λj = a0 + a1ω
j + · · ·+ an−1ω

(n−1)j, 0 6 j < n, (3)

and the determinant is
n−1∏
j=0

λj =
n−1∏
j=0

f(ωj), (4)

where

f(z) :=
n−1∑
k=0

akz
k.

The polynomial f(z) is called the associated polynomial of the circulant.
Also, f(z) is called a Littlewood polynomial if the coefficients ak ∈ {±1}, and
a Newman polynomial if the ak ∈ {0, 1} and a0 = 1.

If A = circ(a0, . . . , an−1) is nonsingular, then (4) gives

log | detA|
n

=
1

n

n−1∑
j=0

log |f(e2πij/n)| .

This may be regarded as a discrete analogue of the Mahler measure [38]

m(f) :=

∫ 1

0

log |f(e2πit)| dt .

Using (4) to compute detA for a circulant matrix A takes O(n2) arithmetic
operations, whereas Gaussian elimination does not take advantage of the
circulant structure and takes of order n3 operations. If we are considering
binary matrices, whose determinants are integers, it is necessary to perform
the operations in C to sufficient precision to obtain a result with absolute
error less than 1/2, so that the correct result can be found by rounding to
the nearest integer. From the Hadamard bounds (1)–(2), this means that we
may have to work with of order n log n bits of precision.
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To avoid the problem of rounding errors altogether, we can work over a
finite field. If p is a prime such that p ≡ 1 mod n, and ρ is a primitive root
(mod p), then2

ω = ρ(p−1)/n mod p

is a primitive n-th root of unity in the finite field Fp, and we can use (4) to
compute detA mod p. If U is an upper bound on | detA|, and p > 2U + 1,
then the result mod p is sufficient to determine detA. Thus, if we use a
Hadamard bound for U , the prime p should have of order n log n bits. Alter-
natively, we could use several smaller primes with a sufficiently large product,
and reconstruct the result using the Chinese Remainder Theorem.3

2 Lyndon words and necklaces

The usual definition of a Lyndon word is a nonempty string that is strictly
smaller in lexicographic order than all of its proper rotations. Thus, the
first six Lyndon words over S01 are 0, 1, 11, 101, 111, and 1111. Lyndon
words were introduced by Shirshov [35] (who called them “regular words”)
and Lyndon [28] (who called the “standard lexicographic sequences”).

Since we consider words of a fixed length n, it is convenient to use the
concept of a (binary) necklace [41]. We say that w = w0 . . . wn−1 is a necklace
of length n if w is not larger (in the lexicographic order) than any of its
rotations. This corresponds to Duval’s “representative of a class of words of
length n” [14, (3) on pg. 258], where two words are said to be in the same
class if one is a rotation of the other.

For example, according to our definition, the six necklaces of length 4 over
S01 are 0000, 0001, 0011, 0101, 0111, and 1111. It can be seen that, if we strip
off leading zeros, we obtain the first six Lyndon words. Thus, the concepts
of “Lyndon word” and “necklace” are closely related, and algorithms for one
may often by modified to apply to the other.

2It is not necessary to know a primitive root (mod p). We can choose a random a,
compute ω = a(p−1)/n, and check if 1, ω, ω2, . . . , ωn−1 are distinct (mod p). If not, reject
ω and repeat with another random a. In this way we work in a (small) group of order n,
instead of a (large) group of order p−1, and there is no need to factor p−1. The expected
number of iterations is n/φ(n) = O(log log n).

3Tests indicate that, at least for n 6 50, it is faster to use a single prime. One reason
for this is that the value detA needs to be reconstructed for each circulant A, so the cost
of the reconstruction steps is not negligible.
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The number K(n) of necklaces of length n over a binary alphabet is

K(n) =
1

n

∑
d|n

2n/dφ(d) ' 2n/n, (5)

where φ is Euler’s phi function. K(n) is tabulated in OEIS A000031 [37].
If A is a circulant, then | detA| is invariant under rotations of the first

row (a0, . . . , an−1). Thus, when searching for circulants of order n with max-
imal determinants, it is sufficient to consider circulants whose first row is a
necklace of length n. From (5), this saves a factor of approximately n.

In our computations we use two nontrivial algorithms related to Lyndon
words/necklaces. One is the algorithm of Booth [7], which determines in
linear time if a word w = w0 . . . wn−1 is in fact a necklace.4 Booth’s algorithm
is closely related to the initial phase of the Knuth, Morris and Pratt fast
pattern-matching algorithm [24].

The other algorithm that we use is Duval’s algorithm [14] which, given a
necklace of length n, returns the next necklace (of length n) in lexicographic
order5, in amortised (i.e. average) constant time, see [6]. Using Duval’s algo-
rithm we can cycle through all necklaces of length n in time O(2n/n).

Other algorithms could be used. For example, Shiloach [34] gives an al-
gorithm that reduces the number of comparisons used by Booth’s algorithm.
We used Booth’s algorithm because it was sufficient for our purposes, and
simpler to implement than Shiloach’s algorithm. The overall complexity of
our algorithms is dominated by the time required to evaluate determinants
using (4), not by the time required to check or enumerate necklaces.

3 Fast evaluation of circulant determinants

Standard algorithms of linear algebra, such as Gaussian elimination, require
of order n3 operations to evaluate the determinant of an n × n matrix A.
Using formula (4), this can be reduced to order n2 if A is a circulant. In fact,
using the fast Fourier transform (FFT), O(n log n) operations suffice.

However, in our application we can do even better. Because Duval’s
algorithm takes constant time (on average), the number of symbols that are

4We use a simplified version of Booth’s algorithm since we do not need to know the
rotation that would convert w into a necklace.

5Duval’s paper [14] considers Lyndon words but, using [14, comment (3) on pg. 258],
we easily get a similar algorithm for necklaces.
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changed as we go from one necklace to the next is O(1) on average.6 Thus,
each λj value given by (3) can be updated in O(1) operations (on average),
and the determinant, given by (4), can be updated with O(n) operations (on
average). Since there are ' 2n/n necklaces of length n, the computation of
all the relevant determinants can be done with O(2n) operations. The cost
of precomputing a table of powers ωjk (0 6 j, k < n) is negligible.

Note that we used the term “operations” rather than “time”, because
the arithmetic operations need to be performed using of order n log n bits of
precision, as noted above. Thus, the overall complexity is O(2nM(n log n)),
where M(N) is the time required to multiply N -bit numbers.

In theory, a slightly better complexity can be attained by using several
small primes and reconstructing the result via the Chinese Remainder The-
orem. However, the cost of O(2n/n) reconstructions must be taken into
account. In practice, n is never large, because of the exponentially growing
factor 2n in the complexity, so the difference between the two approaches is
essentially an implementation-dependent constant factor.

4 Parallel algorithms

Suppose we wish to use P > 1 processors in parallel. If the K ' 2n/n
necklaces of length n are W0 = 0 . . . 0,W1,W2, . . . ,WK−1 = 1 . . . 1, we would
like to ask processor q (0 6 q < P ) to compute the determinants corre-
sponding to necklaces WbqK/P c, . . . ,Wb(q+1)K/P c−1. The problem is how to
determine the starting point WbqK/P c for processor q, without enumerat-
ing W1,W2, . . . ,WbqK/P c. A polynomial-time algorithm for this problem is
claimed in [25], but it is very complicated. We preferred to adopt a simpler
approach which is much easier to implement and sufficient in practice.7

The idea is to take a random sample of (say) T := 4000P 2 necklaces (each
of length n). Sort the sample, and then divide it into P equal-sized segments.
Modify the initial segment to start with W0 = 0 . . . 0 and the final segment to
end with WK−1 = 1 . . . 1. Thus, each processor has the same number bK/P c
words to process, apart from a small sampling error which is negligible in

6We find experimentally that the mean number of symbols changed is 2 + O(n/2n)
as n → ∞. The limiting value 2 is the same as the mean number of bits changed when
counting up in binary.

7A similar algorithm, although not specifically intended for parallel computation, is
described in [9]. For an algorithm using less storage, and related references, see [19].
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practice. Also, we know the necklace starting each segment, so we can use
Duval’s algorithm to enumerate all necklaces in a segment.

We describe how to randomly sample the set of all necklaces of length n
in such a manner that each necklace occurs in the sample with equal proba-
bility. Generate a random binary string of length n, and test (using Booth’s
algorithm) if it corresponds to a necklace. If so, the string is accepted. Oth-
erwise, the string is rejected and we try again. The process is repeated until
we have the desired number T of necklaces (not necessarily distinct). Clearly
each necklace is equally likely to appear in the final list. Since the probability
that a random binary string is a necklace is close to 1/n, the number of ran-
dom binary strings that are needed is of order nT . What we have described
is a simple example of Von Neumann’s rejection method, first described by
Forsythe in [31]. Other examples may be found in Devroye’s book [12].

5 Computational results

In Tables 1–2 we give computational results for the maximal determinants
D01(n) of {0, 1}-circulants of order n 6 53. The third column of each table
gives the ratio D01(n)/U01(n), where D01(n) is the maximum of | det(B)| for
{0, 1}-circulants B of order n, and U01(n) is an upper bound on D01(n).

Similarly, in Tables 3–4 we give computational results for the maximal
determinants D±1(n) of {±1}-circulants of order n 6 53. Here the third col-
umn is the ratio D±1(n)/U±1(n), where U±1(n) is an upper bound on D±1(n).
In Tables 3–4 we scale the determinants of {±1}-circulants by dividing by
the known factor 2n−1. In the last column of Table 3, “−” and “+” are used
as abbreviations for −1 and +1 respectively.

The bounds U01(n) and U±1(n) are defined as follows. Let

HBE(n) :=


nn/2 if n ≡ 0 mod 4,

2(n− 1) (n− 2)(n−2)/2 if n ≡ 2 mod 4,

(2n− 1)1/2 (n− 1)(n−1)/2 otherwise.

(6)

Then HBE(n) is an upper bound on | detA| for {±1}-matrices A of order n.
The case n ≡ 0 mod 4 is due to Hadamard [22]; the case n ≡ 2 mod 4 is
due to Ehlich [15] and Wojtas [44]; and the remaining case (n odd) is due
to Barba [5], Ehlich [15], and Wojtas [44]. We do not use Ehlich’s slightly
sharper, but more complicated, bound that applies when n ≡ 3 mod 4. For
this bound, see Ehlich [16] or Orrick [32].
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In view of the discussion in §1, we take

U±1(n) := 2n−1bHBE(n)/2n−1c (7)

and
U01(n) := bHBE(n+ 1)/2nc. (8)

It is an open question whether D±1(n) attains the bound U±1(n) for
any n > 13. (If we restrict attention to the cases n ≡ 0 mod 4, this is
the circulant Hadamard problem.) On the other hand, D01(p) = U01(p) for
all primes p ≡ 3 mod 4. This follows from the first Paley construction [33],
which constructs a Hadamard matrix of order p+1 with a circulant submatrix
of order p. Inspection of Tables 1–2 reveals that D01(n) = U01(n) in some
other cases, specifically n ∈ {1, 2, 4, 15, 35}.

Table 2 extends the list ofD01(n) values given for n 6 37 in OEIS A086432
and the associated b-file [2]. Table 4 extends the list of D±1(n)/2n−1 values
given for n 6 28 in OEIS A215897 [3]. This implies a corresponding extension
for OEIS A215723, which lists the unscaled values D±1(n).

As an indication of the time required to compute the tables, we note that
the computation of D01(52) using our parallel program (implemented in C
using GMP [21]) took 11 processor-years using 128 Intel Xeon3 (2.2GHz)
and 224 Xeon4 (2.6GHz) processors. The computation time for order n was
roughly proportional to 2n.

For verification, all the values given in the tables for orders n < 50 were
computed at least twice, using different programs and/or different prime
moduli p. No discrepancies were found.

6 Some conjectures

In this section we discuss, and disprove, some plausible conjectures.

Conjecture A

From the third column of Table 1, the determinant of a {0, 1}-circulant can
attain the upper bound U01(n) in the cases n ∈ {1, 2, 3, 4, 7, 11, 15, 19, 23}.
The Paley construction explains this for n = 3, 7, 11, 19, 23, and larger cases
where n is a prime and n ≡ 3 mod 4. However, it does not explain the case
n = 15 = 3×5. Also, the upper bound is not attained for n = 27 = 33. Thus,
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a plausible conjecture is that the upper bound can be attained whenever
n ≡ 3 mod 4 is the product of at most two distinct primes. Support is
provided by the computation for n = 35 = 5× 7, since D01(35) = U01(35).

Our computation for n = 39 disproves these conjectures, since 39 = 3×13
is a product of two distinct primes, but D01(39) < U01(39). Another counter-
example is n = 51 = 3× 17. We find that D01(51) < U01(51)/2.

After our computations were completed, we discovered an explanation for
the cases n = 15 and n = 35. In each case n has the form p(p + 2), where
p and p+ 2 are both prime. Such n are covered by case (2) of the following
theorem, which we quote (with a slight change in notation) from [26]. Note
that a “circulant core” of order n refers to a {0, 1}-circulant matrix of order
n which can be used to construct a Hadamard matrix of order n+1 using the
correspondence between {0, 1}-matrices and {±1}-matrices described in §1.

Theorem 1 (Hadamard circulant core construction). A Hadamard matrix
of order n+ 1 with circulant core of order n exists if

(1) n ≡ 3 mod 4 is a prime;

(2) n = p(p+ 2), where p and p+ 2 are prime;

(3) n = 2k − 1, where k is a positive integer; or

(4) n = 4k2 + 27, where k is a positive integer and n is a prime.

Proof. Case (1) is due to Paley [33]; case (2) is due to Stanton and Sprott [39]
and also Whiteman [42]; case (3) is due to Singer [36]; and case (4) is due to
Hall [23, Theorem 2.2].

Hall [23, pg. 980] remarks that case (4) is subsumed by case (1), since
4k2 + 27 ≡ 3 mod 4, but we mention case (4) since Hall’s construction is
different from that of Paley.

We do not know if the list given by Theorem 1 is exhaustive. The com-
putational results given in Tables 1–2 show that, for 1 6 n 6 53, only those
n given by Theorem 1 can provide a Hadamard matrix of order n + 1 with
a circulant core. Also, a circulant {0, 1}-matrix of order n 6 53 can achieve
the upper bound (8) if and only if n 6 4 or n satisfies condition (1), (2) or
(3) of Theorem 1.
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Conjecture B, case [0, 1]

When considering maximal determinants of matrices with real elements in
the interval [0, 1], we can see that the maximum occurs at extreme points
of the polytope.8 To prove this, we need only note that the determinant
detA of a square matrix A = (aj,k) is a linear function of each variable aj,k
considered separately. Thus, if a local maximum of detA occurs for some
aj,k ∈ (0, 1), we can replace aj,k by (at least one of) 0 or 1 without decreasing
detA.

This argument does not apply if A is restricted to be a circulant of order
n > 1, because then the free parameters are just the elements a0, . . . , an−1
of the first row of A, and detA is not a linear function of each aj considered
separately. For example, if n = 2 we have detA = a20 − a21. Nevertheless,
inspection of small cases suggests the conjecture that the maximum of | detA|
occurs at extreme points of the n-dimensional polytope.

We were unable to prove the conjecture, so wrote a program to check it
numerically, and found that, in general, the conjecture is false.

The idea is as follows. Consider all possible circulants A of order n with
entries in {0, 1}. If detA = ±D01(n), check if a small perturbation of a0
towards the interior of the polytope would increase | detA|. Although such
behaviour is rare, it does occur.9

The smallest examples occur for n = 9. Consider A = circ(a0, . . . , a8)
with (a0, . . . , a8) = (0, 0, 0, 1, 1, 1, 1, 0, 1). We have detA = 95 = D01(9), but
∂ detA/∂a0 = 9. If a0 = ε for some small ε, then | detA(ε)| = 95+9ε+O(ε2),
so | detA(ε)| > 95 for sufficiently small ε > 0. In fact, | detA(0.241)| >
96.757.

For n = 10, an example is A = circ(0, 0, 1, 0, 0, 1, 1, 1, 1, 0), detA = 275.
Replacing a0 by ε = 0.112, we obtain detA(ε) > 279.4.

We found examples of such behaviour for n = 9, 10 and no other n up to
the limit of Table 2. However, there is a different class of examples that occur
when n = 4k+ 1 > 5 is a prime, e.g. n = 13, 17, 29, 37, 41, etc. For this class
we make a small modification to the Uniformly Redundant Arrays (URAs)

8This is already implicit in Hadamard [22].
9For reasons of efficiency, our program takes as input a list (generated during the

computation of Tables 1–2) of necklaces that define circulants A with maximal |detA|,
then considers all possible rotations of these circulants.
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of [10, 17], which are equivalent to Abelian difference sets [23].10 Define

An(x) := circ
(
x, 1+χ(1)

2
, 1+χ(2)

2
, . . . , 1+χ(n−1)

2

)
,

where χ is a quadratic character, defined by the Legendre symbol

χ(j) =

(
j

n

)
:=


+1 if j is a quadratic residue modulo n and j 6= 0 mod n;

−1 if j is a quadratic non-residue modulo n;

0 if j ≡ 0 mod n.

Then An(0) corresponds to a 1-D URA, but detAn(0) is not generally maxi-
mal in the class of circulant determinants. However, detAn(1

2
) may be larger

than the corresponding entry in Tables 1–2. It may be shown11 that, for
n = 4k + 1 an odd prime,

detAn(x) = (x+ 2k)(x2 − x− k)2k. (9)

In particular, detAn(0) = 2k2k+1, detAn(1) = (2k + 1)k2k, and

detAn(1
2
) = 2−n n(n+1)/2.

It may be verified numerically that detAn(1
2
) exceeds the maximal determi-

nant given in Tables 1–2 for n = 13, 17, 29, 37, and 41. The next possibility,
n = 53, is beyond the range of Table 2.

We observe that the maximum of detAn(x) for x ∈ [0, 1] is not at x = 1
2
.

One can show, by logarithmic differentiation of (9), that a local maximum
occurs at

x = xk :=

√
1 + 4k2 + 1− 2k

2
=

1

2
+

1

8k
+O(k−3),

and

max
06x61

detAn(x) = detAn(xk) = detAn(1
2
)

(
1 +

1

8kn
+O(k−4)

)
.

For example, if k = 3, n = 13, we have x3 = (
√

37 − 5)/2 ≈ 0.5414,
and U01(13) = 9477 > detA13(x3) ≈ 7684.16 > detA13(

1
2
) ≈ 7659.73 >

D01(13) = 6561 > detA13(1) = 5103 > detA13(0) = 4374.

10Our construction is also close to the “modified” URAs (MURAs) of [20].
11The proof uses the identity An(0)2 +An(0) = k(I + J).
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Conjecture B, case [−1, 1]

Replacing [0, 1] by [−1, 1], we find analogous behaviour for n = 2, 9, 10, 11, 18,
22 and no other n up to the limit of Table 4. The case n = 2 is trivial
because, for circulants of order 2 over S±1, we necessarily have detA = 0 at
the extreme points (a0, a1) = (±1,±1).

The other cases are non-trivial. For example, if n = 9, consider

A(ε) := circ(1− ε, 1,−1, 1,−1,−1, 1, 1, 1).

We find that
detA(ε) = 6912 + 4608ε+O(ε2),

so sufficiently small ε > 0 gives detA(ε) > 6912 = D±1(9). Indeed, we can
take ε = 1, as detA(1) = 8582 > 6912.

If n = 10, we find that

det circ(1− ε,−1, 1, 1,−1,−1,−1,−1,−1,−1) = −(22528 + 2560ε+O(ε2)),

and

det circ(−1 + ε,−1,−1, 1,−1, 1, 1,−1,−1,−1) = 22528 + 7680ε+O(ε2),

so in both cases a sufficiently small ε > 0 disproves the conjecture. A different
type of exceptional case is illustrated by

A(x) := circ(x,−1, 1,−1, 1, 1,−1,−1,−1,−1),

where we find that detA(x) is an even polynomial in x, and

− detA(0) = 33489 > − detA(±1) = 22528 = D±1(10).

Similarly, for order 22, consider

A(x) := circ(x,−1,1,1,−1,−1,−1,−1,−1,−1,−1,1,1,−1,1,−1,1,−1,1,1,−1,−1).

Then

− detA(0) = 216409254831025 > − detA(±1) = 215055782117376.

Since 215055782117376 = D±1(22) = 221× 102546588 (see Table 3), we have
| detA(0)| > D±1(22).

Our search was not exhaustive, so there may be other n within the range
of Tables 3–4 for which the maximum determinant does not occur at an
extreme point of [−1, 1]n.
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7 Remarks on periodic autocorrelations

It is hard to discern a pattern in the lex-least words given in Tables 1–4. It
seems more fruitful to consider the periodic autocorrelations of the first rows
of the corresponding circulants. Equivalently, we can consider the first rows
of the Gram matrices G = ATA, where A is the relevant circulant.

In the case of (0, 1)-circulants, it may be useful to map (0, 1) 7→ (−1, 1),
and consider the first row of G′ = (2A−J)T (2A−J). For example, provided
n > 4, the upper bound is achieved in Tables 1–2 if and only if the first row
of G′ is (n,−1,−1, . . . ,−1), see [29].

In some cases the maximal determinants given in Tables 1–4 have only
small prime factors. For example, the entry for n = 52 in Table 4 is
249 324 54, and this can be explained if we observe that the first row of G
is (52, 0, 0, 0, 4, 0, 0, 0, 4, . . . , 0, 0, 0, 4, 0, 0, 0). Thus, we can write G = 52I +
4E4 +4E8 + · · ·+4E48, where E is the “circular shift” matrix. Similarly, the
entry for n = 48 in Table 4 is 249 36 512, and hereG = 48I+4E12+8E24+4E36.
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Appendix – Tables of Maximal Determinants

order maximal ratio lex-least lex-least
n |determinant| D01(n)/ word word

D01(n) U01(n) (decimal) (over {0, 1})
1 1 1.0000 1 1

2 1 1.0000 1 01

3 2 1.0000 3 011

4 3 1.0000 7 0111

5 4 0.8000 15 01111

6 9 0.7500 11 001011

7 32 1.0000 23 0010111

8 45 0.6923 47 00101111

9 95 0.6597 47 000101111

10 275 0.6152 55 0000110111

11 1458 1.0000 183 00010110111

12 2240 0.6145 439 000110110111

13 6561 0.6923 1527 0010111110111

14 19952 0.5759 751 00001011101111

15 131072 1.0000 2479 000100110101111

16 214245 0.5691 2935 0000101101110111

17 755829 0.6784 2935 00000101101110111

18 2994003 0.6505 9903 000010011010101111

19 19531250 1.0000 22427 0000101011110011011

20 37579575 0.6010 28023 00000110110101110111

21 134534444 0.6560 45999 000001011001110101111

22 577397064 0.6178 117623 0000011100101101110111

23 4353564672 1.0000 340831 00001010011001101011111

24 10757577600 0.7060 843119 000011001101110101101111

25 31495183733 0.5787 638287 0000010011011110101001111

Table 1: Maximal determinants of {0, 1}-circulants of order n 6 25.
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order maximal ratio to lex-least word
n |determinant| upper bound (decimal)
26 154611524732 0.5744 957175
27 738139162166 0.5442 1796839
28 3124126889325 0.6101 5469423
29 11937232425585 0.6069 6774063
30 65455857159975 0.6271 37463883
31 562949953421312 1.0000 77446231
32 1395230053365015 0.6148 47828907
33 5687258414265018 0.6123 196303815
34 30551195956571643 0.5827 95151003
35 300189270593998242 1.0000 1324935477
36 809028975189744400 0.6309 1822895095
37 3198686446402685263 0.5760 430812063
38 19288701806345611347 0.5825 2846677239
39 103227456252120723684 0.5161 10313700815
40 529663503370085366373 0.5885 6269629671
41 2311393009109010944326 0.5638 26764629467
42 15469925980869995489631 0.6023 22992859983
43 162805498773679522226642 1.0000 92035379515
44 402826140168935435652453 0.5245 162368181483
45 2268175963362305735661143 0.6192 226394696439
46 12738408112895861486972391 0.5307 631304341299
47 158993694406781688266883072 1.0000 4626135339999
48 483776963047101724429782080 0.6179 924925407055
49 2226275734022433928055705600 0.5715 1588449170843
50 15940963431893953997118039375 0.5992 5455102172067
51 86343902346653136953496818019 0.4706 12463552538547
52 471252255596620483490068604560 0.5013 23418838481755
53 2670231923706326010918104225583 0.5492 12803059922743

Table 2: Maximal determinants of {0, 1}-circulants, 25 < n 6 53.
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order maximal ratio lex-least lex-least
n scaled |det| D±(n)/ word word

D±1(n)/2n−1 U±(n) (decimal) (over {±1})
1 1 1.0000 0 -

2 0 0.0000 0 --

3 1 1.0000 1 --+

4 2 1.0000 1 ---+

5 3 1.0000 1 ----+

6 4 0.8000 1 -----+

7 8 0.6667 11 ---+-++

8 18 0.5625 11 ----+-++

9 27 0.4154 11 -----+-++

10 44 0.3056 11 ------+-++

11 267 0.5973 39 -----+--+++

12 1024 0.7023 83 -----+-+--++

13 3645 1.0000 83 ------+-+--++

14 6144 0.6483 83 -------+-+--++

15 23859 0.6886 359 ------+-++--+++

16 50176 0.3828 691 ------+-+-++--++

17 187377 0.4977 1643 ------++--++-+-++

18 531468 0.4770 2215 ------+---+-+--+++

19 3302697 0.7176 9895 -----+--++-+-+--+++

20 10616832 0.5436 6483 -------++--+-+-+--++

21 39337984 0.6291 67863 ----+----+--+---+-+++

22 102546588 0.5000 21095 -------+-+--+--++--+++

23 568833245 0.6087 72519 ------+---++-++-+---+++

24 3073593600 0.7060 144791 ------+---++-+-++--+-+++

25 8721488875 0.5724 108199 --------++-+--++-+-+--+++

Table 3: Maximal scaled determinants of {±1}-circulants of order n 6 25.
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order maximal scaled |det| ratio to lex-least word
n D±1(n)/2n−1 upper bound (decimal)
26 32998447572 0.6064 355463
27 164855413835 0.6125 604381
28 572108938470 0.4218 1289739
29 2490252810073 0.4863 1611219
30 10831449635712 0.5507 1680711
31 68045615234375 0.6520 6870231
32 282773291271138 0.5023 12817083
33 1592413932070703 0.7017 18635419
34 5234078743146888 0.5635 55100887
35 33374247484277975 0.6366 149009085
36 198124573871046186 0.6600 160340631
37 787413957917252603 0.6140 415804239
38 3195257068570067448 0.5754 829121815
39 22999238901574021485 0.6946 4737823097
40 117140061677844350646 0.5857 1446278811
41 536469708946538168543 0.5961 3001209959
42 2417648227367853639168 0.5897 19153917469
43 14611334654738350617599 0.5689 52222437727
44 65738632907943707712320 0.4038 20159598251
45 438910341492340511320163 0.5715 166482220965
46 2010768410464246499566152 0.5489 90422521191
47 12779930756727248097293989 0.5324 115099593371
48 100192997081088000000000000 0.6302 242235026743
49 408375323859124630659059549 0.5216 1416138805685
50 2152519997519833685106486024 0.5526 2380679727935
51 14098690136202107270366810369 0.5300 2716242515341
52 99371059004238555166801920000 0.5416 1758408815375
53 512364770126478307153560491081 0.5451 10146024354919

Table 4: Maximal scaled determinants of {±1}-circulants, 25 < n 6 53.
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