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Abstract: Problem of finding an optimal upper bound for the chromatic no. of even 3K;-free graphs
is still open and pretty hard. Here we prove Borodin & Kostochka Conjecture for 4K;-free graphs G
i.e. If A(G) > 9 and G is 4K-free, then ¢ (G) < max{w, A-1}.

Introduction:

In [1], [2], [3], [4] chromatic bounds for graphs are considered especially in relation with o and A.
Gyarfas [5] and Kim [6] show that the optimal x-binding function for the class of 4Ki-free graphs has
order o?/log(w). If we forbid additional induced subgraphs, the order of the optimal y-binding
function drops below w%log(w). In 1941, Brooks' theorem stated that for any connected undirected
graph G with maximum degree A, the chromatic number of G is at most A unless G is a complete
graph or an odd cycle, in which case the chromatic number is A+ 1 [5]. In 1977, Borodin &
Kostochka [6] conjectured that if A(G) > 9, then %(G) < max{w, A-1}. In 1999, Reed proved the
conjecture for A > 10 [7]. Also D. W. Cranston and L. Rabern [8] proved it for claw-free graphs.
Here we prove Borodin & Kostochka conjecture for 4Ki-free graphs.

Notation: For a graph G, V(G), E(G), A, o, x denote the vertex set, edge set, maximum degree, size
of a maximum clique, chromatic number of G resply. For u € V(G), N(u) = {v € V(G) / uv € E(G)},

and N(u) = N(u)u(u). If S <V, then <S> denotes subgraph of G induced by S. If C is some

coloring of G and if u € V(G) is colored m in C, then u is called a m-vertex, if N(u) has a unique r-
vertex, then r is called a unique color of u and if N(u) has more than one r-vertex, then r is called a
repeat color of u. Also if P is a path in G s.t. vertices on P are alternately colored say i and j, then P is
called an i-j path. All graphs considered henceforth are simple. We consider here simple and
undirected graphs. For terms which are not defined herein we refer to Bondy and Murty [9].

Main Result: Let G be 4Ki-free and A > 9, then y < max{A-1, o}.

Proof: Let if possible G be a smallest, connected, 4K;-free graph with A > 9 and y > max{A-1, o}.
Then clearly as G # Coni1 OF Ky, 1 = A > o. Let u € V(G). Then G-u = Ky (else y = o). If
A(G-u) > 9, then by minimality %(G-u) < max{®(G-u), A(G-u)-1}. Clearly if o(G-u) < A(G-u)-1, then
x(G-u) = A(G-u)-1 < A-1 and otherwise y(G-u) = o(G-u) < ® < A. In any case y(G-u) < A-1. Also if
A(G-u) <9, then as G-u # Can+1, by Brook’s Theorem y(G-u) < A (G-u) < 9 < A. Thus always y(G-u)
< A-1andin fact, x(G-u) = A-land deg v > A-1 V v € V(G).

Letu € V(G) be s.t. degu = A. Let S = {1,...,, A-1, A} be a A-coloring of G with only u colored A.
Then N(u) has A-2 vertices A; with unique colors i (1<i<A-2) and a pair of vertices say X, Y with the
same color A-1. Clearly A has a j-vertex for 1<i=j<A-2 (else color Aiby j, u by i).

Case 1: 3 a (A-1)-coloring of G-u s.t. AiA; ¢ E(G) for some i, j € {1,.., A-2}.

(A) For no m, An is the only m-vertex of both Ajand A for 1<i, j, m<A-2.

Let if possible Ai, A« both have Am as the only m-vertex. Then as An has at the most one repeat color,
w.l.g. Aj be the only j-vertex of An. Then color A;, Ajby m, Anby j, u by i, a contradiction.

(B) Ai, Aj do not have more than two common adjacent Axs in N(u).

Let Ai, A; be both adjacent to say Ax, Ai, Am 1<i, j, Kk, I, m<A-2. As each of Ai, A; has at the most one
repeat color, w.l.g. let An be the only m-vertex of both Ajand A, a contradiction to (A).

(C) Aiis non-adjacent to at the most three Axs = As A-2 > 7, Ajis adjacent to at least three Am,1<i,
k, m<A-2.

Let if possible A1Ax ¢ E(G) for 2<k<5. As G is 4K-free, 3 at most two more 1-vertices a1, a2 and as
3 1-k path from A; to Ay, either a1 or ai2 is adjacent to Ax with two k-vertices for 2<k<5. Again ai;
cannot have three repeat colors (else N(as) has a color say r missing. Color asi by r. Then either (i)
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some Ax (2<k<5) has no 1-vertex, hence color Ax by 1, u by k or (ii) ai2Ax € E(G) (2<k<5), a2 has
four repeat colors and N(ai2) has color t missing. Color a2 by t, Ax by 1, u by k). Thus w.l.g. let Aiais,
Ajarz € E(G) fori =2, 3 and j =4, 5 s.t. a11 has two repeat colors 2, 3 and a:» has two repeat colors 4,
5. Clearly A1A; € E(G) V 6<i<A-2 (else either a:1 or ai; has three repeat colors).

Claim 1: Whenever A1 has a unique i-vertex say B for 6<i<A-1, A is the only 1-vertex of B.

Let if possible Bai; € E(G). Then B has a unique m-vertex for 2<m<A-1 (else N(B) has some color r
missing. Color B by r, A1 by i, u by 1). As ai; has two repeat colors 2, 3, B is its only i-vertex. Then G
has at the most one more i-vertex say b (else <A, ai1, bi1, b12> = 4K4). Again by (A), B is not the only
i—vertex of any A, for 2<k<5. Hence Akb € E(G) for 2<k<5. Now A«B ¢ E(G) for k = 2, 3 (else color
Acby 1, a1 by i, B by 2/3, A1 by i, u by 1) and b has two k-vertices for k = 2, 3 (else color A« by i, b
by k, u by k) = An is the only m-vertex of b for m = 4, 5 (else b has color r missing in N(b). Color b
by r, A2 by i, u by 2). Now An has two i-vertices (else b is the only i-vertex of An. Color bby m, An
by i, uby m), m € {4, 5} = a, is the only 1-vertex of Am, m € {4, 5}. Again Bai, ¢ E(G) (else B has
three 1-vertices and color say r missing in N(B). Color B by r, A1 by i, u by 1) = anb € E(G). Then
color bby 4, Asby 1, a;oby i, u by 4, a contradiction. This proves Claim 1.

Now aix has an i-vertex for k = 1, 2 (else color aik by i. If aik is the only 1-vertex of An(2<m<5), then
color Am by 1, u by m and if every Am has two 1-vertices, then if k = 1 (2), color Az (As) by 1, a1z (a11)
by 2 (4), u by 2 (4)).

Let a11bin € E(G). As ai1 has two repeat colors 2, 3, bi; is the only i-vertex of ais.

Claim 2: ay is the only 1-vertex of bi.

Let if possible a;obii € E(G). As a1z has two repeat colors 4, 5, bi; is the only i-vertex of a;.. Then G
doesn’t have an i-vertex say b1, ¢ {B, b1} (else <ai1, a1z, B, b12> = 4K;). Again by (A), B cannot be
the only i-vertex of any An for 2<m<5. Hence Anbi1 € E(G) for 2<m<5. If A is the only k-vertex of
bix for some k, 2<k<5, then if bj; is the only i-vertex of Ax color Ak by i, bir by k, u by k and if A has
two i-vertices, then ay being the only 1-vertex of Ay, color Ax by 1, a; by i, bix by k, u by Kk,
contradictions in both the cases. Hence let bi; have repeat colors k V k, 2<k<5. But then bj; has
color r missing in N(bi1). Color bi; by r and a:1 by i. Then Azai, € E(G) (else color A2 by 1, u by 2).
Again as ai2 has two repeat colors 4, 5, Az is its only 2-vertex and hence color Az by 1, ai2 by 2, u by
2, a contradiction. This proves Claim 2.

Similarly if b is an i-vertex of a2, then ai» (bi2) is the only 1-vertex (i-vertex) of biz (a12). Now Ambis,
Anbize E(G) for m =2, 3and n =4, 5 (else let AzbinzE(G). If ai1is the only 1-vertex of A, then color
ainby i, binby 1, Aoby 1, u by 2 and if Asaioe E(G), then color a1 by i, biuby 1, a2 by 2, A2by 1, u by
2).

As A: has at the most one repeat color, w.l.g. let A; have unique 2, 3, 4 vertices. Let P (R) be a 2-1 (4-
1) path from A; (As) to A1. As ai2 (a11) has a unique 2-vertex (4-vertex), clearly P = {A,, a1, az1, Ai}
and R = {As, a1z, as1, Ad}.

Claim 3: anaiz, Azar ¢ E(G) Slmllarly as1ai1, Agdur ¢ E(G)

Let if possible azia:2 € E(G). Then G has no other 2-vertex ax ¢ {Az, ax} (else <az, a2, A1, Ax> =
4Ky). Also axnbii € E(G) (else Az is the only 2-vertex of bi:. If bip is the only i-vertex of A, then color
bin by 2, A2 by i, u by 2 and if Az has two i-vertices, then color bix by 2, A, by 1, a1 by i, u by 2). As
a1 has three 1-vertices, Ba,: ¢ E(G) and hence BA; € E(G) (else color B by 2, A; by i, u by 1). Thus
bi has no 2-vertex. Then if Asai1 ¢ E(G), color biz by 2, a2 by i, Asby 1, u by 4 and if Asa11 € E(G),
color biz by 2, Asby i, u by 4, contradictions in both the cases. Hence ai1a12 ¢ E(G)

= ax1bir € E(G) (else color biy by 1, ai1 by i, a1 by 1, A1 by 2, u by 1).

Next let if possible Asai; € E(G). Then by is the only i-vertex of A;and A;B ¢ E(G). Also A; is the
only 2-vertex of a;zand hence G has no other 2-vertex say az (else <az, a1z, A1, a11> = 4K;) = Ban €



E(G) (else color B by 2, Aiby i, u by 1). As a,; has two 1-vertices and i-vertices, azibi; ¢ E(G). Also
as Az has two 1-vertices Axbiz ¢ E(G). Color b by 2, a1 by i. If a1z is the only 1-vertex of A4, then
color Asby 1, u by 4 and if Asai1 € E(G), then color ai1 by 4, Asby 1, u by 4, contradictions in both
the cases. Hence Azai> ¢ E(G). This proves Claim 3.

Claim 4: Whenever A1 has a unique i-vertex B for 6<i<A-1, either Az or az1 has two i-vertices.
Let bi: be the only i-vertex A,. Now b is not the only i-vertex of ax (else <azi, Az, biz, B > = 4K3).
Thus az1 has two i-vertices. This proves Claim 4.

Now as A > 9, and A; has at the most one repeat color, Az has at least two unique k-vertices for k e
{6, 7, ..., A-1}. Let B, C be the unique i-vertex, k-vertex of A;resply fori, k € {6, 7,..., A-1}. Again as
a1 has two 1-vertices, each of Az and az: has at the most one other repeat color. By Claim 4, w.l.g. let
Az, ax1 have two i-vetices, k-vertices resply. = Az, a21 has a unique 4-vertex each. Similarly A, as1 has
a unique 2-vertex each. Now Azas1 ¢ E(G) (else color as by 2, A2 by 4, u by 2). Also AAs ¢ E(G)
(else color Asby 2, Axby 4, a11 by 2, a1 by 1, A1by 2, u by 1) = axasn € E(G) (else <azi, as, Az, As>
= 4K3). As a1 is the unique 1-vertex of A, color as by 2, ax by 4, ain by 2, A, by 1, u by 2, a
contradiction.

This proves (C).

If AiAj ¢ E(G) (1<i, j<A-2), then as A-2 > 7, by (C), 3 m (1<m<A-2) s.t. AiAm AjAn € E(G). Also by
(B), 3 maximum two such m’s (1<m<A-2).

Case 1.1: 3 i, js.t. AiA; ¢ E(G) and AiA«, AiAm, AjAk, AjAn € E(G), 1<i, J, k, m<A-2.

W.lg. leti=1,j=2,k=5,j=6.Also by (C), let AiAs, A2A7 € E(G). Then by (B), AiA7, A2Aj ¢
E(G). By (A), w.l.g. let A1, Az have two 5-vertices, 6-vertices resply. Clearly A4 (A7) is the unique 4-
vertex (7-vertex) of A; (Az). Also by (C), Aris adjacent to at least one of A;, i € {3, 4, 6} and if A7A;
€ E(G), i € {8, 4, 6}, then A7 has two i-vertices (else A7, A1 have a unique i-vertex A, a contradiction
to (A)) and hence A; is the unique 2-vertex of A;. Now AzA; or AsAz € E(G) (else by (C), As is
adjacent to at least three of A4, As, As, A7 and either As, A: or As, A, have a common adjacent A; s.t.
Ai is their only i-vertex, a contradiction to (A)). W.1.g. let AsA: € E(G). Again As is the unique 3-
vertex of Ai. Now 3 2-i paths from Az to Ai (i = 1, 3, 4). Also as G is 4K;-free, 3 at most two more 2-
vertices a1, az and at least one of them say a1 has two repeat colors from {1, 3, 4}.

Case 1.1.1: az1As3, a21A4 € E(G) and az1 has two repeat colors 3, 4.

Then a»A: € E(G) and ax has two 1-vertices and ax is the only 2-vertex of Ai. W.l.g. let ax have a
unique 3-vertex (else az; has a color r missing in N(azz). Color az by r, A1 by 2, u by 1). Then azAs;
¢E(G) (else color ax by 3, Az by 1, A; by 2, u by 3). Consider a 3-2 path T from Az to A, with as;
being the 3-vertex of A, on T. As az has a unique 3—vertex, clearly axas: € E(G). Now axas € E(G)
(else alter colors along {Az, as1, a2, As}, color A; by 3, u by 1). Then G does not have a 3-vertex as;
¢ {As, azi} (else <Ay, ax, as, As> = 4K,). Now Asaz € E(G) (else As is the only 3-vertex of both A4
and A;, contrary to (A)). But as as has three 2-vertices, Ay is its only 7-vertex. Also by (C), A; is
adjacent to at least one A; (j € {3, 4, 6} and has two j-vertices (else A; is the only j-vertex of A.and
Ay, contrary to (A)). Hence A; is the only 2-vertex of A;. Then color asiby 7, Az by 2, A, by 3, u by 7,
a contradiction. This proves Case 1.1.1.

Case 1.1.2: A3, Asdo not have a common adjacent 2-vertex.

W.L.g. let ax A1, anAs € E(G) and axAs € E(G). Then axAs, axAs ¢ E(G). Clearly a»; has two 1-
vertices and 3—-vertices and hence a unique 4-vertex. Let as1 be the unique 4-vertex of A.. Then as 3 a
2-4 path S from A, to As, clearly axas e E(G). Now axnas ¢ E(G) (else G does not have a 4-vertex as,
e{as1, As}, as otherwise <A, az, an, As> = 4K1 = Asane E(G) as otherwise A7 and A; have a
common unigue 4-vertex A4, a contradiction to (A). But then color Az by 2, A, by 4, as by 7, u by 7).
Let as be the unique 4-vertex of azi. Then anax € E(G) (else alter colors along {A4, az, au, As},
color A; by 4, u by 1). Thus a2 has three 4-vertices and hence a unique i-vertex for 1<i<A-1, i ¢ {2,
4%}. Now Ay has a unique j-vertex for j = 1 or 3. Consider a 2-j path T from A, to A;and let aj; be the



unique j-vertex of Ax. Clearly anaje E(G). Again ax»aj ¢ E(G) (else G does not have a j-vertex aj.
z{aj1, Aj}, as otherwise <Ay, ax, ajp, Ai> = 4K1 = Asajie E(G). Color A7 by 2, A2 by j, a1 by 7, u by
7). Hence 3 aj» s.t. azajpe E(G) (else color az by j, As by 2, u by 4). Now clearly ax is the unique 2-
vertex of aj; and vice versa = Asajppe E(G) (else color ax; by j, aj2 by 2, As by 2, u by 4). Clearly A4
has two 1-vertices (else A1 is its unique 1-vertex. Alter colors along {As, a2, as1, A2}, color A1 by 4, u
by 1) = j = 3 and as; is the unique 3-vertex of As = AsAs ¢ E(G). Then by (C), A4 is adjacent to at
least two Ass for k € {5, 6, 7}. Let AsAne E(G), for m =5 or 7. Then Anis the unique m-vertex of A4
and A, a contradiction to (A).

Case 1.2: V i, js.t. AiA; ¢ E(G), Ai, Aj have only one common adjacent Axin N(u), 1<i, j, k<A-2.
W.lg.leti=1,j=2and k = 3. By (C), let AsAn € E(G) form=4, 5, A,A € E(G) for 1 =6, 7. Let if
possible AsAs ¢ E(G). Now A4 is adjacent to at the most one of As, A7 (else we get Case 1.1 with A,
and As) and hence by (C), AsAs € E(G). Also by (C), w.l.g. let AsAs € E(G). Again AzAs, AsAs ¢
E(G) (else we get Case 1.1 with Az and As) and hence by (C), AsAs € E(G) = AsA7 ¢ E(G) (else we
get Case 1.1 with A; and As) and AsAs € E(G). But then we get Case 1.1 with A; and As, a
contradiction. Hence AsAi e E(G) for 4<i<7. Again AsAs, AsA7 € E(G) (else we get Case 1.1 with
Ay, As or As, A7). Also either all Aihave two 3-vertices for 1<i=3<7 or say A: has a unique 3-vertex.
Again if Az has a unique 3-vertex, then Az, As, A7 all have two 3-vertices (else a contradiction to (A)).
Hence w.l.g. let A1, A4, As have two 3-vertices. As G is 4K;-free, G has at the most two 2-vertices
say ax (i =1, 2). W.Lg. let Aiaz1 € E(G). Now a; has at the most two repeat colors (else a color say r
is missing in N(az1). Color a1 by r, A1 by 2, u by 1). Also as 3 i-2 paths from Ai to A, fori=1, 4, 5,
either a1 or ax; has two j-vertices for j =1, 4, 5. W.L.g. let ax have two repeat colors 1, 4 with Aiaz,
Asaz € E(G) = Asax € E(G) and a2 has two 5-vertices. Again at least two of {1, 4, 5} are unique
colors of As.

Case 1.2.1. A, has a unique 1-vertex and 5-vertex.

Let Azai1, Azasi € E(G). As az1 has two repeat colors 1, 4, ithas a unique 5-vertex and clearly as 3 2-5
path from Azto As, axas1 € E(G). Now azias: ¢ E(G) (else G doesn’t have a 5-vertex as; ¢ {As, as1} as
otherwise <As, as;, Az, 821> = 4Ki. As as1 has three 2-vertices, As is its only 6-vertex. Also as; is the
only 5-vertex of As. Color as; by 6, As by 5, u by 6) = anas; € E(G). Also as.az € E(G) (else color
Ay by 5, as1 by 2, ax by 5, As by 2, A1 by 5, u by 1).. But then azaii ¢ E(G) (else G doesn’t have a 1-
vertex a2 ¢ {As, an1} as otherwise <Ay, a1z, Az, 22> = 4K; and ai; has three repeat colors 2, 6, 7 with
color say r missing in N(a11). Color ai1 by r, A, by 1, u by 2) = anian € E(G). Let azaiz € E(G). Then
az (a1z) is the only 2-vertex (1-vertex) of ai» (azz). Color ax by 1, aiz by 2, As by 2, u by 5, a
contradiction.

Case 1.2.2. A, has a unigue 1-vertex and 4-vertex.

Let Azai1, Azasr € E(G). As ax has two 5-vertices, w.l.g. let a;; have a unique 1-vertex. Then azai; ¢
E(G) (else if 3 a1z, then <A, a1z, A2, a2> = 4K, and if a1» doesn’t exist, then ai1 has three repeat colors
2, 6, 7 and color say r is missing in N(ai1). Color a;1 by r, Az by 1, u by 2) = axai» € E(G) and axai
€ E(G). Then az; (a12) is the only 2-vertex (1-vertex ) of ai» (a22). Color az by 1, a1z by 2, As by 2, u
by 5, a contradiction.

This proves Case 1.

Case 2: In every (A-1)-coloring of G-u, all vertices with unique colors in N(u) are adjacent.
A-2

Clearly A-1 <®and hence A-1 =®>8 = < U Ai > is a maximum clique in G-u and {X, Y} = N(u)-

izl
A-2
U Ai.
iz
A-2

I. At most two vertices in U Ai are non-adjacent to both X and Y.
i=1



Let if possible A1, A2, As be non-adjacent to both X and Y. Then clearly 3 a (A-1)-vertex say Z in
V(G) s.t. ZAi € E(G) for i =1, 2, 3. Moreover, as G is 4Ki-free, Z is their only (A-1)-vertex. If Aj is
the only i-vertex of Z for some i (1<i<3), then color Ai by A-1, Z by i, u by i, a contradiction. Hence Z
has at least two i-vertices for i = 1, 2, 3. But then Z has some color r missing in N(Z). Color Z by r, A;
by A-1, u by i, a contradiction.
1. Every vertex A; of N(u) has at least one j-vertex j = i (else color Ai by j and u by i), 1<i, j<A-2.
1. X (YY) has a k-vertex for every k = 1,.., A-2.
A-2
Let if possible X not have a k-vertex. Also as <u U U Ai > is a maximum clique in G, 3 i (1<i<A-2)
i=1
s.t. YAi ¢ E(G). Then color X by k. Now i = k (else we get Case 1 as Y and A; are unique vertices in
N(u)). As A > 9 and each of Y and A; has at the most one repeat color, clearly 3 j (1<j<A-2) s.t. A;is
the only j-vertex of both Y and Ai. Also A;has either a unique i-vertex A; or (A-1)-vertex Y. Color Y
and Ai by j, Ajby i (A-1), u by A-1 (j), a contradiction.

A-2
IV. X (Y) is adjacent to at least w-5 vertices in U Ai.

i=1
Let if possible X be non-adjacentto A;, i =1,.., 5. By I, w.l.g. let YA; € E(G) fori =1, 2, 3. Also let
YA« ¢ E(G) for some k> 4. By Il and I11, Y and A« each has at the most one repeat color and hence
w.l.g. let Az be the unique 1-vertex of Y and Ax. Now A; has two (A-1)-vertices (else color Y and Ax
by 1, A1 by A-1, u by k) = A« is the unique k-vertex of Ai. Then color Y and A« by 1, A; by k and we
get Case 1 with two non-adjacent, unique vertices X, A, a contradiction.
V. X (Y) is not the only (A-1)-vertex of any A..
Let if possible X be the only (A-1)-vertex of some Ai. By 1V, 3 K, j s.t. XAk, XA;j € E(G). Also let
XAm ¢ E(G) for some m. If Aiis the only i-vertex of X and Am, then color X, An by i, Aiby A-1, u by
m, a contradiction. Hence let A; be not the only i-vertex of either X or Am. As X and An have at the
most one repeat color, w.l.g. let Ax be the only k-vertex of X and Am. Again if X is the only (A-1)-
vertex of Ay, then as before we get a contradiction. Hence let Ax have two (A-1)-vertices. But then
color Axby i, Ai by A-1, X by k, Amby k, u by m, a contradiction.

By IV, w.l.g. let XA« € E(G) for k=1, 2, 3 and XA ¢ E(G). Also w.l.g. let A; be the only 1-vertex of
X and As. By V, A1 has two (A-1)-vertices. If any Ai (1<i<A-2, i#4) is non-adjacent to Y, then as
before by coloring X, As by 1 and A; by 4, we get Case 1 and hence YA« € E(G) for every k = 4.
Similarly XAk € E(G) for every k= 4. As A > 9, 3 is.t. Ajis the only i-vertex of X, Y and As. Color
X, Y, Asby i, Ai by A-1, u by 4, a contradiction.

This proves Case 2 and completes the proof of the Main Result.
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