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 Validity of Borodin and Kostochka Conjecture for 4K1–free Graphs 

Medha Dhurandhar 

 

Abstract:  Problem of finding an optimal upper bound for the chromatic no. of even 3K1-free graphs 

is still open and pretty hard. Here we prove Borodin & Kostochka Conjecture for 4K1-free graphs G 

i.e. if (G)  9 and G is 4K1-free, then (G)  max{, -1}. 

 

Introduction:  

In [1], [2], [3], [4] chromatic bounds for graphs are considered especially in relation with  and . 

Gyárfás [5] and Kim [6] show that the optimal -binding function for the class of 4K1-free graphs has 

order ω2/log(ω). If we forbid additional induced subgraphs, the order of the optimal -binding 

function drops below ω2/log(ω). In 1941, Brooks' theorem stated that for any connected undirected 

graph G with maximum degree Δ, the chromatic number of G is at most Δ unless G is a complete 

graph or an odd cycle, in which case the chromatic number is Δ + 1 [5]. In 1977, Borodin & 

Kostochka [6] conjectured that if (G)  9, then (G)  max{, -1}. In 1999, Reed proved the 

conjecture for   1014 [7]. Also D. W. Cranston and L. Rabern [8] proved it for claw-free graphs. 

Here we prove Borodin & Kostochka conjecture for 4K1-free graphs.  

 

Notation: For a graph G, V(G), E(G), , ,  denote the vertex set, edge set, maximum degree, size 

of a maximum clique, chromatic number of G resply. For u  V(G), N(u) = {v  V(G) / uv  E(G)}, 

and )(uN  = N(u)(u).  If S  V, then <S> denotes subgraph of G induced by S. If C is some 

coloring of G and if u  V(G) is colored m in C, then u is called a m-vertex, if N(u) has a unique r-

vertex, then r is called a unique color of u and if N(u) has more than one r-vertex, then r is called a 

repeat color of u. Also if P is a path in G s.t. vertices on P are alternately colored say i and j, then P is 

called an i-j path. All graphs considered henceforth are simple. We consider here simple and 

undirected graphs. For terms which are not defined herein we refer to Bondy and Murty [9]. 

 

Main Result: Let G be 4K1-free and   9, then   max{-1, }. 

Proof: Let if possible G be a smallest, connected, 4K1-free graph with   9 and  > max{-1, }. 

Then clearly as G  C2n+1 or K|V(G)| ,  =  > . Let u  V(G). Then G-u  K|V(G)|-1 (else  = ). If 

(G-u)  9, then by minimality (G-u)  max{(G-u), (G-u)-1}. Clearly if (G-u)  (G-u)-1, then 

(G-u) = (G-u)-1  -1 and otherwise (G-u) = (G-u)   < . In any case (G-u)  -1. Also if 

(G-u) < 9, then as G-u  C2n+1, by Brook’s Theorem (G-u)   (G-u) < 9  . Thus always (G-u) 

 -1 and in fact, (G-u) = -1 and deg v  -1  v  V(G). 
 

Let u  V(G) be s.t. deg u = . Let S = {1,..., -1, } be a -coloring of G with only u colored . 

Then N(u) has -2 vertices Ai with unique colors i (1i-2) and a pair of vertices say X, Y with the 

same color -1. Clearly Ai has a j-vertex for 1ij-2 (else color Ai by j, u by i). 

 

Case 1:  a (-1)-coloring of G-u s.t. AiAj  E(G) for some i, j  {1,.., -2}. 

 

(A) For no m, Am is the only m-vertex of both Ai and Aj for 1i, j, m-2. 

Let if possible Ai, Ak both have Am as the only m-vertex. Then as Am has at the most one repeat color, 

w.l.g. Aj be the only j-vertex of Am. Then color Ai, Aj by m, Am by j, u by i, a contradiction.  

(B) Ai, Aj  do not have more than two common adjacent Aks in N(u). 

Let Ai, Aj  be both adjacent to say Ak, Al, Am 1i, j, k, l, m-2. As each of Ai, Aj  has at the most one 

repeat color, w.l.g. let Am be the only m-vertex of both Ai and Aj, a contradiction to (A).  

(C) Ai is non-adjacent to at the most three Ak s  As -2  7, Ai is adjacent to at least three Am,1i, 

k, m-2. 

Let if possible A1Ak  E(G) for 2k5. As G is 4K1-free,  at most two more 1-vertices a11, a12 and as 

 1-k path from A1 to Ak, either a11 or a12 is adjacent to Ak with two k-vertices for 2k5. Again a1i 

cannot have three repeat colors (else N(a1i) has a color say r missing. Color a1i by r. Then either (i) 
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some Ak (2k5) has no 1-vertex, hence color Ak by 1, u by k or (ii) a12Ak  E(G) (2k5), a12 has 

four repeat colors and N(a12) has color t missing. Color a12 by t, Ak by 1, u by k). Thus w.l.g. let Aia11, 

Aja12  E(G) for i = 2, 3 and j = 4, 5 s.t. a11 has two repeat colors 2, 3 and a12 has two repeat colors 4, 

5. Clearly A1Aj  E(G)  6i-2 (else either a11 or a12 has three repeat colors).  

 

Claim 1: Whenever A1 has a unique i-vertex say B for 6i-1, A1 is the only 1-vertex of B. 

Let if possible Ba11  E(G). Then B has a unique m-vertex for 2m-1 (else N(B) has some color r 

missing. Color B by r, A1 by i, u by 1). As a11 has two repeat colors 2, 3, B is its only i-vertex. Then G 

has at the most one more i-vertex say b (else <A1, a11, b11, b12> = 4K1). Again by (A), B is not the only 

i–vertex of any Ak, for 2k5. Hence Akb  E(G) for 2k5. Now AkB  E(G) for k = 2, 3 (else color 

Ak by 1, a11 by i, B by 2/3, A1 by i, u by 1) and b has two k-vertices for k = 2, 3 (else color Ak by i, b 

by k, u by k)  Am is the only m-vertex of b for m = 4, 5 (else b  has color r missing in N(b). Color b 

by r, A2 by i, u by 2). Now Am has two i-vertices (else b is the only i-vertex of Am . Color b by m, Am 

by i, u by m), m  {4, 5}  a12 is the only 1-vertex of Am, m  {4, 5}. Again Ba12  E(G) (else B has 

three 1-vertices and color say r missing in N(B). Color B by r, A1 by i, u by 1)  a12b  E(G). Then 

color b by 4, A4 by 1, a12 by i, u by 4, a contradiction. This proves Claim 1. 

 

Now a1k has an i-vertex for k = 1, 2 (else color a1k by i. If a1k is the only 1-vertex of Am (2m5), then 

color Am by 1, u by m and if every Am has two 1-vertices, then if k = 1 (2), color A2 (A4) by 1, a12 (a11) 

by 2 (4), u by 2 (4)).   

 

Let a11bi1  E(G). As a11 has two repeat colors 2, 3, bi1 is the only i-vertex of a11.  

 

Claim 2: a11 is the only 1-vertex of bi1. 

Let if possible a12bi1  E(G). As a12 has two repeat colors 4, 5, bi1 is the only i-vertex of a12. Then G 

doesn’t have an i-vertex say b12  {B, b11} (else <a11, a12, B, b12> = 4K1). Again by (A), B cannot be 

the only i-vertex of any Am for 2m5. Hence Ambi1  E(G) for 2m5. If Ak is the only k-vertex of 

bi1 for some k, 2k5, then if bi1 is the only i-vertex of Ak, color Ak by i, bi1 by k, u by k and if Ak, has 

two i-vertices, then a1j being the only 1-vertex of Ak, color Ak by 1, a1j by i, bi1 by k, u by k, 

contradictions in both the cases. Hence let bi1 have repeat colors k  k, 2k5. But then bi1 has 

color r missing in N(bi1). Color bi1 by r and a11 by i. Then A2a12  E(G) (else color A2 by 1, u by 2). 

Again as a12 has two repeat colors 4, 5, A2 is its only 2-vertex and hence color A2 by 1, a12 by 2, u by 

2, a contradiction. This proves Claim 2. 

 

Similarly if bi2 is an i-vertex of a12, then a12 (bi2) is the only 1-vertex (i-vertex) of bi2 (a12). Now Ambi1, 

Anbi2 E(G) for m = 2, 3 and n = 4, 5 (else let A2bi1E(G). If a11 is the only 1-vertex of A2, then color 

a11 by i, bi1 by 1, A2 by 1, u by 2 and if A2a12 E(G), then color a11 by i, bi1 by 1, a12 by 2, A2 by 1, u by 

2). 

 

As A1 has at the most one repeat color, w.l.g. let A1 have unique 2, 3, 4 vertices. Let P (R) be a 2-1 (4-

1) path from A2 (A4) to A1. As a12 (a11) has a unique 2-vertex (4-vertex), clearly P = {A2, a11, a21, A1} 

and R = {A4, a12, a41, A1}.  

 

Claim 3: a21a12, A2a12  E(G). Similarly a41a11, A4a11  E(G). 

Let if possible a21a12  E(G). Then G has no other 2-vertex a22  {A2, a21} (else <a22, a12, A1, A2> = 

4K1). Also a21bi1  E(G) (else A2 is the only 2-vertex of bi1. If bi1 is the only i-vertex of A2, then color 

bi1 by 2, A2 by i, u by 2 and if A2 has two i-vertices, then color bi1 by 2, A2 by 1, a11 by i, u by 2). As 

a21 has three 1-vertices, Ba21  E(G) and hence BA2  E(G) (else color B by 2, A1 by i, u by 1). Thus 

bi2 has no 2-vertex. Then if A4a11  E(G), color bi2 by 2, a12 by i, A4 by 1, u by 4 and if A4a11  E(G), 

color bi2 by 2, A4 by i, u by 4, contradictions in both the cases. Hence a21a12  E(G)  

 

 a21bi1  E(G) (else color bi1 by 1, a11 by i, a21 by 1, A1 by 2, u by 1).  

 

Next let if possible A2a12  E(G). Then bi1 is the only i-vertex of A2 and A2B  E(G). Also A2 is the 

only 2-vertex of a12 and hence G has no other 2-vertex say a22 (else <a22, a12, A1, a11> = 4K1)  Ba21  
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E(G) (else color B by 2, A1 by i, u by 1). As a21 has two 1-vertices and i-vertices, a21bi2  E(G). Also 

as A2 has two 1-vertices A2bi2  E(G). Color bi2 by 2, a12 by i.  If a12 is the only 1-vertex of A4, then 

color A4 by 1, u by 4 and if A4a11  E(G), then color a11 by 4, A4 by 1, u by 4, contradictions in both 

the cases. Hence A2a12  E(G). This proves Claim 3. 

 

Claim 4: Whenever A1 has a unique i-vertex B for 6i-1, either A2 or a21 has two i-vertices. 

Let bi1 be the only i-vertex A2. Now bi1 is not the only i-vertex of a21 (else <a21, A2, bi2, B > = 4K1). 

Thus a21 has two i-vertices. This proves Claim 4. 

 

Now as   9, and A1 has at the most one repeat color, A1 has at least two unique k-vertices for k  

{6, 7, ..., -1}. Let B, C be the unique i-vertex, k-vertex of A1 resply for i, k  {6, 7,..., -1}. Again as 

a21 has two 1-vertices, each of A2 and a21 has at the most one other repeat color. By Claim 4, w.l.g. let 

A2, a21 have two i-vetices, k-vertices resply.  A2, a21 has a unique 4-vertex each. Similarly A4, a41 has 

a unique 2-vertex each. Now A2a41  E(G) (else color a41 by 2, A2 by 4, u by 2). Also A2A4  E(G) 

(else color A4 by 2, A2 by 4, a11 by 2, a21 by 1, A1 by 2, u by 1)  a21a41  E(G) (else <a21, a41, A2, A4> 

= 4K1). As a11 is the unique 1-vertex of A2, color a41 by 2, a21 by 4, a11 by 2, A2 by 1, u by 2, a 

contradiction. 

  

This proves (C). 

 

If AiAj  E(G) (1i, j-2), then as -2  7, by (C),  m (1m-2) s.t. AiAm AjAm  E(G). Also by 

(B),  maximum two such m’s (1m-2).  

 

Case 1.1:  i, j s.t. AiAj  E(G) and AiAk, AiAm, AjAk, AjAm  E(G), 1i, j, k, m-2. 

W.l.g. let i = 1, j = 2, k = 5, j = 6. Also by (C), let A1A4, A2A7  E(G). Then by (B), A1A7, A2Aj  

E(G). By (A), w.l.g. let A1, A2 have two 5-vertices, 6-vertices resply. Clearly A4 (A7) is the unique 4-

vertex (7-vertex) of A1 (A2). Also by (C), A7 is adjacent to at least one of Ai, i  {3, 4, 6} and if A7Ai 

 E(G), i  {3, 4, 6}, then A7 has two i-vertices (else A7, A1 have a unique i-vertex Ai, a contradiction 

to (A)) and hence A2 is the unique 2-vertex of A7. Now A3A1 or A3A2  E(G) (else by (C), A3 is 

adjacent to at least three of A4, A5, A6, A7 and either A3, A1 or A3, A2 have a common adjacent Ai s.t. 

Ai is their only i-vertex, a contradiction to (A)). W.l.g. let A3A1  E(G). Again A3 is the unique 3-

vertex of A1. Now  2-i paths from A2 to Ai (i = 1, 3, 4). Also as G is 4K1-free,  at most two more 2-

vertices a21, a22 and at least one of them say a21 has two repeat colors from {1, 3, 4}. 

 

Case 1.1.1: a21A3, a21A4  E(G) and a21 has two repeat colors 3, 4.  

Then a22A1  E(G) and a22 has two 1-vertices and a22 is the only 2-vertex of A1. W.l.g. let a22 have a 

unique 3–vertex (else a22 has a color r missing in N(a22). Color a22 by r, A1 by 2, u by 1). Then a22A3 

E(G) (else color a22 by 3, A3 by 1, A1 by 2, u by 3). Consider a 3-2 path T from A3 to A2 with a31 

being the 3-vertex of A2 on T. As a22 has a unique 3–vertex, clearly a21a31  E(G). Now a22a31  E(G) 

(else alter colors along {A2, a31, a21, A3}, color A1 by 3, u by 1). Then G does not have a 3-vertex a32 

 {A3, a31} (else <A2, a22, a32, A3> = 4K1). Now A7a31  E(G) (else A3 is the only 3-vertex of both A1 

and A7, contrary to (A)). But as a31 has three 2-vertices, A7 is its only 7-vertex. Also by (C), A7 is 

adjacent to at least one Aj (j  {3, 4, 6} and has two j-vertices (else Aj is the only j-vertex of A1and 

A7, contrary to (A)). Hence A2 is the only 2-vertex of A7. Then color a31 by 7, A7 by 2, A2 by 3, u by 7, 

a contradiction. This proves Case 1.1.1. 

 

Case 1.1.2: A3, A4 do not have a common adjacent 2-vertex. 

W.l.g. let a21A1, a21A3  E(G) and a22A4  E(G). Then a21A4, a22A3  E(G). Clearly a21 has two 1-

vertices and 3–vertices and hence a unique 4-vertex. Let a41 be the unique 4-vertex of A2. Then as  a 

2-4 path S from A2 to A4, clearly a22a41 E(G). Now a21a41  E(G) (else G does not have a 4-vertex a42 

{a41, A4}, as otherwise <A2, a21, a42, A4> = 4K1  A7a41 E(G) as otherwise A7 and A1 have a 

common unique 4-vertex A4, a contradiction to (A). But then color A7 by 2, A2 by 4, a41 by 7, u by 7). 

Let a42 be the unique 4-vertex of a21. Then a42a22  E(G) (else alter colors along {A4, a22, a41, A2}, 

color A1 by 4, u by 1). Thus a22 has three 4-vertices and hence a unique i-vertex for 1i-1, i  {2, 

4}. Now A4 has a unique j-vertex for j = 1 or 3. Consider a 2-j path T from A2 to Aj and let aj1 be the 
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unique j-vertex of A2. Clearly a21aj1 E(G). Again a22aj1  E(G) (else G does not have a j-vertex aj2 

{aj1, Aj}, as otherwise <A2, a22, aj2, Aj> = 4K1  A7aj1 E(G). Color A7 by 2, A2 by j, aj1 by 7, u by 

7). Hence  aj2 s.t. a22aj2 E(G) (else color a22 by j, A4 by 2, u by 4). Now clearly a22 is the unique 2-

vertex of aj2 and vice versa  A4aj2 E(G) (else color a22 by j, aj2 by 2, A4 by 2, u by 4). Clearly A4 

has two 1-vertices (else A1 is its unique 1-vertex. Alter colors along {A4, a22, a41, A2}, color A1 by 4, u 

by 1)  j = 3 and a32 is the unique 3-vertex of A4  A3A4  E(G). Then by (C), A4 is adjacent to at 

least two Aks for k  {5, 6, 7}. Let A4Am E(G), for m = 5 or 7. Then Am is the unique m-vertex of A4 

and A2, a contradiction to (A). 

 

Case 1.2:  i, j s.t. AiAj  E(G), Ai, Aj have only one common adjacent Ak in N(u), 1i, j, k-2. 

W.l.g. let i = 1, j = 2 and k = 3. By (C), let A1Am  E(G) for m = 4, 5, A2Al  E(G) for l = 6, 7. Let if 

possible A3A4   E(G). Now A4 is adjacent to at the most one of A6, A7 (else we get Case 1.1 with A2 

and A4) and hence by (C), A4A5  E(G). Also by (C), w.l.g. let A4A6  E(G). Again A3A5 , A3A6  

E(G) (else we get Case 1.1 with A3 and A4) and hence by (C), A3A7  E(G)  A5A7  E(G) (else we 

get Case 1.1 with A3 and A5) and A5A6  E(G). But then we get Case 1.1 with A1 and A6, a 

contradiction. Hence A3Ai  E(G) for 4i7. Again A4A5, A6A7  E(G) (else we get Case 1.1 with 

A4, A5 or A6, A7). Also either all Ai have two 3-vertices for 1i37 or say A1 has a unique 3-vertex. 

Again if A1 has a unique 3-vertex, then A2, A6, A7  all have two 3-vertices (else a contradiction to (A)). 

Hence w.l.g. let A1, A4, A5   have two 3-vertices.  As G is 4K1-free, G has at the most two 2-vertices 

say a2i (i = 1, 2). W.l.g. let A1a21  E(G). Now a21 has at the most two repeat colors (else a color say r 

is missing in N(a21). Color a21 by r, A1 by 2, u by 1). Also as  i-2 paths from Ai to A2  for i = 1, 4, 5, 

either a21 or a22 has two j-vertices for j = 1, 4, 5. W.l.g. let a21 have two repeat colors 1, 4 with A1a21, 

A4a21  E(G)  A5a22  E(G) and a22  has two 5-vertices. Again at least two of {1, 4, 5} are unique 

colors of A2. 

 

Case 1.2.1. A2 has a unique 1-vertex and 5-vertex. 

Let A2a11, A2a51   E(G). As a21 has two repeat colors 1, 4, it has a unique 5-vertex and clearly as  2-5 

path from A2 to A5, a22a51  E(G). Now a21a51  E(G) (else G doesn’t have a 5-vertex a52  {A5, a51} as 

otherwise <A5, a52, A2, a21> = 4K1. As a51 has three 2-vertices, A6 is its only 6-vertex. Also a51 is the 

only 5-vertex of A6. Color a51 by 6, A6 by 5, u by 6)  a21a52  E(G). Also a52a22  E(G) (else color 

A2 by 5, a51 by 2, a22 by 5, A5 by 2, A1 by 5, u by 1).. But then a22a11  E(G) (else G doesn’t have a 1-

vertex a12  {A1, a11} as otherwise <A1, a12, A2, a22> = 4K1 and a11 has three repeat colors 2, 6, 7 with 

color say r missing in N(a11). Color a11 by r, A2 by 1, u by 2)  a11a21  E(G). Let a22a12  E(G). Then 

a22 (a12) is the only 2-vertex (1-vertex) of a12 (a22). Color a22 by 1, a12 by 2, A5 by 2, u by 5, a 

contradiction. 

 

Case 1.2.2. A2 has a unique 1-vertex and 4-vertex. 

Let A2a11, A2a41   E(G). As a22 has two 5-vertices, w.l.g. let a22 have a unique 1-vertex. Then a22a11  

E(G) (else if  a12, then <A1, a12, A2, a22> = 4K1 and if a12 doesn’t exist, then a11 has three repeat colors 

2, 6, 7 and color say r is missing in N(a11). Color a11 by r, A2 by 1, u by 2)  a22a12  E(G) and a21a11 

 E(G). Then a22 (a12) is the only 2-vertex (1-vertex ) of a12 (a22). Color a22 by 1, a12 by 2, A5 by 2, u 

by 5, a contradiction. 

 

This proves Case 1. 

 

Case 2: In every (-1)-coloring of G-u, all vertices with unique colors in N(u) are adjacent. 

Clearly -1   and hence -1 =   8  <
2

1



i

iA > is a maximum clique in G-u and {X, Y} = N(u)- 


2

1



i

iA .  

I. At most two vertices in 
2

1



i

iA  are non-adjacent to both X and Y. 
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Let if possible A1, A2, A3 be non-adjacent to both X and Y. Then clearly  a (-1)-vertex say Z in 

V(G) s.t. ZAi  E(G) for i = 1, 2, 3. Moreover, as G is 4K1-free, Z is their only (-1)-vertex. If Ai is 

the only i-vertex of Z for some i (1i3), then color Ai by -1, Z by i, u by i, a contradiction. Hence Z 

has at least two i-vertices for i = 1, 2, 3. But then Z has some color r missing in N(Z). Color Z by r, Ai 

by -1, u by i, a contradiction. 

II. Every vertex Ai of N(u) has at least one j-vertex j  i (else color Ai by j and u by i), 1i, j-2. 

III. X (Y) has a k-vertex for every k = 1,.., -2. 

Let if possible X not have a k-vertex. Also as <u 
2

1



i

iA > is a maximum clique in G,  i (1i-2) 

s.t. YAi  E(G). Then color X by k. Now i = k (else we get Case 1 as Y and Ai are unique vertices in 

N(u)). As   9 and each of Y and Ai has at the most one repeat color, clearly  j (1j-2) s.t. Aj is 

the only j-vertex of both Y and Ai. Also Aj has either a unique i-vertex Ai or (-1)-vertex Y. Color Y 

and Ai by j, Aj by i (-1), u by -1 (j), a contradiction. 

IV. X (Y) is adjacent to at least -5 vertices in 
2

1



i

iA . 

Let if possible X be non-adjacent to Ai, i = 1,.., 5. By I, w.l.g. let YAi  E(G) for i = 1, 2, 3. Also let 

YAk  E(G) for some k  4.  By II and III, Y and Ak each has at the most one repeat color and hence 

w.l.g. let A1 be the unique 1-vertex of Y and Ak. Now A1 has two (-1)-vertices (else color Y and Ak 

by 1, A1 by -1, u by k)  Ak is the unique k-vertex of A1. Then color Y and Ak by 1, A1 by k and we 

get Case 1 with two non-adjacent, unique vertices X, A1, a contradiction.  

V. X (Y) is not the only (-1)-vertex of any Ai.      

Let if possible X be the only (-1)-vertex of some Ai. By IV,  k, j s.t. XAk, XAj  E(G). Also let 

XAm  E(G) for some m. If Ai is the only i-vertex of X and Am, then color X, Am by i, Ai by -1, u by 

m, a contradiction. Hence let Ai be not the only i-vertex of either X or Am. As X and Am have at the 

most one repeat color, w.l.g. let Ak be the only k-vertex of X and Am. Again if X is the only (-1)-

vertex of  Ak, then as before we get a contradiction. Hence let Ak have two (-1)-vertices. But then 

color Ak by i, Ai by -1, X by k, Am by k, u by m, a contradiction. 

 

By IV, w.l.g. let XAk  E(G) for k = 1, 2, 3 and XA4  E(G). Also w.l.g. let A1 be the only 1-vertex of 

X and A4. By V, A1 has two (-1)-vertices. If any Ai  (1i-2, i4) is non-adjacent to Y, then as 

before by coloring X, A4 by 1 and A1 by 4, we get Case 1 and hence YAk  E(G) for every k  4. 

Similarly XAk  E(G) for every k  4. As   9,  i s.t. Ai is the only i-vertex of X, Y and A4. Color 

X, Y, A4 by i, Ai by -1, u by 4, a contradiction. 

 

This proves Case 2 and completes the proof of the Main Result. 
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