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 Validity of Borodin and Kostochka Conjecture for 4K1–free Graphs 

Medha Dhurandhar 

 

Abstract:  Problem of finding an optimal upper bound for the chromatic no. of even 3K1-free graphs 

is still open and pretty hard. Here we prove Borodin & Kostochka Conjecture for 4K1-free graphs G 

i.e. if (G)  9 and G is 4K1-free, then (G)  max{, -1}. 

 

Introduction:  

In [1], [2], [3], [4] chromatic bounds for graphs are considered especially in relation with  and . 

Gyárfás [5] and Kim [6] show that the optimal -binding function for the class of 4K1-free graphs has 

order ω2/log(ω). If we forbid additional induced subgraphs, the order of the optimal -binding 

function drops below ω2/log(ω). In 1941, Brooks' theorem stated that for any connected undirected 

graph G with maximum degree Δ, the chromatic number of G is at most Δ unless G is a complete 

graph or an odd cycle, in which case the chromatic number is Δ + 1 [5]. In 1977, Borodin & 

Kostochka [6] conjectured that if (G)  9, then (G)  max{, -1}. In 1999, Reed proved the 

conjecture for   1014 [7]. Also D. W. Cranston and L. Rabern [8] proved it for claw-free graphs. 

Here we prove Borodin & Kostochka conjecture for 4K1-free graphs.  

 

Notation: For a graph G, V(G), E(G), , ,  denote the vertex set, edge set, maximum degree, size 

of a maximum clique, chromatic number of G resply. For u  V(G), N(u) = {v  V(G) / uv  E(G)}, 

and )(uN  = N(u)(u).  If S  V, then <S> denotes subgraph of G induced by S. If C is some 

coloring of G and if u  V(G) is colored m in C, then u is called a m-vertex, if N(u) has a unique r-

vertex, then r is called a unique color of u and if N(u) has more than one r-vertex, then r is called a 

repeat color of u. Also if P is a path in G s.t. vertices on P are alternately colored say i and j, then P is 

called an i-j path. All graphs considered henceforth are simple. We consider here simple and 

undirected graphs. For terms which are not defined herein we refer to Bondy and Murty [9]. 

 

Main Result: Let G be 4K1-free and   9, then   max{-1, }. 

Proof: Let if possible G be a smallest, connected, 4K1-free graph with   9 and  > max{-1, }. 

Then clearly as G  C2n+1 or K|V(G)| ,  =  > . Let u  V(G). Then G-u  K|V(G)|-1 (else  = ). If 

(G-u)  9, then by minimality (G-u)  max{(G-u), (G-u)-1}. Clearly if (G-u)  (G-u)-1, then 

(G-u) = (G-u)-1  -1 and otherwise (G-u) = (G-u)   < . In any case (G-u)  -1. Also if 

(G-u) < 9, then as G-u  C2n+1, by Brook’s Theorem (G-u)   (G-u) < 9  . Thus always (G-u) 

 -1 and in fact, (G-u) = -1 and deg v  -1  v  V(G). 
 

Let u  V(G) be s.t. deg u = . Let S = {1,..., -1, } be a -coloring of G with only u colored . 

Then N(u) has -2 vertices Ai with unique colors i (1i-2) and a pair of vertices say X, Y with the 

same color -1. Clearly Ai has a j-vertex for 1ij-2 (else color Ai by j, u by i). 

 

Case 1:  a (-1)-coloring of G-u s.t. AiAj  E(G) for some i, j  {1,.., -2}. 

 

(A) For no m, Am is the only m-vertex of both Ai and Aj for 1i, j, m-2. 

Let if possible Ai, Ak both have Am as the only m-vertex. Then as Am has at the most one repeat color, 

w.l.g. Aj be the only j-vertex of Am. Then color Ai, Aj by m, Am by j, u by i, a contradiction.  

(B) Ai, Aj  do not have more than two common adjacent Aks in N(u). 

Let Ai, Aj  be both adjacent to say Ak, Al, Am 1i, j, k, l, m-2. As each of Ai, Aj  has at the most one 

repeat color, w.l.g. let Am be the only m-vertex of both Ai and Aj, a contradiction to (A).  

(C) Ai is non-adjacent to at the most three Ak s  As -2  7, Ai is adjacent to at least three Am,1i, 

k, m-2. 

Let if possible A1Ak  E(G) for 2k5. As G is 4K1-free,  at most two more 1-vertices a11, a12 and as 

 1-k path from A1 to Ak, either a11 or a12 is adjacent to Ak with two k-vertices for 2k5. Again a1i 

cannot have three repeat colors (else N(a1i) has a color say r missing. Color a1i by r. Then either (i) 
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some Ak (2k5) has no 1-vertex, hence color Ak by 1, u by k or (ii) a12Ak  E(G) (2k5), a12 has 

four repeat colors and N(a12) has color t missing. Color a12 by t, Ak by 1, u by k). Thus w.l.g. let Aia11, 

Aja12  E(G) for i = 2, 3 and j = 4, 5 s.t. a11 has two repeat colors 2, 3 and a12 has two repeat colors 4, 

5. Clearly A1Aj  E(G)  6i-2 (else either a11 or a12 has three repeat colors).  

 

Claim 1: Whenever A1 has a unique i-vertex say B for 6i-1, A1 is the only 1-vertex of B. 

Let if possible Ba11  E(G). Then B has a unique m-vertex for 2m-1 (else N(B) has some color r 

missing. Color B by r, A1 by i, u by 1). As a11 has two repeat colors 2, 3, B is its only i-vertex. Then G 

has at the most one more i-vertex say b (else <A1, a11, b11, b12> = 4K1). Again by (A), B is not the only 

i–vertex of any Ak, for 2k5. Hence Akb  E(G) for 2k5. Now AkB  E(G) for k = 2, 3 (else color 

Ak by 1, a11 by i, B by 2/3, A1 by i, u by 1) and b has two k-vertices for k = 2, 3 (else color Ak by i, b 

by k, u by k)  Am is the only m-vertex of b for m = 4, 5 (else b  has color r missing in N(b). Color b 

by r, A2 by i, u by 2). Now Am has two i-vertices (else b is the only i-vertex of Am . Color b by m, Am 

by i, u by m), m  {4, 5}  a12 is the only 1-vertex of Am, m  {4, 5}. Again Ba12  E(G) (else B has 

three 1-vertices and color say r missing in N(B). Color B by r, A1 by i, u by 1)  a12b  E(G). Then 

color b by 4, A4 by 1, a12 by i, u by 4, a contradiction. This proves Claim 1. 

 

Now a1k has an i-vertex for k = 1, 2 (else color a1k by i. If a1k is the only 1-vertex of Am (2m5), then 

color Am by 1, u by m and if every Am has two 1-vertices, then if k = 1 (2), color A2 (A4) by 1, a12 (a11) 

by 2 (4), u by 2 (4)).   

 

Let a11bi1  E(G). As a11 has two repeat colors 2, 3, bi1 is the only i-vertex of a11.  

 

Claim 2: a11 is the only 1-vertex of bi1. 

Let if possible a12bi1  E(G). As a12 has two repeat colors 4, 5, bi1 is the only i-vertex of a12. Then G 

doesn’t have an i-vertex say b12  {B, b11} (else <a11, a12, B, b12> = 4K1). Again by (A), B cannot be 

the only i-vertex of any Am for 2m5. Hence Ambi1  E(G) for 2m5. If Ak is the only k-vertex of 

bi1 for some k, 2k5, then if bi1 is the only i-vertex of Ak, color Ak by i, bi1 by k, u by k and if Ak, has 

two i-vertices, then a1j being the only 1-vertex of Ak, color Ak by 1, a1j by i, bi1 by k, u by k, 

contradictions in both the cases. Hence let bi1 have repeat colors k  k, 2k5. But then bi1 has 

color r missing in N(bi1). Color bi1 by r and a11 by i. Then A2a12  E(G) (else color A2 by 1, u by 2). 

Again as a12 has two repeat colors 4, 5, A2 is its only 2-vertex and hence color A2 by 1, a12 by 2, u by 

2, a contradiction. This proves Claim 2. 

 

Similarly if bi2 is an i-vertex of a12, then a12 (bi2) is the only 1-vertex (i-vertex) of bi2 (a12). Now Ambi1, 

Anbi2 E(G) for m = 2, 3 and n = 4, 5 (else let A2bi1E(G). If a11 is the only 1-vertex of A2, then color 

a11 by i, bi1 by 1, A2 by 1, u by 2 and if A2a12 E(G), then color a11 by i, bi1 by 1, a12 by 2, A2 by 1, u by 

2). 

 

As A1 has at the most one repeat color, w.l.g. let A1 have unique 2, 3, 4 vertices. Let P (R) be a 2-1 (4-

1) path from A2 (A4) to A1. As a12 (a11) has a unique 2-vertex (4-vertex), clearly P = {A2, a11, a21, A1} 

and R = {A4, a12, a41, A1}.  

 

Claim 3: a21a12, A2a12  E(G). Similarly a41a11, A4a11  E(G). 

Let if possible a21a12  E(G). Then G has no other 2-vertex a22  {A2, a21} (else <a22, a12, A1, A2> = 

4K1). Also a21bi1  E(G) (else A2 is the only 2-vertex of bi1. If bi1 is the only i-vertex of A2, then color 

bi1 by 2, A2 by i, u by 2 and if A2 has two i-vertices, then color bi1 by 2, A2 by 1, a11 by i, u by 2). As 

a21 has three 1-vertices, Ba21  E(G) and hence BA2  E(G) (else color B by 2, A1 by i, u by 1). Thus 

bi2 has no 2-vertex. Then if A4a11  E(G), color bi2 by 2, a12 by i, A4 by 1, u by 4 and if A4a11  E(G), 

color bi2 by 2, A4 by i, u by 4, contradictions in both the cases. Hence a21a12  E(G)  

 

 a21bi1  E(G) (else color bi1 by 1, a11 by i, a21 by 1, A1 by 2, u by 1).  

 

Next let if possible A2a12  E(G). Then bi1 is the only i-vertex of A2 and A2B  E(G). Also A2 is the 

only 2-vertex of a12 and hence G has no other 2-vertex say a22 (else <a22, a12, A1, a11> = 4K1)  Ba21  
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E(G) (else color B by 2, A1 by i, u by 1). As a21 has two 1-vertices and i-vertices, a21bi2  E(G). Also 

as A2 has two 1-vertices A2bi2  E(G). Color bi2 by 2, a12 by i.  If a12 is the only 1-vertex of A4, then 

color A4 by 1, u by 4 and if A4a11  E(G), then color a11 by 4, A4 by 1, u by 4, contradictions in both 

the cases. Hence A2a12  E(G). This proves Claim 3. 

 

Claim 4: Whenever A1 has a unique i-vertex B for 6i-1, either A2 or a21 has two i-vertices. 

Let bi1 be the only i-vertex A2. Now bi1 is not the only i-vertex of a21 (else <a21, A2, bi2, B > = 4K1). 

Thus a21 has two i-vertices. This proves Claim 4. 

 

Now as   9, and A1 has at the most one repeat color, A1 has at least two unique k-vertices for k  

{6, 7, ..., -1}. Let B, C be the unique i-vertex, k-vertex of A1 resply for i, k  {6, 7,..., -1}. Again as 

a21 has two 1-vertices, each of A2 and a21 has at the most one other repeat color. By Claim 4, w.l.g. let 

A2, a21 have two i-vetices, k-vertices resply.  A2, a21 has a unique 4-vertex each. Similarly A4, a41 has 

a unique 2-vertex each. Now A2a41  E(G) (else color a41 by 2, A2 by 4, u by 2). Also A2A4  E(G) 

(else color A4 by 2, A2 by 4, a11 by 2, a21 by 1, A1 by 2, u by 1)  a21a41  E(G) (else <a21, a41, A2, A4> 

= 4K1). As a11 is the unique 1-vertex of A2, color a41 by 2, a21 by 4, a11 by 2, A2 by 1, u by 2, a 

contradiction. 

  

This proves (C). 

 

If AiAj  E(G) (1i, j-2), then as -2  7, by (C),  m (1m-2) s.t. AiAm AjAm  E(G). Also by 

(B),  maximum two such m’s (1m-2).  

 

Case 1.1:  i, j s.t. AiAj  E(G) and AiAk, AiAm, AjAk, AjAm  E(G), 1i, j, k, m-2. 

W.l.g. let i = 1, j = 2, k = 5, j = 6. Also by (C), let A1A4, A2A7  E(G). Then by (B), A1A7, A2Aj  

E(G). By (A), w.l.g. let A1, A2 have two 5-vertices, 6-vertices resply. Clearly A4 (A7) is the unique 4-

vertex (7-vertex) of A1 (A2). Also by (C), A7 is adjacent to at least one of Ai, i  {3, 4, 6} and if A7Ai 

 E(G), i  {3, 4, 6}, then A7 has two i-vertices (else A7, A1 have a unique i-vertex Ai, a contradiction 

to (A)) and hence A2 is the unique 2-vertex of A7. Now A3A1 or A3A2  E(G) (else by (C), A3 is 

adjacent to at least three of A4, A5, A6, A7 and either A3, A1 or A3, A2 have a common adjacent Ai s.t. 

Ai is their only i-vertex, a contradiction to (A)). W.l.g. let A3A1  E(G). Again A3 is the unique 3-

vertex of A1. Now  2-i paths from A2 to Ai (i = 1, 3, 4). Also as G is 4K1-free,  at most two more 2-

vertices a21, a22 and at least one of them say a21 has two repeat colors from {1, 3, 4}. 

 

Case 1.1.1: a21A3, a21A4  E(G) and a21 has two repeat colors 3, 4.  

Then a22A1  E(G) and a22 has two 1-vertices and a22 is the only 2-vertex of A1. W.l.g. let a22 have a 

unique 3–vertex (else a22 has a color r missing in N(a22). Color a22 by r, A1 by 2, u by 1). Then a22A3 

E(G) (else color a22 by 3, A3 by 1, A1 by 2, u by 3). Consider a 3-2 path T from A3 to A2 with a31 

being the 3-vertex of A2 on T. As a22 has a unique 3–vertex, clearly a21a31  E(G). Now a22a31  E(G) 

(else alter colors along {A2, a31, a21, A3}, color A1 by 3, u by 1). Then G does not have a 3-vertex a32 

 {A3, a31} (else <A2, a22, a32, A3> = 4K1). Now A7a31  E(G) (else A3 is the only 3-vertex of both A1 

and A7, contrary to (A)). But as a31 has three 2-vertices, A7 is its only 7-vertex. Also by (C), A7 is 

adjacent to at least one Aj (j  {3, 4, 6} and has two j-vertices (else Aj is the only j-vertex of A1and 

A7, contrary to (A)). Hence A2 is the only 2-vertex of A7. Then color a31 by 7, A7 by 2, A2 by 3, u by 7, 

a contradiction. This proves Case 1.1.1. 

 

Case 1.1.2: A3, A4 do not have a common adjacent 2-vertex. 

W.l.g. let a21A1, a21A3  E(G) and a22A4  E(G). Then a21A4, a22A3  E(G). Clearly a21 has two 1-

vertices and 3–vertices and hence a unique 4-vertex. Let a41 be the unique 4-vertex of A2. Then as  a 

2-4 path S from A2 to A4, clearly a22a41 E(G). Now a21a41  E(G) (else G does not have a 4-vertex a42 

{a41, A4}, as otherwise <A2, a21, a42, A4> = 4K1  A7a41 E(G) as otherwise A7 and A1 have a 

common unique 4-vertex A4, a contradiction to (A). But then color A7 by 2, A2 by 4, a41 by 7, u by 7). 

Let a42 be the unique 4-vertex of a21. Then a42a22  E(G) (else alter colors along {A4, a22, a41, A2}, 

color A1 by 4, u by 1). Thus a22 has three 4-vertices and hence a unique i-vertex for 1i-1, i  {2, 

4}. Now A4 has a unique j-vertex for j = 1 or 3. Consider a 2-j path T from A2 to Aj and let aj1 be the 
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unique j-vertex of A2. Clearly a21aj1 E(G). Again a22aj1  E(G) (else G does not have a j-vertex aj2 

{aj1, Aj}, as otherwise <A2, a22, aj2, Aj> = 4K1  A7aj1 E(G). Color A7 by 2, A2 by j, aj1 by 7, u by 

7). Hence  aj2 s.t. a22aj2 E(G) (else color a22 by j, A4 by 2, u by 4). Now clearly a22 is the unique 2-

vertex of aj2 and vice versa  A4aj2 E(G) (else color a22 by j, aj2 by 2, A4 by 2, u by 4). Clearly A4 

has two 1-vertices (else A1 is its unique 1-vertex. Alter colors along {A4, a22, a41, A2}, color A1 by 4, u 

by 1)  j = 3 and a32 is the unique 3-vertex of A4  A3A4  E(G). Then by (C), A4 is adjacent to at 

least two Aks for k  {5, 6, 7}. Let A4Am E(G), for m = 5 or 7. Then Am is the unique m-vertex of A4 

and A2, a contradiction to (A). 

 

Case 1.2:  i, j s.t. AiAj  E(G), Ai, Aj have only one common adjacent Ak in N(u), 1i, j, k-2. 

W.l.g. let i = 1, j = 2 and k = 3. By (C), let A1Am  E(G) for m = 4, 5, A2Al  E(G) for l = 6, 7. Let if 

possible A3A4   E(G). Now A4 is adjacent to at the most one of A6, A7 (else we get Case 1.1 with A2 

and A4) and hence by (C), A4A5  E(G). Also by (C), w.l.g. let A4A6  E(G). Again A3A5 , A3A6  

E(G) (else we get Case 1.1 with A3 and A4) and hence by (C), A3A7  E(G)  A5A7  E(G) (else we 

get Case 1.1 with A3 and A5) and A5A6  E(G). But then we get Case 1.1 with A1 and A6, a 

contradiction. Hence A3Ai  E(G) for 4i7. Again A4A5, A6A7  E(G) (else we get Case 1.1 with 

A4, A5 or A6, A7). Also either all Ai have two 3-vertices for 1i37 or say A1 has a unique 3-vertex. 

Again if A1 has a unique 3-vertex, then A2, A6, A7  all have two 3-vertices (else a contradiction to (A)). 

Hence w.l.g. let A1, A4, A5   have two 3-vertices.  As G is 4K1-free, G has at the most two 2-vertices 

say a2i (i = 1, 2). W.l.g. let A1a21  E(G). Now a21 has at the most two repeat colors (else a color say r 

is missing in N(a21). Color a21 by r, A1 by 2, u by 1). Also as  i-2 paths from Ai to A2  for i = 1, 4, 5, 

either a21 or a22 has two j-vertices for j = 1, 4, 5. W.l.g. let a21 have two repeat colors 1, 4 with A1a21, 

A4a21  E(G)  A5a22  E(G) and a22  has two 5-vertices. Again at least two of {1, 4, 5} are unique 

colors of A2. 

 

Case 1.2.1. A2 has a unique 1-vertex and 5-vertex. 

Let A2a11, A2a51   E(G). As a21 has two repeat colors 1, 4, it has a unique 5-vertex and clearly as  2-5 

path from A2 to A5, a22a51  E(G). Now a21a51  E(G) (else G doesn’t have a 5-vertex a52  {A5, a51} as 

otherwise <A5, a52, A2, a21> = 4K1. As a51 has three 2-vertices, A6 is its only 6-vertex. Also a51 is the 

only 5-vertex of A6. Color a51 by 6, A6 by 5, u by 6)  a21a52  E(G). Also a52a22  E(G) (else color 

A2 by 5, a51 by 2, a22 by 5, A5 by 2, A1 by 5, u by 1).. But then a22a11  E(G) (else G doesn’t have a 1-

vertex a12  {A1, a11} as otherwise <A1, a12, A2, a22> = 4K1 and a11 has three repeat colors 2, 6, 7 with 

color say r missing in N(a11). Color a11 by r, A2 by 1, u by 2)  a11a21  E(G). Let a22a12  E(G). Then 

a22 (a12) is the only 2-vertex (1-vertex) of a12 (a22). Color a22 by 1, a12 by 2, A5 by 2, u by 5, a 

contradiction. 

 

Case 1.2.2. A2 has a unique 1-vertex and 4-vertex. 

Let A2a11, A2a41   E(G). As a22 has two 5-vertices, w.l.g. let a22 have a unique 1-vertex. Then a22a11  

E(G) (else if  a12, then <A1, a12, A2, a22> = 4K1 and if a12 doesn’t exist, then a11 has three repeat colors 

2, 6, 7 and color say r is missing in N(a11). Color a11 by r, A2 by 1, u by 2)  a22a12  E(G) and a21a11 

 E(G). Then a22 (a12) is the only 2-vertex (1-vertex ) of a12 (a22). Color a22 by 1, a12 by 2, A5 by 2, u 

by 5, a contradiction. 

 

This proves Case 1. 

 

Case 2: In every (-1)-coloring of G-u, all vertices with unique colors in N(u) are adjacent. 

Clearly -1   and hence -1 =   8  <
2

1



i

iA > is a maximum clique in G-u and {X, Y} = N(u)- 


2

1



i

iA .  

I. At most two vertices in 
2

1



i

iA  are non-adjacent to both X and Y. 
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Let if possible A1, A2, A3 be non-adjacent to both X and Y. Then clearly  a (-1)-vertex say Z in 

V(G) s.t. ZAi  E(G) for i = 1, 2, 3. Moreover, as G is 4K1-free, Z is their only (-1)-vertex. If Ai is 

the only i-vertex of Z for some i (1i3), then color Ai by -1, Z by i, u by i, a contradiction. Hence Z 

has at least two i-vertices for i = 1, 2, 3. But then Z has some color r missing in N(Z). Color Z by r, Ai 

by -1, u by i, a contradiction. 

II. Every vertex Ai of N(u) has at least one j-vertex j  i (else color Ai by j and u by i), 1i, j-2. 

III. X (Y) has a k-vertex for every k = 1,.., -2. 

Let if possible X not have a k-vertex. Also as <u 
2

1



i

iA > is a maximum clique in G,  i (1i-2) 

s.t. YAi  E(G). Then color X by k. Now i = k (else we get Case 1 as Y and Ai are unique vertices in 

N(u)). As   9 and each of Y and Ai has at the most one repeat color, clearly  j (1j-2) s.t. Aj is 

the only j-vertex of both Y and Ai. Also Aj has either a unique i-vertex Ai or (-1)-vertex Y. Color Y 

and Ai by j, Aj by i (-1), u by -1 (j), a contradiction. 

IV. X (Y) is adjacent to at least -5 vertices in 
2

1



i

iA . 

Let if possible X be non-adjacent to Ai, i = 1,.., 5. By I, w.l.g. let YAi  E(G) for i = 1, 2, 3. Also let 

YAk  E(G) for some k  4.  By II and III, Y and Ak each has at the most one repeat color and hence 

w.l.g. let A1 be the unique 1-vertex of Y and Ak. Now A1 has two (-1)-vertices (else color Y and Ak 

by 1, A1 by -1, u by k)  Ak is the unique k-vertex of A1. Then color Y and Ak by 1, A1 by k and we 

get Case 1 with two non-adjacent, unique vertices X, A1, a contradiction.  

V. X (Y) is not the only (-1)-vertex of any Ai.      

Let if possible X be the only (-1)-vertex of some Ai. By IV,  k, j s.t. XAk, XAj  E(G). Also let 

XAm  E(G) for some m. If Ai is the only i-vertex of X and Am, then color X, Am by i, Ai by -1, u by 

m, a contradiction. Hence let Ai be not the only i-vertex of either X or Am. As X and Am have at the 

most one repeat color, w.l.g. let Ak be the only k-vertex of X and Am. Again if X is the only (-1)-

vertex of  Ak, then as before we get a contradiction. Hence let Ak have two (-1)-vertices. But then 

color Ak by i, Ai by -1, X by k, Am by k, u by m, a contradiction. 

 

By IV, w.l.g. let XAk  E(G) for k = 1, 2, 3 and XA4  E(G). Also w.l.g. let A1 be the only 1-vertex of 

X and A4. By V, A1 has two (-1)-vertices. If any Ai  (1i-2, i4) is non-adjacent to Y, then as 

before by coloring X, A4 by 1 and A1 by 4, we get Case 1 and hence YAk  E(G) for every k  4. 

Similarly XAk  E(G) for every k  4. As   9,  i s.t. Ai is the only i-vertex of X, Y and A4. Color 

X, Y, A4 by i, Ai by -1, u by 4, a contradiction. 

 

This proves Case 2 and completes the proof of the Main Result. 
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