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Abstract

For each t ∈ R, define the entire function

Ht(z) ≔

∫ ∞

0

etu2

Φ(u) cos(zu) du

where Φ is the super-exponentially decaying function

Φ(u) ≔

∞
∑

n=1

(2π2n4e9u − 3πn2e5u) exp(−πn2e4u).

Newman showed that there exists a finite constant Λ (the de Bruijn-Newman constant) such that

the zeroes of Ht are all real precisely when t ≥ Λ. The Riemann hypothesis is the equivalent to the

assertion Λ ≤ 0, and Newman conjectured the complementary bound Λ ≥ 0.

In this paper we establish Newman’s conjecture. The argument proceeds by assuming for

contradiction that Λ < 0, and then analyzing the dynamics of zeroes of Ht (building on the work

of Csordas, Smith, and Varga) to obtain increasingly strong control on the zeroes of Ht in the

range Λ < t ≤ 0, until one establishes that the zeroes of H0 are in local equilibrium, in the sense

that locally behave (on average) as if they were equally spaced in an arithmetic progression, with

gaps staying close to the global average gap size. But this latter claim is inconsistent with the

known results about the local distribution of zeroes of the Riemann zeta function, such as the pair

correlation estimates of Montgomery.
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1. Introduction

Let H0 : C→ C denote the function

H0(z) ≔
1

8
ξ

(

1

2
+

iz

2

)

, (1)

where ξ denotes the Riemann xi function

ξ(s) ≔
s(s − 1)

2
π−s/2Γ

(

s

2

)

ζ(s) (2)

and ζ is the Riemann zeta function. Then H0 is an entire even function with

functional equation H0(z) = H0(z), and the Riemann hypothesis is equivalent to

the assertion that all the zeroes of H0 are real.

It is a classical fact (see [30, p. 255]) that H0 has the Fourier representation

H0(z) =

∫ ∞

0

Φ(u) cos(zu) du

where Φ is the super-exponentially decaying function

Φ(u) ≔

∞
∑

n=1

(2π2n4e9u − 3πn2e5u) exp(−πn2e4u). (3)

The sum defining Φ(u) converges absolutely for negative u also. From Poisson

summation one can verify that Φ satisfies the functional equation Φ(u) = Φ(−u)

(i.e., Φ is even).

De Bruijn [4] introduced the more general family of functions Ht : C → C

for t ∈ R by the formula

Ht(z) ≔

∫ ∞

0

etu2

Φ(u) cos(zu) du. (4)

As noted in [11, p.114], one can view Ht as the evolution of H0 under the

backwards heat equation ∂tHt(z) = −∂zzHt(z). As with H0, each of the Ht are

entire even functions with functional equation Ht(z) = Ht(z). From results of

Pólya [22] it is known that Ht has purely real zeroes for some t then Ht′ has

purely real zeroes for all t′ > t. De Bruijn showed that the zeroes of Ht are purely

real for t ≥ 1/2. Strengthening these results, Newman [18] showed that there is

an absolute constant −∞ < Λ ≤ 1/2, now known as the De Bruijn-Newman

constant, with the property that Ht has purely real zeroes if and only if t ≥ Λ.

The Riemann hypothesis is then clearly equivalent to the upper bound Λ ≤ 0.

Newman conjectured the complementary lower boundΛ ≥ 0, and noted that this

conjecture asserts that if the Riemann hypothesis is true, it is only “barely so”.
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Table 1. Previous lower bounds on Λ. Dates listed are publication dates. The final four results use
the method of Csordas, Smith, and Varga [11].

Lower bound on Λ Reference

−∞ Newman 1976 [18]

−50 Csordas-Norfolk-Varga 1988 [8]

−5 te Riele 1991 [29]

−0.385 Norfolk-Ruttan-Varga 1992 [19]

−0.0991 Csordas-Ruttan-Varga 1991 [10]

−4.379 × 10−6 Csordas-Smith-Varga 1994 [11]

−5.895 × 10−9 Csordas-Odlyzko-Smith-Varga 1993 [9]

−2.63 × 10−9 Odlyzko 2000 [20]

−1.15 × 10−11 Saouter-Gourdon-Demichel 2011 [23]

As progress towards this conjecture, several lower bounds onΛwere established:

see Table 1.

We also mention that the upper bound Λ ≤ 1/2 of de Bruijn [4] was

sharpened slightly1 by Ki, Kim, and Lee [14] to Λ < 1/2. See also [25], [5]

on work on variants of Newman’s conjecture, and [3, Chapter 5] for a survey.

The main result of this paper is to affirmatively settle Newman’s conjecture:

Theorem 1. One has Λ ≥ 0.

We now discuss the methods of proof. Starting from the work of Csordas-

Smith-Varga [11], the best lower bounds on Λ were obtained by exploiting the

following repulsion phenomenon: if Λ was significantly less than zero, then

adjacent zeroes of H0 (or of the Riemann ξ function) cannot be too close to

each other (as compared with the other nearby zeroes). See [11, Theorem 1]

for a precise statement. In particular, a negative value of Λ gives limitations

on the quality of “Lehmer pairs” [15], which roughly speaking refer to pairs of

adjacent zeroes of the Riemann zeta function that are significantly closer to each

other than the average spacing of zeroes at that level. The lower bounds on Λ

in [11], [9], [20], [23] then follow from numerically locating Lehmer pairs of

increasingly high quality. (See also [26] for a refinement of the Lehmer pair

concept used in the above papers.)

In principle, one could settle Newman’s conjecture by producing an infinite

sequence of Lehmer pairs of arbitrarily high quality. As suggested in [20],

we were able to achieve this under the Gaussian Unitary Ensemble (GUE)

1 Added in press: this bound has recently been improved to Λ ≤ 0.22 in [21].
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hypothesis on the asymptotic distribution of zeroes of the Riemann zeta function;

we do not detail this computation here2 as it is superseded by our main result.

However, without the GUE hypothesis, the known upper bounds on narrow gaps

between zeroes (e.g. [6]) do not appear to be sufficient to make this strategy

work, even if one assumes the Riemann Hypothesis (which one can do for

Theorem 1 without loss of generality). Instead, we return to the analysis in [11]

and strengthen the repulsion phenomenon to a relaxation to local equilibrium

phenomenon: if Λ is negative, then the zeroes of H0 are not only repelled

from each other, but will nearly always be arranged locally as an approximate

arithmetic3 progression, with the gaps between zero mostly staying very close to

the global average gap that is given by the Riemann-von Mangoldt formula.

To obtain the local relaxation to equilibrium under the hypothesis that Λ < 0

requires a sequence of steps in which we obtain increasingly strong control on the

distribution of zeroes of Ht for Λ < t ≤ 0 (actually for technical reasons we will

need to move t away from Λ as the argument progresses, restricting instead to

ranges such as Λ/2 ≤ t ≤ 0 or Λ/4 ≤ t ≤ 0). The first step is to obtain Riemann-

von Mangoldt type formulae for the number of zeroes of Ht in an interval such

as [0, T ] or [T, T + α] where T ≥ 2 and 0 < α ≤ o(T ). When t = 0, we can

obtain asymptotics of T
4π

log T
4π
− T

4π
+ O(log T ) and α

4π
log T + o(log T ) by the

classical Riemann-von Mangoldt formula and a result of Littlewood respectively;

this gives good control on the zeroes down to length scales α ≍ 1. For Λ < t < 0,

we were only able to obtain the weaker bounds of T
4π

log T
4π
− T

4π
+O(log2 T ) and

α
4π

log T + o(log2 T ) respectively down to length scales α ≍ log T , but it turns

out that these bounds still (barely) suffice for our arguments; see Section 3. A

key input in the proof of the Riemann-von Mangoldt type formula will be some

upper and lower bounds for Ht(x− iy) when y is comparable to log x; see Lemma

4 for a precise statement. The main tool used to prove these bounds is the saddle

point method, in which various contour integrals are shifted until they resemble

the integral for the Gamma function, to which the Stirling approximation may be

applied.

It was shown in [11] that in the region Λ < t ≤ 0, the zeroes x j(t) of Ht are

simple, and furthermore evolve according to the system of ordinary differential

equations

∂txk(t) = 2
∑

j: j,k

1

xk(t) − x j(t)
; (5)

2 A sketch of the argument may be found at terrytao.wordpress.com/2018/01/20.
3 To illustrate the equilibrium nature of arithmetic progressions under backwards heat flow,

consider the entire functions Ft(z) ≔ etu2

cos(zu) for some fixed real u > 0. These functions

all have zeroes on the arithmetic progression { 2π(k+
1
2

)

u
: k ∈ Z} and solve the backwards heat

equation ∂tFt = −∂zzF.
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see Theorem 11 for a more precise statement. One can view this equation as

describing the dynamics of a system of “particles” x j, in which every pair of

particles x j, xk experiences a repulsion4 that is inversely proportional to their

separation. By refining the analysis in [11], we can obtain a more quantitative

lower bound on the gap x j+1(t) − x j(t) between adjacent “particles” (zeroes), in

particular establishing a bound of the form

log
1

x j+1(t) − x j(t)
≪ log2 j log log j

for all large j in the range Λ/2 ≤ t ≤ 0; see Proposition 13 for a more precise

statement. While far from optimal, this bound almost allows one to define the

Hamiltonian

H(t) ≔
∑

j,k: j,k

log
1

|x j(t) − xk(t)| ,

although in practice we will have to apply some spatial cutoffs in j, k to make this

series absolutely convergent. For the sake of this informal overview we ignore

this cutoff issue for now. The significance of this quantity is that the system (5)

can (formally, at least) be viewed as the gradient flow for the HamiltonianH(t).

In particular, there is a formal monotonicity formula

∂tH(t) = −4E(t) (6)

where the energy E(t) is defined as

E(t) ≔
∑

j,k: j,k

1

|x j(t) − xk(t)|2 .

Again, in practice one needs to apply spatial cutoffs to j, k to make this quantity

finite, and one then has to treat various error terms arising from this cutoff, which

among other things “renormalizes” the summands 1
|x j(t)−xk(t)|2 so that the renor-

malized energy vanishes when the zeroes are arranged in the equilibrium state of

an arithmetic progression; we ignore these issues for the current discussion. A

further formal calculation indicates that E(t) is monotone non-increasing in time

(so that H(t) is formally convex in time, as one would expect for the gradient

flow of a convex Hamiltonian). Exploiting (a variant of) the equation (6), we are

able to control integrated energies that resemble the quantities
∫ 0

Λ/2
E(t) dt; see

4 We caution however that the dynamics here are not Newtonian in nature, since (5) prescribes the

velocity ∂t xk of each particle rather than the acceleration ∂2
t xk. Nevertheless we found the physical

analogy to be helpful in locating the arguments used in this paper.
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first the weak preliminary integrated energy bound in Proposition 15, and then

the final integrated energy bound in Theorem 17. By exploiting local monotonic-

ity properties of the energy (and using a pigeonholing argument of Bourgain [2]),

we can then obtain good control (a truncated version of) the energy E(t) at time

t = 0, which intuitively reflects the assertion that the “particles” x j(t) are close to

local equilibrium at time t = 0. This implies that the zeroes of the Riemann zeta

function behave locally like an arithmetic progression on the average. However,

this can be ruled out by the existing results on the local distribution of zeroes,

such as pair correlation estimates of Montgomery [16]. As it turns out, it will be

convenient to make use of a closely related estimate of Conrey, Ghosh, Goldston,

Gonek, and Heath-Brown [7].

It may be possible to use the methods of this paper to also address the

generalized Newman conjecture introduced in [25], but we do not pursue this

direction here5.

Remark 2. It is interesting to compare this with the results in [14, Theorem

1.14], which show that regardless of the value of Λ, the zeroes of Ht will be

spaced like an arithmetic progression on average for any positive t.

Remark 3. Added in press: we note that in forthcoming work, Alex Dobner has

found a proof that Λ ≥ 0 which avoids the heat equation approach we have used

here. Dobner’s approach instead relies on a Riemann-Siegel type approximation

for Ht in order to demonstrate the existence of zeros off the critical line. There is

also some very intriguing numerical work of Rudolph Dwars (see the comments

to terrytao.wordpress.com/2018/12/28) that suggest that many of the

zeroes of Ht, t < 0 away from the critical line organize around deterministic

curves.

1.1. Acknowledgments. The first author received partial support from the

NSF grant DMS-1701577 and an NSERC grant. The second author is supported

by NSF grant DMS-1266164 and by a Simons Investigator Award. We thank

anonymous referees for useful suggestions, and likewise we thank Charles

Newman for helpful comments and Alex Dobner for corrections.

5 Note added in proof: the generalized Newman conjecture has now been established, with a

significantly simpler proof than the one given here: see [12].
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1.2. Notation. Throughout the rest of the paper, we will assume for sake of

contradiction that Newman’s conjecture fails:

Λ < 0.

In particular this implies the Riemann hypothesis (which, as mentioned previ-

ously, is equivalent to the assertion Λ ≤ 0).

We will have a number of logarithmic factors appearing in our upper bounds.

To avoid the minor issue of the logarithm occasionally being negative, we will

use the modified logarithm

log+(x) ≔ log(2 + |x|)

for several of these bounds. We also use the standard branch of the complex

logarithm, with imaginary part in the interval (−π, π], and the standard branch

z1/2 ≔ exp( 1
2

log z) of the square root, defined using the standard branch of the

complex logarithm.

Let Λ < t ≤ 0, then the zeroes of Ht are all real, and symmetric around the

origin. It is a result of Csordas, Smith, and Varga [11, Corollary 1] that the zeroes

are also distinct and avoid the origin. Thus we can express the zeroes of Ht as

(x j(t)) j∈Z∗ , where Z∗ ≔ Z\{0} are the non-zero integers,

0 < x1(t) < x2(t) < . . . ,

and x− j(t) = −x j(t) for all j ≥ 1.

For any real numbers j− ≤ j+, we use [ j−, j+]Z∗ to denote the discrete interval

[ j−, j+]Z∗ ≔ { j ∈ Z∗ : j− ≤ j ≤ j+}.

We use the usual asymptotic notation X ≪ Y, Y ≫ X, or X = O(Y) to denote

a bound of the form |X| ≤ CY for some absolute constant C, and write X ≍ Y for

X ≪ Y ≪ X. Note that as Λ is also an absolute constant, C can certainly depend

on Λ; thus for instance |Λ| ≍ 1. If we need the implied constant C to depend on

other parameters, we will indicate this by subscripts, thus for instance X = Oκ(Y)

denotes the estimate |X| ≤ CκY for some C depending on κ. If the quantities X, Y

depend on an asymptotic parameter such as T , we write X = oT→∞(Y) to denote

a bound of the form |X| ≤ c(T )Y, where c(T ) is a quantity that goes to zero as

T → ∞.

For X and Y depending on an asymptotic parameter T , we will also use the

notation X / Y or X = Õ(Y) for X ≪ Y logO(1) T in the last two sections of this

paper.

Furthermore, in sums that will appear which depend on a parameter T , we

say that indices j, k are nearby, and write j ∼T k, if one has 0 < | j − k| <
(T 2 + | j| + |k|)0.1.
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We will use a marked sum to indicate principle value summation:

′
∑

j

· · · = lim
J→∞

∑

| j|≤J

· · · .

In cases where there is any chance of confusion for the range of summation we

record the index being summed and use a colon to indicate its range; e.g. we

write
∑

j: j,k to indicate that the summation is over j, and j is to not equal k

(where k is fixed outside the sum). Semicolons are used to separate additional

conditions.

We use the phrase for almost every t throughout this paper to denote that a

relation holds for all t except a set of null Lebesgue measure.

2. Asymptotics of Ht

In this section we establish some upper and lower bounds on Ht(z) and its

logarithmic derivative
H′t
Ht

(z). We will be able to obtain reasonable upper bounds

in the regime where z = x − iy with y = O(log+ x), and obtain more precise

asymptotics when y ≍ log+ x (as long as the ratio y/ log+ x is large enough); this

will be the key input for the Riemann-von Mangoldt type asymptotics in the next

section. More precisely, we show

Lemma 4. Let z = x − iκ log+ x for some x ≥ 0 and 0 ≤ κ ≤ C, and let Λ < t ≤ 0.

Then one has6

Ht(z)≪ exp

(

−πx

8
+ OC(log2

+ x)

)

. (7)

Furthermore, there is an absolute constant C′ > 0 (not depending on C) such

that if κ ≥ C′, then one has the refinement

Ht(z) = exp

(

−πx

8
+ OC(log2

+ x)

)

, (8)

as well as the additional estimate

H′t
Ht

(z) =
i

4
log

(

iz

4π

)

+ OC

(

log+ x

x

)

, (9)

using the standard branch of the complex logarithm.

6 The reader is advised not to take the numerous factors of π,
√

2, etc. appearing in this section

too seriously, as the exact numerical values of these constants are not of major significance in the

rest of the arguments.
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Remark 5. With a little more effort one could replace the hypothesis Λ < t here

by −C < t; in particular (in contrast to the remaining arguments in this paper)

these results are non-vacuous when Λ ≥ 0. However, we will need to assume

Λ < t in the application of these estimates in the next section, particularly with

regards to the proof of (49). Our proof methods also allow for a more precise

version of the asymptotic (8) (as one might expect given the level of precision

in (9)), but such improvements do not seem to be helpful for the rest of the

arguments in this paper. In the t = 0 case, one can essentially obtain Dirichlet

series expansions for 1
H0(z)

or
H′

0

H0
(z) which allow one to also obtain bounds such

as (8) or (9) when the imaginary part of z is much smaller than log+ x. However,

in the t < 0 case there does not appear to be any usable series expansions for
1
Ht

(z) or
H′t
Ht

(z) that could be used to prove (8) or (9). Instead, we will prove these

estimates by computing Ht(z) to a high degree of accuracy, which we can only

do when y is greater than or equal to a large multiple of log+ x in order to ensure

that the series expansions we have for Ht(z) converge rapidly.

We begin by treating the easy case t = 0, in which we can exploit the identity

(1). We have the very crude bound

ζ(σ + iτ) ≪ (1 + |τ|)O(1) (10)

whenever σ ≥ 1/2 and τ ∈ R (this follows for instance from [30, Theorem

4.11]). In the region σ ≥ 1/4, we also have the Stirling approximation (see e.g.

[1, 6.1.41])

Γ(σ + iτ) = exp

((

σ + iτ − 1

2

)

log(σ + iτ) − (σ + iτ) + log
√

2π + O

(

1

|σ + iτ|

))

,

(11)

where we use the standard branch of the logarithm; in particular

Γ(σ + iτ) ≪ exp

(

(σ − 1

2
) log |σ + iτ| − τ arctan

τ

σ
− σ

)

. (12)

As arctan τ
σ
= π

2
sgn(τ) + O( σ

σ+|τ| ), we have in particular that

Γ(σ + iτ)≪ exp

(

−π
2
|τ| + O(σ log+(|σ| + |τ|))

)

.

Inserting these bounds into (1), (2), we obtain the crude upper bound

H0(x − iy)≪ exp

(

−π|x|
8
+ O((1 + y) log+(|x| + y))

)

(13)

for x ∈ R and y ≥ 0. This gives the s = 0 case of (7). As is well known, when

σ ≥ 2 (say) we can improve (10) to

|ζ(σ + iτ)| ≍ 1
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and so we obtain the improvement

H0(x − iy) = exp

(

−π|x|
8
+ O((1 + y) log+(|x| + y))

)

when y ≥ C′ log+ x (in fact in this case it would suffice to have y ≥ 4, say). This

gives the s = 0 case of (8). Finally, from taking logarithmic derivatives of (1),

(2) one has

H′
0

H0

(z) =
i

2

(

1

s
+

1

s − 1
− 1

2
log π +

1

2

Γ′

Γ

(

s

2

)

+
ζ′

ζ
(s)

)

where s ≔ 1
2
+ iz

2
. From taking log-derivatives of (11) using the Cauchy integral

formula, one has the well known asymptotic

Γ′

Γ

(

s

2

)

= log
s

2
+ O

(

1

|s|

)

for the digamma function Γ′

Γ
, and from the Dirichlet series expansion

ζ′

ζ
(s) =

−∑∞
n=1

Λ(n)

ns ≪
∑∞

n=2
log n

nRe s one can easily establish the bound

ζ′

ζ
(s)≪ 1

|s|

in the regime C′ log+ x ≤ y ≤ C log x. Putting all this together, one obtains (9) in

this case.

Henceforth we address the t < 0 case. We begin with the proof of the upper

bound (7). Here it will be convenient to exploit the fundamental solution for the

(backwards) heat equation to relate Ht with H0. Indeed, for any t < 0, we have

the classical heat equation (or Gaussian) identity

etu2

exp(izu) =
1
√

4π

∫

R

e−r2/4 exp
(

i(z + r|t|1/2)u
)

dr (14)

for any complex numbers z, u; replacing z, r by −z,−r and averaging we conclude

that

etu2

cos(zu) =
1
√

4π

∫

R

e−r2/4 cos
(

(z + r|t|1/2)u
)

dr.

Multiplying byΦ(u), integrating u from 0 to infinity, and using Fubini’s theorem,

we conclude that

Ht(z) =
1
√

4π

∫

R

e−r2/4H0(z + r|t|1/2) dr. (15)
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Applying (13), the triangle inequality, and the hypothesisΛ < t ≤ 0, we conclude

that

Ht(x − iy)≪ exp

(

−π|x|
8
+O((1 + y) log+(|x| + y))

)

×
∫

R

exp

(

−r2

4
+ O((1 + y + |r|) log+ r)

)

dr.

Using (1 + |r|) log+ r ≤ εr2 +Oε(1) and y log+ r ≪ εr2 +Oε(y
2) for any absolute

constant ε > 0, we have

−r2

4
+ O(|r|) + O((1 + y + |r|)(1 + log+ r)) ≤ −r2

8
+ O((1 + y)2),

thus arriving at the bound

Ht(x − iy)≪ exp

(

−π|x|
8
+ O((1 + y) log+ |x| + (1 + y)2)

)

.

Since y = OC(log+ x), this gives (7).

To prove the remaining two bounds (8), (9), it is convenient to cancel off the

t = 0 case that has already been established, and reduce to showing that

Ht

H0

(z) = exp
(

OC(log2
+ x)

)

, (16)

and
H′t
Ht

(z) −
H′

0

H0

(z)≪C

log+ x

x
, (17)

when κ ≥ C′. To prove these estimates, the heat equation approach is less

effective due to the significant oscillation present in H0. Instead we will use

the method of steepest descent (also known as the saddle point method) to shift

contours to where the phase is stationary rather than oscillating. We allow all

implied constants to depend on C. We may assume that x is larger than any

specified constant C′′ (depending on C), as the case x = OC(1) follows trivially

from compactness, since the zeroes of Ht for t ≥ Λ are all real, so that Ht(z) is

bounded away from zero in this region of interest.

Now suppose that z = x − iy where y = κ log+ x for some C′ ≤ κ ≤ C; in

particular C is large since C′ is. As Φ is even, we may write (4) as

Ht(z) =
1

2

∫

R

etu2

Φ(u)eizu du.

From (3) and Fubini’s theorem (which can be justified when t < 0) we conclude

that

Ht(z) =
1

2

∞
∑

n=1

2π2n4It(πn2, 9 + y + ix) − 3πn2It(πn2, 5 + y + ix) (18)
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where It(b, ζ) denotes the oscillatory integral

It(b, ζ) ≔

∫

R

exp(tw2 − be4w + ζw) dw, (19)

which is an absolutely convergent integral for t < 0 whenever Re b > 0.

We therefore need to obtain good asymptotics on It(b, ζ) for b ≥ 1 and ζ in

the region

Ω ≔ {y + ix : x ≥ C′′; C′ log+ x ≤ y ≤ 2C log+ x}. (20)

Observe that the phase tw2 − be4w + ζw has a stationary point at the origin when

4b = ζ. In general, 4b will not equal ζ; however, for any complex number w0 in

the strip
{

w0 ∈ C : 0 ≤ Im (w0) <
π

8

}

; (21)

we see from shifting the contour in (19) to the horizontal line {w + w0 : w ∈ R}
that we have the identity

It(b, ζ) = exp(tw2
0 + ζw0)It(be4w0 , ζ + 2tw0) (22)

whenever b > 0 (so that be4w0 has positive real part). We will thus be able to

reduce to the stationary phase case 4b = ζ if we can solve the equation

4be4w0 = ζ + 2tw0 (23)

in the strip (21). This we do in the following lemma7:

Lemma 6. If b ≥ 1 and ζ ∈ Ω, then there exists a unique w0 = w0(b, ζ) in the

strip (21) such that (23) holds. Furthermore we have the following estimates:

(i) Re (4be4w0) ≥ 1.

(ii) (Precise asymptotic for small and medium b) If ζ = y + ix and b ≤
x exp(100 x1/2

|t| ), then

w0 =
1

4
log

x

4b
+ OR

(

1

x

)

+ i

(

π

8
− y

4x
−

t log x
4b

8x
+ OR

C

(

log2
+ x

x3/2

))

where the superscript in the O() notation indicates that these quantities are

real-valued.

7 One could also write w0 explicitly in terms of the Lambert W-function as w0 = − ζ

2t
+

1
4
W(− 8b

t
exp(− 2ζ

t
)), but we will not use this expression in this paper, and in fact will not explicitly

invoke any properties of the W-function in our arguments.
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(iii) (Crude bound for huge b) If ζ = y + ix and b > x exp( x1/2

|t| ), then Re w0 is

negative; in fact we have

−Re w0 ≥
1

8
log+ b.

Proof. The function w0 7→ 4be4w0−2tw0 traverses the graph {a+i(
π|t|
4
+4be2a/|t|) :

a ∈ R} on the upper edge { a
2|t| + i π

8
: a ∈ R} of the strip (21), while the lower

edge of the strip is of course mapped to the real axis. Since |t| ≤ Λ and C,C′

are large, the region Ω lies between these two curves, and so from the argument

principle (and observing that the map w0 7→ 4be4w0−2tw0 sends the line segments

{−R + iβ : 0 < β < π/8} and {R + iβ : 0 < β < π/8} well to the left and right of ζ

respectively for R large enough), for every ζ ∈ Ω there exists exactly one w0 in

the strip (21) such that 4be4w0 − 2tw0 = ζ, which is of course equivalent to (23).

The uniqueness implies that the holomorphic function w0 7→ 4be4w0 − 2tw0 has

non-zero derivative at this value of w0.

Now write ζ = y + ix as per (20), and write w0 = α + iβ for some α ∈ R

and 0 < β < π/8. Taking real and imaginary parts in (23) we have the system of

equations

4be4α cos 4β = y + 2tα (24)

and

4be4α sin 4β = x + 2tβ. (25)

To prove (i), suppose for contradiction that Re (4be4w0) < 1, thus

4be4α cos 4β ≤ 1. (26)

Since t, β = O(1), we see from (25) that 4be4α sin 4β ≪ x, and hence from

sin2 4β + cos2 4β = 1 we have

4be4α ≪ x

and hence (since b ≥ 1) α ≤ 1
4

log+ x+O(1). In particular−2tα ≤ |t|
2

log+ x+O(1).

Inserting this into (24) and using (26) one then has

y ≤ |t|
2

log+ x + O(1),

which contradicts (20) since |t| ≤ Λ and C′ is large.

Now we show (ii). From (25) and sin 4β ≤ 1, t, β = O(1) one has

4be4α ≥ x − O(1)

and hence on taking logarithms (and using the fact that b ≥ 1 and x is large)

α ≥ 1

4
log

x

4b
−O

(

1

x

)

. (27)
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On the other hand, from squaring (24), (25) and summing we have

(4be4α)2 = (y + 2tα)2 + (x + 2tβ)2. (28)

Crudely bounding x + 2tβ = O(x), y = O(x), b ≥ 1, and t = O(1) we conclude

that

e8α ≪ x2 + α2

which implies that α ≤ O(log+ x). From the hypothesis b ≤ x exp(100 x1/2

|t| ) and

(27) we also have α ≥ −O(x1/2/t), thus tα ≪ x1/2. Returning to (28) and using

2tβ = O(1) and y ≪ x1/2 we conclude that

(4be4α)2 = x2 + O(x)

so on taking square roots

4be4α = x + O(1) (29)

and hence on taking logarithms we have the matching upper bound

α ≤ 1

4
log

x

4b
+ O

(

1

x

)

to (27). In particular,

y + 2tα = y +
t log x

4b

2
+ O

(

1

x

)

.

Inserting this and (29) into (24), we have

cos 4β =
y

x
+

t log x
4b

2x
+ O

(

1

x3/2

)

and hence (by Taylor expansion of the arc cosine function)

4β =
π

2
− y

x
−

t log x
4b

2x
+ OC

(

log2
+ x

x3/2

)

,

giving (ii).

Finally, we prove (iii). From the identity (28) and crudely bounding y, tβ =

O(x) we have

(4be4α)2 ≪ x2 + t2|α|2

and hence either

e−4α ≫ b

x
or

e−4α ≫ b

|t||α| .

Under the hypothesis b > x exp( x1/2

|t| ), so that 1/|t| and x are O(b1/10) (say), so

both options force −α ≥ 1
8

log b as claimed.
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We combine the above lemma with the following asymptotic.

Lemma 7. Let b be a complex number with Re b ≥ 1. Then

It(b, 4b) =

√

π

8
exp(−b)

(

1
√

b
+O

(

1

|b|3/2

))

(30)

using the standard branch of the square root.

Proof. One could establish this from Laplace’s method, but we will instead use

the Stirling approximation8 (11). Writing

etw2

=

∫

R

e4iξw dµ(ξ)

where µ is the Gaussian probability measure

dµ(ξ) ≔
2
√
π|t|

e−4ξ2/|t|

of mean zero and variance |t|/8, and applying Fubini’s theorem, we obtain

It(b, 4b) =

∫

R

(∫

R

exp(−be4w + 4(b + iξ)w) dw

)

dµ(ξ).

Making the change of variables r = be4w (and contour shifting or analytic

continuation) and the definition Γ(s) =
∫ ∞

0
e−rrs−1 dr of the Γ function, we see

that
∫

R

exp(−be4w + 4(b + iξ)w) dw =
1

4
exp(−(b + iξ) log b)Γ(b + iξ)

and hence

It(b, 4b) =
1

4

∫

R

exp(−(b + iξ) log b)Γ(b + iξ) dµ(ξ).

We divide integral into regions |ξ| ≤ 10|t|1/2|b|1/2 and |ξ| > 10|t|1/2|b|1/2. By

applying Stirling’s approximation, the integral over the first region becomes

1

4

∫

|ξ|≤10|t|1/2|b|1/2

(

1 + O

(

1

|b + iξ|

))
√

2π
√

b + iξ
exp((b + iξ) log(1 +

iξ

b
) − b − iξ) dµ(ξ).

8 We thank Alex Dobner for pointing out some issues in the original proof of this lemma, and

suggesting a repaired proof which is reproduced here.
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Note we may assume |b| is sufficiently large so that |ξ| < |b|/2 in this region (the

small |b| case of the lemma follows trivially from compactness), and so we have

1√
b+iξ
=

(

1 + O
( |ξ|
|b|

))

1√
b

and (b+ iξ) log(1+
iξ

b
) = iξ+O

(

|ξ|2
|b|

)

. Substituting these

expressions into the integrand we get
√

π

8b
exp(−b)

∫

|ξ|≤10|t|1/2|b|1/2

(

1 + O

(

1 + |ξ|2
|b|

))

dµ(ξ),

and now the integral evaluates to 1 + O( 1
|b| ). Thus it will suffice to establish the

tail bound
∫

|ξ|>10|t|1/2|b|1/2
exp(−(b + iξ) log b)Γ(b + iξ) dµ(ξ)≪ exp(−Re (b))|b|−3/2.

By applying the triangle inequality and bounding the integrand with

| exp(−(b + iξ) log b)| ≤ exp(−Re (b) log |b| + π
2

(|b| + |ξ|))

and

|Γ(b + iξ)| ≤ Γ(Re (b)) ≤ exp(Re (b) log |b| − Re (b))

we get the following upper bound:

exp(−Re (b) +
π

2
|b|) 2
√
π|t|

∫

|ξ|>10|t|1/2|b|1/2
exp(

π

2
|ξ| − 4ξ2

|t| ).

Now again we assume |b| is large enough so that we have π
2
|ξ| − 4ξ2

|t| ≤ −
ξ2

|t| for all

ξ in the given region, and hence the integral is bounded above by

exp(−Re (b) +
π

2
|b|) 2
√
π|t|

∫

|ξ|>10|t|1/2|b|1/2
exp(−ξ

2

|t| )≪ exp(−Re (b) − 10|b|)

(say), and the claim follows.

From the above two lemmas and (22), we have the asymptotic

It(b, ζ) =

√

π

8
exp(tw2

0 − be4w0 + ζw0)

(

1
√

be4w0

+O

(

1

|be4w0 |3/2

))

(31)

for any b ≥ 1 and ζ ∈ Ω, where w0 = w0(b, ζ) is the quantity in Lemma 6.

Now we can control the sum (18). As before we assume that z = x− iy where

y = κ log+ x for some C′ ≤ κ ≤ C. From (18) one has

Ht(x − iy) =
1

2

∞
∑

n=1

Qt,n (32)
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where Qt,n is the quantity

Qt,n ≔ 2π2n4It(πn2, 9 + y + ix) − 3πn2It(πn2, 5 + y + ix).

We first consider the estimation of Qn in the main case when n is not too huge,

in the sense that

n ≤ x exp

(

100
x1/2

|t|

)

. (33)

In this case, if we apply Lemma 6(ii) with ζ = 9 + y + ix and b = πn2 we have

that the quantity w0 = w0,t,n arising in that lemma obeys the asymptotics

w0 =
1

4
log

x

4πn2
+ OR

(

1

x

)

+ i

(

π

8
− 9 + y

4x
−

t log x
4πn2

8x
+OR

C

(

log2
+ x

x3/2

))

, (34)

which when combined with (23), gives

4be4w0 = ix + OC(x1/2).

In particular, the factor 1√
be4w0
+ O

(

1

|be4w0 |3/2
)

in (31) can be expressed as

1
√

ix/4

(

1 + OC

(

x−1/2
))

,

and thus by (31)

|It(πn2, 9 + y + ix)| =
√

π

2x
exp

(

Re

(

tw2
0 −

ζ

4
− tw0

2
+ ζw0

)

+OC

(

x−1/2
)

)

where we have again used (23). From (34) (and using t = O(1) and y =

OC(log+ x) to bound some small error terms), we can calculate the quantity

Re
(

tw2
0
− ζ

4
− tw0

2
+ ζw0

)

to be

t

16
log2 x

4πn2
− tπ2

64
−9 + y

4
− t

8
log

x

4πn2
+

9 + y

4
log

x

4πn2
−πx

8
+

9 + y

4
+

t log x
4πn2

8
+OC

(

x−1/2
)

and thus on cancelling and gathering terms we obtain

|It(πn2, 9 + y + ix)| =
(

x

4πn2

)
9+y

4

JtKt,n exp
(

OC

(

x−1/2
))

where Jt = Jt(x) and Kt,n = Kt,n(x) are the positive quantities

Jt ≔

√

π

2x
exp

(

t

16
log2 x

4π
− tπ2

64
− πx

8

)

(35)

and

Kt,n ≔ exp

(

− t

4

(

log
x

4π

)

log n +
t

4
log2 n

)

.
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A similar computation gives

|It(πn2, 5 + y + ix)| =
(

x

4πn2

)
5+y

4

JtKt,n exp
(

OC

(

x−1/2
))

In particular we have the upper bound

Qt,n ≪ n4
(

x

4πn2

)
9+y

4

JtKt,n

for 1 ≤ n ≤ x exp(100 x1/2

|t| ), and for n = 1 we have the refinement

|Qt,1| =
(

2π2 + OC

(

x−1/2
))

(

x

4π

)
9+y

4

Jt. (36)

Using the crude bound

Kt,b ≤ exp

(

− t

4

(

log
x

4π

)

log n

)

≤ n−
t
4

log x

we conclude that

Qt,n ≪ n−
1+y

2
− t

4
log x|Qt,1 |.

Since y ≥ C′ log+ x, the 2 ≤ n ≤ x exp(100 x1/2

|t| ) terms sum to O(|Qt,1|/x), thus

∑

n≤x exp(100 x1/2

|t| )

Qt,n =

(

1 + OC

(

1

x

))

Qt,1

Also, from (35) we have

|Qt,1 | ≍
(

x

4π

)
9+y

4

Jt = exp

(

−πx

8
+ OC(log2

+ x)

)

.

Thus, to finish the proof of (8) (or (16)), one just needs to show that the tail
∑

n>x exp(100 x1/2

|t| )
Qt,n is negligible compared with the main term Qt,1 = exp(−πx

8
+

OC(log2
+ x)). Suppose now that n > x exp(100 x1/2

|t| ). If we now apply Lemma

6(iii) with ζ = 9 + y + ix and b = πn2, and write w0 = α + iβ with 0 < β < π/8,

we have that α is negative with

−α ≥ 1

8
log n,

while from (31) and (23) (and Lemma 6(i)) we have

It(πn2, 9 + y + ix) ≪ exp(Re (tw2
0 −

ζ

4
− tw0

2
+ ζw0))

≪ exp(−|t||α|2 − |t||α|
2
+OC(log2

+ x)).
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Similarly for It(πn2, 5 + y + ix). Since log n ≥ 100 x1/2

|t| , we have |α| ≥ 10 x1/2

|t| and

thus

|t||α|2 ≥ 10x1/2 log n.

In particular, n4 exp(−|t||α|2)≪ exp(−9x1/2 log n) and thus

Qt,n ≪ exp(−8x1/2 log n + OC(log2
+ x))

(say). Summing, we conclude that
∑

n>x exp(100 x1/2

|t| )

Qt,n ≪ exp(−100x/|t|)

(say), which is certainly O(|Q1|/x). Inserting these bounds into (18), we conclude

that

Ht(x − iy) =

(

1

2
+ OC

(

log2
+ x

x

))

Qt,1,

which already gives (7). Sending t to 0, taking absolute values, and then dividing

using (36) and (35), we obtain after cancelling all the t-independent terms that

∣

∣

∣

∣

∣

Ht

H0

∣

∣

∣

∣

∣

(x − iy) =

(

1 + OC

(

log2
+ x

x

))

exp

(

t

16
log2 x

4π
− tπ2

64

)

.

Since the ratio Ht

H0
is holomorphic in the region of interest, we can thus find a

holomorphic branch of log Ht

H0
for which

Re log
Ht

H0

(z) − t

16
log2 z

4πi
= − tπ2

64
+ OC

(

log2
+ x

x

)

for all z = x− iy in this region. Varying x, y by O(log+ x) (adjusting the constants

C,C′,C′′ slightly as necessary) and using the Borel-Carathéodory theorem and

the Cauchy integral formula, we conclude that

d

dz

(

log
Ht

H0

(z) − t

16
log2 z

4πi

)

= OC

(

log+ x

x

)

,

which gives (17) after a brief calculation.

3. Riemann-von Mangoldt type formulae

For any Λ < t ≤ 0, the zeroes of Ht are all real and simple [11, Corollary

1]. For any interval I ⊂ R, let Nt(I) denote the number of zeroes of Ht in

I. The classical Riemann-von Mangoldt formula (see e.g. [30, Theorem 9.4]),

combined with (1), gives the asymptotic

N0([0, T ]) = Ψ(T ) + O(log+ T ) (37)
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for all T ≥ 0, where we use Ψ : R+ → R to denote9 the function

Ψ(T ) ≔
T

4π
log

T

4π
− T

4π
. (38)

For future reference, we record the derivative of Ψ as

Ψ′(T ) =
1

4π
log

T

4π
, (39)

in particularΨ is increasing for T > 4π. Applying (37) with T replaced by T +α

and subtracting, we conclude from the mean value theorem that

N0([T, T + α]) =
α log+ T

4π
+ O(log+ T ) (40)

for all T ≥ 0 and 0 ≤ α ≤ C for any fixed C, where the implied constants in the

asymptotic notation are allowed to depend on C. Because we are assuming the

Riemann hypothesis (and hence the Lindelöf hypothesis), one can improve this

latter bound10 to

N0([T, T + α]) =
α log+ T

4π
+ oT→∞(log+ T ), (41)

a result of Littlewood (see [30, Theorem 13.6]). A key input in these bounds is a

lower bound on |ζ(s)| when Re(s) is somewhat large, e.g. between 2 and 3; this is

easily obtained through the Dirichlet series identity 1
ζ(s)
=

∑∞
n=1

µ(n)

ns that is valid

in this region.

Define the classical location ξ j of the jth zero for j ≥ 1 to be the unique

quantity in (1,+∞) solving11 the equation

Ψ(ξ j) = j, (42)

and extend this to negative j by setting ξ− j ≔ −ξ j. Clearly the ξ j are increasing

in j. For future reference we record the following bounds on the ξ j:

Lemma 8 (Spacing of the classical locations).

9 It is traditional to also insert the lower order term − 7
8

here, but this term will not be of use in our

analysis and will therefore be discarded. The factors of 4π are not of particular significance and

may be ignored by the reader on a first reading.
10Indeed, on the Riemann hypothesis one can improve the error term to O

(

log+ T

log+ log+ T

)

; see [30,

Theorem 14.13]. However, we will not need this further refinement in this paper.
11As with the quantity w0 introduced in Lemma 6, one could express ξ j explicitly in terms of the

Lambert W function if desired as ξ j = 4πe exp(W( j/e)), but we will not use this relation in this

paper.
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(i) For any j ≥ 1, one has

ξ j = (1 + o| j|→∞(1))
4π j

log+ j
(43)

In particular, ξ j ≍ j

log+ j
and log+ ξ j ≍ log+ j.

(ii) For any j, k ∈ Z∗, one has

|ξk − ξ j| ≍
|k − j|

log+(|ξ j| + |ξk |)
. (44)

(iii) If 1 ≤ j ≍ k, then one has the more precise approximation

ξk − ξ j =
4π(k − j)

log ξ j

+ O













|k − j|2

j log2 ξ j













. (45)

Of course, the implied constant in the error term in (45) can depend on the

implied constants in the hypothesis j ≍ k.

Proof. If j ≥ 1, then from (38) one has

ξ j log+ ξ j = (1 + o j→∞(1))4π j (46)

which implies that j1/2 ≪ ξ j ≪ j (say), which implies that log+ ξ j ≍ log+ j;

substituting this back into (46) yields

ξ j ≍
j

log+ j
.

This in turn implies that log+ ξ j = (1 + o j→∞(1)) log+ j, and using (46) one last

time gives (42).

Now we obtain (ii). If j, k have opposing sign, then (44) follows from (43), so

by symmetry we may assume that j, k are both positive. If j is much larger than

k or vice versa, then the bound (44) follows from (43) and the triangle inequality,

so we may now restrict attention to the case 1 ≤ j ≍ k. The estimates (44) and

(45) are trivial for j = O(1), so we may assume j to be large.

From (42) we have

Ψ(ξk) −Ψ(ξ j) = k − j

and hence by the mean value theorem and (39) we have

1

4π
log

T

4π
(ξk − ξ j) = k − j
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for some T between ξk and ξ j. From (43) we see that T ≍ ξ j, and so (44) follows.

Furthermore, we can conclude that

T = ξ j + O(|ξk − ξ j|) = ξ j + O

(

|k − j|
log ξ j

)

and hence

log T = log ξ j + O

(

|k − j|
ξ j log ξ j

)

= log ξ j + O

(

|k − j|
j

)

and
1

log T
=

1

log ξ j

+ O













|k − j|
j log2 ξ j













giving (45).

Applying (37) to T = x j(0) for some j ≥ 1, we conclude in particular that

Ψ(x j(0)) − Ψ(ξ j) = O(log+ x j(0)).

From (39) and the mean value theorem12 we conclude that

x j(0) = ξ j +O(1) (47)

for all j ≥ 1, and hence for all j ∈ Z∗ by symmetry. In particular, from (43) and

the fact that x1(0) > 0 we conclude that

x j(0) ≍ j

log+ ξ j

≍ j

log+ j

for all j ≥ 1.

In a similar vein, if 1 ≤ j < k ≤ j + log+ j, then from applying (41) with

T = x j(0) and α equal to (or slightly less than) xk(0) − x j(0), we have

k − j =
xk(0) − x j(0)

4π
log+ ξ j + o j→∞(log+ ξ j)

and hence

xk(0) − x j(0) =
4π(k − j)

log+ ξ j

+ o j→∞(1).

Informally, this asserts that the zeroes x j(0) behave like an arithmetic progression

of spacing 4π
log+ ξ j

at spatial scales between o(1) and 1. (In fact, when combined

12One may wish to treat the bounded case j = O(1) separately, to avoid the minor issue that Ψ(T )

becomes decreasing for T < 1.
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with (47) and (45), we see that this behavior persists for all scales between o(1)

and o(ξ j).)

In this section we use the asymptotics on Ht obtained in the previous section

to establish analogous, but weaker, bounds for the zeroes x j(t) of the functions

Ht, in which we lose an additional logarithm factor in the error estimates.

Theorem 9 (Riemann-von Mangoldt type formulae). Let Λ < t ≤ 0, T > 0, and

let 0 ≤ α ≤ C for some C > 0. Then one has

Nt([0, T ]) = Ψ(T ) + O(log2
+ T ) (48)

and

Nt([T, T + α log+ T ]) =
α log2

+ T

4π
+ oT→∞(log2

+ T ). (49)

The decay rate in the oT→∞() error term is permitted to depend on C but is

otherwise uniform in α.

Repeating the previous analysis, we conclude

Corollary 10 (Macroscopic structure of zeroes). Let Λ < t ≤ 0. Then one has

x j(t) = ξ j + O(log+ ξ j) (50)

for all j ∈ Z∗; in particular

x j(t) ≍
j

log+ ξ j

≍ j

log+ j
(51)

for all j ≥ 1. We also have

xk(t) − x j(t) =
4π(k − j)

log+ ξ j

+ o j→∞(log+ ξ j) (52)

whenever 1 ≤ j < k ≤ j + log2
+ ξ j.

Informally, this corollary asserts that the zeroes x j(t) behave like an arith-

metic progression of spacing 4π
log+ ξ j

at spatial scales between o(log+ ξ j) and o(ξ j).

This level of spatial resolution is worse by a factor of log+ ξ j than what one

can achieve for x j(0), but will still (barely) be enough for our applications. We

remark that a significantly sharper estimate (with an error term of just O(1) in

the analog of (48)) is available for any fixed t > 0; see13 [14, Theorem 1.4].

We now turn to the proof of the two bounds in Theorem 9.

13Added in press: even sharper estimates have recently been obtained in [21, Theorem 1.5].
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Proof (Proof of (48)). We make use of the argument principle in exactly the

same manner as in the classical proof of the Riemann-von Mangoldt formula.

By perturbing T slightly if necessary, we may assume that T is not a zero of Ht.

Let κ > 0 be a sufficiently large absolute constant. Then the argument principle

yields

Nt([0, T ]) =
1

2πi

∫

Γ

H′t
Ht

(z) dz,

where Γ is the counterclockwise contour carved out by a straight line from

iκ log+ 0 = iκ log 2 to −iκ log+ 0 = −iκ log 2, then along the curve ΓI parame-

terized by x − iκ log+ x for x ∈ [0, T ], then along the line ΓII from T − iκ log+ T

to T , then along the vertical line conjugate to ΓII and the curve conjugate to ΓI ,

leading back to i log 2. As the integrand is odd, the, the integral along the line

from iκ log+ 0 to −iκ log+ 0 vanishes. Using the symmetry Ht(z) = Ht(z), we thus

have

Nt([0, T ]) =
1

π
Im

(
∫

ΓI

+

∫

ΓII

)

H′t
Ht

(z) dz.

From (9), (39) one sees that

1

π

H′t
Ht

(z) =
d

dz
(Ψ(iz)) + O

(

log+ x

x

)

for z = x− iκ log+ x on ΓI (extendingΨ to the right half-plane using the standard

branch of the logarithm), and hence by the fundamental theorem of calculus

1

π
Im

∫

ΓI

H′t
Ht

(z) dz = ImΨ(iT + κ log+ T ) − Ψ(log+ 0) + O(log2
+ T )

= Ψ(T ) + O(log2
+ T ).

On the other hand, if we let θ be a phase so that eiθHt(T − iκ log+ T ) is real and

positive, then
∣

∣

∣

∣

∣

∣

Im

∫

ΓII

H′t
Ht

(z) dz

∣

∣

∣

∣

∣

∣

≤ π(m + 1),

where m is the number of zeroes of Re eiθHt(z) along the contour ΓII , since the

left hand side is the change in arg eiθHt(z) as z varies over this contour, and for

each increment of π in the value of arg eiθHt(z), we must have that Re eiθHt(z) is

zero for some z. Note that the number of zeroes of Re Ht(z) along this contour is

the same as the number of zeroes of

g(s) ≔ 1
2
(e−iθHt(is + T ) + eiθHt(−is + T ))

as s ranges along the line from 0 to κ log+ T . Hence m is no more than the number

of zeroes m′ of g(s) in the disc of radius κ log+ T centered at κ log+ T .
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The count m′ we can estimate with Jensen’s formula as follows. LetM be

the maximum of g(s) in a disc centered at κ log+ T of radius 2κ log+ T . Using (7)

and the conjugate symmetry of Ht(z), we have

M≪ e
− π

8
T+O(log2

+ T )
.

Since from (8) we have g(κ log+ T ) = eiθHt(T − iκ log+ T ) = e
− π

8
T+O(log2

+ T )
, it

therefore follows from Jensen’s formula (see e.g. [17, Lemma 6.1]) that

m′ ≪ log2
+ T.

This induces a corresponding bound on the integral of
H′t
Ht

over ΓII and therefore

establishes the claimed estimate for Nt([0, T ]).

Proof (Proof of (49)). We will use a “limiting profile argument” (also known

as a “compactness argument” or “normal families argument”), in which one

extracts and then studies a limit of suitably rescaled versions of a family of

analytic functions to conclude asymptotic information about these functions.

We remark that this sort of argument can also be used in a similar fashion to

deduce the Lindelöf hypothesis from the Riemann hypothesis: see Theorem 1 of

terrytao.wordpress.com/2015/03/01.

Suppose for contradiction that this claim failed, then there exists a sequence

Tn → ∞, and bounded sequences Λ < tn ≤ 0 and 0 ≤ αn ≤ C, as well as an

ε > 0, such that
∣

∣

∣

∣

∣

∣

Ntn ([Tn, Tn + αn log+ Tn]) − αn log2
+ Tn

4π

∣

∣

∣

∣

∣

∣

> ε log2
+ Tn (53)

for all n. By perturbing Tn slightly we may assume that Htn does not vanish at

Tn or Tn + αn.

Let κ > 0 be a sufficiently large absolute constant. By the hypothesis Λ < tn,

the function Htn has no zeroes in the lower half-plane. Thus we can define

holomorphic functions Fn on the lower half-plane by the formula

Fn(z) ≔
1

log2
+ Tn

log
Htn (Tn + z log+ Tn)

Htn (Tn − iκ log+ Tn)

with the branch of the logarithm chosen so that Fn(−iκ) = 0. From (7) we see

that the Fn are uniformly bounded on any compact subset of the lower half-plane.

Thus, by Montel’s theorem (see [24, Sec 3.2]), we may pass to a subsequence

and assume that the Fn converge locally uniformly to a holomorphic function F

on the lower half-plane; since the Fn all vanish on −iκ, F does also. Then by the

Cauchy integral formula, the derivatives

F′n(z) =
1

log+ Tn

H′tn
Htn

(Tn + z log+ Tn)
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converge locally uniformly to F′. Comparing this with (9), we conclude that

F′(z) =
1

4

whenever the imaginary part of z is sufficiently large and negative. By unique

continuation, we thus have F′(z) = 1
4

for all z in the lower half-plane; as F

vanishes on −iκ, we thus have

F(z) =
z + iκ

4

on the lower half-plane. Since Fn converges locally uniformly to F, we conclude

that

Htn (Tn + z log+ Tn) = Htn (Tn − iκ log+ Tn) exp

(

z + iκ + on→∞(1)

4
log2
+ Tn

)

(54)

uniformly for z in a compact subset of the lower half-plane. Similarly, since F′n
converges locally to F, we have

H′tn
Htn

(Tn + z log+ Tn) =
1 + on→∞(1)

4
log+ Tn (55)

uniformly for z in a compact subset of the lower half-plane.

Let δ > 0 be a small constant. As in the proof of (48), we can use the

argument principle (and a rescaling) to write

Ntn ([Tn, Tn+αn log+ Tn]) =
log+ Tn

π
Im

(∫

ΓI,n

+

∫

ΓII,n

+

∫

ΓIII,n

)

H′tn
Htn

(Tn+z log+ Tn) dz,

where ΓI,n, ΓII,n, ΓIII,n trace the line segments from 0 to −iδ, from −iδ to αn − iδ,

and from αn − iδ to αn respectively. By (55), the contribution of the ΓII,n integral

is
α+on→∞(1)+O(δ)

4π
log2
+ Tn (we allow the decay rate in the on→∞(1) errors to depend

on δ). Using the Jensen formula argument used to prove (48), we see that the

contribution of the ΓI,n integral is bounded in magnitude by

≪
∫ 1

0

log |gn(δ + 2δe2πiα)| − log |gn(δ)| dα

where

gn(s) ≔ 1
2

(

e−iθn Htn (Tn + is log+ Tn) + eiθn Htn (Tn − is log+ Tn)
)

and the phase θn is chosen so that eiθn Htn (Tn − iδ log+ Tn) is real and positive.

Applying (54) (and the functional equation Htn (z) = Htn (z)) when |Im(z)| ≥
√
δ

(say), and (7) (and the functional equation) otherwise, we conclude that the ΓI,n

integral is equal to
(

on→∞(1) + O(
√
δ)

)

log2
+ Tn. Similarly for the ΓIII,n integral.

Taking δ to be sufficiently small and n sufficiently large, we contradict (53).
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4. Dynamics of zeroes

As remarked in the introduction, the functions Ht solve a backwards heat

equation. As worked out in [11], this induces a corresponding dynamics on the

zeroes x j of Ht:

Theorem 11 (Dynamics of zeroes). For Λ < t ≤ 0, the zeroes x j(t) depend in a

continuously differentiable fashion on t for each j, with the equations of motion

∂txk(t) = 2

′
∑

j: j,k

1

xk(t) − x j(t)
(56)

for k ∈ Z
∗ and Λ < t ≤ 0, where recall the tick denotes principal value

summation over j ∈ Z∗ (which will converge thanks to (50), (43)).

Proof. This follows from [11, Lemma 2.4] (the continuity of the derivative

following for instance from [11, Lemma 2.1]).

Informally, the ODE (56) indicates that the zeroes xk(t) will repel each other

as one goes forward in time. On the other hand, if the xk(t) are arranged

(locally, at least) in an arithmetic progression, then the ODE (56) suggests that

the zeroes will be in equilibrium. If the xk are not arranged in an arithmetic

progression, and instead have some fluctuation in the spacing between zeroes,

then heuristically the ODE (56) suggests that the zeroes would move away from

the more densely spaced regions and towards more sparsely spaced regions,

thus converging towards the equilibrium of an arithmetic progression. This

is the intuition behind the convergence to local equilibrium mentioned in the

introduction.

One can estimate the speed of this local convergence to equilibrium by the

following heuristic calculation. Consider the zeroes in a region [T, T + α] of

space, where T > 0 is large and α is reasonably small (e.g. α = O(log+ T )).

From Theorem 9 (or (50), (43)), we see that we expect about α
4π

log T zeroes

in this interval, with an average spacing of 4π
log+ T

. Suppose for sake of informal

discussion that there is some moderate fluctuation in this spacing, for instance

suppose that the left half of the interval contains about 1.5 α
8π

log T zeroes and the

right half contains only about 0.5 α
8π

log+ T zeroes. Then a back of the envelope

calculation suggests that for xk(t) near the middle of this interval, the right-hand

side of (56) would be positive and have magnitude ≍ α log+ T

α
= log+ T . Since the

length of the interval is α, one may then predict that the time needed to relax to

equilibrium is about α/ log+ T . Since we can flow for time |Λ| ≍ 1, one would

expect to attain equilibrium at the final time t = 0 if the initial length scale α of

the fluctuation obeys the bound α = oT→∞(log+ T ). Happily, this upper bound is
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precisely what the asymptotic (52) gives, so we heuristically expect to (barely)

be able to establish local equilibrium at time t = 0.

Of course, one has to make this intuition more precise. Our strategy for

doing so involves exploiting14 the formal gradient flow structure of the ODE

(56). Indeed, one may formally write (56) as the gradient flow

∂txk(t) = −∂xk
H((x j(t)) j∈Z∗),

where H is the formal “Hamiltonian”

H((x j) j∈Z∗) ≔
∑

j,k∈Z∗: j,k

log
1

|xk − x j|

where we ignore for this non-rigorous discussion the fact that the series defining

H is not absolutely convergent. The Hamiltonian is convex, so one expects the

quantity

H(t) ≔ H((x j(t)) j∈Z∗) =
∑

j,k∈Z∗: j,k

H jk(t)

to be decreasing and convex in time, and for the state (x j(t)) j∈Z∗ to converge to a

critical point of the Hamiltonian, where

H jk(t) ≔ log
1

|x j(t) − xk(t)| (57)

denotes the Hamiltonian interaction between x j(t) and xk(t). Indeed, a formal

calculation using (56) yields the identity

∂tH(t) = −4E(t)

where E is the “energy”

E(t) ≔
∑

k,k′∈Z∗: k,k′

Ekk′(t)

and

Ekk′(t) ≔
1

|xk(t) − xk′(t)|2
(58)

14This strategy was loosely inspired by the work of Erdős, Schlein, and Yau [13] exploiting the

Hamiltonian structure of Dyson Brownian motion to obtain local convergence to equilibrium, since

the equations for Dyson Brownian motion resemble that in (56) (but with an additional Brownian

motion term). Indeed, Dyson Brownian motion is the diffusion related to the Gibbs measure 1
Z e−βH

for the Hamiltonian studied here.
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denotes the “interaction energy” betwen xk(t) and xk′ (t), and we once again

ignore the issue that the series is not absolutely convergent. A further formal

calculation using (56) again eventually yields

∂tE(t) = −2
∑

k,k′∈Z∗: k,k′

















2

|xk(t) − xk′(t)|2
−

∑

k′′∈Z∗: k′′,k,k′

1

(xk′′(t) − xk(t))(xk′′(t) − xk′ (t))

















2

suggesting thatH(t) and E(t) are decreasing and thatH(t) is convex, as claimed.

In order to deal with the divergence of the infinite series appearing above,

we will need to truncate the Hamiltonian and energy before differentiating them.

The following lemma records some of the identities that arise when doing such

truncations:

Lemma 12 (Identities). For brevity, we suppress explicit dependence on the time

parameter t ∈ (Λ, 0]. Let K ⊂ Z
∗ be a finite set of some cardinality |K|. All

summation indices such as i, j, k are assumed to lie in Z
∗.

(i) (Dynamics of a gap, cf. [11, Lemma 2.4]) If j, k ∈ Z∗ are distinct, then

∂t(xk − x j) =
4

xk − x j

− 2(xk − x j)
∑

i: i,k, j

1

(xi − xk)(xi − x j)
.

(ii) (Cross-energy inequality, cf. [11, Lemma 2.5]) One has

∂t

∑

k∈K; j<K

E jk ≥ −
∑

k∈K; j<K

8

(xk − x j)4

in the weak sense that

∑

k∈K; j<K

E jk(t2) − E jk(t1) ≥ −
∫ t2

t1

∑

k∈K; j<K

8

(xk − x j)4
(t) dt

whenever Λ < t1 < t2 ≤ 0.

(iii) (Energy identity) One has

∂t

∑

k,k′∈K: k,k′

Ekk′ =
∑

j<K
k,k′∈K: k,k′

4

(xk − xk′ )2(xk − x j)(xk′ − x j)

− 2
∑

k,k′∈K: k,k′

















2

(xk − xk′)2
−

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)(xk′′ − xk′)

















2

.
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(iv) (Virial15 identity) One has

∂t

∑

k,k′∈K: k,k′

(xk−xk′ )
2 = 4|K|2(|K|−1)−

∑

k,k′∈K: k,k′

(xk−xk′ )
2
∑

j<K

4

(xk − x j)(xk′ − x j)

(v) (Hamiltonian identity) One has

∂t

∑

k,k′∈K: k,k′

Hkk′ = −4
∑

k,k′∈K: k,k′

Ekk′ + 2
∑

j<K
k,k′∈K: k,k′

1

(x j − xk)(x j − xk′ )
.

A key point in the identities (iii), (iv), (v) is that if one ignores the “cross

terms” involving interactions between indices in K (representing some “local

subsystem” of particles) and indices outside of K (representing the “environ-

ment” that that subsystem interacts with), the right-hand side has a definite sign

(negative in the case of (iii) and (v), and positive in the case of (iv)). This gives a

number of useful “monotonicity formulae” as long as cross terms are under con-

trol. As discussed above, many of these various monotonicity formulae reflect

the formal convexity properties of the HamiltonianH . With more effort one can

obtain a precise formula for the defect in the inequality in (ii); see [11, Lemma

2.5].

Proof. From (56) one has

∂txk − ∂tx j =
2

xk − x j

− 2

x j − xk

+
∑

i: i,k, j

2

xk − xi

− 2

xk − x j

which gives (i). Note that the series is now absolutely convergent thanks to (50),

(43).

Now we prove (ii). By monotone convergence, it suffices to show that

∑

k∈K
j∈[−R,R]Z∗ \K

E jk(t2) − E jk(t1) ≥ −
∫ t2

t1

∑

k∈K
j∈[−R,R]Z∗ \K

8

(xk − x j)4
(t) dt

for all Λ < t1 ≤ t2 ≤ 0 and all sufficiently large R. By the fundamental theorem

of calculus, it suffices to show that

∂t

∑

k∈K
j∈[−R,R]Z∗ \K

E jk ≥ −
∑

k∈K
j∈[−R,R]Z∗ \K

8

(xk − x j)4
.

15The terminology here is in analogy with the virial identity in N-body classical gravitational

physics; see e.g., [27, Exercise 1.48].
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we can expand the left-hand side as

−2
∑

k∈K
j∈[−R,R]Z∗ \K

∂t(xk − x j)

(xk − x j)3

which by (i) becomes

−
∑

k∈K
j∈[−R,R]Z∗ \K

8

(xk − x j)4
+ 4

∑

k∈K
j∈[−R,R]Z∗ \K

i: i, j,k

1

(xk − x j)2(xi − xk)(xi − x j)

and so it will suffice to show that

∑

k∈K
j∈[−R,R]Z∗ \K

i: i, j,k

1

(xk − x j)2(xi − xk)(xi − x j)
≥ 0.

If R is large enough that [−R,R]Z∗ contains k, we can split this sum into three

parts, depneding on whether i ∈ K, i ∈ [−R,R]Z∗\K, or i < [−R,R]Z∗ . The

contribution of the case i ∈ K can be rewritten as

∑

j<K
k,k′∈K: k,k′

4(xk′ − x j)

(xk − x j)2(xk′ − x j)2(xk − xk′ )

which equals
∑

j∈[−R,R]Z∗
k,k′∈K: k,k′

2

(xk − x j)2(xk′ − x j)2

after symmetrising in k and k′, which is clearly non-negative. Similarly the

contribution of the case i ∈ [−R,R]Z∗\K is

∑

k∈K
j, j′∈[−R,R]Z∗ \K: j, j′

2

(xk − x j)2(xk − x j′ )2
,

which is also clearly non-negative. Finally, for i < [−R,R]Z∗ , all summands are

already non-negative. This gives (ii).

For (iii), we can similarly expand the left-hand side as

−2
∑

k,k′∈K: k,k′

∂t(xk − xk′ )

(xk − xk′ )3
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which by (i) becomes

−
∑

k,k′∈K: k,k′

8

(xk − xk′ )4
+ 4

∑

k,k′∈K:k,k′

i: i,k,k′

1

(xk − xk′ )2(xi − xk)(xi − xk′)
.

To prove (iii), it thus suffices to establish the identity

∑

k,k′∈K: k,k′

















2

(xk − xk′ )2
−

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)(xk′′ − xk′)

















2

=
∑

k,k′∈K: k,k′

4

(xk − xk′ )4
− 2

∑

k,k′,k′′∈K: k,k′,k′′ distinct

1

(xk − xk′)2(xk′′ − xk)(xk′′ − xk′ )
.

The left-hand side expands as

∑

k,k′∈K: k,k′

4

(xk − xk′ )4
−

∑

k,k′∈K: k,k′

4

(xk − xk′ )2

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)(xk′′ − xk′ )

+
∑

k,k′∈K: k,k′

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)2(xk′′ − xk′ )2

+
∑

k,k′∈K: k,k′

∑

k′′,k′′′∈K: k′′,k,k′

1

(xk′′ − xk)(xk′′ − xk′)(xk′′′ − xk)(xk′′′ − xk′ )
.

The final sum can be rewritten as

∑

k,k′ ,k′′ ,k′′′∈K: k,k′,k′′ ,k′′′ distinct

(xk − xk′ )(xk′′ − xk′′′ )

(xk′′ − xk)(xk′′ − xk′ )(xk′′′ − xk)(xk′′′ − xk′ )(xk − xk′ )(xk′′ − xk′′′ )
.

The denominator is a Vandermonde determinant and is totally antisymmetric

in k, k′, k′′, k′′′. All the monomials appearing in the numerator disappear upon

antisymmetrization, so the final sum vanishes. To conclude the proof of (iii), it

suffices to show that

∑

k,k′∈K: k,k′

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)2(xk′′ − xk′)2

=
∑

k,k′∈K:k,k′

2

(xk − xk′)2

∑

k′′∈K: k′′,k,k′

1

(xk′′ − xk)(xk′′ − xk′ )
.

The difference between the LHS and RHS can be written as

∑

k,k′ ,k′′∈K: k,k′,k′′ distinct

(xk − xk′ )
2 − 2(xk′′ − xk)(xk′′ − xk)

(xk′′ − xk)2(xk′′ − xk′ )2(xk − xk′ )2
.
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The denominator is totally symmetric in k, k′, k′′, while the numerator sym-

metrizes to zero, giving the claim.

Now we prove (iv). The left-hand side expands as

2
∑

k,k′∈K: k,k′

(xk − xk′ )∂t(xk − xk′ )

which by (i) becomes

8|K|(|K| − 1) − 4
∑

k,k′∈K: k,k′

(xk − xk′ )
2
∑

i,k,k′

1

(xi − xk)(xi − xk′ )
.

It will thus suffice to show that
∑

k,k′ ,k′′∈K: k,k′,k′′ distinct

(xk − xk′ )
2

(xk′′ − xk)(xk′′ − xk′ )
= −|K|(|K| − 1)(|K| − 2).

But the left-hand side can be written as
∑

k,k′ ,k′′∈K: k,k′,k′′ distinct

(xk − xk′ )
3

(xk′′ − xk)(xk′′ − xk′ )(xk − xk′ )
= −|K|(|K| − 1)(|K| − 2).

The denominator is totally antisymmetric in k, k′, k′′. The numerator antisym-

metrizes to −(xk′′ − xk)(xk′′ − xk′)(xk − xk′ ), giving the claim.

Finally we prove (v). The left-hand side expands as

−
∑

k,k′∈K: k,k′

∂t(xk − xk′ )

xk − xk′

which by (i) becomes

−
∑

k,k′∈K: k,k′

4

(xk − xk′ )2
+ 2

∑

k,k′∈K: k,k′

∑

i: i,k,k′

1

(xi − xk)(xi − xk′ )
.

It thus suffices to show that the expression
∑

k,k′ ,k′′∈K:k,k′,k′′ distinct

1

(xk′′ − xk)(xk′′ − xk′)

vanishes. But the summand antisymmetrizes to zero, giving the claim.

5. A weak bound on gaps

In order to analyze (truncated versions) of the HamiltonianH(t) =
∑

j,k H jk(t),

we will need some upper bounds on the individual terms H jk(t). It was shown in

[11, Corollary 1] that these quantities are finite (i.e., the zeroes are simple) when

Λ < t ≤ 0. It turns out that by refining the analysis in [11] (and by narrowing the

range of times t to the region Λ/2 ≤ t ≤ 0), one can establish a more quantitative

lower bound:
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Proposition 13 (Lower bound on gaps). For any j ∈ Z
∗ and any Λ/2 ≤ t ≤ 0,

one has

max
k∈Z∗: k, j

H jk(t)≪ (log2
+ j) log+ log+ j (59)

The bound in (59) is probably not optimal, but for our application any bound

that grows more slowly than (say) | j|0.1 as j→ ∞ would suffice.

To prove this proposition, we first need the following variant of a result in

[11]:

Lemma 14. Let K be a finite subset of Z∗ of cardinality |K| ≥ 2, and let

Λ/2 ≤ t ≤ 0. Then

∑

k,k′∈K: k,k′

(xk(t) − xk′(t))
2 ≫ |K|3

1 +
∑

k∈K
j<K

E jk(t)
.

Informally, this lemma asserts that the gaps within K cannot be too small,

unless there is also a small gap between an element of K and an element outside

of K. The strategy will be to iterate this observation to show that a very small

gap will therefore propagate until it contradicts (52).

Proof. Let A = A(t) and B = B(t) denote the functions

A(t) ≔
∑

k,k′∈K: k,k′

(xk(t) − xk′ (t))
2

B(t) ≔
∑

k∈K
j<K

Ek j(t).

The function A(t) is continuously differentiable. The corresponding claim for

B(t) is not obvious; however, the sum defining B(t) is uniformly convergent

(thanks to (51)) and hence B(t) is at least continuous. From Lemma 12(ii) we

have the lower bound

∂t′B(t′) ≥ −8B(t′)2

(cf. [11, Lemma 2.5]) in the weak sense for Λ < t′ ≤ 0. In particular, if there

exists a time Λ < t− < t such that

sup
t−≤t′≤t

B(t′) = B(t−) = 2B(t)

then we have

B(t) − B(t−) ≥ −8B(t)2(t − t−)

which rearranges as

t − t− ≥
1

8B(t)
.
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By continuity, we conclude that B(t′) cannot attain or exceed the value 2B(t)

anywhere in the interval (−Λ, t] ∩ (t − 1
8B(t)

, t), that is to say that

B′(t) < 2B(t)

whenever

t − 1

8B(t)
,Λ < t′ ≤ t.

by hypothesis, this is a range of size at least

min(
Λ

2
,

1

16B(t)
)≫ 1

1 + B(t)
.

On the other hand, for t′ in the above range, we see from Lemma 12(iv) that

∂t′A(t′) = 4|K|2(|K| − 1) +O(B(t′)A(t′))

= 4|K|2(|K| − 1) +O(B(t)A(t′))

and hence by Gronwall’s inequality one has

A(t) ≫ 4|K|2(|K| − 1)

1 + B(t)
,

giving the claim.

Now we fix a time Λ/2 ≤ t ≤ 0, and drop the dependence on t. For any finite

set K ⊂ Z
∗ with |K| ≥ 2, set δ(K) := maxk,k′∈K |xk − xk′ | to be the largest gap in

K. Then
∑

k,k′∈K: k,k′

(xk − xk′ )
2 ≤ |K|2δ(K)2

and so from the above lemma we have

1 +
∑

k∈K
j<K

Ek j ≥ |K|−5δ(K)−2.

In particular, if δ(K) ≤ c|K|−5/2 for a sufficiently small absolute constant c > 0,

then we have
∑

k∈K
j<K

Ek j ≥ |K|−5δ(K)−2,

and hence by the pigeonhole principle there exists k ∈ K such that
∑

j<K

Ek j ≫ |K|−6δ(K)−2.
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From (52), (58) we have
∑

j<K

Ek j ≪ 1 + (log2
+ ξk) min

j<K
|xk − x j|−2.

We conclude that if δ(K) ≤ c|K|−3 for a sufficiently small c > 0, then there exists

k ∈ K such that

(log2
+ ξk) min

j<K
|xk − x j|−2 ≫ |K|−6δ(K)−2

or equivalently

min
j<K
|xk − x j| ≪ |K|3δ(K) log+ ξk.

Now suppose that K is a discrete interval [k−, k+]Z∗ for some 1 < k− < k+. Then

min
j<K
|xk − x j| ≥ min(|xk− − xk−−1|, |xk+ − xk++1|)

and thus (assuming that δ(K) ≤ c|K|−3) we have

min(|xk− − xk−−1|, |xk+ − xk++1|) ≪ |K|3δ(K) log+ k+

which implies that

δ(K′) ≪ |K|3 log(k+)δ(K) (60)

whenever δ(K) ≤ c|K|−3, where K′ is either the interval K′ = [k− − 1, k+]Z∗ or

K′ = [k−, k+ + 1]Z∗ . In either case, we call K′ an enlargement of K.

Now we can prove Proposition 13. By symmetry we may assume j is

positive. We can also assume j is large, as the claim follows from compactness

for bounded j. As before, we suppress the dependence on t. It thus suffices to

show that

log
1

|x j+1 − x j|
≪ (log2 j) log log j

for large positive j.

By iterating (60) at most log j times starting from the interval K1 ≔ [ j, j +

1]Z∗ , we can find a sequence

[ j, j + 1]Z∗ = K1 ⊂ K2 ⊂ · · · ⊂ Kr

of discrete intervals Ki = [k−,i, k+,i]Z∗ for some 1 ≤ r ≤ log2
+ ξ j with the following

properties:

(i) For each 1 ≤ i < r, Ki+1 an enlargement of Ki with δ(Ki+1) ≪ |Ki|3δ(Ki) log+ k+,i.

(ii) Either δ(Kr) > c|Kr |−3, or r + 1 > log2
+ ξ j.
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Since |Ki| ≤ r+1≪ log2
+ ξ j ≪ log2 j and k+,i ≤ j+r ≪ j, we have from property

(i) that

δ(Ki+1)≪ j log2 jδ(Ki)

for all 1 ≤ i < r, and hence

δ(Kr)≪ exp(O(log2 j log log j))δ(K1).

On the other hand, from property (ii), using the bound |Kr | ≤ r + 1 ≪ log2 ξ j in

the first case and (52) and the pigeonhole principle in the second case, we have

δ(Kr)≫ log−6 ξ j ≫ log−6 j.

Combining the two estimates, we obtain the claim.

6. A weak bound on integrated energy

In addition to truncations of the Hamiltonian, we will also need to control

truncations of the energy
∑

j,k E jk(t). While Proposition 13 provides some

control on the summands here, it is too weak for our purposes (being of worse

than polynomial growth in j, k), and we will need the following integrated bound

that, while still weak, is at least of polynomial growth:

Proposition 15 (Weak bound on integrated energy). Let J > 0. Then

∫ 0

Λ/2

∑

J≤ j<k≤2J

E jk(t) dt ≪ J2 log
O(1)
+ J.

We will use this bound to justify an interchange of a derivative and an infinite

series summation in the next section.

Proof. We may take J to be large, as the claim is trivial for J in the compact

region J = O(1). For any discrete interval I, let QI denote the quantity

QI ≔

∫ 0

Λ/2

∑

j,k∈I: j,k

E jk(t) dt.

From (52) we have a crude lower bound

Q[J,2J]Z∗ ≫ J log−O(1) J

while from Proposition 13 we have an extremely crude upper bound

Q[0.5J,3J]Z∗ ≪ exp(O(log2 J log log J)).
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The ratio between Q[0.5J,3J]Z∗ and Q[J,2J]Z∗ is thus less than (1 + J−0.1)0.5J/J0.1

. By

the pigeonhole principle, we can then therefore find an interval K ≔ [J−, J+]Z∗

containing [J, 2J]Z∗ and contained in [0.5J + J0.1, 3J − J0.1]Z∗ , such that

QK′ ≤ (1 + J−0.1)QK , (61)

where K′ ≔ [J− − J0.1, J+ + J0.1]Z∗ is a slight enlargement of K. Next, we apply

Lemma 12(v) and use the fundamental theorem of calculus to obtain the identity

∑

k,k′∈K: k,k′

Hkk′ (Λ/2)−Hkk′ (0) = 4QK−2

∫ 0

Λ/2

∑

j<K
k,k′∈K: k,k′

1

(x j(t) − xk(t))(x j(t) − xk′ (t))
dt.

From Proposition 13, the left-hand side is O(J2 logO(1) J), thus

QK ≪ J2 logO(1) J +

∫ 0

Λ/2

∑

j<K
k,k′∈[J−,J+]Z∗ : k,k′

1

(x j(t) − xk(t))(x j(t) − xk′(t))
dt.

Using ab ≪ a2 + b2, we thus have

QK ≪ J2 logO(1) J +

∫ 0

Λ/2

∑

j<K
k∈K

1

(x j(t) − xk(t))2
dt.

Using (52), the contribution to the integral of those j outside of K′ may be

crudely bounded by O(J2 logO(1) J) (in fact one can improve this bound to

O(J logO(1) J) if desired, although this will not help us significantly here). The

contribution of those j inside K′ may be bounded by

QK′ − QK ≤ J−0.1QK ,

thanks to (61). We conclude that

QK ≪ J2 logO(1) J

and the claim follows.

7. Strong control on integrated energy

As discussed previously, the strategy to establish convergence to local equi-

librium is to study (a suitable variant of) the formal Hamiltonian

H(t) =
∑

j,k∈Z∗: j,k

H jk(t)
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and its derivatives, with the intention of controlling (suitable variants of) inte-

grated energies such as
∫ 0

Λ/4

∑

j,k∈Z∗: j,k

E jk(t) dt.

Unfortunately, even with the bound just obtained in Proposition 13, the above

expression is far from being absolutely convergent. To address this issue we

need to mollify and renormalize the Hamiltonian and the energy in a number of

ways. We renormalize the inverse square function x 7→ 1
|x|2 for x , 0 that appears

in the definition of the energy interactions E jk(t) by introducing the modified

potential

V(x) ≔
1

|x|2 − 1 + 2(|x| − 1),

which (for positive x) is 1
x2 minus the linearization 1 − 2(x − 1) of that function

at x = 1. As 1
x2 is convex, V is non-negative, and one can verify the asymptotics

V(x) ≍ 1

|x|2 for |x| ≤ 1/2

V(x) ≍ (|x| − 1)2 for 1/2 < |x| ≤ 2

V(x) ≍ |x| for |x| > 2.

(62)

For any distinct j, k and any Λ/2 ≤ t ≤ 0, we define the renormalization

Ẽ jk(t) ≔
1

|ξk − ξ j|2
V

(

xk(t) − x j(t)

ξk − ξ j

)

of the interaction energy E jk(t); we observe that

Ẽ jk(t) = E jk(t) − 1

|ξk − ξ j|2
+ 2

(xk(t) − ξk) − (x j(t) − ξ j)

(ξk − ξ j)3
. (63)

For any discrete interval I ⊂ Z
∗, we define the renormalized energy

Ẽ I(t) ≔
∑

j,k∈I: j,k

Ẽ jk(t);

this is clearly a non-negative quantity that is non-decreasing in I. It can also be

simplified up to negligible error as follows:

Lemma 16. If I = [I−, I+]Z∗ is a discrete interval and Λ/2 ≤ t ≤ 0, then

Ẽ I(t) =

















∑

j,k∈I: j,k

E jk(t) − 1

|ξk − ξ j|2

















+ O(log
O(1)
+ (|I−| + |I+|)).
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Proof. By symmetry and the triangle inequality we may assume without loss of

generality that 0 ≤ I− ≤ I+; we may then assume that I+ is large, as the claim is

trivial for I+ in the compact region I+ = O(1). By (63), it suffices to show that

∑

j,k∈I: j,k

(xk(t) − ξk) − (x j(t) − ξ j)

(ξk − ξ j)3
≪ logO(1) I+.

We may desymmetrize the left-hand side as

2
∑

j∈I

(x j(t) − ξ j)
∑

k∈I: k, j

1

(ξk − ξ j)3
.

By (50), it thus suffices to show that

∑

j∈I

∣

∣

∣

∣

∣

∣

∣

∣

∑

k∈I: k, j

1

(ξk − ξ j)3

∣

∣

∣

∣

∣

∣

∣

∣

≪ logO(1) I+. (64)

Consider the inner sum
∑

k∈I: k, j
1

(ξk−ξ j)3 . From (44) we see that the contribution to

this inner sum of those k with |k− j| ≥ 1
2

j (say) is O

(

logO(1) I+
j2

)

. For the remaining

range |k − j| < 1
2

j, we can use (45) to estimate

1

(ξk − ξ j)3
=

log3 ξ j

(4π)3

1

(k − j)3
+ O

(

logO(1) I+

j(k − j)2

)

and so on summing we obtain

∑

k∈I: k, j

1

(ξk − ξ j)3
=

log3 ξ j

(4π)3

∑

k∈I: 0<|k− j|< 1
2

j

1

(k − j)3
+ O

(

logO(1) I+

j

)

.

As k 7→ 1
k− j

is odd around j, the sum on the right-hand side can be estimated as

O( 1
max(| j−I− |,|I+− j|)2 ). Using this bound we obtain (64).

In this section we will establish the following significant improvement to

Proposition 15:

Theorem 17. For any T > 0, one has

∫ 0

Λ/4

Ẽ[0.5T log T,3T log T ]Z∗ (t) dt = oT→∞(T log3
+ T ). (65)
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The remainder of this section is devoted to a proof of Theorem 17. The claim

is trivial for T in any compact region T = O(1), so we may assume without

loss of generality that T is large. Recall the notation X / Y or X = Õ(Y) for

X ≪ Y logO(1) T introduced in the notation section of the paper; this will be

convenient to use in the argument that follows. (Typically, when we use this

notation, we will also have some sort of power gain T−c that will safely absorb

all the logO(1) T factors.) Let ψT : Z∗ → R
+ be the weight function

ψT ( j) :=

(

1 +
| j|

T log T

)−100

. (66)

This is a smooth positive weight that is mostly localised to the region j =

O(T log T ) and fairly rapidly decaying away from this region.

We introduce the smoothly truncated renormalized energy

ẼT (t) ≔
∑

j,k∈Z∗: j,k

ψT ( j)ψT (k)Ẽ jk(t) (67)

for Λ/2 ≤ t ≤ 0. This is clearly non-negative, and from Proposition 15, (66),

(62), and Fubini’s theorem we see that ẼT is absolutely integrable in time (in

particular, it is finite for almost every Λ/2 ≤ t ≤ 0). Since the E jk are non-

negative, we see from (66) that to prove (65) it will suffice to show that

∫ 0

Λ/4

ẼT (t) dt = oT→∞(T log3
+ T ). (68)

We have an analogue of Lemma 16:

Lemma 18. For almost every Λ/2 ≤ t ≤ 0, one has

ẼT (t) =



















∑

j,k∈Z∗: j,k

ψT ( j)ψT (k)

(

E jk(t) − 1

|ξk − ξ j|2

)



















+ Õ(1).

Proof. For almost every t, one sees from Proposition 15, (66), and Fubini’s

theorem (and (51)) that the series

∑

j,k: j,k

ψT ( j)ψT (k)

(

E jk(t) +
1

|ξk − ξ j|2
+
|x j(t)| + |xk(t)|
|ξk − ξ j|3

)

is absolutely convergent. Thus, by Fubini’s theorem and (63), it will suffice to

show that
∑

j,k∈Z∗: j,k

ψT ( j)ψT (k)
(xk(t) − ξk) − (x j(t) − ξ j)

(ξk − ξ j)3
/ 1.
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We may desymmetrize the left-hand side (again using Fubini’s theorem) as

2
∑

j∈Z∗
ψT ( j)(x j(t) − ξ j)

∑

k∈Z∗: k, j

ψT (k)

(ξk − ξ j)3
,

and so it will suffice to establish the bound

∑

k∈Z∗: k, j

ψT (k)

(ξk − ξ j)3
/

1

| j| +
1

T

for all j ∈ Z∗.
As in the proof of Lemma 16, we see from (44) that the contribution of those

k with |k − j| ≥ 1
2

j is acceptable. For the remaining range |k − j| < 1
2

j, we again

use (45) to estimate

1

(ξk − ξ j)3
=

log3 ξ j

(4π)3

1

(k − j)3
+ Õ

(

1

j(k − j)2

)

and similarly

ψT (k) = ψT ( j) + Õ

(

|k − j|
T

)

,

and the claim follows by direct computation using the fact that k 7→ 1
k− j

is odd

around j.

Recall that two indices j, k ∈ Z∗ are said to be nearby, and we write j ∼T k,

if one has

0 < | j − k| < (T 2 + | j| + |k|)0.1.

This is clearly a symmetric relation.

Next, for Λ/2 ≤ t ≤ 0, we define the smoothly truncated renormalized

Hamiltonian

H̃T (t) ≔
∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)

(

H jk(t) − log
1

|ξ j − ξk|

)

. (69)

From (66), Proposition 13, and (45) we see that the sum here is absolutely

convergent for every Λ/2 ≤ t ≤ 0. We can also express it in terms of non-

negative quantities plus a small error, in a manner similar to Lemma 18, as

follows. We first introduce the renormalization

L(x) := log
1

|x| + |x| − 1
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of the logarithm function x 7→ log 1
|x| ; this is a convex nonnegative function on

R\{0} that vanishes precisely when |x| = 1, and obeys the asymptotics

L(x) ≍ log+
1

|x| for 0 < |x| ≤ 1/2

L(x) ≍ (|x| − 1)2 for 1/2 < |x| ≤ 2

L(x) ≍ |x| for |x| > 2.

(70)

For any Λ/2 ≤ t ≤ 0 and distinct j, k ∈ Z∗, we define the normalization

H̃ jk(t) ≔ L

(

x j(t) − xk(t)

ξ j − ξk

)

(71)

of the Hamiltonian interaction H jk(t); this is symmetric in j, k and non-negative,

vanishing precisely when xk(t) − x j(t) = ξk − ξ j.

Lemma 19. For every Λ/2 ≤ t ≤ 0, one has

H̃T (t) =
∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)H̃ jk(t) + oT→∞(T log3
+ T ).

Proof. From (71) one has

H̃ jk(t) = H jk(t) − log
1

|ξ j − ξk|
−

(x j(t) − ξ j) − (xk(t) − ξk)

ξ j − ξk

so by (69) it suffices to show that

∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)
(x j(t) − ξ j) − (xk(t) − ξk)

ξ j − ξk

= oT→∞(T log3
+ T ).

Note from (43), (51), (45), (66) that the sum here is absolutely convergent.

Desymmetrizing, it suffices to show that

∑

j∈Z∗
ψT ( j)|x j(t) − ξ j|

∣

∣

∣

∣

∣

∣

∣

∣

∑

k∈Z∗: j∼T k

ψT (k)

ξ j − ξk

∣

∣

∣

∣

∣

∣

∣

∣

= oT→∞(T log3 T ).

The inner sum can be crudely bounded by Õ(1) for all j thanks to (66), (45). By

(66), (50), (43), it thus suffices to show that

∑

k∈Z∗: j∼T k

ψT (k)

ξ j − ξk

= oT→∞(log T ) (72)
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whenever T 0.5 ≤ | j| ≤ T 1.5 (say). For j ∼T k, one has ψT (k) = ψT ( j) + Õ(T−0.8),

and the contribution of the error term is acceptable by (45), so it suffices to show

that
∑

k∈Z∗: j∼T k

1

ξ j − ξk

= oT→∞(log T ) (73)

whenever | j| ≥ T 0.5. But from (45) we have

ξ j − ξk =
4π

log ξ j

( j − k) + O













| j − k|2

| j| log2
+ ξ j













and hence
1

ξ j − ξk

=
log ξ j

4π

1

j − k
+ O

(

1

| j|

)

. (74)

As k 7→ log ξ j

4π
1

j−k
is odd around j, and the set {k : j ∼T k} is very nearly symmetric

around j, it is then easy to establish (73) as required.

In contrast to the non-normalized interaction H jk(t), the quantity H̃ jk(t) is

well controlled when k and j are far apart:

Lemma 20 (Long-range decay of H̃ jk). Let j, k be distinct elements of Z∗, and let

t be in the range Λ/2 ≤ t ≤ 0. There exists a quantity ε( j) that goes to zero as

| j| → ∞, such that if |k − j| ≥ ε( j)−1 log2
+ ξ j, then

H̃ jk(t)≪ log4
+(| j| + |k|)
|k − j|2 ,

and if ε( j) log2
+ ξ j ≤ |k − j| ≤ ε( j)−1 log2

+ ξ j, one has the refinement

H̃ jk(t)≪ ε( j)2 log4
+ j

|k − j|2 .

Finally, in the remaining region |k − j| < ε( j) log2
+ ξ j, one has the crude bound

H̃ jk(t)≪ (log2
+ j) log+ log+ j.

Proof. First suppose that |k − j| ≥ 1
2
| j| (so in particular |k − j| ≍ | j| + |k|). From

(50) one has

xk(t) − x j(t) = ξk − ξ j +O(log+(| j| + |k|))
while from (44) one has

|ξk − ξ j| ≫
| j| + |k|

log+(| j| + |k|)
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and thus
xk(t) − x j(t)

ξk − ξ j

− 1≪ log2
+(| j| + |k|)
| j| + |k| ,

and the claim then follows from (70) (noting that the case | j| + |k| = O(1) can be

treated by compactness).

Now suppose that ε( j)−1 log2
+ ξ j ≤ |k − j| < 1

2
| j|. By symmetry we can take

j positive; we may also assume j large, as the bounded case j = O(1) may be

treated by compactness. From (50) one then has

xk(t) − x j(t) = ξk − ξ j + O(log j)

and from (44) and one has

|ξk − ξ j| ≍
|k − j|
log j

(75)

and hence
xk(t) − x j(t)

ξk − ξ j

− 1 ≪ log2( j)

|k − j| ≤ ε( j).

The claim then follows from (70).

Next, suppose that ε( j) log2
+ ξ j ≤ |k − j| ≤ ε( j)−1 log2

+ ξ j. In this case, from

(52) (iterated O(ε( j)−1) times) and (45) we have

xk(t) − x j(t) = ξk − ξ j + o j→∞(ε( j)−1 log j)

while from (44) we continue to have (75), and hence

xk(t) − x j(t)

ξk − ξ j

− 1 = o j→∞

(

ε( j)−1 log2( j)

|k − j|

)

,

with the decay rate in the o j→∞ notation independent of the choice of function

ε(). For ε( j) going to zero sufficiently slowly, the claim once again follows from

(70).

Finally, for the remaining case |k − j| < ε( j) log2
+ ξ j (which implies xk(t) −

x j(t)≪ log2
+ j thanks to (52)) the claim follows from Proposition 13 and (70).

We call a (time-dependent) quantity moderately sized if it is of the form

O(T log3
+ T + ẼT (t)), and negligible if it is of the form oT→∞(T log3

+ T + ẼT (t)).

The following lemma gives some examples of moderately sized and negligible

quantities:

Lemma 21. Let t be in the range Λ/2 ≤ t ≤ 0.
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(i) The quantity
∑

j,k∈Z∗: j,k

ψT ( j)ψT (k)

|x j(t) − xk(t)|2

is moderately sized.

(ii) The quantity

(log+ T )
∑

j,k∈Z∗: j,k

ψT ( j)ψT (k)

|x j(t) − xk(t)|

is moderately sized.

(iii) For any absolute constants C, c > 0, the expression

(logC
+ T )

∑

j,k∈Z∗: | j|,|k|≤T 1−c

ψT ( j)ψT (k)

|x j(t) − xk(t)|

is negligible.

(iv) For any absolute constants C, c > 0, the expression

(logC
+ T )

∑

j,k∈Z∗: | j|,|k|≥T 1+c

ψT ( j)ψT (k)

|x j(t) − xk(t)|

is negligible.

Similarly if the xi(t) are replaced by ξi throughout.

Proof. For brevity we omit the explicit dependence on the time t. Also, all

summation indices i, j, k are understood to range in Z
∗.

From (44) we see that
∑

k: k, j

1

|ξ j − ξk|2
≪ log2

+ j

for all j ∈ Z∗, and hence
∑

j,k: j,k

ψT ( j)ψT (k)
1

|ξ j − ξk|2
≪ T log3

+ T.

From this and Lemma 16 we conclude (i). Using

log+ T

|x j(t) − xk(t)| ≤
1

|x j(t) − xk(t)|2 + log2
+ T

we then obtain (ii). If instead we use

logC
+ T

|x j(t) − xk(t)| ≤
1

log+ T

1

|x j(t) − xk(t)|2 + log2C+1
+ T

we obtain (iii) and (iv). Similarly if the xi are replaced by ξi throughout.
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We now have the following crucial derivative computation:

Proposition 22. In the range Λ/2 ≤ t ≤ 0, the function HT is absolutely

continuous, and the derivative ∂tH̃T (t) is equal to −4ẼT (t) plus negligible terms

for almost all t. In other words, one has

∂tH̃T (t) = −4ẼT (t) + oT→∞
(

T log3 T + ẼT (t)
)

(76)

for almost every t.

Remark 23. This may be compared with Lemma 12(v) or indeed the formal

identity (57). That the right hand side is approximated in terms the renormalized

energy, rather than just the energy, may be thought of heuristically as being a

result of ∂tH vanishing when the zeros x j settle on an equilibrium, being spaced

like the points ξ j.

Proof. As before, we omit the explicit dependence on t, and all summation

indices are understood to lie in Z
∗. By (56) we have

∂tH jk(t) = − 2

xk − x j

















′
∑

i: i,k

1

xk − xi

−
′

∑

i: i, j

1

x j − xi

















. (77)

If we formally insert this into (69), and desymmetrize in j and k, we would obtain

the identity

∂tH̃T = −4
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′
∑

i: i,k

1

xk − xi

. (78)

However, we need to justify the interchange of the derivative and the infinite

summation. First, we use the fundamental theorem of calculus to rewrite (77) in

integral form as

H jk(0) − H jk(t0) = −2

∫ 0

t0

1

xk(t) − x j(t)

















′
∑

i: i,k

1

xk(t) − xi(t)
−

′
∑

i: i, j

1

x j(t) − xi(t)

















dt

for any Λ/2 ≤ t0 ≤ 0. Multiplying by ψT ( j)ψT (k), we conclude that

HT (0) −HT (t0) = −2
∑

j,k: j∼T k

ψT ( j)ψT (k)

∫ 0

t0

1

xk(t) − x j(t)

×
















′
∑

i: i,k

1

xk(t) − xi(t)
−

′
∑

i: i, j

1

x j(t) − xi(t)

















dt.
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By the dominated convergence theorem, we can interchange the outer sum and

the integral as soon as we can show that the expression

∑

j,k: j∼T k

ψT ( j)ψT (k)

∫ 0

t0

1

|xk(t) − x j(t)|



















∣

∣

∣

∣

∣

∣

∣

′
∑

i: i,k

1

xk(t) − xi(t)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

′
∑

i: i, j

1

x j(t) − xi(t)

∣

∣

∣

∣

∣

∣

∣

∣



















dt

is finite. By symmetry in j and k, it suffices to show that

∑

j,k: j∼T k

ψT ( j)ψT (k)

∫ 0

t0

1

|xk(t) − x j(t)|

∣

∣

∣

∣

∣

∣

∣

′
∑

i: i,k

1

xk(t) − xi(t)

∣

∣

∣

∣

∣

∣

∣

dt (79)

is finite. But using (52), (50) we can crudely bound

∣

∣

∣

∣

∣

∣

∣

′
∑

i: i,k

1

xk(t) − xi(t)

∣

∣

∣

∣

∣

∣

∣

,
1

|xk(t) − x j(t)|
≪ log

O(1)
+ (k)

(

1

|xk(t) − xk−1(t)| +
1

|xk(t) − xk+1(t)|

)

(using the convention x0(t) = 0), so the expression (79) may in turn be crudely

bounded by

∑

k

ψ2
T (k)(T + |k|)0.1 log

O(1)
+ (k)

∫ 0

t0

1

|xk(t) − xk−1(t)|2 +
1

|xk(t) − xk+1(t)|2 dt,

and this will be finite thanks to Proposition 15 and (66). We conclude (after

desymmetrizing in j and k) that

HT (0) −HT (t0) = −4

∫ 0

t0

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk(t) − x j(t)

′
∑

i: i,k

1

xk(t) − xi(t)
dt.

The above analysis also shows that the integrand is absolutely integrable in time.

From the Lebesgue differentiation theorem, we conclude that H̃T is absolutely

continuous and that (78) holds at almost every time t.

To conclude the proof of the proposition, it will thus suffice to show that

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′
∑

i,k

1

xk − xi

(80)

is equal to ẼT plus negligible terms. We can split this expression as X1 + X2 +
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X3 + X4, where

X1 ≔

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

(xk − x j)2

X2 ≔

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

∑

i: i∼T j,k

1

xk − xi

X3 ≔

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

∑

i: i∼T k; i≁T j; i, j

1

xk − xi

X4 ≔

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′
∑

i: i≁T k; i,k

1

xk − xi

.

We first claim that X4 is negligible. From (50) we have

xk − xi = ξk − ξi + O(log+(|i| + |k|))
and hence (by (44))

1

xk − xi

=
1

ξk − ξi

+ O

(

log2
+(|i| + |k|)
|k − i|2

)

,

which implies that

′
∑

i: i≁T k; i,k

1

xk − xi

=

′
∑

i: i≁T k; i,k

1

ξk − ξi

+ Õ(T−0.1).

From (44) we may crudely bound this sum by Õ(1). By Lemma 21(iii), this

shows that the contribution to X4 of those k for which |k| ≤ T 0.9 or |k| ≥ T 1.1

(say) is negligible, so we may assume T 0.9 ≤ |k| ≤ T 1.1. Let A ≥ 2 be a large

constant. Using (44) we may write

′
∑

i: i≁T k; i,k

1

ξk − ξi

=
∑

i: T 0.2≤|k−i|≤A|k|

1

ξk − ξi

+
∑

i: |i|≥A|k|

1

ξk − ξi

+O

(

log T

A

)

.

For the first sum on the right-hand side, we use (45) (as in the proof of (74)) as

well as (43) to conclude that

1

ξk − ξi

=
log ξk

4π

1

k − i
+ OA

(

1

|k|

)

,

where the subscript in the OA notation means that the implied constant can

depend on A. As i 7→ log ξk

4π
1

k−i
is odd around k, we conclude that

∑

i: T 0.2≤|k−i|≤A|k|

1

ξk − ξi

= OA(1).
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Meanwhile, combining the i and −i terms and using (44), (43) we have

∑

i: |i|≥A|k|

1

ξk − ξi

= −2ξk

∑

i: i≥A|k|

1

ξ2
i
− ξ2

k

= O

(

log T

A

)

.

Sending A slowly to infinity, we conclude that

′
∑

i: i≁T k; i,k

1

xk − xi

= oT→∞(log T )

and the negligibility of X4 then follows from Lemma 21(ii).

Now we claim that X2 is negligible. Thanks to the restrictions on i, j, k, we
see that

ψT (i), ψT ( j) =
(

1 + Õ
(

(T + |k|)−0.8
))

ψT (k)

and hence

ψT ( j)ψT (k) = ψT (i)2/3ψT ( j)2/3ψT (k)2/3 + Õ((T + |k|)−0.8ψT ( j)ψT (k)).

The sum
∑

i, j,k: j∼T k; i∼T j,k

ψT (i)2/3ψT ( j)2/3ψT (k)2/3

(xk − x j)(xk − xi)

symmetrises to zero, and hence

X2 /
∑

i, j,k: j∼T k; i∼T j,k

(T + |k|)−0.8 ψT ( j)ψT (k)

|xk − x j||xk − xi|
.

Estimating 1
|xk−x j ||xk−xi | ≪

1
|xk−x j|2 +

1
|xk−xi |2 and performing the i or j summation

respectively, we conclude that

X2 /
∑

j,k: j∼T k

(T + |k|)−0.6ψT ( j)ψT (k)

|xk − x j|2

and so X2 is negligible thanks to Lemma 21(i).
We have shown that the expression (80) is equal to X1 + X3 plus negligible

terms. A similar argument (replacing xi with ξi throughout) shows that the
expression

∑

j,k: j∼T k

ψT ( j)ψT (k)
1

ξk − ξ j

′
∑

i: i,k

1

ξk − ξi

(81)

is equal to X′
1
+ X′

3
plus negligible terms, where

X′1 ≔
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

(ξk − ξ j)2

X′3 ≔
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

ξk − ξ j

∑

i: i∼T k; i≁T j; i, j

1

ξk − ξi

.
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From Lemma 18, we see that ẼT is equal to

X1 − X′1 +
∑

j,k: j≁T k; j,k

ψT ( j)ψT (k)

(

1

(xk − x j)2
− 1

(ξk − ξ j)2

)

(82)

up to negligible terms. From (43), (44) we have

1

(xk − x j)2
− 1

(ξk − ξ j)2
/

log
O(1)
+ (| j| + |k|)
|k − j|3

when j , k and j ≁T k, so the final term in (82) is negligible. Thus, to complete

the proof of the proposition, it will suffice to show that the expression (81) and

the difference X3 − X′
3

are both negligible.

The expression (81) may be rearranged as

∑

k

ψT (k)

















∑

j: j∼T k

ψT ( j)

ξk − ξ j

































′
∑

i: i,k

1

ξk − ξi

















.

By (44), both inner sums are Õ(1), so the contribution of those |k| ≤ T 0.5 or

|k| ≥ T 1.5 (say) are negligible. For T 0.5 < |k| ≤ T 1.5, we see from (72) that

the factor
∑

j: j∼T k
ψT ( j)

ξk−ξ j
is oT→∞(log T ), and from (73), (44), and the triangle

inequality we also see that
∑′

i: i,k
1

ξk−ξi
= O(log T ). Thus (81) is negligible as

required.

Finally, we show that X3 − X′
3

is negligible. This quantity may be written as

∑

i, j,k: i, j∼T k; |i− j|>(T 2+|i|+| j|)0.1

ψT ( j)ψT (k)(
1

(xk − x j)(xk − xi)
− 1

(ξk − ξ j)(ξk − ξi)
).

Observe that if |k − j| and |k − i| are both larger than or equal to T 0.1, then from

(50), (44) one has

1

(xk − x j)(xk − xi)
− 1

(ξk − ξ j)(ξk − ξi)
≪ log

O(1)
+ (|i| + | j| + |k|)

T 0.1|ξk − ξ j||ξk − ξi|
≪ log

O(1)
+ (|i| + | j| + |k|)

T 0.1|k − j||k − i| ,

and so the contribution of this case is negligible. From the triangle inequality,

we see that it is not possible for |k − j| and |k − i| to both be less than T 0.1, so it

remains to treat the components

∑

i, j,k: 0<| j−k|<(T 2+| j|+|k|)0.1

0<|i−k|<T 0.1; |i− j|>(T 2+|i|+| j|)0.1

ψT ( j)ψT (k)

(

1

(xk − x j)(xk − xi)
− 1

(ξk − ξ j)(ξk − ξi)

)

(83)
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and
∑

i, j,k: 0<| j−k|<T 0.1

0<|i−k|<(T 2+|i|+|k|)0.1 ; |i− j|>(T 2+|i|+| j|)0.1

ψT ( j)ψT (k)

(

1

(xk − x j)(xk − xi)
− 1

(ξk − ξ j)(ξk − ξi)

)

.

(84)

Consider first (83). From the triangle inequality we have | j − k| ≫ T 0.2, and

hence by (50)
1

xk − x j

= (1 + Õ(T−0.2))
1

ξk − ξ j

.

By Lemma 21(ii) and (44) we may thus replace 1
xk−x j

by 1
ξk−ξ j

at negligible cost

in (83), leaving us with

∑

i, j,k: 0<| j−k|<(T 2+| j|+|k|)0.1

0<|i−k|<T 0.1; |i− j|>(T 2+|i|+| j|)0.1

ψT ( j)ψT (k)

(

1

xk − xi

− 1

ξk − ξi

)

1

ξk − ξ j

up to negligible errors. But by (45) and the hypothesis |i − k| ≤ T 0.1, one may

bound
∑

j: 0<| j−k|<(T 2+| j|+|k|)0.1

|i− j|>(T 2+|i|+| j|)0.1

ψT ( j)

|ξk − ξ j|
/ T−0.1ψT (k)

when T 0.9 ≤ |k| ≤ T 1.1, and use the weaker bound
∑

j: 0<| j−k|<(T 2+| j|+|k|)0.1

|i− j|>(T 2+|i|+| j|)0.1

ψT ( j)

|ξk − ξ j|
/ ψT (k)

for all other k, so this expression is also negligible by Lemma 21(ii), (iii), (iv)

(noting that ψT (k) and ψT (i) are comparable). A similar argument also handles

(84).

To use Proposition 22, we need estimates that ensure ẼT is large when H̃T is

large. To this end we have

Lemma 24. Let m be a natural number, and let Λ/2 ≤ t ≤ 0. Let T > 0, and let

δ = δ(T ) go to zero as T → ∞ sufficiently slowly. If H̃T (t) ≥ δmT log3
+ T, then

ẼT (t)≫ δ22mT log3
+ T where the implied constant is absolute.

Proof. As before, we suppress explicit dependence on t, and we may assume T

to be large as the claim is trivial from compactness for T = O(1). From Lemma

19 we have (for δ decaying sufficiently slowly) that
∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)H̃ jk(t) ≥ 99

100
δmT log3 T.
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From Lemma 20 we see that
∑

k: j∼T k; |k− j|≥ε( j) log2
+ ξ j

H̃ jk(t)≪ ε( j) log2
+ j

for any j ∈ Z∗, which implies that

∑

j,k: j∼T k; |k− j|≥ε( j) log2
+ ξ j

ψT ( j)ψT (k)H̃ jk(t) ≤ 1

2
δT log3 T

if δ(T ) goes to zero slowly enough. By (69), we conclude that
∑

j,k: j∼T k; |k− j|<ε( j) log2
+ ξ j

ψT ( j)ψT (k)H̃ jk(t)≫ δmT log3
+ T (85)

We now claim that
∑

j,k: j∼T k; |k− j|<ε( j) log2
+ ξ j

|x j−xk |≥2−m|ξ j−ξk |

ψT ( j)ψT (k)H̃ jk(t)≪ δ2mT log3 T (86)

(say). To see this, we use (70) and (45) to bound

L jk ≪ m +
|x j − xk |
|ξ j − ξk |

≪ m +
|x j − xk |
| j − k| log T

and also ψT ( j) ≍ ψT (k) for j, k in the sum. Thus we may bound (86) by

m
∑

j,k: |k− j|<ε( j) log2
+ ξ j

ψT ( j)2 +
∑

j,k: 0<|k− j|<ε( j) log2
+ ξ j

ψT ( j)2
|x j − xk |
| j − k| log T.

We may directly compute
∑

j,k: j∼T k; |k− j|<ε( j) log2
+ ξ j

ψT ( j)2 ≪ δ2T log3 T

if δ = δ(T ) goes to zero slowly enough. Thus it will suffice to show that

∑

j,k: 0<|k− j|<ε( j) log2
+ ξ j

ψT ( j)2
|x j − xk|
| j − k| ≪ δ2T log2 T. (87)

But for any natural number n, we see from telescoping series and (50) that

∑

j: 2n≤| j|<2n+1

|x j − x j+h| ≪ |h|
2n

n
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whenever |h| ≪ 2n; summing over |h| < ε( j) log2
+ ξ j, we conclude that

∑

j,k: 2n≤| j|<2n+1

0<|k− j|<ε( j) log2
+ ξ j

|x j − xk|
| j − k| ≪ ε(2n)2nn

which gives (87) if δ goes to zero slowly enough.

From (85) and (86) we have
∑

j,k: j∼T k; |k− j|<ε( j) log2
+ ξ j

|x j−xk |≤2−m|ξ j−ξk |

ψT ( j)ψT (k)H̃ jk(t)≫ δmT log3 T.

But for j, k in this sum, we see from (70), (62) that

H̃ jk(t)≪ log
|ξ j − ξk |
|x j − xk |

≪
m2−2m|ξ j − ξk |2

|x j − xk |2
≪ m2−2mẼ jk

and the claim follows.

We can now shrink H̃T down to a reasonable size in finite time:

Corollary 25. One has H̃T (t) = O(δT log3
+ T ) for Λ/4 ≤ t ≤ 0.

Proof. We may take T to be large. From Proposition 22 and Lemma 24, we see

that for any natural number m, and for almost every time t for which one has

H̃T (t) ≥ δmT log3 T,

one has

∂tH̃T (t) ≤ −cδ22mT log3 T

for some absolute constant c > 0. In particular, if m is larger than some large

absolute constant m0, and Λ/2 ≤ t ≤ Λ/4 is such that

δmT log3 T ≤ H̃T (t) ≤ δ(m + 1)T log3 T, (88)

then it is not possible (for m0 large enough) to have H̃T (t′) ≥ δmT log3 T for all

t ≤ t′ ≤ t + c−12−2m, as this would violate the fundamental theorem of calculus

for absolutely continuous functions. Thus, by the intermediate value theorem,

there exists t ≤ t′ ≤ t + c−12−2m such that

δ(m − 1)T log3 T ≤ H̃T (t′) ≤ δmT log3 T,

and on iterating this we conclude (for m0 large enough) that there exists t ≤ t′′ ≤
t + 2c−12−2m0 such that

H̃T (t′′) ≤ δm0T log3 T. (89)
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We run this argument with t set equal to Λ/2, and m the unique integer obeying

(88), to conclude (for m0 large enough) that there exists Λ/2 ≤ t′′ ≤ Λ/4
obeying (89). (Note that this conclusion is immediate if the initial value of m

was already less than m0.) On the other hand, from Proposition 22 we have

∂tH̃T (t) ≤ O(δT log3 T ) for almost every t′′ ≤ t ≤ 0, if δ decays sufficiently

slowly. The claim now follows from the fundamental theorem of calculus

(absorbing m0 into the implied constants), recalling that H̃T is non-negative.

From Proposition 22 and the fundamental theorem of calculus for absolutely

continuous functions, one has

H̃T (Λ/4) − H̃T (0) = (4 + oT→∞(1))

∫ 0

Λ/4

ẼT (t) dt + oT→∞(T log3
+ T )

and the claim (68) now follows from Corollary 25. This concludes the proof of

Theorem 17.

8. Controlling the energy at time 0

In the previous section we controlled a time average of the energy. Now,

using monotonicity properties of the energy, we can in fact control energy at

time zero:

Proposition 26 (Energy bound at time zero). Let T be large. Then

Ẽ[T log T,2T log T ]Z∗ (0) = oT→∞(T log3 T ).

Proposition 26 will be proven16 as follows. First we locate a good initial

interval I0 = [I0
−, I

0
+]:

Proposition 27 (Locating a good interval). Let T be large. Then there exists an

interval I0 = [I0
−, I

0
+]Z∗ containing [0.9T log T, 2.1T log T ]Z∗ and contained in

[0.8T log T, 2.2T log T ]Z∗ such that

∫ 0

Λ/4

∑

±

∑

1≤2n≤0.1T log T

2−nẼ[I0
±−2n,I0

±+2n]Z∗ (t) dt = Õ(1)

where± ranges over both choices of sign +,− and n ranges over natural numbers

with 1 ≤ 2n ≤ 10T log T.

Recall that Õ(1) is any quantity which is O(logO(1) T ).

16We thank Ofer Zeitouni for pointing out an error in a previous version of this argument.
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Proof. By the pigeonhole principle, it suffices to show that

∫ 0.9T log T

0.8T log T

∫ 2.2T log T

2.1T log T

∫ 0

Λ/4

∑

±

∑

1≤2n≤0.1T log T

2−nẼ[I0
±−2n,I0

±+2n]Z∗ (t) dtdI0
+dI0
− / T 2.

By the triangle inequality (and the definition of Õ) it suffices to show that

∫ 0.9T log T

0.8T log T

∫ 2.2T log T

2.1T log T

∫ 0

Λ/4

Ẽ[I0
±−2n,I0

±+2n]Z∗ (t) dtdI0
+dI0
− / 2nT 2

for either choice of sign ± and any 1 ≤ 2n ≤ 0.1T log T . But from the Fubini–

Tonelli theorem and the definition of modified energies Ẽ I we see that

∫ 0.9T log T

0.8T log T

∫ 2.2T log T

2.1T log T

Ẽ[I0
±−2n,I0

±+2n]Z∗ (t) dI0
+dI0
− / 2nT Ẽ[0.5T log T,3T log T ]Z∗ (t)

and the claim now follows from Theorem 17.

Once the interval I0 is located, the main step is to iterating the following

claim:

Proposition 28 (Energy propagation inequality). Let T be large, let I = [I−, I+]Z∗

be an interval containing [T log T, 2T log T ]Z∗ and contained in [0.5T log T, 3T log T ]Z∗ ,

let I0 be as in Lemma 27, and letΛ/4 ≤ t1 ≤ t2 ≤ 0 be such that t2 ≤ t1+
1

100 log2 T
.

Then

Ẽ I′(t2) ≤ Ẽ I(t1) + Õ(1 + |I− − I0
−| + |I+ − I0

+|),
where I′ ≔ [I− + log3 T, I+ − log3 T ]Z∗ is a slightly shrunken version of I.

Let us assume Proposition 28 for the moment and finish the proof of Propo-

sition 26. From Theorem 17 we have
∫ 0

Λ/4

Ẽ[0.5T log T,3T log T ]Z∗ (t) dt = oT→∞(T log3
+ T )

and so by the pigeonhole principle, we may find Λ/4 ≤ t0 ≤ 0 such that

Ẽ[0.5T log T,3T log T ](t0) = oT→∞(T log3
+ T ).

In particular

Ẽ I0

(t0) = oT→∞(T log3
+ T ).

Applying Proposition 28 O(log2 T ) times to get from t0 to 0 (starting from the

interval I0 and shrinking it by at most O(log5 T ) during the entire process), we

conclude that

Ẽ[I−,I+](0) ≤ oT→∞(T log3
+ T )
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for some interval [I−, I+]Z∗ containing [T log T, 2T log T ]Z∗ and contained in

[0.5T log T, 3T log T ]Z∗ . Since Ẽ I(0) is monotone in I, Proposition 26 follows.

It remains to establish Proposition 28. We use an argument due to Bourgain

[2, §4] that combines local conservation laws (or, in this case, local monotonicity

formulae) with the pigeonhole principle.

The first step is to locate a good subset of particles indexed by an interval

close to [I−, I+] which does not gain too much energy due to interactions its

environment, due to separation between these particles and the environment.

From (50) and the pigeonhole principle, one can find natural numbers

I− ≤ j− − 1 < j− ≤ I− + log3 T ≤ I+ − log3 T ≤ j+ < j+ + 1 ≤ I+

such that

x j−(t2) − x j−−1(t2) ≥ 1

log T
(90)

(say) and similarly

x j++1(t2) − x j+(t2) ≥ 1

log T
.

From Lemma 12(iv) applied to K = { j− − 1, j−} we have

∂t(x j−(t) − x j−−1(t))2 ≤ 8

for all t1 ≤ t ≤ t2. Since t2 − t1 ≤ 1

100 log2 T
, we conclude from the fundamental

theorem of calculus and (90) that

x j−(t) − x j−−1(t) ≫ 1

log T
(91)

for all t1 ≤ t ≤ t2. Similarly

x j++1(t) − x j+ (t)≫
1

log T
. (92)

The basic point is that because the particles x j− , . . . , x j+ never get too close to the

remaining particles x j, j < j− and x j, j > j+ in the system, the total energy of

former set of particles will remain approximately conserved over short periods of

time thanks to Lemma 12. More precisely, let K now denote the discrete interval

K ≔ [ j−, j+]Z∗ , and define the un-normalized energy

EK(t) ≔
∑

k,k′∈K: k,k′

Ekk′(t).

From Lemma 12 we have

∂tE
K(t) ≤

∑

j<K
k,k′∈K: k,k′

4

(xk − xk′ )2(xk − x j)(xk′ − x j)
.
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for t1 ≤ t ≤ t2. But from (91), (92), (50) we have
∑

j<K
k,k′∈K: |xk−xk′ |≥1

4

(xk − xk′ )2(xk − x j)(xk′ − x j)

/
∑

k,k′∈K: |xk−xk′ |≥1

1

(xk − xk′ )2

∑

±

(

1

1 + |k − j±|
+

1

1 + |k′ − j±|

)

/ 1

and
∑

j<K
k,k′∈K: |xk−xk′ |<1

4

(xk − xk′)2(xk − x j)(xk′ − x j)

/
∑

k,k′∈K: |xk−xk′ |<1

1

(xk − xk′ )2

∑

±

1

1 + |k − j±|

/ (1 + |I− − I0
−| + |I+ − I0

+|)

×
∑

k,k′∈K: |xk−xk′ |<1

1

(xk − xk′ )2

∑

±

1

1 + |k − I0
±|

/ (1 + |I− − I0
−| + |I+ − I0

+|)

×



















∑

±

∑

1≤2n≤0.1T log T

2−nẼ[I±−2n,I±+2n](t) + T−1Ẽ[0.5T log T,3T log T ]Z∗ (t)



















.

Inserting these bounds and integrating using the fundamental theorem of calcu-
lus, Proposition 27, and Theorem 17, , we conclude that

EK(t2) ≤ EK(t1) + Õ(1 + |I− − I0
−| + |I+ − I0

+|)
which by monotonicity of EK in K implies that

E I′(t2) ≤ E I(t1) + Õ(1 + |I− − I0
−| + |I+ − I0

+|).
Applying Lemma 16, we conclude that

Ẽ I′(t2) ≤ Ẽ I(t1) + Õ(1 + |I− − I0
−| + |I+ − I0

+|) + 2
∑

j∈I\I′
k∈I: j,k

1

(ξ j − ξk)2

(the factor of two coming because if j, k ∈ I are not both in I′ then at least one of
the cases j ∈ I\I′, k ∈ I and k ∈ I\I′, j ∈ I occurs). But from (44) one has

∑

j∈I\I′
k∈I: j,k

1

(ξ j − ξk)2
/ 1

and Proposition 28 follows.
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9. Contradicting pair correlation

It remains to see that Proposition 26 is in contradiction with results that are

known to be the case for the points x j(0). Note in particular that

∑

T log T≤ j, j+1≤2T log T

1

|ξ j+1 − ξ j|2
V

(

x j+1(0) − x j(0)

ξ j+1 − ξ j

)

≤ Ẽ[T log T,2T log T ](0).

In this range using (43) and (45) we have ξ j+1 − ξ j ∼ 4π/ log+ T , and so

Proposition 26 implies that

log2 T
∑

T log T≤ j, j+1≤2T log T

V

(

x j+1(0) − x j(0)

ξ j+1 − ξ j

)

= oT→∞(T log3 T )

By Markov’s inequality (see [28, Ch. 1]), this implies that

V

(

x j+1(0) − x j(0)

ξ j+1 − ξ j

)

= oT→∞(1)

for a fraction 1 − oT→∞(1) of j ∈ [T log T, 2T log T ]. But using the properties

(62) of the function V , this implies that

x j+1(0) − x j(0)

ξ j+1 − ξ j

= 1 + oT→∞(1)

or

x j+1(0) − x j(0) =
4π + oT→∞(1)

log T
, (93)

for a fraction 1 − oT→∞(1) of j ∈ [T log T, 2T log T ].

In particular since the points x j(0) are twice the imaginary ordinates of

nontrivial zeroes of the Riemann zeta function, this implies that the gaps between

the zeroes of the zeta function are rarely much larger or smaller than the mean

spacing. But this contradicts perhaps most strikingly results of Montgomery

[16] who determined on the Riemann Hypothesis the pair correlation measure

for the zeroes, measured against a class of band-limited functions. As noted by

Montgomery his result implies that a positive proportion of zeroes have a spacing

between them strictly smaller than mean spacing. The proof of this claim is not

written down in [16], but Conrey, et. al. prove as their main result of [7] (using

different ideas) that for any λ > .77 there exists a constant c(λ) > 0 such that at

least a proportion c(λ) of j ≤ T log T satisfy

x j+1(0) − x j(0) ≤ λ 4π

log T
.

This contradicts (93) and therefore the assumption that Λ < 0.
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