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Abstract

The two partition functions pω(n) and pν(n) were introduced by Andrews, Dixit and
Yee, which are related to the third order mock theta functions ω(q) and ν(q), respectively.
Recently, Andrews and Yee analytically studied two identities that connect the refinements
of pω(n) and pν(n) with the generalized bivariate mock theta functions ω(z; q) and ν(z; q),
respectively. However, they stated these identities cried out for bijective proofs. In this
paper, we first define the generalized trivariate mock theta functions ω(y, z; q) and ν(y, z; q).
Then by utilizing odd Ferrers graph, we obtain certain identities concerning to ω(y, z; q)
and ν(y, z; q), which extend some early results of Andrews that are related to ω(z; q) and
ν(z; q). In virtue of the combinatorial interpretations that arise from the identities involving
ω(y, z; q) and ν(y, z; q), we finally present bijective proofs for the two identities of Andrews-
Yee.

Keywords: partitions, bijections, mock theta functions, odd Ferrers graph

AMS Subject Classification: 05A17, 05A19

1 Introduction

The purposes of this paper are giving bijective proofs of certain identities of Andrews-Yee in [8]
and extending their results on the generalized bivariate mock theta functions ω(z; q) and ν(z; q)
to the trivariate generalizations ω(y, z; q) and ν(y, z; q). To this end, we first introduce some
definitions and notation.

A partition [3] of n is a finite nonincreasing sequence of positive integers (λ1, λ2, . . . , λℓ)
such that n = λ1 + λ2 + · · · + λℓ. We write λ = (λ1, λ2, . . . , λℓ) and call λi’s the parts of λ.
The size of λ is the sum of all parts, which is denoted by |λ|, and the length of λ is the number
of parts, which is denoted by ℓ(λ). The conjugate of λ is the partition λ′ = (λ′1, λ

′
2, . . . , λ

′
λ1
),

where λ′i = |{λj : λj ≥ i, 1 ≤ j ≤ ℓ}| for 1 ≤ i ≤ λ1. We say λ is a distinct partition if
λ1 > λ2 > · · · > λℓ. The Ferrers graph of λ is defined to be a left-justified arrangement of n
dots in ℓ rows consisting of λ1, λ2, . . . , λℓ dots, thus we graphically say that the number of rows
of λ is ℓ and the number of columns of λ is λ1.
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The q-series [13] notation is defined as :

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1) for n ≥ 1,

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

Watson [15] defined two third order mock theta functions ω(q) and ν(q) as:

ω(q) :=

∞
∑

n=0

q2n
2+2n

(q; q2)2n+1

, ν(q) :=

∞
∑

n=0

qn
2+n

(−q; q2)n+1
.

These two functions were also discovered in Ramanujan’s lost notebook [7,14]. In [1], Andrews
introduced two generalized bivariate mock theta functions ω(z; q) and ν(z; q) of the form:

ω(z; q) :=
∞
∑

n=0

znq2n
2+2n

(q; q2)n+1(zq; q2)n+1
, ν(z; q) :=

∞
∑

n=0

qn
2+n

(−zq; q2)n+1
, (1.1)

which give ω(q) and ν(q) by setting z = 1 in (1.1). Later on, Andrews [2] proved that

ω(z; q) =

∞
∑

n=0

znqn

(q; q2)n+1
, (1.2)

ν(z; q) =

∞
∑

n=0

(q/z; q2)n(−zq)n, (1.3)

and the above results are extensively studied by Choi [12].

In [9], Andrews, Dixit and Yee introduced two partition functions pω(n) and pν(n) where
pω(n) counts the number of partitions of n in which all odd parts are less than twice the
smallest part, and pν(n) counts the number of distinct partitions of n with the same constraint
as pω(n). They obtained

∞
∑

n=1

pω(n)q
n = q ω(q),

∞
∑

n=0

pν(n)q
n = ν(−q). (1.4)

By the definitions of pω(n) and pν(n) and the forms of ω(q) and ν(q), (1.4) can be expressed
as

∞
∑

n=1

qn

(qn; q)n+1(q2n+2; q2)∞
=

∞
∑

n=0

q2n
2+2n+1

(q; q2)2n+1

, (1.5)

∞
∑

n=0

qn(−qn+1; q)n(−q2n+2; q2)∞ =
∞
∑

n=0

qn
2+n

(q; q2)n+1
. (1.6)

Andrews also mentioned some other combinatorial interpretations of pν(n) in [4–6].

Recently, by using analytic method with q-series, Andrews and Yee [8] provided two bivari-
ate generalizations of (1.5) and (1.6) given in the following theorem.
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Theorem 1.1 [8, Theorem 1.] We have

∞
∑

n=1

qn

(zqn; q)n+1(zq2n+2; q2)∞
=

∞
∑

n=0

znq2n
2+2n+1

(q; q2)n+1(zq; q2)n+1
, (1.7)

∞
∑

n=0

qn(−zqn+1; q)n(−zq2n+2; q2)∞ =

∞
∑

n=0

znqn
2+n

(q; q2)n+1
. (1.8)

It is evident that (1.5) and (1.6) are the special cases of (1.7) and (1.8) when z = 1,
respectively. Simultaneously, by Theorem 1.1, they also found another bivariate generalization
of ν(q) as follows:

ν1(z; q) :=

∞
∑

n=0

znqn
2+n

(−q; q2)n+1
.

Consequently they found a representation of ν1(z; q) similar to that of ν(z; q) given by (1.3).

Theorem 1.2 [8, Theorem 2.] We have

ν1(z; q) =

∞
∑

n=0

(zq; q2)n(−q)n. (1.9)

In the concluding remarks of [8], Andrews and Yee stated that the two identities in Theorem
1.1 cried out for bijective proofs. They also asserted that it is not difficult to prove (1.2), (1.3)
and (1.9) combinatorially but without giving the detailed proof. In this paper, we answer all
the above questions.

Furthermore, we may define trivariate generalizations of ν(q) and ω(q) as

ν(y, z; q) :=
∞
∑

n=0

ynznqn
2+n

(yq; q2)n+1

and

ω(y, z; q) :=

∞
∑

n=0

ynznq2n
2+2n

(yq; q2)n+1(zq; q2)n+1
.

Note that ν(−z,−z−1; q) = ν(z; q), ν(−1,−z; q) = ν1(z; q) and ω(1, z; q) = ω(z; q), which
imply that ν(y, z; q) and ω(y, z; q) generalize ν1(z; q), ν(z; q) and ω(z; q), respectively. Addi-
tionally, ν(y, z; q) and ω(y, z; q) can be written in terms of Choi’s [12] functions:

ν̄(α, z; q) :=

∞
∑

n=0

qn(n−1)z2n

(−α2z2/q3; q2)n+1

and

ω̄(α, z; q) :=

∞
∑

n=0

q2(n−1)2−6α2nz4(n+1)

(z2/q; q2)n+1(α2z2/q3; q2)n+1
.
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Here for accuracy, we use ν̄(α, z; q) and ω̄(α, z; q) to substitute the original notations ν(α, z; q)
and ω(α, z; q) appearing in [12]. In particular, we have

ν(y, z; q) = ν̄(iq/
√
z,
√
yzq; q) (1.10)

and
ω(y, z; q) = z−2ω̄(

√
yq/

√
z,
√
zq; q). (1.11)

By a combinatorial approach, we find the following uniform representation of ν(y, z; q).

Theorem 1.3 We have

ν(y, z; q) =
∞
∑

n=0

(−zq; q2)n(yq)n. (1.12)

Note that by setting z → −z−1 and y → −z in (1.12), we obtain the combinatorial inter-
pretation for (1.3), and by setting z → −z and y → −1 in (1.12), we can also explain (1.9)
combinatorially. Furthermore, the right side of (1.12) equals 1+(1+z−1q−1)ν3(

√
yq, 1/

√
yz; q),

where

ν3(α, z; q) :=
1

1 + α2z2/q3

∞
∑

n=1

α2n

qn
(−q3/(αz)2; q2)n

is defined by Choi [12]. Hence, with (1.10), Theorem 1.3 also establishes the connection between
ν̄(α, z; q) and ν3(α, z; q).

Reminiscent to ν(y, z; q), ω(y, z; q) also has the following identity.

Theorem 1.4 We have

ω(y, z; q) =

∞
∑

n=0

ynqn

(zq; q2)n+1
=

∞
∑

n=0

znqn

(yq; q2)n+1
. (1.13)

Thus letting y → 1 in the first equation of (1.13) gives the combinatorial interpretation for
(1.2).

For the bijective proof of Theorem 1.1, notice that dividing q from the both sides of (1.7),
we deduce

∞
∑

n=0

qn

(zqn+1; q)n+2(zq2n+4; q2)∞
=

∞
∑

n=0

znq2n
2+2n

(q; q2)n+1(zq; q2)n+1
. (1.14)

Thus, in order to prove (1.7) bijectively, it is equivalent to find bijective proof of (1.14). Based
on the results of Theorem 1.3 and Theorem 1.4, we can easily interpret the right sides of (1.8)
and (1.14) combinatorially, which leads us to the bijective proofs.

The rest of this paper is organized as follows. By utilizing a variation of Ferrers graphs called
odd Ferrers graphs, the generalized trivariate mock theta functions ν(y, z; q) and ω(y, z; q) as
well as the combinatorial proofs of Theorem 1.3 and Theorem 1.4 are given in Section 2, then
the corollaries of Theorem 1.3 and Theorem 1.4 give combinatorial interpretations of (1.2),
(1.3) and (1.9) and some other identities involving bivariate generalizations of ω(q) and ν(q).
In Section 3, we present our bijective proofs of (1.14) and (1.8) by two algorithms and list some
examples. Finally, we conclude the paper with some further remarks in Section 4.
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2 Trivariate generalizations of the mock theta functions ω(q)
and ν(q)

In this section, we recall a variation of Ferrers graphs of partitions called odd Ferrers graphs,
which was previously utilized by Berndt-Yee in [10] and by Andrews in [4–6]. In the spirit of
double counting on the odd Ferrers graphs with distinct partitions, we first give the combinato-
rial proof for Theorem 1.3. The corollary of Theorem 1.3 gives both the necessary preparation
for the proof of Theorem 1.4 and the combinatorial interpretation of the right side of (1.8).
Then by a similar analysis on the odd Ferrers graphs with ordinary partitions, we construc-
tively prove Theorem 1.4 whose corollary leads us to the combinatorial interpretation for the
right side of (1.14).

Given a partition λ = (λ1, λ2, . . . , λℓ), we draw the Ferrers graph of λ and replace each dot
by a box, then put 0 into the upper left corner box, 1’s into the rest of the boxes in either the
first column or the first row, and 2’s into each box except for the first column and the first row.
Since the sum of numbers in each row except for the first row is odd , we call it the odd Ferrers
graph of shape λ and size n, where n is the sum of all numbers in the boxes. Note that the
shape completely determines the size of odd Ferrers graph, we can use the shape λ to denote
the corresponding odd Ferrers graph by Fλ. Thus the graphic parameters of Fλ are exactly
the same as λ, that is, the number of rows (or length) ℓ(Fλ) of Fλ is ℓ(λ) and the number
of columns of Fλ is λ1. An odd Ferrers graph Fλ is distinct if λ is a distinct partition. For
example, the odd Ferrers graph below is F(6,6,3,2) of size 24.

0 1 1 1 1 1

1 2 2 2 2 2

1 2 2

1 2

2.1 Generalized trivariate mock theta function ν(y, z; q)

Denote by Bν the sets of all distinct odd Ferrers graphs. Particularly, let Bν(ℓ,m, n) denote
the set of distinct odd Ferrers graphs of size n with ℓ + 1 rows and m + 1 columns. Let
bν(ℓ,m, n) = |Bν(ℓ,m, n)|. By decomposing Fλ ∈ Bν(ℓ,m, n) in two different ways, we give the
proof of Theorem 1.3.

Proof of Theorem 1.3. We proceed our proof by showing that the both sides of (1.12) are
generating functions of bν(ℓ,m, n), i.e.,

∞
∑

n=0

ynznqn
2+n

(yq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

∞
∑

ℓ=0

bν(ℓ,m, n)z
ℓymqn =

∞
∑

n=0

(−zq; q2)n(yq)n. (2.1)

First, for clarity, we rewrite the left part of (2.1) as

∞
∑

n=0

ynznqn
2+n

(yq; q2)n+1
=

∞
∑

ℓ=0

(zq)ℓ(yq)ℓ(q2)(
ℓ
2)

(yq; q2)ℓ+1
.
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q2q2
yqyqyq

q2

yq

zq

zq

zq q2

q2 q2

q2

yq zq

zq

zq

q2

q2
q2

yq yq yq yq yq

q2 q2

q2

q2

(zq)ℓ yℓqℓ(q2)(
ℓ
2) 1

(yq;q2)ℓ+1

+ +

λ λ∗s λ∗oλ′1

Figure 2.1: the decomposition of Fλ in the first equation of (2.1)

Given a distinct odd Ferrers graph Fλ = F(λ1,λ2,...,λℓ+1), we can decompose Fλ as illustrated in

Figure 2.1. The first column of Fλ is generated by (zq)ℓ, where the power of z represents the
number of rows of Fλ minus 1. Then by deleting the first column, i.e., the boxes in the λ′1, we
obtain a new variational Ferrers graph defined by the distinct partition λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
p),

where the boxes in λ∗1 are filled by 1’s and the boxes in λ∗2, . . . , λ
∗
p are filled by 2’s. Furthermore,

since λ1 > λ2 > · · · > λℓ+1 ≥ 1, it follows that ℓ ≤ p ≤ ℓ + 1 and λ∗i = λi − 1 for 1 ≤ i ≤ p.
Hence by taking out ℓ+ 1− i boxes from λ∗i for 1 ≤ i ≤ ℓ, we can split λ∗ into two partitions
λ∗s and λ∗o, where λ

∗
s = (ℓ, ℓ − 1, . . . , 1) is a staircase partition, and λ∗o is an ordinary partition

with no more than ℓ + 1 parts. Note that each box in the first rows of λ∗s and λ∗o are marked
by yq and rest of the boxes of λ∗d and λ∗o are marked by q2’s. Thus, the generating function of
the variational Ferrers graph of shape λ∗s is

(yq)ℓ(q2)
∑ℓ−1

i=1
2i = (yq)ℓ(q2)(

ℓ
2).

Since the number of rows in the variational Ferrers graph of shape λ∗o does not exceed ℓ + 1,
the generating function is

1

1− yq
· 1

(1− yq · q2) · · ·
1

(1− yq · (q2)ℓ) =
1

(yq; q2)ℓ+1
.

It is obvious that the power of y indeed equals λ1 − 1, the number of columns of Fλ minus
1. Hence, combining the three generating functions above, we see that first equation of (2.1)
holds.

To complete the proof, it remains to show that

∞
∑

m=0

(−zq; q2)m(yq)m =

∞
∑

n=0

∞
∑

m=0

∞
∑

ℓ=0

bν(ℓ,m, n)z
ℓymqn. (2.2)

Let Fλ = F(λ1,λ2,...,λp) be a distinct odd Ferrers graph with λ1 = m + 1. As shown in Figure
2.2, all boxes but the first one in λ1 are marked by yq’s, implying that the first row of Fλ
is generated by (yq)m. By deleting the first row, consider the variational Ferrers graph with
shape λ̄ = (λ2, λ3, . . . , λp), where the first box of each row is filled by 1 and the rest of the
boxes are filled by 2’s. Thus, we can use zq to mark the first box of each row, and q2’s to mark
the other boxes, which means that the power of z is the number of rows of Fλ minus 1. Since
we have m ≥ λ2 > λ3 > · · · > λp ≥ 1, the variational Ferrers graph of shape λ̄ is generated by

(1 + zq)(1 + zq · q2) · · · (1 + zq · (q2)m−1) = (−zq; q2)m.
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yqyqyqyq

zq

zq

zq

q2

q2

q2

q2 q2

q2

(yq)m (−zq; q2)m

+

λ λ̄

yq yq yqyq
zq q2 q2 q2

q2q2zq

zq q2

λ1

Figure 2.2: the decomposition of Fλ in the second equation of (2.1)

Thus, by combining the generating functions above, we complete the proof of (2.2) then (2.1).

By specifying the values of y and z in (1.12), we can obtain some similar identities related
to the bivariate generalizations of the mock theta function ν(q). Additionally, these identities
are of their own combinatorial significance.

Corollary 2.1 We have

∞
∑

n=0

znqn
2+n

(q; q2)n+1
=

∞
∑

n=0

(−zq; q2)nqn, (2.3)

∞
∑

n=0

znqn
2+n

(zq; q2)n+1
=

∞
∑

n=0

(−q; q2)n(zq)n, (2.4)

∞
∑

n=0

qn
2+n

(zq; q2)n+1
=

∞
∑

n=0

(−q/z; q2)n(zq)n, (2.5)

∞
∑

n=0

z2nqn
2+n

(zq; q2)n+1
=

∞
∑

n=0

(−zq; q2)n(zq)n. (2.6)

Proof. Setting y → 1 in (1.12) gives (2.3) and setting z → 1, y → z in (1.12) gives (2.4). Let
z → z−1 and y → z in (1.12), then we see (2.5). Finally by letting y → z in (1.12), we obtain
(2.6).

For the combinatorial significance, referring to the proof of Theorem 1.3, we know that
all four identities in Corollary 2.1 are refinements of the generating function of distinct odd
Ferrers graphs Fλ, where the powers of q record the size of Fλ, but the statistics recorded by
the powers of z are different.

Denote by B1
ν(m,n) the set of distinct odd Ferrers graphs of size n with m + 1 rows and

b1ν(m,n) the cardinality of B1
ν(m,n), then (2.3) presents the generating function of b1ν(m,n):

∞
∑

n=0

znqn
2+n

(q; q2)n+1
=

∞
∑

n

∞
∑

m

b1ν(m,n)z
mqn =

∞
∑

n=0

(−zq; q2)nqn, (2.7)

which gives the combinatorial interpretation for the right side of (1.8). We can also deduce
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that

ν1(z; q) =

∞
∑

n=0

∞
∑

m=0

∑

Fλ∈B
1
ν(m,n)

(−1)♯(Fλ)zmqn, (2.8)

where ♯(Fλ) is the number of 1’s in the odd Ferrers graph Fλ. Hence (2.8) gives the combina-
torial interpretation of (1.9).

Let B2
ν(m,n) be the set of distinct odd Ferrers graphs of size n with m + 1 columns, and

let b2ν(m,n) = |B2
ν(m,n)|. Thus (2.4) is the generating function of b2ν(m,n):

∞
∑

n=0

znqn
2+n

(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

b2ν(m,n)z
mqn =

∞
∑

n=0

(−q; q2)n(zq)n. (2.9)

Let B3
ν(m,n) be the set of distinct odd Ferreres graphs of size n satisfying that the differ-

ence between the number of columns and the number of rows is m. Denote by b3ν(m,n) the
cardinality of B3

ν(m,n), then (2.5) is the generating function of b3ν(m,n):

∞
∑

n=0

qn
2+n

(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

b3ν(m,n)z
mqn =

∞
∑

n=0

(−q/z; q2)n(zq)n. (2.10)

For any Fλ ∈ B3
ν(m,n), since λ is a distinct partition, we have λ1 ≥ ℓ(λ) so that the range

of m begins with 0. Similar to (2.8), in terms of the set B3
ν(m,n), we can explain (1.3)

combinatorially as

ν(z; q) =

∞
∑

n=0

∞
∑

m=0

∑

Fλ∈B
3
ν(m,n)

(−1)♯(Fλ)zmqn. (2.11)

Let B4
ν(m,n) be the set of distinct odd Ferrers graphs Fλ of size n and ♯(Fλ) = m, and let

b4ν(m,n) = |B4
ν(m,n)|. By (2.6), we have

∞
∑

n=0

z2nqn
2+n

(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

b4ν(m,n)z
mqn =

∞
∑

n=0

(−zq; q2)n(zq)n. (2.12)

In light of (2.8) and (2.11), it follows from (2.9) and (2.12) that

∞
∑

n=0

znqn
2+n

(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

∑

Fλ∈B
2
ν(m,n)

(−1)♯(Fλ)zmqn =

∞
∑

n=0

(q; q2)n(−zq)n (2.13)

and
∞
∑

n=0

z2nqn
2+n

(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

(−1)mb4ν(m,n)z
mqn =

∞
∑

n=0

(zq; q2)n(−zq)n, (2.14)

where (2.13) and (2.14) give the combinatorial proofs of the identities deduced from (2.4) and
(2.6) by letting q → −q, respectively.
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(zq;q2)m+1

+

λ λ̄λ1

q2
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zq

zq
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Figure 2.3: The decomposition of Fλ in the second equation of (2.17)

2.2 Generalized trivariate mock theta function ω(y, z; q)

In the rest of this section, we study the combinatorial identities related to the trivariate gen-
eralization ω(y, z; q) of ω(q). We use Bω to denote the set of all odd Ferrers graphs. Let
Bω(ℓ,m, n) denote the set of odd Ferrers graphs of size n consisting of ℓ + 1 rows and m + 1
columns, and let bω(ℓ,m, n) = |Bω(ℓ,m, n)|. Now we give the proof of Theorem 1.4.

Proof of Theorem 1.4. By noticing that

∞
∑

n=0

ynznq2n
2+2n

(yq; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

znqn

(yq; q2)n+1
(2.15)

is immediately from
∞
∑

n=0

ynznq2n
2+2n

(yq; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

ynqn

(zq; q2)n+1
(2.16)

since the variables y and z in the term ynznq2n
2+2n

(yq;q2)n+1(zq;q2)n+1
are symmetric, we only prove (2.16)

by showing that

∞
∑

m=0

ymqm
2+m

(yq; q2)m+1
· zmqm

2+m

(zq; q2)m+1
=

∞
∑

n=0

∞
∑

m=0

∞
∑

ℓ=0

bω(ℓ,m, n)z
ℓymqn =

∞
∑

m=0

ymqm

(zq; q2)m+1
. (2.17)

For the second equation of (2.17), given an odd Ferrers graph Fλ = F(λ1,λ2,...,λp) with
λ1 = m + 1, we can split Fλ as Figure 2.3. Note that all boxes expect the first one of λ1 are
filled by 1’s so that we mark each of these box by yq, which implies that (yq)m generates the
nonempty boxes in λ1 and the power of y is the number of columns of Fλ minus 1. Then let
λ̄ = (λ2, . . . , λp) be the shape of the variational Ferrers graph whose first boxes of all rows are
filled by 1’s and other boxes are filled by 2’s. Thus, we can use zq to mark the first box in each
row and q2’s to mark the other boxes. It obvious that the power of q is the size of Fλ and the
power of z is p− 1, which is the number of rows of Fλ minus 1. Since m+1 ≥ λ2 · · · ≥ λp, the
variational Ferrers graph of shape λ̄ = (λ2, . . . , λp) is generated by

1

(1− zq)
· 1

(1− zq · q2) · · ·
1

(1− zq · (q2)m) =
1

(zq; q2)m+1
,

implying that the right side of (2.16) generates bω(ℓ,m, n).
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+
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q
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Figure 2.4: the decomposition of Fλ in the first equation of (2.17)

Before proving the first equation of (2.17), recall the Frobenius symbol of partitions. Let
λ = (λ1, λ2, . . . , λp) be a partition whose Durfee square has side length m, where the Durfee
square is the largest square contained in the Ferrers graph of λ. The Frobenius symbol of λ is
a two-row array of distinct partitions as the following form

(

µ1, µ2, . . . , µm
ν1, ν2, . . . , νm

)

,

where µi = λi − i and νi = λ′i − i for 1 ≤ i ≤ m. Thus we have µ1 > µ2 > · · · > µm ≥ 0 and
ν1 > ν2 > · · · > νm ≥ 0. Notice that the partition is uniquely determined by its Frobenius
symbol.

In terms of the Frobenius symbol, given an odd Ferrers graph Fλ = F(λ1,λ2,...,λp) of shape
λ whose Durfee square has side length m + 1, we decompose Fλ as Figure 2.4. To be more
specific, we split Fλ by the diagonal of the Durfee square into two odd Ferrers graphs Fµ and
Fν . Note that µ = (µ1, µ2, . . . , µm+1) and ν = (ν1, ν2, . . . , νm+1) are both distinct partitions
with the same length m+1, where µi = λi− i+1 and νi = λ′i − i+1 for 1 ≤ i ≤ m+1. Thus
Fµ and Fν are both distinct. Note that except for the first box, all boxes in the first row of
Fλ are marked by yq’s, then it follows that the power of y is λ1 − 1, which is the number of

columns of Fµ minus 1. Hence by (2.9), Fµ is generated by ymqm
2
+m

(yq;q2)m+1
. Furthermore, since zq

is used to mark all the boxes in the first column of Fλ except for the first one, the power of z
now is records the number of the columns of Fν minus 1, which implies that Fν is generated by
zmqm

2
+m

(zq;q2)m+1
also by (2.9). Therefore, by combining these two above generating functions, we have

shown that the left side of (2.16) also generates bω(ℓ,m, n), which implies that (2.17) holds.

Similar to Corollary 2.1 of Theorem 1.3, for the ordinary partition case in Theorem 1.4,
we also derive the following identities concerned with the bivariate generalizations of the mock
theta function ω(q).

Corollary 2.2 We have

∞
∑

n=0

znq2n
2+2n

(q; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

qn

(zq; q2)n+1
=

∞
∑

n=0

znqn

(q; q2)n+1
, (2.18)

∞
∑

n=0

q2n
2+2n

(q/z; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

z−nqn

(zq; q2)n+1
=

∞
∑

n=0

znqn

(q/z; q2)n+1
, (2.19)
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∞
∑

n=0

(

znqn
2+n

(zq; q2)n+1

)2

=
∞
∑

n=0

znqn

(zq; q2)n+1
. (2.20)

Proof. Let y → 1, y → z−1 and y → z in (1.13), respectively, then we obtain (2.18), (2.19)
and (2.20).

Analogous to the proof of Theorem 1.4, the above identities are refinements of the generating
functions of odd Ferrers graphs Fλ. The power of q in each equation represents the size of Fλ
but the power of z records different statistics of Fλ.

Let B1
ω(m,n) be the set of odd Ferrers graphs of size n with m+ 1 rows and B1′

ω (m,n) be
the set of odd Ferrers graphs of size n with m+ 1 columns. Denote by b1ω(m,n) and b

1′
ω (m,n)

the cardinalities of B1
ω(m,n) and B1′

ω (m,n), respectively. Then the identities in (2.18) can be
written as

∞
∑

n=0

znq2n
2+2n

(q; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

b1ω(m,n)z
mqn =

∞
∑

n=0

qn

(zq; q2)n+1
(2.21)

and
∞
∑

n=0

znq2n
2+2n

(q; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

b1
′

ω (m,n)z
mqn =

∞
∑

n=0

znqn

(q; q2)n+1
, (2.22)

where (2.21) can be utilized to explain the right side of (1.14) and (2.22) gives the combinatorial
interpretation for (1.2). Note here we can directly deduce

∞
∑

n=0

qn

(zq; q2)n+1
=

∞
∑

n=0

znqn

(q; q2)n+1

without the help of Theorem 1.4 since conjugating partitions gives a bijection between B1
ω(m,n)

and B1′
ω (m,n).

Let B2
ω(m,n) be the set of odd Ferrers graphs of size n whose difference between the number

of rows and the number of columns is m, and let B2′
ω (m,n) be the set of odd Ferrers graphs of

size n whose difference between the number of columns and the number of rows is m. Setting
b2ω(m,n) = |B2

ω(m,n)| and b2
′

ω (m,n) = |B2′
ω (m,n)|, gives that (2.19) are the generating functions

of b2ω(m,n) and b
2′
ω (m,n):

∞
∑

n=0

q2n
2+2n

(q/z; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=−∞

b2ω(m,n)z
mqn =

∞
∑

n=0

z−nqn

(zq; q2)n+1
(2.23)

and

∞
∑

n=0

q2n
2+2n

(q/z; q2)n+1(zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=−∞

b2
′

ω (m,n)z
mqn =

∞
∑

n=0

znqn

(q/z; q2)n+1
. (2.24)

Taking the conjugate of a partition also gives a bijection between B2
ω(m,n) and B2′

ω (m,n),
implying that we can obtain the following identity in a purely combinatorial way:

∞
∑

n=0

z−nqn

(zq; q2)n+1
=

∞
∑

n=0

znqn

(q/z; q2)n+1
.
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Let B3
ω(m,n) be the set of odd Ferrers graphs Fλ of size n and ♯(Fλ) = m, then the

combinatorial proof of (2.20) is presented by

∞
∑

n=0

(

znqn
2+n

(zq; q2)n+1

)2

=

∞
∑

n=0

∞
∑

m=0

b3ω(m,n)z
mqn =

∞
∑

n=0

znqn

(zq; q2)n+1
, (2.25)

where b3ω(m,n) = |B3
ω(m,n)|.

By either letting q → −q in Corollary 2.2 or analyzing (2.21)–(2.25) combinatorially, we
can easily arrive at the following corollary.

Corollary 2.3 We have

∞
∑

n=0

znq2n
2+2n

(−q; q2)n+1(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

∑

Fλ∈B
1
ω(m,n)

(−1)♯(Fλ)zmqn =

∞
∑

n=0

(−q)n
(−zq; q2)n+1

,

∞
∑

n=0

znq2n
2+2n

(−q; q2)n+1(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=0

∑

Fλ∈B
1′
ω (m,n)

(−1)♯(Fλ)zmqn =

∞
∑

n=0

zn(−q)n
(−q; q2)n+1

,

∞
∑

n=0

q2n
2+2n

(−q/z; q2)n+1(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=−∞

∑

Fλ∈B
2
ω(m,n)

(−1)♯(Fλ)zmqn =

∞
∑

n=0

z−n(−q)n
(−zq; q2)n+1

,

∞
∑

n=0

q2n
2+2n

(−q/z; q2)n+1(−zq; q2)n+1
=

∞
∑

n=0

∞
∑

m=−∞

∑

Fλ∈B
2′
ω (m,n)

(−1)♯(Fλ)zmqn =
∞
∑

n=0

zn(−q)n
(−q/z; q2)n+1

,

∞
∑

n=0

(

znqn
2+n

(−zq; q2)n+1

)2

=

∞
∑

n=0

∞
∑

m=0

(−1)mb3ω(m,n)z
mqn =

∞
∑

n=0

zn(−q)n
(−zq; q2)n+1

.

Remark 2.1 The three identities (1.2), (1.3) and (1.9) of ω(z; q), ν(z; q) and ν1(z; q) are
mentioned in [8, Eq. (2) and (9)] but with no combinatorial proof. Later Chern [11] proved
(1.2), (1.3) and (1.9) by using two completely different bijections. Here by utilizing the method
of double counting on only one combinatorial structure, the odd Ferrers graph, we not only
unify the proofs of these three identities given by (2.22), (2.11) and (2.8), respectively, but also
obtain several other identities involving the bivariate generalizations of the mock theta functions
ω(q) and ν(q) with their own combinatorial significance.

3 Bijective proofs of Theorem 1.1

Built on the combinatorial analysis of ω(y, z; q) and ν(y, z; q), in this section, we present the
bijective proofs for (1.14) and (1.8).

Let Pω be the set of partitions with unique smallest part which can be 0 and satisfying that
all the odd parts do not exceed twice the smallest part plus 1. Let Pω(m,n) denote the set of
partitions in Pω with length m + 1 and size n, and pω(m,n) be the cardinality of Pω(m,n).
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Similarly, let Pν denote the set of distinct partitions whose smallest part can be 0 satisfying
that all odd parts are less than twice the smallest part, and let Pν(m,n) be the set of such
partitions with length m+ 1 and size n. Denote by pν(m,n) the cardinality of Pν(m,n). By
these definitions, it directly follows that the left sides of (1.14) and (1.8) are the generating
functions of pω(m,n) and pν(m,n), respectively, that is,

∞
∑

n=0

qn

(zqn+1; q)n+2(zq2n+4; q2)∞
=

∞
∑

n=0

∞
∑

m=0

pω(m,n)z
mqn, (3.1)

∞
∑

n=0

qn(−zqn+1; q)n(−zq2n+2; q2)∞ =

∞
∑

n=0

∞
∑

m=0

pν(m,n)z
mqn. (3.2)

Therefore, by (2.21) and (2.7), finding a bijective proof of (1.14) is to establish a one-to-one
correspondence between the set Pω(m,n) and the set B1

ω(m,n), similarly finding a bijective
proof of (1.8) is to establish a one-to-one correspondence between Pν(m,n) and B1

ν(m,n) for
all m,n ≥ 0.

Given a partition λ = (λ1, λ2, . . . , λℓ), define λ
+ = (λ1, . . . , λℓ, 0) and λ

− = (λ1, . . . , λℓ−1).
Additionally, we need to introduce the following operators acting on partition λ:

φ+: define φ+(λ) = (λ1, . . . , λℓ−1, λℓ + 1)≥,

φ−: define φ−(λ)=(λ1, . . . , λℓ−1, λℓ − 1),

φ+
c
: suppose that λi is one of the largest odd parts of λ, define φ+c (λ)=(λ1, . . . , λi−1, λi+1, . . . ,
λℓ, (λi + 1)/2, (λi − 1)/2)≥,

φ−

c
: define φ−c (λ)=(λ1, . . . , λℓ−2, λℓ−1 + λℓ)≥,

φ+
e
: define φ+e (λ)=(λ1 + 2, . . . , λℓ + 2),

φ−

e
: define φ−e (λ)=(λ1 − 2, . . . , λℓ − 2),

φ+
o
: define φ+o (λ) = (λ1 + 2, . . . , λℓ−1 + 2, λℓ + 1),

φ−

o
: define φ−o (λ) = (λ1 − 2, . . . , λℓ−1 − 2, λℓ − 1)≥,

φ∗: define φ∗(λ) = (λ1 − 1, . . . , λℓ − 1),

where the subscript ≥ forces the numbers in parentheses rearranged in nonincreasing order.

For any operator • acting on λ, let d•(λ) be the difference bewteen the size of the original
partition λ and the resulting partition •(λ), i.e., d•(λ) = |λ| − | • (λ)|.

3.1 Bijection between Pω(m,n) and B1
ω(m,n)

We begin with providing some necessary lemmas for the bijective proof of (1.14).

Lemma 3.1 Given any λ = (λ1, . . . , λℓ) ∈ Pω, define the destructive operator ψ− as follows.
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i. ψ−(λ) = φ−(λ−) if λℓ = 0 and λℓ−1 ≥ 2;

ii. ψ−(λ) = φ−(φ−c (λ)) if λℓ ≥ 0 and λℓ−1 = λℓ + 1;

iii. ψ−(λ) = φ−o (λ) if λℓ ≥ 1 and λℓ−1 ≥ λℓ + 2.

Then we have that dψ−(λ) is odd and ψ−(λ) ∈ Pω.

Proof. Recall that Pω is the set of partitions with only one smallest part, which can be 0,
satisfying that odd parts are no more than twice the smallest part plus 1, that is, λℓ−1 > λℓ ≥ 0
and λi ≤ 2λℓ + 1 if λi is odd for 1 ≤ i ≤ ℓ − 1. Note that the actions of φ− and φ−o
already guarantee that dψ−(λ) is odd and the property of unique smallest part in the resulting
partitions. Thus, depending on the numerical relationship between λℓ−1 and λℓ, we only need
to verify the constraint of odd parts by the following three cases.

Assuming that λℓ = 0 and λℓ−1 ≥ 2, by the definition of Pω, all parts in λ are even,
since φ−(λ−) = (λ1, λ2, . . . , λℓ−1 − 1), which implies that all parts except for λℓ−1 − 1 in
φ−(λ−) are even. Thus, we have φ−(λ−) ∈ Pω. For example, let λ = (6, 4, 2, 2, 0) ∈ Pω, then
ψ−(λ) = (6, 4, 2, 1) ∈ Pω.

If λℓ ≥ 0 and λℓ−1 = λℓ + 1, we may assume that λℓ = a and λℓ−1 = a + 1, implying
that λℓ−1 + λℓ = 2a + 1 is odd. For convenience, set λ0 = ∞, then there exists a unique i0,
with 1 ≤ i0 ≤ ℓ − 1, such that λi0 ≤ 2a + 1 < λi0−1. Therefore, we see that φ−(φ−c (λ)) =
(λ1, . . . , λℓ−2, 2a) if i0 = ℓ − 1 and φ−(φ−c (λ)) = (λ1, . . . , λi0−1, 2a + 1, λi0 , . . . , λℓ−2 − 1) if
1 ≤ i0 ≤ ℓ − 2. For the first case, since λℓ−2 > 2a + 1 and no odd parts in λ exceed 2a + 1,
it follows that λi is even for 1 ≤ i ≤ ℓ − 2. Thus φ−(φ−c (λ)) ∈ Pω. For the second case, since
λℓ = a, 2a+ 1 is also the largest odd part in φ−(φ−c (λ)); on the other hand, the smallest part
in φ−(φ−c (λ)) is λℓ−2 − 1, which satisfies λℓ−2 − 1 ≥ λℓ−1 − 1 = a. Thus, all odd parts in
φ−(φ−c (λ)) do not exceed 2(λℓ−2 − 1) + 1, implying that φ−(φ−c (λ)) ∈ Pω. For example, let
λ = (10, 8, 7, 7, 5, 4) ∈ Pω, then ψ−(λ) = (10, 9, 8, 7, 6) ∈ Pω.

If λℓ ≥ 1 and λℓ−1 ≥ λℓ+2, then we have φ−o (λ) = (λ1−2, . . . , λℓ−1−2, λℓ−1). Since for all
1 ≤ i ≤ ℓ−1, λi ≤ 2λℓ+1 if λi is odd, it is clear that λi−2 ≤ 2λℓ−1 = 2(λℓ−1)+1, which means
that φ−o (λ) ∈ Pω. For example, let λ = (8, 7, 5, 5, 3) ∈ Pω, then ψ−(λ) = (6, 5, 3, 3, 2) ∈ Pω.

Here we may explain the motivation of naming ψ− by destructive. Note that when any
λ ∈ Pω is acted on by ψ−, the size of the resulting partition ψ−(λ) is decreased and in
two of the three cases, the length of the resulting partition ψ−(λ) is decreased by 1, which
implies that by iteratively applying the operator ψ−, the partition λ can be converted to a
simpler partition µ ∈ Pω. Corresponding to the destructive operator ψ−, we may define two
constructive operators ψ+

1 and ψ+
2 which have similar properties to ψ−

Lemma 3.2 Given any λ = (λ1, . . . , λℓ) ∈ Pω, define the constructive operators ψ+
2 by

ψ+
2 (λ) = φ+o (λ) and ψ

+
1 as follows.

i. ψ+
1 (λ) = (φ+(λ))+ if λℓ is odd and λi are even for all 1 ≤ i ≤ ℓ− 1;

ii. ψ+
1 (λ) = φ+c (φ

+(λ)) otherwise.
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partitions size differences

λ1 = (6, 5, 4, 2) dψ−(λ0) = 1

λ2 = (4, 3, 2, 1) dψ−(λ1) = 7

λ3 = (4, 3, 2) dψ−(λ2) = 1

λ4 = (5, 3) dψ−(λ3) = 1

λ5 = (3, 2) dψ−(λ4) = 3

λ6 = (4) dψ−(λ5) = 1

Table 3.1: detailed construction for λ = (6, 4, 3, 3, 2)

Then we have both ψ+
1 (λ) ∈ Pω and ψ+

2 (λ) ∈ Pω.

Proof. For any given λ = (λ1, . . . , λℓ) ∈ Pω, by the definitions of Pω and φ+o , it is obvious
ψ+
2 (λ) ∈ Pω. For example, let λ = (5, 3, 3, 2) ∈ Pω, then ψ+

2 (λ) = (7, 5, 5, 3) ∈ Pω.

Suppose that λℓ is the only odd part in λ, which means that all parts in φ+(λ) are even.
Since (φ+(λ))+ = (λ1, λ2, . . . , λℓ−1, λℓ + 1, 0), we have (φ+(λ))+ ∈ Pω. As an example, let
λ = (6, 6, 4, 3) ∈ Pω, then ψ+

1 (λ) = (6, 6, 4, 4, 0) ∈ Pω.

Otherwise, it is easy to verify that there is at least one odd part in φ+(λ) = (λ1, λ2, . . . , λℓ−1,
λℓ + 1). If φ+(λ)ℓ = λℓ + 1 is the only odd part, then φ+c (φ

+(λ)) = (λ1, λ2, . . . , λℓ−1, λℓ/2 +
1, λℓ/2) so that φ

+
c (φ

+(λ)) ∈ Pω. For example, let λ = (8, 8, 4, 2) ∈ Pω, then φ+(λ) = (8, 8, 4, 3)
and ψ+

1 (λ) = (8, 8, 4, 2, 1) ∈ Pω. Suppose the largest odd part in φ+(λ) is λi for some 1 ≤
i ≤ ℓ − 1. Then we can assume that λi = 2b + 1 and λℓ + 1 = a subject to b ≤ a − 1 since
λ ∈ Pω and λℓ = a − 1. Thus (λi − 1)/2 = b is the unique smallest part of φ+c (φ

+(λ)) and
no odd part in φ+c (φ

+(λ)) exceeds 2b + 1, implying that φ+c (φ
+(λ)) ∈ Pω. For example, let

λ = (6, 5, 4, 3) ∈ Pω, then ψ+
1 (λ) = (6, 4, 4, 3, 2) ∈ Pω.

Combinatorial proof of (1.14). We proceed to give a bijection between Pω(m,n) and B1
ω(m,n).

For a partition λ = (λ1, . . . , λm+1) ∈ Pω(m,n), let λ0 = λ, then for i ≥ 1, we utilize the
destructive operator ψ− to construct λi from λi−1 by setting λi = ψ−(λi−1) until ℓ(λi) = 1.
Denote by t(λ) the last i terminating the procedure and dλ = (dλ1 , . . . , d

λ
t(λ)) the difference

sequence recording the size difference between λi−1 and λi, that is, dλi = dψ−(λi−1) for 1 ≤ i ≤
t(λ). By Lemma 3.1, we have λi ∈ Pω for 1 ≤ i ≤ t(λ). It can be easily checked that the number

of 1’s in dλ equalsm and |λt(λ)|+
∑t(λ)

i=1 d
λ
i = n. As an example, let λ = (6, 4, 3, 3, 2) ∈ Pω(4, 18),

then the detailed steps of the procedure are listed in Table 3.1. Hence we obtain t(λ) = 6,
λ6 = (4) and dλ = (1, 7, 1, 1, 3, 1).

Claim 3.1 We have dλ
t(λ) = 1 and for 1 ≤ i ≤ t(λ)− 1, if dλi = 2k + 1 for some k ≥ 1, then

∣

∣

∣

{

j : dλj = 1, i+ 1 ≤ j ≤ t(λ)
}
∣

∣

∣
= k.

Proof of Claim 3.1. First noting that for 1 ≤ i ≤ t(λ), ℓ(λi−1) − ℓ(λi) = 1 if and only if
dψ−(λi−1) = 1, then by the constructing rules, it is evident that ℓ(λt(λ)) = 1 and ℓ(λt(λ)−1) = 2,
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0 1 1 1 1 d
λ
6 = 1

1

0 1 1 1 1 dλ5 = 3 1

1

0 1 1 1 1

2
dλ4 = 1

1

1

1

0 1 1 1 1

2

Fη3 = F(6,2,1)Fη4 = F(6,2)Fη5 = F(5,1)Fη6 = F(5)

dλ3 = 1

1

1

1

0 1 1 1 1

2

1

dλ2 = 7
1

1

1

1

0 1 1 1 1

2

1 2

2

2 dλ1 = 1

1

1

1

1

1

0 1 1 1 1

2

1 2

2

2

Fη = F(7,3,2,2,1)Fη2 = F(7,3,2,2)Fη3 = F(6,2,1,1)

Figure 3.1: the procedure of constructing Fη = F(7,3,2,2,1) from λ = (6, 4, 3, 3, 2), where the
shaded boxes are those added at each step.

which implies dλ
t(λ) = 1. For 1 ≤ i ≤ t(λ)− 1, if dλi = dψ−(λi−1) = 2k + 1 > 1, we can deduce

that ψ−(λi−1) = φ−o (λ
i−1) and both λi−1 and λi have k + 1 parts by Lemma 3.1. Hence we

need to decrease the length of λi from k + 1 to 1 by iteratively acting ψ−, which means that
the number of j’s such that dλj=1 for i+ 1 ≤ j ≤ t(λ) is exactly k.

Now we will construct the corresponding odd Ferrers graph Fη ∈ B1
ω(m,n) from the parti-

tion λt(λ) and the difference sequence dλ. Let t = t(λ) and ηt = (|λt|+1) be the partition with
only one part |λt| + 1, then Fηt ∈ Bω is of shape ηt and size |λt|. For i ranges from t − 1 to
0, we construct Fηi from Fηi+1 and dλi+1 as follows. If dλi+1 = 1, we add a new row containing
only one box below Fηi+1 and fill this box with 1, which means ℓ(Fηi) = ℓ(Fηi+1) + 1 and
|Fηi | = |Fηi+1 | + 1 = |λi|. If dλi+1 = 2k + 1 for some k ≥ 1, we add one box at the end of
each row of F i+1

η , and fill the added box in the first row with 1 and the rest of the boxes with
2’s. It can be seen that ℓ(Fηi) = ℓ(Fηi+1) and by Claim 3.1, |Fηi | = |Fηi+1 | + (2k + 1) = |λi|.
Finally, setting Fη = Fη0 , since there are exactly m 1’s in the difference sequence dλ, we have
Fη ∈ B1

ω(m,n) as desired. As the above example, t = 6, λ6 = 4 and dλ = (1, 7, 1, 1, 3, 1), the
corresponding Fη is constructed in Figure 3.1.

To complete the proof, it remains to construct the corresponding partition λ ∈ Pω(m,n)
from a given odd Ferrers graph Fη ∈ B1

ω(m,n). Let Fη0 = Fη, then for i ≥ 1, we will construct

Fηi from Fηi−1 = F(ηi−1

1
,...,ηi−1

ℓ
) and difference sequence hFη = (h

Fη

1 , h
Fη

2 , . . .) as follows.

Case 1: Let ηi = φ∗(ηi−1) if ηi−1
ℓ ≥ 2, then the corresponding odd Ferrers graph Fηi is obtained

by deleting the last box of each row of Fηi−1 . Let h
Fη

i be the sum of the deleted numbers.

Case 2: Let ηi = φ−(ηi−1) if ηi−1
ℓ = 1, then the corresponding odd Ferrers graph Fηi is obtained

by deleting the single box with a 1 in the last row of Fηi−1 . As in Case 1, let h
Fη

i be the sum
of the deleted numbers, which equals 1.

This process will not stop until ℓ(Fηi) = 1 for some i ≥ 1. Denoting this i by r(Fη), we can

deduce that h
Fη

i is odd for all 1 ≤ i ≤ r(Fη). Moreover, the number of 1’s in the difference
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λ ∈ Pω(3, 15) Fη ∈ B1
ω(3, 15) λ ∈ Pω(3, 15) Fη ∈ B1

ω(3, 15)

(12, 2, 1, 0) F(11,2,1,1) (8, 3, 3, 1) F(7,2,2,2)

(10, 4, 1, 0) F(7,4,1,1) (6, 4, 4, 1) F(5,3,2,2)

(8, 6, 1, 0) F(9,3,1,1) (6, 4, 3, 2) F(7,3,2,1)

(10, 2, 2, 1) F(9,2,2,1) (5, 5, 3, 2) F(5,5,1,1)

(8, 4, 2, 1) F(5,4,2,1) (5, 4, 4, 2) F(3,3,3,2)

(6, 6, 2, 1) F(5,3,3,1) (4, 4, 4, 3) F(13,1,1,1)

Table 3.2: correspondence between Pω(3, 15) and B1
ω(3, 15)

sequence hFη is m and |Fηr |+
∑r

i=1 h
Fη

i = n, where r = r(Fη). Following a similar analysis to
that in Claim 3.1, for the difference sequence hFη , we also have the following.

Claim 3.2 We have h
Fη
r = 1 and for 1 ≤ i ≤ r − 1, if h

Fη

i = 2k + 1 for some k ≥ 1, then

∣

∣

∣

{

j : h
Fη

j = 1, i+ 1 ≤ j ≤ r
}∣

∣

∣
= k.

According to the difference sequence hFη and Fηr , we can use constructive operators ψ+
1

and ψ+
2 to construct λ. Firstly, let λr = (|ηr|−1) be the partition with only one part |ηr|−1, so

that λr ∈ Pω and |λr| = |Fηr |. For r−1 ≥ i ≥ 0, suppose that λi+1 has already been generated,

we generate λi by letting λi = ψ+
1 (λ) if h

Fη

i+1 = 1 or λi = ψ+
2 (λ) if h

Fη

i+1 = 2k + 1 for some

k ≥ 1. Since the length of λi increases 1 if and only if h
Fη

i+1 = 1, then by Claim 3.2, we obtain

|λi| = |λi+1|+ h
Fη

i+1. Therefore, by setting λ = λ0 and Lemma 3.2, we see that λ ∈ Pω(m,n).

Example 3.1 Based on the above bijection, we give the one-to-one correspondence between all
λ ∈ Pω(3, 15) and Fη ∈ B1

ω(3, 15) in Table 3.2.

3.2 Bijection between Pν(m,n) and B1
ν(m,n)

Recall that Pν is the set of partitions with distinct parts which may includes 0, satisfying that
the odd parts are less than twice the smallest part. Before giving the bijective proof of (1.8),
we need the following two lemmas.

Lemma 3.3 Given any partition λ = (λ1, . . . , λℓ) ∈ Pν, define the destructive operator ρ− as
follows.

i. ρ−(λ) = φ−e (λ
−) if λℓ = 0;

ii. ρ−(λ) = φ−e (φ
−
c (λ)) if λℓ ≥ 1 and λℓ−1 = λℓ + 1;

iii. ρ−(λ) = φ−o (λ) if λℓ ≥ 1 and λℓ−1 ≥ λℓ + 2.
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Then we have ρ−(λ) ∈ Pν.

Proof. According to the quantitative relation between λℓ and λℓ−1, and the actions of φ−o and
φ−e , it can be directly checked that all parts in ρ−(λ) are distinct. Hence, we only need to
examine the restriction on odd parts.

If λℓ = 0, by the definition of Pν , all parts of λ are even and λℓ−1 ≥ 2. Since φ−e (λ
−) =

(λ1−2, λ2−2, . . . , λℓ−1−2), it follows that all parts of φ−e (λ
−) are even and λℓ−1−2 ≥ 0. Hence

we have φ−e (λ
−) ∈ Pν . For example, let λ = (12, 8, 4, 2, 0) ∈ Pν , then ρ−(λ) = (10, 6, 2, 0) ∈ Pν .

If λℓ ≥ 1 and λℓ−1 = λℓ + 1, assuming λℓ = a and λ0 = ∞, it is clear that there ex-
ists a unique i0, with 1 ≤ i0 ≤ ℓ − 1, such that λi0 < 2a + 1 < λi0−1. Thus φ−c (λ) =
(λ1, λ2, . . . , λi0−1, 2a+ 1, λi0 , . . . , λℓ−2). Since λ ∈ Pν , we know that all odd parts in λ are less
than 2a, which implies that the largest odd part in φ−c (λ) is 2a + 1. By the definition of φ−e ,
we obtain φ−e (φ

−
c (λ)) = (λ1 − 2, λ2 − 2, . . . , λi0−1 − 2, 2a− 1, λi0 − 2, . . . , λℓ−2 − 2), which leads

to the largest odd part in φ−e (φ
−
c (λ)) being 2a − 1. If i0 = ℓ − 1 then we are done, otherwise

the smallest part in φ−e (φ
−
c (λ)) is λℓ−2 − 2. Note that the partition λ is distinct and λℓ = a, so

it is clear that λℓ−2−2 ≥ λℓ+2−2 ≥ a. Hence we deduce that φ−e (φ
−
c (λ)) ∈ Pν . For example,

let λ = (10, 8, 7, 5, 4) ∈ Pν , then ρ−(λ) = (8, 7, 6, 5) ∈ Pν .

If λℓ ≥ 1 and λℓ−1 ≥ λℓ + 2, we have φ−o (λ) = (λ1 − 2, λ2 − 2, . . . , λℓ−1 − 2, λℓ − 1).
For 1 ≤ i ≤ ℓ − 1, suppose that λi is odd, then by the definition of Pν , we conclude that
λi ≤ 2λℓ − 1, which implies that λi − 2 ≤ 2λℓ − 3 = 2(λℓ − 1) − 1, thus φ−o (λ) ∈ Pν . For
example, let λ = (8, 6, 5, 3) ∈ Pν , then ρ−(λ) = (6, 4, 3, 2) ∈ Pν .

Lemma 3.4 Given any partition λ = (λ1, . . . , λℓ) ∈ Pν, define the constructive operators ρ+2
by ρ+2 (λ) = φ+o (λ) and ρ

+
1 as follows.

i. ρ+1 (λ) = (φ+e (λ))
+ if λi is even for all 1 ≤ i ≤ ℓ;

ii. ρ+1 (λ) = φ+c (φ
+
e (λ)) if λi is odd for some 1 ≤ i ≤ ℓ.

Then we have both ρ+1 (λ) ∈ Pν and ρ+2 (λ) ∈ Pν .

The proof of Lemma 3.4 is routine and similar to Lemma 3.1, Lemma 3.2 and Lemma
3.3 so we omit the proof here and just present some examples. Let λ = (10, 8, 7, 6, 5) ∈ Pν ,
then ρ+2 (λ) = (12, 10, 9, 8, 6) ∈ Pν . Let λ = (10, 8, 4, 2) ∈ Pν , then ρ+1 (λ) = (φ+e (λ))

+ =
(12, 10, 6, 4, 0) ∈ Pν and let λ = (10, 8, 7, 4) ∈ Pν , then ρ+1 (λ) = φ+c (φ

+
e (λ)) = (12, 10, 6, 5, 4) ∈

Pν .

Combinatorial proof of (1.8). By (3.2) and (2.21), we will construct the odd Ferrers graph
Fη = F(η1,...,ηm+1) ∈ B1

ν(m,n) from a partition λ = (λ1, . . . , λm+1) ∈ Pν(m,n) by the following
procedure. To this end, set λ0 = λ and suppose that for i ≥ 1 the partition λi−1 has been
constructed. Then we will continue constructing the partition λi by setting λi = ρ−(λi−1)
until ℓ(λi) = 1. Denote by t(λ) the i satisfying ℓ(λi) = 1 and dλ = (dλ1 , . . . , d

λ
t(λ)) the difference

sequence with dλi = dρ−(λ
i−1). Thus we have λi ∈ Pν for each 1 ≤ i ≤ t(λ) by Lemma 3.3.

It is easy to see that the number of even numbers in dλ is m and |λt| +
∑t(λ)

i=1 d
λ
i = n. For
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partitions size differences

λ1 : (8, 6, 5, 3) dρ−(λ
0) = 8

λ2 : (6, 4, 3, 2) dρ−(λ
1) = 7

λ3 : (4, 3, 2) dρ−(λ
2) = 6

λ4 : (3, 2) dρ−(λ
3) = 4

λ5 : (3) dρ−(λ
4) = 2

Table 3.3: detailed construction for λ = (10, 8, 5, 4, 3)

example, let λ = (10, 8, 5, 4, 3) ∈ Pν(4, 30), from Table 3.3 we have t(λ) = 5, λ5 = (3) and
dλ = (8, 7, 6, 4, 2).

Claim 3.3 We have dλ
t(λ) = 2 and for 1 ≤ i ≤ t(λ)− 1, if dλi = 2k + 1 for some k ≥ 1, then

∣

∣

∣

{

j : dλj is even, i+ 1 ≤ j ≤ t(λ)
}
∣

∣

∣
= k.

Proof of Claim 3.3. By the definition of the operator ρ−, we know that for 1 ≤ i ≤ t(λ),
ℓ(λi−1) = ℓ(λi) + 1 = k + 1 if and only if dλi = 2k for some k ≥ 1. Thus dλ

t(λ) = 2 since

ℓ(λt(λ)) = 1 and ℓ(λt(λ)−1) = 2 by the terminating condition. For 1 ≤ i ≤ t(λ) − 1, if
dλi = 2k + 1 > 1, we can easily deduce that both λi−1 and λi have k + 1 parts by Lemma 3.3.
Since the length of λi is decreased from k + 1 to 1, there are exactly k even dλj ’s in the set

{dλi+1, . . . , d
λ
t(λ)}.

Setting t = t(λ), we will construct Fη by λt and dλ as follows. Let ηt be the partition with
only one part |λt| + 1, then we have Fηt ∈ Bν and |Fηt | = |λt|. For t − 1 ≥ i ≥ 0, suppose
that we have obtained Fηi+1 . If dλi+1 is even, we construct Fηi by first adding a new box at
the end of each row of Fηi+1 and a new row with only one box under the bottom of Fηi+1 ,
then filling the added boxes in the first and new rows by 1’s and the other boxes by 2’s. If
dλi+1 is odd, we add one box at the end of each row of Fηi+1 , and fill the added boxes with
2’s but the box in the first row with 1. Note that these manipulations ensure that Fηi ∈ Bν
and ℓ(Fηi) = ℓ(Fηi+1) + 1 if dλi+1 is even, ℓ(Fηi) = ℓ(Fηi+1) if dλi+1 is odd. By Claim 3.3, it
can be seen ℓ(Fηi+1) =

⌈

(dλi+1 + 1)/2
⌉

and |Fηi | = |Fηi+1 | + |dλi+1| for 0 ≤ i ≤ t− 1. Thus by
letting Fη = Fη0 , we arrive at Fη ∈ B1

ν(m,n). As the above example for λ = (10, 8, 5, 4, 3), the
corresponding Fη = F(9,5,4,3,1) ∈ Pν(4, 30) is generated in Figure 3.2.

To complete the proof, we need to construct the corresponding partition λ ∈ Pν(m,n) from
a given odd Ferrers graph Fη ∈ B1

ν(m,n). Let Fη0 = Fη. For i ≥ 1, we construct Fηi by letting
Fηi = F(φ∗(ηi−1)) until ℓ(Fηi) = 1 for some i. Denote by r(Fη) the i such that ℓ(Fηi) = 1 and

hFη = (h
Fη

1 , . . . , h
Fη

r(Fη)
) the difference sequence, where h

Fη

i = |Fηi−1 | − |Fηi | for 1 ≤ i ≤ r(Fη).
Now we can generate λ by using constructive operators ρ+1 and ρ+2 as follows. Let r = r(Fη)
and λr = (|Fηr | − 1) be the partition with only one part |Fηr | − 1, then it follows that λr ∈ Pν
and |λr| = |Fηr |. For i ranging from r−1 to 0, let λi = ρ+1 (λ) if h

Fη

i+1 is even and let λi = ρ+2 (λ)

if h
Fη

i+1 is odd. Therefore, by Lemma 3.4, we obtain that λ = λ0 ∈ Pν(m,n).
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1
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Fη = F(9,5,4,3,1)Fη1 = F(8,4,3,2)
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Figure 3.2: the procedure of constructing Fη = F(9,5,4,3,1) from λ = (10, 8, 5, 4, 3), where the
shaded boxes are those added at each step.

λ ∈ Pν(4, 30) Fη ∈ B1
ν(4, 30) λ ∈ Pν(4, 30) Fη ∈ B1

ν(4, 30)

(18, 6, 4, 2, 0) F(15,4,3,2,1) (12, 8, 6, 4, 0) F(7,6,4,3,1)

(16, 8, 4, 2, 0) F(11,6,3,2,1) (10, 8, 6, 4, 2) F(7,5,4,3,2)

(14, 10, 4, 2, 0) F(9,7,3,2,1) (12, 6, 5, 4, 3) F(11,5,4,2,1)

(14, 8, 6, 2, 0) F(9,6,4,2,1) (10, 8, 5, 4, 3) F(9,5,4,3,1)

(12, 10, 6, 2, 0) F(7,6,5,2,1) (8, 7, 6, 5, 4) F(13,5,3,2,1)

Table 3.4: correspondence between Pν(4, 30) and B1
ν(4, 30)

Example 3.2 To conclude this section, we present the one-to-one correspondence between all
λ ∈ Pν(4, 30) and Fη ∈ B1

ν(4, 30) in Table 3.4.

4 Further remarks

Although the trivariate generalizations ω(y, z; q) and ν(y, z; q) of the mock theta functions ω(q)
and ν(q) have been constructed and studied, the identities related to ω(y, z; q) and ν(y, z; q)
that are analogous to Theorem 1.1 still remain mysterious. For the sake of analytic approach,
one may utilize the arithmetic properties of ν̄(α, z; q) and ω̄(α, z; q) investigated in [12], since
ν(y, z; q) and ω(y, z; q) are related to ν̄(α, z; q) and ω̄(α, z; q) by (1.10) and (1.11), respective.
From the perspective of combinatorics, the variable y in ω(y, z; q) or ν(y, z; q) is related to the
columns of the corresponding odd Ferrers graphs, but from the constructive algorithms given
in Section 3, it is difficult to determine which partition statistic in Pω or Pν can be reflected by
y. Thus the simulation of Theorem 1.1 on generalized trivariate mock theta functions ω(y, z; q)
and ν(y, z; q) is desired by either combinatorial or analytic methods.
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