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CONVERGENCE OF MAXIMUM BISECTION RATIO OF

SPARSE RANDOM GRAPHS

BRICE HUANG

Department of Mathematics, MIT, Cambridge, MA, USA

Abstract. We consider sequences of large sparse random graphs whose degree
distribution approaches a limit with finite mean. This model includes both the
random regular graphs and the Erdös-Renyi graphs of constant average degree.
We prove that the maximum bisection ratio of such a graph sequence converges
almost surely to a deterministic limit. We extend this result to so-called 2-spin
spin glasses in the paramagnetic to ferromagnetic regime. Our work generalizes
the graph interpolation method to some non-additive graph parameters.

1. Introduction

The interpolation method is used in a remarkable paper by Guerra and Toninelli
[5] to prove the existence of an infinite volume limit of thermodynamic quantities.
In this method, a system of size n is compared, by a sequence of interpolating
systems, to a pair of independent systems of size n1 and n2, where n1 + n2 = n.
If, at each step of the interpolation, the parameter of interest increases, then the
parameter is subadditive in n, and therefore converges when divided by n.

Bayati, Gamarnik, and Tetali [1] adapted this technique in a combinatorial set-
ting as graph interpolation. Using graph interpolation, [1] proved that in both
the sparse Erdös-Renyi and d-regular random graph models, several graph parame-
ters, including independence number and maxcut size, converge when divided by n.
Gamarnik [4] showed an analogous result for log-partition functions in the context
of right-convergence of graphs, and found that the subadditivity required for graph
interpolation follows from a concavity property of the graph parameter.

In a recent synthesis, Salez [8] further generalized these results by identifying
the properties of these parameters that permit interpolation; Salez proved that an
interpolation argument succeeds whenever the graph parameter satisfies additivity,
Lipschitz, and concavity conditions. Moreover, [8] generalized the d-regular random
graph model of [1] to graphs with arbitrary degree distribution generated by a
configuration model.

The interpolation arguments in the literature all depend on an additivity prop-
erty of the graph parameter – that if G is the vertex-disjoint union of graphsG1, G2,
the graph parameter f satisfies f(G) = f(G1) + f(G2). While many graph param-
eters of interest, such as independence number, maxcut, K-SAT, and log-partition
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functions all have this property, other graph parameters, such as maximum bisec-
tion, do not.

In this paper, we show that the maximum bisection parameter in the arbitrary
degree sequence model converges when divided by n. The random regular graph
case of our result resolves an open problem on spin glasses [6, Problem 2.3]. The
analogue of this problem for Erdös-Renyi random graphs was resolved in an un-
published result of Gamarnik and Tetali; this result is also implied by our result.

We then consider a type of p-hybrid bisections for p ∈ [0, 1], interpolating be-
tween the maximum and minimum bisections. These are the maximum bisections
of the “2-spin spin glass” model studied by Franz and Leone in [2], where the pa-
rameter p determines the ferromagnetism of the system. We show that for p ≥ 1

2 ,
the p-hybrid bisection in the arbitrary degree sequence model also converges when
divided by n. In other words, the maximum bisection of the 2-spin spin glass model
has a scaling limit in the paramagnetic to ferromagnetic regime.

The key idea allowing us to extend the results in [1] and [8] to maximum bisection
and maximum p-hybrid bisection, which are not additive, is to consider (A,B)-
bisections, bisections that also bisect two given sets A,B that partition V (G). This
added constraint allows us to decompose a system into two parts, an operation
that previously depended on additivity. By showing a form of subadditivity on
maximum (A,B)-bisections, we can show subadditivity on maximum bisection and
establish the existence of a scaling limit.

Acknowledgements. The author gratefully acknowledges Mustazee Rahman for
many insightful conversations, and for bringing much of the relevant literature to
the author’s attention. The author also thanks the MIT Math Department’s Un-
dergraduate Research Opportunities Program, in which this work was completed.

2. Preliminaries

2.1. Random Graphs with Given Degree Sequence. Throughout this paper,
we will work with finite, undirected graphs, where loops and multiple edges are
allowed.

We will work with the following random graph model. Consider nodes [n] =
{1, . . . , n}, and a degree function d : [n] → N. Create a multiset Hd of nodes, where
each i ∈ [n] appears d(i) times. Each (possibly partial) matching m of Hd induces
a graph G[m], which contains an edge (i, j) for every pair {i, j} ∈ m. Note that if m
is not a complete matching, some vertex i in G[m] will have degree less than d(i).
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Figure 1. A matching of Hd, where d(1) = d(2) = 2 and d(3) =
d(4) = 1.
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We let Gd denote the distribution of G[m], where m is a uniformly random com-
plete matching on Hd. Note that when d is a constant function with value r, Gd is
the random r-regular graph model, and when d is sampled from the degree distribu-
tion of an Erdös-Renyi random graph, the doubly-random Gd is the corresponding
Erdös-Renyi random graph model.

We say a sequence {dn : [n] → N}n≥1 converges in distribution to a probability
measure µ : N → [0, 1] with finite mean µ if for all k ∈ N,

(2.1)
1

n

∑

i∈[n]

1dn(i)=k → µ(k)

and

(2.2)
1

n

∑

i∈[n]

dn(i) → µ

as n → ∞.
The results in this paper are concerned with families of random graphs {Gdn

}n≥1,
where each Gdn

is sampled independently, and where the degree functions dn con-
verge in distribution to a measure µ with finite mean.

2.2. Graph Parameters. A graph parameter is a real-valued, isomorphism-invariant
function on graphs. Given a graph parameter f and a graph G, define ∆G,f as the
matrix given by

(2.3) ∆G,f
ij = f(G + ij)− f(G)

for i, j ∈ V (G).
We say a graph parameter f is additive if

(2.4) f(G) = f(G1) + f(G2)

when G is the disjoint union of G1 and G2. We say f is 1-Lipschitz if for all G, and
all i, j ∈ V (G),

(2.5) |∆G,f
ij | ≤ 1.

Finally we say f is concave if

(2.6) x · 1 = 0 ⇒ xT∆G,fx ≤ 0,

where 1 is the all-1 vector on V (G).
The most general result on graph parameters is due to Salez.

Theorem 2.1. [8] Let f be an additive, κ-Lipschitz, concave graph parameter, and
let {dn}n≥1 converge in distribution to a measure µ with finite mean. Then, the
sequence of independent samples

(2.7)
1

n
f (Gdn

)

converges almost surely to a limit Ψ(µ) as n → ∞. Moreover, the scaling limit

(2.8) lim
n → ∞

1

n
E [f (Gdn

)]

exists and equals Ψ(µ).
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Bayati, Gamarnik, and Tetali [1] showed, before Salez, that the scaling limit
(2.8) exists for the max-cut, independence number, K-SAT, and not-all-equal K-
SAT parameters, in the random r-regular graph and Erdös-Renyi random graph
models. As these parameters all satisfy the hypothesis of Theorem 2.1, and the
random regular graph and Erdös-Renyi random graph models are special cases of
the arbitrary degree sequence model, this result is a consequence of Theorem 2.1.

3. Results

3.1. Graph Bisections. Define the maximum bisection of a graph G by

(3.1) MB(G) = max
{

e(V1, V2)|V1, V2 partition V (G),
∣

∣

∣
|V1| − |V2|

∣

∣

∣
≤ 1
}

,

where e(V1, V2) is the number of edges between V1 and V2 in G. Observe that the
maximum bisection is not additive, and therefore Theorem 2.1 does not apply.

The first result of this paper is:

Theorem 3.1. Let {dn}n≥1 converge in distribution to a measure µ with finite
mean. Then,

(3.2)
1

n
MB (Gdn

) ,

where each Gdn
is sampled independently, converges almost surely as n → ∞.

Moreover, the scaling limit

(3.3) lim
n → ∞

1

n
E [MB (Gdn

)]

exists.

Whether the same result holds for the minimum bisection graph parameter is an
open problem. In fact, the random regular graph case of this problem is implied
by the following stronger conjecture.

Conjecture 3.2. [9] Let MC and mB denote, respectively, the max-cut and min-
bisection parameters, and let G(n, r) be a random r-regular graph on n vertices.
Then,

(3.4) MC(G(n, r)) +mB(G(n, r)) = |E|+ o(n),

where |E| = 1
2nr is the number of edges in G(n, r).

3.2. Hybrid Bisections. We define the p-hybrid bisection HBp of a graph G as
follows. Let Ω be a labeling of the edges of G, with each edge independently labeled
+1 with probability p, and −1 with probability 1− p, and let G(Ω) denote G with
the labeling Ω. In the statistical physics literature (cf. [2], [3], [7]), the graph G(Ω)
is a 2-spin spin glass, with the parameter p determining the system’s magnetism:
the system is ferromagnetic at p = 1, paramagnetic at p = 1

2 , and antiferromagnetic
at p = 0.

We define

(3.5) HBp(G) = E [MB(G(Ω))] ,

where the expectation is over the randomness of Ω.
Note that when p = 1, a p-hybrid bisection is a max bisection, and when p = 0,

a p-hybrid bisection is a min bisection. Our main result is:
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Theorem 3.3. Fix p ≥ 1
2 , and let {dn}n≥1 converge in distribution to a measure

µ with finite mean. Then,

(3.6)
1

n
HBp (Gdn

) ,

where each Gdn
is sampled independently, converges almost surely as n → ∞.

Moreover, the scaling limit

(3.7) lim
n → ∞

1

n
E [HBp (Gdn

)]

exists.

As Theorem 3.1 is a special case of Theorem 3.3, the rest of this paper will be
devoted to proving Theorem 3.3.

Remark 3.4. Let α ∈ (0, 1). We can define an α-cut of G as a cut that partitions
V (G) into the ratio α : (1− α). In particular, a bisection is a 1

2 -cut. Theorems 3.1
and 3.3 remain true when “bisection” is replaced by “α-cut,” and their proofs are
analogous.

4. Graph Pseudo-Parameters

4.1. Constrained Max-Bisections. Define a graph pseudo-parameter as a real-
valued, not necessarily isomorphism-invariant function on graphs.

The main idea that allows us to consider the non-additive parameter HBp is as
follows. Let A,B be a partition of the vertices of a graph G. Say an (A,B)-bisection
is a bisection of the vertices of G that also bisects the sets A,B. LetMBA,B denote
the maximum (A,B)-bisection of G. Analogously, define

(4.1) HBA,B
p (G) = E

[

MBA,B(G(Ω))
]

,

where Ω is defined as before. Note that bothMBA,B and HBA,B
p are graph pseudo-

parameters, and that they are additive in the following sense. When there are no
edges from A and B,

(4.2) MBA,B(G) =MB(G[A]) +MB(G[B])

and

(4.3) HBA,B
p (G) = HBp(G[A]) +HBp(G[B])

where G[A] and G[B] are the induced subgraphs of G on A and B.
We will prove the following result, which, in light of the bound

(4.4) HBA,B
p (G) ≤ HBp(G),

will imply that HBp is subadditive.

Proposition 4.1. Let A,B be a partition of [n]. Let d : [n] → N be a function,
and let d ↑ A, d ↑ B denote its restrictions to A and B. Then,

(4.5) E [HBp(Gd↑A)] + E [HBp(Gd↑B)] ≤ E
[

HBA,B
p (Gd)

]

+ ψ (|E(Gd)|) ,

where ψ(x) = 7
√

x log(1 + x).
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4.2. Graph Interpolation. Fix a partition A,B of [n] and a function d : [n] → N.
Say that an edge in a matching m ∈ Hd is an A-edge if both of its endpoints are in
A; define a B-edge analogously. Say an edge is a cross-edge if it has an endpoint
in each of A and B.

For α, β, γ ∈ N, define M(α, β, γ) to be the set of matchings m ∈ Hd with α

A-edges, β B-edges, and γ cross-edges; say (α, β, γ) is feasible if at least one such
matching exists.

For a graph pseudo-parameter g and feasible (α, β, γ), define

(4.6) Fg(α, β, γ) = Em∈M(α,β,γ)g (G[m]) .

Let

(4.7) d(A) :=
∑

i∈A

d(i), d(B) :=
∑

i∈B

d(i)

be the total degree of the sets A and B. The following result is the proof of Theorem
3 of [8]; while this was proved for graph parameters, its proof extends directly to
pseudo-parameters.

Proposition 4.2. [8] Let g be a graph pseudo-parameter obeying the following
conditions.

• (Lipschitz Continuity) For any feasible (α, β, γ) and (α′, β′, γ′):

(4.8) |Fg(α, β, γ)− Fg(α
′, β′, γ′)| ≤ |α− α′|+ |β − β′|+ |γ − γ′|.

• (Local Super-Additivity) If δ ≥ 2 and (α, β, γ + δ) is feasible, then

(4.9)
1

2
(Fg(α+ 1, β, γ) + Fg(α, β + 1, γ)) ≤ Fg(α, β, γ + 1) +

2

δ
.

Then, for any γ ≤ min(d(A), d(B)),

(4.10) Fg

(⌊

d(A)

2

⌋

,

⌊

d(B)

2

⌋

, 0

)

≤ Fg

(⌊

d(A) − γ

2

⌋

,

⌊

d(B)− γ

2

⌋

, γ

)

+ ψ(γ).

A complete matching of Hd with γ cross-edges must have d(A)−γ
2 A-edges and

d(B)−γ
2 B-edges, respectively. Moreover, a uniformly random complete matching of

Hd, conditioned on having γ cross-edges, is uniformly distributed inM
(

d(A)−γ
2 ,

d(B)−γ
2 , γ

)

.

Thus, Fg

(

d(A)−γ
2 ,

d(B)−γ
2 , γ

)

is the expected value of g(G) for G sampled from Gd,

conditioned on G having γ cross-edges.
Thus, by taking a weighted average of (4.10) over γ of the correct parity, we get

the following result.

Corollary 4.3. Let g be a graph pseudo-parameter obeying (4.8) and (4.9). Then,

(4.11) Fg

(⌊

d(A)

2

⌋

,

⌊

d(B)

2

⌋

, 0

)

≤ E [g(Gd)] + ψ (|E(Gd)|) .

5. Proof of Proposition 4.1

Observe that every matching in M(α+ 1, β, γ) arises from adding an A-edge to
some matching in M(α, β, γ) in α+ 1 ways. Thus, adding a uniformly random A-
edge to a matching sampled uniformly from M(α, β, γ) generates the distribution
M(α + 1, β, γ). Analogously, adding a uniformly random B edge or cross-edge
generates the distributions M(α, β + 1, γ) and M(α, β, γ + 1), respectively.
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We will first show that for any p ≥ 1
2 , HB

A,B
p satisfies the hypotheses of Corol-

lary 4.3.

Lemma 5.1. For any feasible (α, β, γ) and (α′, β′, γ′),

(5.1) |FHBA,B
p

(α, β, γ)− FHBA,B
p

(α′, β′, γ′)| ≤ |α− α′|+ |β − β′|+ |γ − γ′|.

Proof. It suffices to prove this for the case when (α, β, γ) and (α′, β′, γ′) differ by
1 in exactly one coordinate.

Let m be uniformly sampled from M(α, β, γ), and m′ be obtained from m by
adding a uniformly random A-edge. Conditioned on any labeling Ω of the edges of
G[m], the value of MBA,B(G[m](Ω)) changes by most 1 when we add a uniformly
random A-edge to m. Thus, |HBA,B

p (G[m]) − HBA,B
p (G[m′])| ≤ 1. But, m′ is

uniformly distributed in M(α+ 1, β, γ), so the result follows.
The argument for B-edges and cross-edges is analogous. �

Lemma 5.2. If (α, β, γ + δ) is feasible, then

(5.2)
1

2

(

FHBA,B
p

(α+ 1, β, γ) + FHBA,B
p

(α, β + 1, γ)
)

≤ FHBA,B
p

(α, β, γ + 1) +
2

δ
.

Proof. We will prove a stronger claim: for any m ∈ M(α, β, γ), and any labeling Ω
of G[m],

1

2
E
[

MBA,B(G[m](Ω) + ea)
]

+
1

2
E
[

MBA,B(G[m](Ω) + eb)
]

≤ E
[

MBA,B(G[m](Ω) + ec)
]

+
2

δ
,

(5.3)

where ea, eb, ec are uniformly random A-, B-, and cross-edges not in m, labeled +1
with probability p and −1 with probability 1 − p. From this, the desired result
follows from averaging over all m ∈ M(α, β, γ) and all labelings Ω of G[m].

Let C∗ be the collection of maximal (A,B)-bisections of G[m](Ω). We introduce
the equivalence relation ∼ on the half-edges in Hd not paired by m, where x ∼ y

if the vertices corresponding to x, y are on the same side of all bisections in C∗.
Moreover, we say two equivalence classes are opposing if their members appear on
the opposite side of all bisections of C∗.

Let the equivalence classes of ∼ be O1, P1, O2, P2, . . . , Ok, Pk, where Oi and Pi

are opposing.
If we add a (+1)-labeled edge e+ to G[m](Ω), its maxcut increases if and only

if e+ crosses some cut in C∗; equivalently, the endpoints of e+ must be in different
equivalence classes.

If we add a (−1)-labeled edge e− to G[m](Ω), its maxcut decreases if and only
if e− crosses all cuts in C∗; equivalently, the endpoints of e− must be in opposite
equivalence classes.

Define oAi = |Oi ∩ A|, and define oBi , p
A
i , p

B
i analogously. Define

(5.4) a =
k
∑

i=1

(oAi + pAi ), b =
k
∑

i=1

(oBi + pBi ).

It follows that:
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E
[

MBA,B(G[m](Ω) + ea)
]

−MBA,B(G[m](Ω))

= p

[

1−

k
∑

i=1

(

oAi (o
A
i − 1)

a(a− 1)
+
pAi (p

A
i − 1)

a(a− 1)

)

]

+ (1− p)

[

−

k
∑

i=1

2oAi p
A
i

a2

]

= p

[

1−
k
∑

i=1

(

(oAi )
2

a2
+

(pAi )
2

a2
−
oAi (a− oAi )

a2(a− 1)
−
pAi (a− pAi )

a2(a− 1)

)

]

+ (1− p)

[

−
k
∑

i=1

2oAi p
A
i

a2

]

.

(5.5)

Analogously,

E
[

MBA,B(G[m](Ω) + eb)
]

−MBA,B(G[m](Ω))

= p

[

1−

k
∑

i=1

[

(oBi )
2

b2
+

(pBi )
2

b2
−
oBi (b− oBi )

b2(b − 1)
−
pBi (b− pBi )

b2(b− 1)

]

]

+ (1− p)

[

−

k
∑

i=1

2oBi p
B
i

b2

]

.

(5.6)

and

E
[

MBA,B(G[m](Ω) + ec)
]

−MBA,B(G[m](Ω))

= p

[

1−

k
∑

i=1

[

oAi o
B
i

ab
+
pAi p

B
i

ab

]

]

+ (1 − p)

[

−

k
∑

i=1

[

oAi p
B
i

ab
+
pAi o

B
i

ab

]

]

.
(5.7)

Equations (5.5), (5.6), (5.7) imply:

1

2
E
[

MBA,B(G[m](Ω) + ea)
]

+
1

2
E
[

MBA,B(G[m](Ω) + eb)
]

− E
[

MBA,B(G[m](Ω) + ec)
]

= −
1

2
p

k
∑

i=1

[

(oAi )
2

a2
+

(pAi )
2

a2
+

(oBi )
2

b2
+

(pBi )
2

b2
−

2oAi o
B
i

ab
−

2pAi p
B
i

ab

]

−
1

2
(1− p)

k
∑

i=1

[

2oAi p
A
i

a2
+

2oBi p
B
i

b2
−

2oAi p
B
i

ab
−

2pAi o
B
i

ab

]

+
1

2
p

k
∑

i=1

[

oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)
+
oBi (b − oBi )

b2(b− 1)
+
pBi (b− pBi )

b2(b − 1)

]

.

(5.8)

The first main observation is that
(5.9)

k
∑

i=1

[

oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)

]

≤

k
∑

i=1

[

oAi
a(a− 1)

+
pAi

a(a− 1)

]

=
1

a− 1
≤

2

δ
,

and analogously

(5.10)

k
∑

i=1

[

oBi (b− oBi )

b2(b− 1)
+
pBi (b − pBi )

b2(b− 1)

]

≤
2

δ
.
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So,

1

2
p

k
∑

i=1

[

oAi (a− oAi )

a2(a− 1)
+
pAi (a− pAi )

a2(a− 1)
+
oBi (b− oBi )

b2(b − 1)
+
pBi (b− pBi )

b2(b− 1)

]

≤
2p

δ

≤
2

δ
.

(5.11)

So, it remains to show

−
1

2
p

k
∑

i=1

[

(oAi )
2

a2
+

(pAi )
2

a2
+

(oBi )
2

b2
+

(pBi )
2

b2
−

2oAi o
B
i

ab
−

2pAi p
B
i

ab

]

−
1

2
(1− p)

k
∑

i=1

[

2oAi p
A
i

a2
+

2oBi p
B
i

b2
−

2oAi p
B
i

ab
−

2pAi o
B
i

ab

]

≤ 0.

(5.12)

The second main observation is that the left-hand side is a linear function of p, so
verifying (5.12) at p = 1 and p = 1

2 is sufficient. At p = 1, (5.12) follows from:

(5.13) −
1

2

k
∑

i=1

[

(

oAi
a

−
oBi
b

)2

+

(

pAi
a

−
pBi
b

)2
]

≤ 0.

At p = 1
2 , (5.12) follows from:

(5.14) −
1

4

k
∑

i=1

[

oAi
a

+
pAi
a

−
oBi
b

−
pBi
b

]2

≤ 0.

�

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. By Propositions 5.1 and 5.2, HBA,B
p satisfies the hy-

potheses of Corollary 4.3. Thus,

(5.15) FHBA,B
p

(⌊

d(A)

2

⌋

,

⌊

d(B)

2

⌋

, 0

)

≤ E
[

HBA,B
p (Gd)

]

+ ψ (|E(Gd)|) .

The graphs arising from M
(⌊

d(A)
2

⌋

,
⌊

d(B)
2

⌋

, 0
)

have no cross-edges. So, an

optimal (A,B)-bisection of these graphs is the sum of an optimal bisection of A
and an optimal bisection of B. Thus,

(5.16) FHBA,B
p

(⌊

d(A)

2

⌋

,

⌊

d(B)

2

⌋

, 0

)

= E [HBp(Gd↑A)] + E [HBp(Gd↑B)] ,

as desired. �

6. Proof of Theorem 3.3

On the space of probability measures on N with finite mean, define the Wasser-
stein distance

(6.1) W(µ, µ′) =

∞
∑

i=1

∣

∣

∣

∣

∣

∞
∑

k=i

(µ(k)− µ′(k)

∣

∣

∣

∣

∣

.

We will use the following result from [8].
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Proposition 6.1. Let f be a 1-Lipschitz graph parameter. For any d, d′ : [n] → N,

(6.2)

∣

∣

∣

∣

1

n
E [f(Gd)]−

1

n
E [f(Gd′)]

∣

∣

∣

∣

≤ 2W

(

1

n

n
∑

i=1

δd(i),
1

n

n
∑

i=1

δd′(i)

)

.

Throughout this proof, let GIID
µ,n denote the random graph on n vertices, where

each vertex’s degree is sampled i.i.d. from the distribution µ.

Proof of Theorem 3.3. Proposition 4.1 immediately implies the subadditivity of
HBp: for all partitions A,B of [n], and all d : [n] → N,

(6.3) E [HBp(Gd↑A)] + E [HBp(Gd↑B)] ≤ E [HBp(Gd)] + ψ (|E(Gd)|) .

Fix a distribution µ on N with finite mean. By averaging the above inequality over
d whose values are sampled i.i.d. from µ, we have

(6.4) E

[

HBp(G
IID
µ,|A|)

]

+ E

[

HBp(G
IID
µ,|B|)

]

≤ E
[

HBp(G
IID
µ,n )

]

+ ψ

(

1

2
µn

)

,

where we have used Jensen’s Inequality on the concavity of ψ.
Note that ψ(12µn) = o

(

n2/3
)

. By Fekete’s Subadditivity Lemma, this implies
that the scaling limit

(6.5) lim
n → ∞

1

n
E
[

HBp(G
IID
µ,n )

]

exists. Let this limit equal Ψ(µ).
Since HBp is Lipschitz, Proposition 6.1 applies. By setting d = dn, sampling

each d′(1), . . . , d′(n) uniformly from µ, and taking the limit as n → ∞, we get

(6.6)

∣

∣

∣

∣

1

n
E [f(Gdn

)]−
1

n
E
[

f(GIID
µ,n )

]

∣

∣

∣

∣

→ 0.

Therefore,

(6.7) lim
n → ∞

1

n
E [f(Gdn

)] = Ψ(µ)

as well. Moreover, as HBp is Lipschitz, Azuma-Hoeffding’s inequality implies the
concentration inequality

(6.8) P [|HBp(Gd)− E [HBp(Gd)]| ≥ ε] ≤ exp

(

−
ε2

4
∑n

i=1 d(i)

)

.

Since d converges in distribution to µ, the Borel-Cantelli Lemma implies the almost-
sure convergence

(6.9)

∣

∣

∣

∣

1

n
HBp(Gdn

)−
1

n
E [HBp(Gdn

)]

∣

∣

∣

∣

→ 0.

The result follows. �
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[9] L. Zdeborová and S. Boetther. Conjecture on the maximum cut and bisetion width in random

regular graphs. Journal of Statistical Mechanics, page P02020, 2010.


	1. Introduction
	Acknowledgements

	2. Preliminaries
	2.1. Random Graphs with Given Degree Sequence
	2.2. Graph Parameters

	3. Results
	3.1. Graph Bisections
	3.2. Hybrid Bisections

	4. Graph Pseudo-Parameters
	4.1. Constrained Max-Bisections
	4.2. Graph Interpolation

	5. Proof of Proposition ??
	6. Proof of Theorem ??
	References

