Localizing Weak Convergence in L_{∞}

J. F. Toland[∗]

September 18, 2018

Abstract

In a general measure space $(X, \mathcal{L}, \lambda)$, a characterization of weakly null sequences in $L_{\infty}(X, \mathcal{L}, \lambda)$ $(u_k \rightharpoonup 0)$ in terms of their pointwise behaviour almost everywhere is derived from the Yosida-Hewitt identification of $L_{\infty}(X, \mathcal{L}, \lambda)^*$ with finitely additive measures, and extreme points of the unit ball in $L_{\infty}(X,\mathcal{L},\lambda)^*$ with $\pm\mathfrak{G}$, where \mathfrak{G} denotes the set of finitely additive measures that take only values 0 or 1. When (X, τ) is a locally compact Hausdorff space with Borel σ -algebra \mathcal{B} , the well-known identification of $\mathfrak G$ with ultrafilters means that this criterion for nullity is equivalent to localized behaviour on open neighbourhoods of points x_0 in the one-point compactification of X. Notions of weak convergence at x_0 and the essential range of u at x_0 are natural consequences. When a finitely additive measure ν represents $f \in L_\infty(X,\mathcal{B},\lambda)^*$ and $\hat{\nu}$ is the Borel measure representing f restricted to $C_0(X, \tau)$, a minimax formula for $\hat{\nu}$ in terms ν is derived and those ν for which $\hat{\nu}$ is singular with respect to λ are characterized.

Keywords: Dual of L_{∞} ; finitely additive measures; weak convergence; ultrafilters; pointwise convergence; extreme points

AMS Subject Classification: 46E30, 28C15, 46T99, 26A39, 28A25, 46B04

1 Introduction

In the usual Banach space $C(Z)$ of real-valued continuous functions on a compact metric space Z with the maximum norm, it is well-known [3] that v_k converges weakly to v ($v_k \to v$) if and only if $\{||v_k||\}$ is bounded and $v_k(z) \to v(z)$ for all $z \in Z$. This observation amounts to a simple test for weak convergence in $C(Z)$ from which follows, for example, the weak sequential continuity [2] of composition maps $u \mapsto f \circ u$, $u \in C(Z)$, when $f : \mathbb{R} \to \mathbb{R}$ is continuous. However $u_k \to u$ in $L_{\infty}(X, \mathcal{L}, \lambda)$ implies that ${\|u_k\|_{\infty}}$ is bounded and often that $u_k(x) \to u(x)$ almost everywhere (Lemma 3.3), but the converse is false (Remark 3.5) and, despite the identification of $L_{\infty}(X, \mathcal{L}, \lambda)$ with $C(Z)$ for some compact Z [5, VIII 2.1], it can be difficult to decide whether or not a given sequence is weakly convergent in $L_{\infty}(X,\mathcal{L},\lambda)$. To address this issue Theorem 3.6 characterises sequences that are weakly convergent to 0 in $L_{\infty}(X,\mathcal{L},\lambda)$ (hereafter referred to as weakly null) purely in terms of their pointwise behaviour almost everywhere, and a practical test for weak nullity ensues (Corollary 3.7 and Section 3.1). When (X, τ) is a locally compact Hausdorff topological space, localization in terms of opens sets, as opposed to pointwise, follows from the identification of ultrafilters in the corresponding Borel measure space $(X, \mathcal{B}, \lambda)$ with extreme points in the unit ball of $L_{\infty}(X,\mathcal{B},\lambda)^*$. When ν is the finitely additive measure corresponding to $f \in L_{\infty}(X,\mathcal{B},\lambda)^*$ we give a formula for the Borel measure $\hat{\nu}$ that represent the restriction \hat{f} of f to

[∗]Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK. masjft@bath.ac.uk

 $C_0(X, \tau)$, defined in Section 5, and use it to characterize those ν for which $\hat{\nu}$ is singular relative to λ . These observations are motivated by examples [8, 13] of singular finitely additive measures that do not yield singular Borel measures when restricted to continuous functions, contrary to a claim by Yosida & Hewitt [15, Thm. 3.4]. The material is organized as follows.

Section 2 is a brief survey of finitely additive measures on σ -algebras and of weak convergence in $L_{\infty}(X,\mathcal{L},\lambda)$ in terms of the Yosida-Hewitt representation of the dual space $L_{\infty}(X,\mathcal{L},\lambda)^*$ as a space $L^{\infty}_{\infty}(X,\mathcal{L},\lambda)$ of finitely additive measures. When \mathfrak{G} denotes elements of $L^{\infty}_{\infty}(X,\mathcal{L},\lambda)$ that take only values $\{0, 1\}$, it follows that $u_k \rightharpoonup u$ in $L_\infty(X, \mathcal{L}, \lambda)$ if and only if $f(u_k) \to f(u)$ for all f represented by elements of \mathfrak{G} . Although obtained independently, this is a special case of Rainwater's Theorem, see Appendix and the Closing Remarks at the end of the paper. The section ends with a brief account of weak sequential continuity of composition operators.

Section 3 begins by remarking that $u_k \rightharpoonup u$ if and only if $|u_k| \rightharpoonup |u|$, noting aspects of the pointwise behaviour of weakly convergent sequences in $L_{\infty}(X, \mathcal{L}, \lambda)$, and observing that a necessary condition, which turns out to be sufficient, is given by Mazur's theorem. The characterization of null sequences in terms of their pointwise behaviour in Theorem 3.6 follows from Yosida-Hewitt theory and the fact that any $u \in L_{\infty}(X, \mathcal{L}, \lambda)$ is a constant ω -almost everywhere in the sense of finitely additive measures when $\omega \in \mathfrak{G}$ (see Remark following Theorem 2.8). An $L_{\infty}(X, \mathcal{L}, \lambda)$ analogue of Dini's theorem on the uniform convergence of sequences of continuous functions that are monotonically convergent pointwise is a corollary, and Theorem 3.6 is illustrated by several examples.

In Section 4, when (X, τ) is a locally compact Hausdorff space and $(X, \mathcal{B}, \lambda)$ is the corresponding Borel measure space, the well-known one-to-one correspondence (2.8) between \mathfrak{G} and a set \mathfrak{F} of ultrafilters (Definition 2.10) leads to a local description of weak convergence: a sequence is weakly convergent in $L_{\infty}(X,\mathcal{B},\lambda)$ if and only if it is weakly convergent at each $x_0 \in X_{\infty}$, the one-point compactification of X. This notion of weak convergence at a point leads naturally to a definition of the essential range $\mathcal{R}(u)(x_0)$ of u at $x_0 \in X_\infty$. For the relation between weak convergence and the pointwise essential range, see Remark 4.5.

For $\nu \in L^*_{\infty}(X,\mathcal{B},\lambda)$, let $\hat{\nu}$ denote the Borel measure that, by the Riesz Representation Theorem [12, Thm. 6.19]), corresponds to the restriction to $C_0(X, \tau)$ of the functional defined on ν on $L_\infty(X, \mathcal{B}, \lambda)$ by (2.1). Section 5 develops a minimax formula (Theorem 5.7) for $\hat{\nu}$ in terms of ν . It follows that if (X, τ) is not compact, $\hat{\nu}$ may be zero when $\nu \ge 0$ is non-zero. In particular when $\omega \in \mathfrak{G}$, either $\hat{\omega} = 0$ or $\hat{\omega} \in \mathfrak{D}$ (a Dirac measure on X) and if (X, τ) is compact $\hat{\omega} \in \mathfrak{D}$. An arbitrary Hahn-Banach extension to $L_{\infty}(X,\mathcal{B},\lambda)$ of a δ -function on $C_0(X,\tau)$ need not be in \mathfrak{G} , but from Section 4.1 there may be infinitely many extensions that are in \mathfrak{G} . Those ν for which $\hat{\nu}$ is singular with respect to λ are characterised in Corollary 5.6.

2 L_{∞} and its Dual

Let λ be a non-negative, complete, countably additive measure on a σ -algebra $\mathcal L$ in a set X and let $\mathcal{N} = \{E \in \mathcal{L} : \lambda(E) = 0\}$. So $(X, \mathcal{L}, \lambda)$ is a measure space and N denotes its null sets. As usual $(L_{\infty}(X,\mathcal{L},\lambda), \|\cdot\|_{\infty})$ denotes the corresponding Banach space of (equivalence classes of) essentially bounded functions. In notation summarised in Section 2.1, the analogue of the Riesz Representation Theorem [12, Thm. 6.19] for functionals in $L_{\infty}(X, \mathcal{L}, \lambda)^*$ is the following.

Theorem 2.1. (Yosida & Hewitt [15], see also [6, Theorem IV.8.16])*. For every bounded linear func-*

tional on $L_{\infty}(X, \mathcal{L}, \lambda)$ *there exists a finitely additive measure (Definition 2.2)* ν *on* \mathcal{L} *such that*

$$
f(w) = \int_X w \, d\nu \, \text{for all } w \in L_\infty(X, \mathcal{L}, \lambda),
$$

$$
\nu(N) = 0 \, \text{for all } N \in \mathcal{N} \text{ and } |\nu|(X) = ||f||_{\infty} < \infty.
$$
 (2.1)

Conversely if ν *is a finitely additive measure on* X *with* $\nu(N) = 0$ *for all* $N \in \mathcal{N}$ *, then f defined by* (2.1) *is in* $L_{\infty}(X, \mathcal{L}, \lambda)^*$. We write $\nu \in L_{\infty}^*(X, \mathcal{L}, \lambda)$ if (2.1) holds for some $f \in L_{\infty}(X, \mathcal{L}, \lambda)^*$. □

Because ν is finitely additive, but not necessarily σ -additive, integrals in (2.1) should be treated with care. For example, the Monotone Convergence Theorem and Fatou's Lemma do not hold, and the Dominated Convergence Theorem holds only in a restricted form. The next section is a review of notation and standard theory; for a comprehensive account see [15], [6, Ch. III] or [4, Ch. 4]. When combined with the Hahn-Banach theorem, Theorem 2.1 yields the existence of a variety of finitely additive measures.

2.1 Finitely Additive Measures: Notation and Definitions

Although finitely additive measures are defined on algebras (closed under complementation and finite unions), here they are considered only on σ -algebras, where their theory is somewhat more satisfactory, because $\mathcal L$ in Theorem 2.1 is a σ -algebra.

Definition 2.2. [15, §1.2-§1.7] *A finitely additive measure* ν *on* $\mathcal L$ *is a mapping from* $\mathcal L$ *into* $\mathbb R$ *with*

$$
\nu(\emptyset) = 0 \text{ and } \sup_{A \in \mathcal{L}} |\nu(A)| < \infty;
$$
\n
$$
\nu(A \cup B) = \nu(A) + \nu(B) \text{ for all } A, B \in \mathcal{L} \text{ with } A \cap B = \emptyset.
$$

A finitely additive measure is σ*-additive if and only if*

$$
\nu\left(\bigcup_{k\in\mathbb{N}}E_k\right)=\sum_{k\in\mathbb{N}}\nu(E_k)\text{ for all }\{E_k\}\subset\mathcal{L}\text{ with }E_j\cap E_k=\emptyset, j\neq k.
$$

Let $\Upsilon(\mathcal{L})$ *and* $\Sigma(\mathcal{L})$ *denote, respectively, the families of finitely additive and* σ *-additive measures on* \mathcal{L} *.*

Since finitely-additive measures are not one-signed, the hypothesis that $\sup_{A \in \mathcal{L}} |\nu(A)| < \infty$ does not follow from the fact that $\nu(X) < \infty$. The following results are from [15, §1.9-§1.12].

For $\nu_1, \nu_2 \in \Upsilon(\mathcal{L}), E \in \mathcal{L}$, let

$$
(\nu_1 \vee \nu_2)(E) = \sup_{E \supset F \in \mathcal{L}} {\nu_1(F) + \nu_2(E \setminus F)},
$$

\n
$$
(\nu_1 \wedge \nu_2)(E) = -((- \nu_1) \vee (-\nu_2))(E).
$$
\n(2.2a)

Then $\nu_1 \vee \nu_2$, $\nu_1 \wedge \nu_2 \in \Upsilon(\mathcal{L})$, which is a lattice, and $\nu \in \Upsilon(\mathcal{L})$ can be written

$$
\nu = \nu^{+} - \nu^{-}
$$
 where $\nu^{+} = \nu \vee 0$, $\nu^{-} = (-\nu) \vee 0$ and $\nu^{+} \wedge \nu^{-} = 0$. (2.2b)

 ν^{\pm} are the positive and negative parts of ν and $|\nu| := \nu^+ + \nu_-$ is its total variation (see Theorem 2.1). For $\nu_1, \nu_2 \in \Upsilon(\mathcal{L})$ write $\nu_1 \ll \nu_2$ (ν_1 is absolutely continuous with respect to ν_2), if for all $\epsilon > 0$ there exists δ such that $|\nu_1(E)| < \epsilon$ when $|\nu_2|(E) < \delta$, and write $\nu_1 \perp \nu_2$ if for every $\epsilon > 0$ there exists $E \in \mathcal{L}$ such that $|\nu_1|(E) + |\nu_2|(X \setminus E) < \epsilon$.

Remark 2.3. When $\nu_1, \nu_2 \in \Sigma(\mathcal{L}) \subset \Upsilon(\mathcal{L})$ the above definitions imply:

$$
\nu_1 \ll \nu_2
$$
 if and only if $|\nu_2|(E) = 0$ implies $\nu_1(E) = 0$ for all $E \in \mathcal{L}$;
 $\nu_1 \perp \nu_2$ if and only if $|\nu_1|(E) + |\nu_2|(X \setminus E) = 0$ for some $E \in \mathcal{L}$.

However it is important that a non-negative finitely additive measure ν which vanishes on $\mathcal N$ (see Theorems 2.1 and 2.9) need not satisfy $\nu \ll \lambda$ if $\nu \notin \Sigma(\mathcal{L})$. \Box **Definition 2.4.** [15, §1.13] *A non-negative* $\nu \in \Upsilon(\mathcal{L})$ *is purely finitely additive (written* $\nu \in \Pi(\mathcal{L})$ *) if*

$$
\{\gamma \in \Sigma(\mathcal{L}): 0 \leqslant \gamma \leqslant \nu\} = \{0\}.
$$

Equivalently, $0 \leq v \in \Pi(\mathcal{L})$ *if and only if* $v \wedge \gamma = 0$ *for all* $0 \leq \gamma \in \Sigma(\mathcal{L})$ *. In general,* $v \in \Upsilon(\mathcal{L})$ *is purely finitely additive if* ν^+ *and* ν^- *are purely finitely additive.*

Note that $\Pi(\mathcal{L}) \cap \Sigma(\mathcal{L}) = \{0\}$ and if $\alpha \in \mathbb{R}$ and $\nu \in \Pi(\mathcal{L})$ then $\alpha \nu \in \Pi(\mathcal{L})$. Moreover $\Pi(\mathcal{L})$ is a lattice [15, Thm. 1.17]: if $\nu_i \in \Pi(\mathcal{L})$, $i = 1, 2$, then $\nu_1 + \nu_2$, $\nu_1 \wedge \nu_2$, $\nu_1 \vee \nu_2 \in \Pi(\mathcal{L})$. The sense in which a purely finitely additive measure *on a* σ *-algebra* is singular with respect to any σ -additive measure is captured by the following observation which is not true if $\mathcal L$ is only an algebra.

Theorem 2.5. [15, Thm 1.22] *For* $0 \le \gamma \in \Sigma(\mathcal{L})$ *and* $0 \le \mu \in \Pi(\mathcal{L})$ *there exists* $\{E_k\} \subset \mathcal{L}$ *with*

$$
E_{k+1} \subset E_k
$$
, $\mu(E_k) = \mu(X)$ for all k and $\gamma(E_k) \to 0$ as $k \to \infty$.

Conversely if $0 \le \mu \in \Upsilon(\mathcal{L})$ *and for all* $0 \le \gamma \in \Sigma(\mathcal{L})$ *a sequence* $\{E_k\}$ *with these properties exists, then* $\mu \in \Pi(\mathcal{L})$ *.*

The significance of purely finitely additive measures is evident from the following.

Theorem 2.6. [15, Thms 1.23 & 1.24] *Any* $\nu \in \Upsilon(\mathcal{L})$ *can be written uniquely as* $\nu = \mu + \gamma$ *where* $\mu \in \Pi(\mathcal{L})$ and $\gamma \in \Sigma(\mathcal{L})$. Any $\nu \in L^*_{\infty}(X, \mathcal{L}, \lambda)$ can be written uniquely as

$$
\nu = \mu + \gamma \in (L^*_{\infty}(X, \mathcal{L}, \lambda) \cap \Pi(\mathcal{L})) \oplus (L^*_{\infty}(X, \mathcal{L}, \lambda) \cap \Sigma(\mathcal{L})).
$$
\n(2.3)

If $\nu \geq 0$ *the elements of the decomposition are non-negative. This is the Yosida-Hewitt Decomposition of finitely additive measures.*

By (2.3), $\nu = \mu + \gamma$ where $\mu \in (L^*_{\infty}(X, \mathcal{L}, \lambda) \cap \Pi(\mathcal{L}))$ and $\lambda \gg \gamma \in \Sigma(\mathcal{L})$. If $(X, \mathcal{L}, \lambda)$ is σ -finite, by the Lebesgue-Radon-Nikodym Theorem [7, Ch. 3.8] there exists $g \in L_1(X, \mathcal{L}, \lambda)$ with

$$
\int_{X} u \, d\gamma = \int_{X} ug \, d\lambda \text{ for all } u \in L_{\infty}(X, \mathcal{L}, \lambda).
$$
 (2.4)

In this case (2.3) can be re-written

$$
\nu = \mu + g\lambda, \quad \mu \in \Pi(\mathcal{L}) \cap L^*_{\infty}(X, \mathcal{L}, \lambda), \quad g \in L_1(X, \mathcal{L}, \lambda). \tag{2.5}
$$

The relation between this and the Lebesgue decomposition of Borel measures is the topic of Section 5.

2.2 **G** : 0-1 Measures

Recall that $L^*_{\infty}(X, \mathcal{L}, \lambda)$ is the set of finitely additive measures on $\mathcal L$ that are zero on N. Let

$$
\mathfrak{G} = \{ \omega \in L^*_{\infty}(X, \mathcal{L}, \lambda) : \omega(X) = 1 \text{ and } \omega(A) \in \{0, 1\} \text{ for all } A \in \mathcal{L} \}. \tag{2.6}
$$

 $A \in \mathcal{L}$ is called a λ -atom if $\lambda(A) > 0$ and if $A \supset E \in \mathcal{L}$ implies $\lambda(E) \in \{0, \lambda(A)\}.$

Theorem 2.7. Suppose $\omega \in \mathfrak{G}$. (a) Either $\omega \in \Pi(\mathcal{L})$ or $\omega \in \Sigma(\mathcal{L})$. (b) If $(X, \mathcal{L}, \lambda)$ is σ -finite and $\omega \in \Sigma(\mathcal{L})$, there exists a λ -atom E_{ω} such that $\omega(E) = \lambda(E \cap E_{\omega})/\lambda(E_{\omega})$ for all $E \in \mathcal{L}$.

Remark. Hence $\mathfrak{G} \subset \Pi(\mathcal{L})$ if $(X, \mathcal{L}, \lambda)$ is σ -finite and \mathcal{L} has no λ -atoms. A stronger statement, Lemma 4.1, can be made when $\mathcal L$ is the Borel σ -algebra of a locally compact Hausdorff space. \Box

Proof. (a) For $\omega \in \mathfrak{G}$, by Theorem 2.6, $\omega = \mu + \gamma$ where $\mu \in \Pi(\mathcal{L})$ and $\gamma \ll \lambda$, $\gamma \in \Sigma(\mathcal{L})$ are non-negative. By Theorem 2.5 there exists $\{E_k\} \subset \mathcal{L}$ with $\mu(E_k) = \mu(X)$ for all k and $\gamma(E_k) \to 0$ as $k \to \infty$. If $\omega(E_k) = 0$ for some k then $0 = \omega(E_k) \ge \mu(E_k) = \mu(X)$ and so $\omega = \gamma \in \Sigma(\mathcal{L})$. If $\omega(E_k) = 1$ for all k, then

$$
1 = \omega(E_k) = \mu(E_k) + \gamma(E_k) = \mu(X) + \gamma(E_k) \rightarrow \mu(X) \text{ as } k \rightarrow \infty.
$$

Hence $\omega(X) = 1 = \mu(X)$ and consequently $\gamma(X) = 0$. Thus $\omega = \mu \in \Pi(\mathcal{L})$.

(b) Since $\omega \ll \lambda$ where $\omega \in \Sigma(\mathcal{L})$ is finite and λ is σ -additive, by (2.4) there exists $g \in L_1(X, \mathcal{L}, \lambda)$ with $\omega(E) = \int_E g \, d\lambda$ for all $E \in \mathcal{L}$. So $g \ge 0$ λ -almost everywhere on X. Since $g \in L_1(X, \mathcal{L}, \lambda)$, $\lambda(\{x \in X : g(x) \geq n\}) \to 0$ as $n \to \infty$, and hence, by [7, Cor. 3.6],

$$
\omega\left(\{x \in X : g(x) \geqslant n\}\right) = \int_{\{x \in X : g(x) \geqslant n\}} g \, d\lambda \to 0 \text{ as } n \to \infty.
$$

Since $\omega \in \mathfrak{G}$ it follows that $\omega (\{x \in X : g(x) \geq N\}) = 0$ for some $N \in \mathbb{N}$. Now, by finite additivity, $\omega(X) = 1$ and $\omega(E) \in \{0, 1\}$ implies that for every $K \in \mathbb{N}$ there exists a unique $k_K \in \{1, \cdots, N2^K\}$ such that

$$
1 = \omega(X) = \sum_{k=1}^{N2^K} \omega(E_k) = \omega(E_{k_K}) \text{ where } E_k = \left\{ x \in X : \frac{k-1}{2^K} \leqslant g(x) < \frac{k}{2^K} \right\}.
$$

Hence $E_{k_{K+1}} \subset E_{k_K}$ and since ω is σ -additive it follows that $\omega(E_{\omega}) = 1$ where $E_{\omega} = \{x \in X :$ $g(x) = \alpha$ for some $\alpha \in [0, N]$. Then $\lambda(E_{\omega}) > 0$ because $\omega(E_{\omega}) = 1$ and, for all $E \in \mathcal{L}$,

$$
\omega(E) = \omega(E \cap E_{\omega}) = \int_{E \cap E_{\omega}} \alpha \, d\lambda = \alpha \lambda(E \cap E_{\omega}).
$$

Hence $\alpha = 1/\lambda(E_\omega)$, and E_ω is a λ -atom with the required properties because $\omega \in \mathfrak{G}$.

Theorem 2.8. *For* $u \in L_\infty(X, \mathcal{L}, \lambda)$ *and* $\omega \in \mathfrak{G}$ *there is a unique* $\alpha \in I := [-||u||_\infty, ||u||_\infty]$ *such that*

$$
\omega\left(\left\{x \in X : |u(x) - \alpha| < \epsilon\right\}\right) = 1 \text{ for all } \epsilon > 0,\tag{2.7a}
$$

$$
\int_{X} u \, d\omega = \alpha \text{ and } \int_{X} |u| \, d\omega = |\alpha|.
$$
\n(2.7b)

 \Box

Remark. Thus, on $L_{\infty}(X, \mathcal{L}, \lambda)$ elements of \mathfrak{G} are analogous to Dirac measures \mathfrak{D} in the theory of continuous functions on topological spaces. When (2.7a) holds we say that $u = \alpha$ on X ω -almost everywhere even though it does not imply that $\omega(\lbrace x \in X : u(x) = \alpha \rbrace) = \omega(X)$ if $\omega \notin \Sigma(\mathcal{L})$. \Box

Proof. Since ω is zero on N, it is clear that $\alpha \in I$ if (2.7a) holds. Now (2.7a) cannot hold for distinct $\alpha_1 < \alpha_2$ because, with $\epsilon = (\alpha_2 - \alpha_1)/4$ the sets $\omega({x \in X : |u(x) - \alpha_i| < \epsilon}), i = 1, 2$, are disjoint and by finite additivity the ω -measure of their union would be 2. Since $\omega \in \mathfrak{G}$, there is at most one α for which (2.7a) holds.

Now suppose that there is no α for which (2.7a) holds. Then for each $\alpha \in I$ there is an $\epsilon_{\alpha} > 0$ such that $\omega (\{x \in X : |u(x) - \alpha| < \epsilon_\alpha\}) = 0$. By compactness there exists $\{\alpha_1, \dots, \alpha_K\} \subset I$ such that $I \subset \cup_{k=1}^K (\alpha_k - \epsilon_{\alpha_k}, \alpha_k + \epsilon_{\alpha_k})$ and consequently

$$
1 = \omega(X) = \omega\left(\left\{x : u(x) \in \bigcup_{k=1}^{K} (\alpha_k - \epsilon_{\alpha_k}, \alpha_k + \epsilon_{\alpha_k})\right)\right\}
$$

$$
\leqslant \sum_{k=1}^{K} \omega\left(\left\{x : u(x) \in (\alpha_k - \epsilon_{\alpha_k}, \alpha_k + \epsilon_{\alpha_k})\right\}\right) = 0.
$$

Hence (2.7a) holds for a unique α . The first part of (2.7b) follows because, by (2.7a), $u = \alpha \omega$ -almost everywhere on X and $\omega(X) = 1$. Finally, $\omega(\{x \in X : ||u(x)| - |\alpha|| < \epsilon\}) = 1$ for all $\epsilon > 0$, and the second part of (2.7b) follows. \Box

The next result give the existence elements of \mathfrak{G} .

Theorem 2.9. [15, Thm. 4.1] *Let* $\mathcal{E} \subset \mathcal{L} \setminus \mathcal{N}$ *have the property that* $E_\ell \in \mathcal{E}, 1 \leq \ell \leq L$ *implies that* $\bigcap_{\ell=1}^L E_\ell \notin \mathcal{N}$ *. Then there exists* $\omega \in \mathfrak{G}$ *with* $\omega(E) = 1$ *for all* $E \in \mathcal{E}$ *.*

The proof is by Zorn's lemma and for given $\mathcal E$ there can be uncountably many ω . The same argument underlies the correspondence between elements of $\mathfrak G$ and ultrafilters.

Definition 2.10. *Given* $(X, \mathcal{L}, \lambda)$ *, a filter is a family* \mathcal{F} *of subsets of* X *satisfying: (i)* $X \in \mathcal{F}$ *and* $\mathcal{N} \cap \mathcal{F}$ $\mathcal{F} = \emptyset$; *(ii)* $E_1, E_2 \in \mathcal{F}$, *implies that* $E_1 \cap E_2 \in \mathcal{F}$; *(iii)* $E_2 \supset E_1 \in \mathcal{F}$ *implies that* $E_2 \in \mathcal{F}$. A maximal *filter* F, one which satisfies (iv) $\mathcal{F} \subset \mathcal{F}$ implies $\mathcal{F} = \mathcal{F}$, is called an ultrafilter. Let \mathfrak{F} denote the family *of ultrafilters.*

It is obvious that when $\omega \in \mathfrak{G}$

$$
\mathcal{F}(\omega) := \{ E \in \mathcal{L} : \ \omega(E) = 1 \} \in \mathfrak{F}.\tag{2.8a}
$$

Conversely, when $\mathcal{F} \in \mathfrak{F}$,

$$
\omega(E) := \left\{ \begin{array}{c} 1 \text{ if } E \in \mathcal{F} \\ 0 \text{ otherwise} \end{array} \right\} \in \mathfrak{G}. \tag{2.8b}
$$

This holds because, exactly as in the proof of [15, Thm. 4.1], the maximality of $\mathcal{F} \in \mathfrak{F}$ implies that for $E \in \mathcal{L}$ precisely one of E and $X \setminus E$ is in F. Thus (2.8b) defines $\omega \in \mathfrak{G}$ with $\mathcal{F} = \mathcal{F}(\omega)$ and hence $\omega \leftrightarrow \mathcal{F}(\omega)$ is a one-to-one correspondence between \mathfrak{G} and \mathfrak{F} .

By the essential range of u is meant the set

$$
\mathcal{R}(u) := \left\{ \alpha \in \mathbb{R} : \lambda \big(\{ x : |u(x) - \alpha| < \epsilon \} \big) > 0 \text{ for all } \epsilon > 0 \right\}. \tag{2.9}
$$

Corollary 2.11. *For* $u \in L_{\infty}(X, \mathcal{L}, \lambda)$ *,*

$$
\left\{\int_X u \, d\omega : \quad \omega \in \mathfrak{G}\right\} = \mathcal{R}(u).
$$

Proof. It follows from Theorems 2.8 and 2.9 that the right side is a subset of the left. Since $\omega(E)$ = 1, $E \in \mathcal{L}$, implies $\lambda(E) > 0$, it is immediate from Theorem 2.8 that the right side contains the left. \square

In a topological space (2.8) , (2.9) and Corollary 2.11 can be localized to points, (4.1) , (4.2) and (4.3) .

For $A \in \mathcal{L}$, let $\Delta_A = \{\omega \in \mathfrak{G} : \omega(A) = 1\}$ and let $\{\Delta_A : A \in \mathcal{L}\}\$ be a base for the topology t on \mathfrak{G} . Note from Theorem 2.9 that Δ_A is empty if and only if $A \in \mathcal{N}$ and Δ_A is both open and closed because $\mathfrak{G} \setminus \Delta_A = \Delta_{X \setminus A}$. For $u \in L_{\infty}(X, \mathcal{L}, \lambda)$ let $L[u] : \mathfrak{G} \to \mathbb{R}$ be defined by

$$
L[u](\omega) = \int_X u \, d\omega \text{ for all } \omega \in \mathfrak{G}.
$$
 (2.10)

Theorem 2.12. [15, Thms. 4.2 & 4.3] *(a)* $(\mathfrak{G}, \mathfrak{t})$ *is a compact Hausdorff topological space. (b)* For $u \in L_{\infty}(X, \mathcal{L}, \lambda)$, $L[u]$ *is continuous on* $(\mathfrak{G}, \mathfrak{t})$ *with*

$$
||u||_{\infty} = ||L[u]||_{C(\mathfrak{G},\mathfrak{t})}: = \sup_{\omega \in \mathfrak{G}} |L[u](\omega)|,
$$

and $u \mapsto L[u]$ *is linear from* $L_{\infty}(X, \mathcal{L}, \lambda)$ *to* $C(\mathfrak{G}, \mathfrak{t})$ *. Moreover, for* $u, v \in L_{\infty}(X, \mathcal{L}, \lambda)$ *,*

$$
L[u](\omega)L[v](\omega) = L[uv](\omega) \text{ for all } \omega \in \mathfrak{G}. \tag{2.11}
$$

Conversely, for every real-valued continuous function U *on* ($\mathfrak{G}, \mathfrak{t}$) *there exists* $u \in L_{\infty}(X, \mathcal{L}, \lambda)$ *with* $U = L[u]$ *. So L is an isometric isomorphism between Banach algebras* $L_{\infty}(X, \mathcal{L}, \lambda)$ *and* $C(\mathfrak{G}, \mathfrak{t})$ *.*

Since $L_{\infty}(X,\mathcal{L},\lambda)$ and $C(\mathfrak{G},\mathfrak{t})$ are isometrically isomorphic, $u_k \rightharpoonup u_0$ in $L_{\infty}(X,\mathcal{L},\lambda)$ if and only if $L[u_k] \rightharpoonup L[u_0]$ in $C(\mathfrak{G}, \mathfrak{t})$. Since $(\mathfrak{G}, \mathfrak{t})$ is a compact Hausdorff topological space, it follows from the opening remarks of the Introduction that $L[u_k] \rightharpoonup L[u_0]$ in $C(\mathfrak{G},\mathfrak{t})$ if and only if $\{\Vert L[u_k]\Vert_{C(\mathfrak{G},\mathfrak{t})}\}$ is bounded and $L[u_k] \to L[u_0]$ pointwise on \mathfrak{G} . Hence $u_k \to u_0$ in $L_\infty(X, \mathcal{L}, \lambda)$ if and only if

$$
||u_k||_{\infty} \leqslant M \text{ and } \int_X u_k \, d\omega \to \int_X u_0 \, d\omega \text{ as } k \to \infty \text{ for all } \omega \in \mathfrak{G}. \tag{2.12}
$$

Sequential weak continuity of composition operators is an obvious consequence.

Theorem 2.13. If $u_k^n \rightharpoonup u_0^n$ in $L_\infty(X, \mathcal{L}, \lambda)$ as $k \to \infty$, $n \in \{1, \cdots, N\}$, and $F : \mathbb{R}^N \to \mathbb{R}$ is *continuous, then* $F(u_k^1, \dots, u_k^N) \to F(u_0^1, \dots, u_0^N)$ *in* $L_\infty(X, \mathcal{L}, \lambda)$ *.*

Proof. When $u_k^n \rightharpoonup u_0^n$ in $L_\infty(X, \mathcal{L}, \lambda)$, $L[u_k^n] \rightharpoonup L[u_0^n]$ in $C(\mathfrak{G}, \mathfrak{t})$ and consequently $L[u_k^n](\omega) \rightharpoonup$ $L[u_0^n](\omega)$ pointwise in \mathfrak{G} as $k \to \infty$. Therefore, for continuous F,

$$
F\big(L[u_k^1](\omega),\cdots,L[u_k^N](\omega)\big) \to F\big(L[u_0^1](\omega),\cdots,L[u_0^N](\omega)\big),\ \omega \in \mathfrak{G}.
$$

If F is a polynomial it follows from (2.11) that

$$
L[F(u_k^1,\dots,u_k^N)](\omega) \to L[F(u_0^1,\dots,u_0^N)](\omega), \ \omega \in \mathfrak{G},
$$

and this holds for continuous F , by approximation. Consequently, for continuous F ,

$$
L[F(u_k^1, \cdots, u_k^N)] \rightharpoonup L[F(u_0^1, \cdots, u_0^N)] \text{ in } C(\mathfrak{G}, \mathfrak{t})
$$

$$
\sum_{k} F(u_k^1, \cdots, u_k^N) \text{ in } L^2(\mathfrak{C}, \mathfrak{t})
$$

and so $F(u_k^1, \dots, u_k^N) \to F(u_0^1, \dots, u_0^N)]$ in $L_\infty(X, \mathcal{L}, \lambda)$.

3 Pointwise and Weak Convergence in $L_{\infty}(X, \mathcal{L}, \lambda)$

The goal is to characterise weakly null sequences in $L_{\infty}(X, \mathcal{L}, \lambda)$ in terms of their pointwise behaviour, but we begin with some observations on the pointwise behaviour of weakly convergent sequences.

Lemma 3.1. *In* $L_{\infty}(X, \mathcal{L}, \lambda)$ *,* $u_k \to 0$ *if and only if* $|u_k| \to 0$ *.*

Proof. 'Only if' follows from Theorem 2.13 and 'if' is a consequence of (2.12) since $u_k = u_k^+ - u_k^ \frac{-}{k}$ $0 \leq u_k \pm \leq |u_k|$ and $\omega \geq 0$.

Lemma 3.2. If $(X, \mathcal{L}, \lambda)$ is σ -finite and $\{u_k\}$ is weakly null, there is a subsequence $\{u_{k_j}\}$ with $u_{k_j}(x)\to 0$ 0 λ*-almost everywhere on* X*.*

Proof. Since $(X, \mathcal{L}, \lambda)$ is σ -finite there exists $f \in L_1(X, \mathcal{L}, \lambda)$ which is positive almost everywhere. Since $|u_k|f \to 0$ in $L_1(X, \mathcal{L}, \lambda)$, there is a subsequence with $|u_{k_j}(x)| \to 0$ for λ -almost all $x \in X$. $\mathcal{L}_{\mathcal{A}}$

 \Box

Lemma 3.3. *Suppose that* (X, ρ) *is a metric space on which* λ *is a regular Borel measure with the property that for all locally integrable functions* f *and balls* $B(x, r)$ *centred at* x *and radius* r,

$$
\lim_{0 < r \to 0} \oint_{B(x,r)} f \, d\lambda = f(x) \text{ for } \lambda\text{-almost all } x \in X \text{ where } \oint_{B(x,r)} f \, d\lambda := \frac{1}{\lambda(B(x,r))} \int f \, d\lambda. \tag{3.1}
$$

Then $u_k \rightharpoonup u_0$ *in* $L_\infty(X, \mathcal{L}, \lambda)$ *implies that* $u_k(x) \rightharpoonup u_0(x)$ *pointwise* λ *-almost everywhere.*

Remark 3.4. From [9, Ch. 1], (3.1) holds in particular when λ is a doubling measure on (X, ρ) (i.e. there exists a constant C such that $\lambda(B(x, 2r)) \leq C \lambda(B(x, r))$, or on \mathbb{R}^n with the standard metric when λ is any Radon measure (i.e. λ is finite on compact sets). \Box

Proof. By hypothesis, for $u \in L_{\infty}(X, \mathcal{L}, \lambda)$ there exists a set $E(u) \in \mathcal{B}$ with $\lambda(X \setminus E(u)) = 0$ and

$$
u(x) := \lim_{0 < r \to 0} \int_{B(x,r)} u \, d\lambda \text{ for all } x \in E(u). \tag{3.2}
$$

Now for $u_k \to u_0$ the set $E = \bigcap_{0}^{\infty} E(u_k)$ has full measure. Let V denote the subspace of $L_{\infty}(X, \mathcal{L}, \lambda)$ spanned by $\{u_k : k \geq 0\}$ and for fixed $x \in E$ define a linear functional ℓ_x on V by $\ell_x(u) = u(x)$. Then

$$
|\ell_x(u)| = |u(x)| = \left| \lim_{0 \le r \to 0} \int_{B(x,r)} u \, d\lambda \right| \le ||u||_{\infty}, \ u \in V,
$$

and, by the Hahn-Banach Theorem, there exists $L_x \in L_\infty(X, \mathcal{L}, \lambda)^*$ with $L_x(u) = \ell_x(u)$ for all $u \in V$. Therefore since $u_k \rightharpoonup u_0$,

$$
u_k(x) = \ell_x(u_k) = L_x(u_k) \to L_x(u_0) = \ell(u_0) = u_0(x)
$$
 for all $x \in E$.

Hence $u_k \rightharpoonup u_0$ in $L_\infty(X, \mathcal{L}, \lambda)$ implies $u_k(x) \to u_0(x)$ for almost all $x \in X$. \Box

Remark 3.5. By contrast there follows an example where $\{\Vert u_k \Vert_{\infty}\}$ is bounded, u_k is continuous except at one point and $u_k(x) \to 0$ everywhere as $k \to \infty$, but $u_k \not\to 0$ in $L_\infty(X, \mathcal{L}, \lambda)$. Let $X = (-1, 1)$, for each $k > 2$ let $u_k(0) = 0$, $u_k(x) = 0$ when $|x| \geq 2/k$, $u_k(x) = 1$ if $0 < |x| \leq 1/k$, and linear elsewhere. Now in Theorem 2.9 let $E_\ell = (-1/2\ell, 0) \cup (0, 1/2\ell)$ for each ℓ and let ω be a finitely additive measure that takes the value 1 on E_ℓ for all ℓ . Then $\omega \in \mathfrak{G}$ and, by Theorem 2.8, $\int_X u_k d\omega = 1$ for all k . So $u_k \nightharpoonup 0$, yet it is clear that $u_k(x) \to 0$ for all $x \in X$. \Box

By a well-known result of Mazur, $y_k \rightharpoonup y$ in a normed linear space implies, for any strictly increasing sequence $\{k_j\}$ in N, that some $\{\overline{y}_i\}$ in the convex hull of $\{y_{k_j} : j \in \mathbb{N}\}\)$ converges strongly to y. Hence if $u_k \to 0$ in $L_\infty(X, \mathcal{L}, \lambda)$, by Lemma 3.1 there exists $\{\overline{u}_i\}$ in the convex hull of $\{|u_{k_j}| : j \in \mathbb{N}\}\$ with

$$
\overline{u}_i \to 0
$$
 as $i \to \infty$ and, for all i , $\overline{u}_i = \sum_{j=1}^{m_i} \gamma_j^i |u_{k_j}|$, $\gamma_j^i \in [0, 1]$ and $\sum_{j=1}^{m_i} \gamma_j^i = 1$, for some $m_i \in \mathbb{N}$.

Since γ_j^i may be zero there is no loss in assuming that $\{m_i\}$ is increasing. Therefore, for a strictly increasing sequence $\{k_i\}$ in \mathbb{N} ,

$$
0 \leq w_i(x) := \inf \{ |u_{k_j}(x)| : j \in \{1, \cdots, m_i\} \} \leq \overline{u}_i(x), \ x \in X,
$$

defines a non-increasing sequence in $L_{\infty}(X, \mathcal{L}, \lambda)$ with $||w_i||_{\infty} \to 0$. It follows that if $u_k \to 0$

$$
v_J(x) = \inf \{|u_{k_j}(x)| : j \in \{1, \cdots, J\}\}\
$$
\n(3.3)

is a non-increasing sequence in $L_{\infty}(X,\mathcal{L},\lambda)$ with $||v_J||_{\infty} \to 0$ as $J \to \infty$. We now show that a sequence is weakly null in $L_{\infty}(X,\mathcal{L},\lambda)$ if and only if every sequence $\{v_J\}$, defined as above in terms of a strictly increasing $\{k_j\}$, converges strongly to 0 in $L_\infty(X,\mathcal{L},\lambda)$. To do so, for $u \in L_\infty(X,\mathcal{L},\lambda)$ and $\alpha > 0$, let

$$
A_{\alpha}(u) = \{x \in X : |u(x)| > \alpha\}.
$$

Theorem 3.6. A bounded sequence $\{u_k\}$ in $L_\infty(X, \mathcal{L}, \lambda)$ converges weakly to zero if and only if for *every* $\alpha > 0$ *and every strictly increasing sequence* $\{k_i\}$ *in* N *there exists* $J \in \mathbb{N}$ *with the property that*

$$
\lambda \left\{ \bigcap_{j=1}^{J} A_{\alpha}(u_{k_j}) \right\} = 0. \tag{3.4}
$$

This criterion is equivalent to saying that for every strictly increasing sequence $\{k_i\}$ *in* $\mathbb N$ *the corresponding sequence* $\{v_J\}$ *in* (3.3) *converges strongly to zero in* $L_\infty(X, \mathcal{L}, \lambda)$ *.*

Proof. Suppose, for a strictly increasing sequence $\{k_j\}$ and $\alpha > 0$, that (3.4) is false for all $J \in \mathbb{N}$. Then $\mathcal{E} = \{A_{\alpha}(u_{k_j}) : j \in \mathbb{N}\}\$ satisfies the hypothesis of Theorem 2.9. Hence there exists $\omega \in \mathfrak{G}$ such that $\omega(A_\alpha(u_{k_j}))=1$ for all $j.$ It follows that

$$
\int_X |u_{k_j}| d\omega \geq \int_{A_\alpha(u_{k_j})} |u_{k_j}| d\omega \geq \alpha > 0
$$
 for all j.

Hence $|u_k| \nightharpoonup 0$ by (2.12) and so, by Lemma 3.1, $u_k \nightharpoonup 0$.

Conversely suppose $u_k \nightharpoonup 0$. Then by Lemma 3.1 and (2.12), there exists $\alpha > 0$, a strictly increasing sequence $\{k_i\} \subset \mathbb{N}$ and $\omega \in \mathfrak{G}$ such that

$$
\int_X |u_{k_j}| d\omega =: \alpha_j > \alpha > 0 \text{ for all } j \in \mathbb{N}.
$$

Since $\alpha_j - \alpha > 0$, by Theorem 2.8,

$$
\omega\big(\{x:||u_{k_j}|-\alpha_j|<\alpha_j-\alpha\}\big)=1\text{ for all }j.
$$

Therefore, since $|u_{k_j}| - \alpha = |u_{k_j}| - \alpha_j + \alpha_j - \alpha$, it follows that $\omega(A_\alpha(u_{k_j})) = 1$ for all j. Hence, since ω is a 0-1 measure, by finite additivity $\omega\Big(\cap_{j=1}^J A_\alpha(u_{k_j})\Big) = 1$ for all *J*. Since $\omega \in \mathfrak{G} \subset L^*_{\infty}(X, \mathcal{L}, \lambda)$, it follows that (3.4) is false for all J. Finally note that for a strictly increasing sequence ${k_i}$ and $\alpha > 0$,

$$
\lambda\{x: v_J(x) > \alpha\} = \lambda\{x: |u_{k_j}(x)| > \alpha \text{ for all } j \in \{1,\cdots,J\}\} = \lambda\{\bigcap_{j=1}^J A_\alpha(u_{k_j})\}.
$$

Since $v_J(x) \ge v_{J+1}(x) \ge 0$ it follows that $v_J \to 0$ in $L_\infty(X, \mathcal{L}, \lambda)$ if and only if (3.4) holds for every $\alpha > 0$. This completes the proof. \Box

There follows an analogue of Dini's theorem that on compact topological spaces monotone, pointwise convergence of sequences of continuous functions to a continuous function is uniform; equivalently, for bounded monotone sequences weak and strong convergence coincide.

Corollary 3.7. *Suppose* $\{u_k\}$ *is bounded in* $L_\infty(X, \mathcal{L}, \lambda)$ *and* $|u_k(x)| \geq |u_{k+1}(x)|$, $k \in \mathbb{N}$, for λ -almost *all* $x \in X$ *. Then* $u_k \to 0$ *if and only if* $u_k \to 0$ *in* $L_\infty(X, \mathcal{L}, \lambda)$ *.*

Proof. The monotonicity of $\{|u_k|\}$ implies that v_j coincides with $|u_j|$ in Theorem 3.6 and so that $|u_j| \to$ 0 in $L_{\infty}(X, \mathcal{L}, \lambda)$ as $J \to \infty$ when $u_k \to 0$ if in $L_{\infty}(X, \mathcal{L}, \lambda)$. The converse is obvious. \Box

3.1 Illustrations of Theorem 3.6

(1) In this example $X = (-1, 1)$ with Lebesgue measure, u_k is supported in $[-1/2, 1/2]$, $||u_k||_{\infty} = 1$ and $u_k, u_k^- \longrightarrow 0$, but u_k^+ $k \to 0$ where u_k^{\pm} $k^{\pm}(x) = u_k(x \pm 1/2^{k+1})$. To see this, let $A_k = [1/2^{k+1}, 1/2^k)$, $A_k^{\pm} =$ $A_k + 1/2^{k+1}$, $u_k = \chi_{A_k}$ and $u_k^{\pm} = \chi_{A_k^{\pm}}$. Clearly u_k^{\pm} $\frac{1}{k}(x) = u_k(x \pm 1/2^{k+1})$ and u_k^+ $k^+ \nightharpoonup 0$ because v_J , defined in (3.3) by u_k^+ k_k , is 1 on $(0, 1/2^{J+1})$. But since $\{A_k\}$ and $\{A_k^-\}$ $\left\{\frac{-}{k}\right\}$ are two mutually disjoint families,

in (3.3) v_J , defined for any $\{k_j\} \subset \mathbb{N}$ by u_{k_j} or $u_{k_j}^ \overline{k}_j$, is zero for $J \ge 2$. Hence $u_k \rightharpoonup 0$ and $u_k^- \rightharpoonup 0$. That $\chi_{A_k} \rightharpoonup 0$ for a disjoint family of sets is used in Remark 4.5.

(2) In $L_{\infty}(X, \mathcal{L}, \lambda)$ let $u_k(x) = \sum_{i=1}^{\infty} \alpha_i \chi_{A_k^i}, x \in X$, where $\sum_{i=1}^{\infty} |\alpha_i| < \infty$ and, for each $i \in \mathbb{N}$, ${A_k^i}_{k\in\mathbb{N}}$ is a family of mutually disjoint non-null measurable sets. Then $u_k \rightharpoonup 0$ in $L_\infty(X, \mathcal{L}, \lambda)$.

To see this, note that for each $x \in X$ and $i \in \mathbb{N}$ there exists at most one $k \in \mathbb{N}$, denoted, if it exists, by $\kappa(x, i)$, such that $x \in A_k^i$ if and only if $k = \kappa(x, i)$. Note also that for $\epsilon > 0$ there exists $I_{\epsilon} \in \mathbb{N}$ such that $\sum_{l_{\epsilon}+1}^{\infty} |\alpha_i| < \epsilon$. Hence, for any given $k \in \mathbb{N}$ and $x \in X$,

$$
|u_k(x)| \leqslant \sum_{i=1}^{I_{\epsilon}} |\alpha_i| \chi_{A_k^i}(x) + \epsilon = \sum_{\substack{i \in \{1, \cdots, I_{\epsilon}\} \\ \kappa(x,i)=k,}} |\alpha_i| + \epsilon.
$$

Since $\{\kappa(x,i): i \in \{1,\dots, I_\epsilon\}\}$ has at most I_ϵ elements, there exists $k \in \{1,\dots, I_\epsilon+1\}$ such that $k \neq \kappa(x, i)$ for any $i \in \{1, \dots, I_{\epsilon}\}.$ Consequently $\inf\{|u_k(x)| : 1 \leq k \leq I_{\epsilon} + 1\} \leq \epsilon$, independent of $x \in X$. Since this argument can be repeated with $k \in \mathbb{N}$ replaced by any strictly increasing subsequence ${k_i}$, it follows that ${v_J}$ defined in terms of any subsequence in (3.3) has $||v_J||_{\infty} \to 0$ in $L_{\infty}(X, \mathcal{L}, \lambda)$. The weak convergence of $\{u_k\}$ follows. For the special case, take $\alpha_1 = 1$ and $\alpha_i = 0$, $i \ge 2$. \Box

(3) Let $u : \mathbb{R} \to \mathbb{R}$ be essentially bounded and measurable with $|u(x)| \to 0$ as $|x| \to \infty$ and let $u_k(x) = u(x + k)$. Then $u_k \rightharpoonup 0$ in $L_\infty(X, \mathcal{L}, \lambda)$ where λ is Lebesgue measure on \mathbb{R} . To see this, for $\epsilon > 0$ suppose that $|u(x)| < \epsilon$ if $|x| > K_{\epsilon}$. The for any $\{k_j\} \subset \mathbb{N}$, $||v_J||_{\infty} < \epsilon$ for all $J \ge K_{\epsilon}$ where $\{v_J\}$ is defined in terms of $\{u_{k_j}\}\$ by (3.3), and the result follows. \Box

(4) Let $u : \mathbb{R} \to \mathbb{R}$ be essentially bounded and measurable with $u(x) \to 0$ as $x \to \infty$ and $u(x) \to 1$ as $x \to -\infty$. Let $u_k(x) = u(x + k)$. Then $u_k(x) \to 0$ as $k \to \infty$ for all $x \in \mathbb{R}$, but u_k is not weakly convergent to 0 because of Theorem 3.6. However, in the notation of Definition 4.3, $u_k \rightharpoonup 0$ at every point of \mathbb{R} , but not at the point at infinity in its one-point compactification. \Box

(5) Define ${u_k}_{k \in \mathbb{N}} \subset L_\infty(X, \mathcal{L}, \lambda)$ by $u_k(x) = \sin(1/(kx))$, $x \in X = (0, 2\pi)$, with the standard measure λ on the Lebesgue σ -algebra on X. Clearly $|u_k(x)| \to 0$ as $k \to \infty$ uniformly on $(\epsilon, 2\pi)$ for any $\epsilon \in (0, 2\pi)$. Therefore if a subsequence $\{u_{k_j}\}\$ is weakly convergent, its weak limit must be zero.

To see that no subsequence of $\{u_k\}$ is weakly convergent to 0, consider first a strictly increasing sequence $\{k_j\}$ of natural numbers for which there exists a prime power p^m which does not divide k_j for all j. Then, for $J \in \mathbb{N}$ sufficiently large, let

$$
x_J = \left\{ \frac{\pi}{p^m} \text{lcm} \{k_1, \cdots, k_J\} \right\}^{-1} \in (0, 2\pi),
$$

where lcm denotes the least common multiple. Then, since $p^m \nmid k_j$ and p is prime,

$$
\frac{1}{k_j x_J} = \frac{\text{lcm}\, \{k_1, \cdots, k_J\}}{p^m k_j} \, \pi \quad \text{where} \quad \frac{\text{lcm}\, \{k_1, \cdots, k_J\}}{k_j} = r \, \text{mod} \, p^m, \quad r \in \{1, \cdots, p^m - 1\},
$$

from which it follows that $|u_{k_j}(x_j)| \geqslant |\sin(\pi/p^m)| > 0$, independent of J. Since, for all $j \in$ $\{1,\dots,J\}$, u_{k_j} is continuous at x_J , it follows that $||v_J||_{L_\infty(X,\mathcal{L},\lambda)} \geq ||\sin(\pi/p^m)|| > 0$ for all J sufficiently large. By Theorem 3.6 this shows that $u_{k_j} \neq 0$ if $\{k_j\}$ has a subsequence $\{k'_j\}$ for which $p^m \nmid k'_j$ for all $j \in \mathbb{N}$. Note that if this hypothesis is not satisfied by $\{k_j\}$ for any prime p and $m \in \mathbb{N}$, then every $K \in \mathbb{N}$ is a divisor of k_j for all j sufficiently large, how large depending on K. Consequently, if $u_{k_j} \to 0$, $\{k_j\}$ has subsequence $\{k'_j\}$ with the property that $2^{j+2}k'_j$ divides k'_{j+1} for all j. In other words $2^{j+2}n_jk'_j = k'_{j+1}, n_j \in \mathbb{N}$, and $[0, k'_{j+1})$ is a union of $2^{j+2}n_j$ disjoint intervals of length k'_j .

Now fixed $J \in \mathbb{N}$, let m_J denote the mid-point of $I_J := [0, k'_J)$, and let $I_{J-1} := [m_J - k'_{J-1}, m_J)$, which is a half open interval of length k'_{J-1} to the left of m_J . Then

$$
x = r \bmod k'_J \text{ where } r \in \left[\frac{k'_J}{2}\left(1 - \frac{1}{2^J n_{J-1}}\right), \frac{k'_J}{2}\right] \text{ for all } x \in I_{J-1},
$$

since $2^{J+1}n_{J-1}k'_{J-1} = k'_{J}$. Note that m_{J} , and hence the end-points of I_{J-1} , are integer multiples of k'_{J-1} . Now denote the mid-point of I_{J-1} by m_{J-1} and let $I_{J-2} = [m_{J-1} - k'_{J-2}, m_{J-1}]$, the interval of length k'_{J-2} to the left of m_{J-1} . Then $I_{J-2} \subset I_{J-1} \subset I_J$ and

$$
x = r \bmod k'_{J-1} \text{ where } r \in \left[\frac{k'_{J-1}}{2} \left(1 - \frac{1}{2^{J-1}n_{J-2}}\right), \frac{k'_{J-1}}{2}\right] \text{ for all } x \in I_{J-2},
$$

since $2^{J}n_{J-2}k'_{J-2} = k'_{J-1}$. Repeating this construction leads to a nested sequence of intervals, $I_0 \subset$ $I_1 \subset \cdots \subset I_{J-1}$ with the property that

$$
x=r\bmod k_{i+1}'\text{ where }r\in\left[\frac{k_{i+1}'}{2}\left(1-\frac{1}{2^{i+1}n_i}\right),\frac{k_{i+1}'}{2}\right] \text{ for all }x\in I_i.
$$

Now let $x_J = \{m_0 \pi\}^{-1}$ where $m_0 \in I_0$. Since $I_0 = \bigcap_{i=0}^{J-1} I_i$ and $\frac{1}{2} \left(1 - \frac{1}{2^{i+1}}\right)$ $\overline{2^{i+1}n_i}$ $\Big) \geqslant \frac{1}{4}$ $\frac{1}{4}$ for $i \geqslant 0$,

$$
|u_{k'_j}(x_j)| = \sin\left(\frac{m_0}{k'_j}\pi\right) \ge \sin(\pi/4) = \frac{1}{\sqrt{2}}, \ j \in \{1, \cdots, J\},\
$$

independent of $J \in \mathbb{N}$. Hence $\{v_J\}$ defined by (3.3) using the subsequence $\{k'_j\}$ does not converge to 0 in $\overline{L}_{\infty}(X,\mathcal{L},\lambda)$. It follows that $u_{k_j} \nightharpoonup 0$ as $j \to \infty$ for any $\{k_j\} \subset \overline{\mathbb{N}}$. \Box

4 $L^{\ast}_{\infty}(X,\mathcal{B},\lambda)$ when (X,τ) is a Topological Space

This section deals with $L^*_{\infty}(X,\mathcal{B},\lambda)$ when (X,τ) is a locally compact Hausdorff topological space, $\mathcal B$ is the corresponding Borel σ -algebra and $\lambda \geq 0$ is a measure on B as described in Section 2. In addition here λ is assumed regular and finite on compact sets. In that setting a regular Borel measure that takes only values 0 or 1 is a Dirac measure concentrated at a point $x_0 \in X$. As before, \mathfrak{G} is defined by (2.6).

Lemma 4.1. For $\omega \in \mathfrak{G}$ there exists a compact set $K \in \mathcal{B}$ with $\omega(K) = 1$ if and only if there exists $x_0 \in X$ *such that* $\omega(G) = 1$ *for all open sets* G *with* $x_0 \in G$ *. For all* $\omega \in \mathfrak{G}$ *there is at most one such* x_0 *and when* (X, τ) *is compact there is exactly one such* x_0 *.*

Proof. Suppose that $\omega(K) = 1$, K compact, and the result is false. Then for $x \in K$ there is an open G_x with $x \in G_x$ and $\omega(G_x) = 0$. By compactness, $K \subset \cup_{i=1}^K G_{x_i}$ where $\omega(G_{x_i}) = 0, 1 \leq i \leq K$, which implies $\omega(K) = 0$. Since this is false, $\omega(K) = 1$ for compact K implies the existence of $x_0 \in K$ with the required property. Since X is Hausdorff, if there is another $x_1 \in X$ with this property there are open sets with $x_0 \in G_{x_0}, x_1 \in G_{x_1}$ and $G_{x_0} \cap G_{x_1} = \emptyset$. But this is impossible because by finite additivity $\omega(G_{x_0} \cup G_{x_1}) = 2$. Now suppose that $\omega(K) = 0$ for all compact sets K. By local compactness, for $x \in X$ there is an open set G_x with $x \in G_x$ and its closure $\overline{G_x}$ is compact. Since $\omega(G_x) \leq \omega(\overline{G_x}) = 0$, there is no $x \in X$ with the required property. Finally, the existence of x_0 when X is compact follows because $\omega(X) = 1$. This completes the proof. \Box

Let $(X_{\infty}, \tau_{\infty})$ denote the one-point compactification [10] of (X, τ) . Then $X_{\infty} = X \cup \{x_{\infty}\}\,$, $x_{\infty} \notin X$ (the "point at infinity"), and a subset G of X_{∞} is open if either $G \subset X$ is open in X, or $G = \{x_{\infty}\} \cup (X \setminus Y)$ K) for some compact $K \subset X$. Then (X_∞, τ_∞) is a compact Hausdorff topological space because (X, τ) is locally compact Hausdorff, and (X, τ) is compact if and only if $\{x_\infty\}$ is an isolated point (open and closed) in $(X_{\infty}, \tau_{\infty})$. For $\omega \in \mathfrak{G}$, let ω_{∞} be defined on Borel subsets E of X_{∞} by $\omega_{\infty}(E) = \omega(E \cap X)$. Then ω_{∞} is the unique finitely additive measure on X_{∞} which takes only values 0 and 1 and coincides with ω on Borel sets in X. In this setting Lemma 4.1 can be re-stated:

Lemma 4.2. *Let* (X, τ) *be a locally compact Hausdorff space and* $\omega \in \mathfrak{G}$ *. Then there exists a unique* $x_0 \in X_\infty$ such that $\omega_\infty(G) = 1$ for all open sets G in X_∞ with $x_0 \in G$; $x_0 = x_\infty$ if and only if $\omega(K) = 0$ *for all compact* $K \subset X$ *and* $x_0 \in X$ *if* (X, τ) *is compact.*

4.1 Localization of Weak Convergence in $L_{\infty}(X,\mathcal{B},\lambda)$

By (2.8) there is a one-to-one correspondence between \mathfrak{G} and \mathfrak{F} . For $x_0 \in X_{\infty}$, let $\mathfrak{G}(x_0) \subset \mathfrak{G}$ denote the set of $\omega \in \mathfrak{G}$ for which the conclusions of Lemma 4.1 holds, and let $\mathfrak{F}(x_0) \subset \mathfrak{F}$ be the corresponding family of ultrafilters. Then, by Lemma 4.1,

$$
\mathfrak{G} = \bigcup_{x_0 \in X_{\infty}} \mathfrak{G}(x_0), \qquad \mathfrak{F} = \bigcup_{x_0 \in X_{\infty}} \mathfrak{F}(x_0), \tag{4.1}
$$

which leads to the following definition of weak pointwise convergence.

Definition 4.3. u_k *converges weakly to* u *at* $x_0 \in X_\infty$ *if*

$$
\int_X u_k \, d\omega \to \int_X u \, d\omega \text{ for all } \omega \in \mathfrak{G}(x_0).
$$

The localized version of Theorem 3.6 is immediate. For $u \in L_{\infty}(X, \mathcal{L}, \lambda)$, $\alpha > 0$ and $E \in \mathcal{L}$ let $A_{\alpha}(u|_{E}) = \{x \in E : |u(x)| > \alpha\}.$

Theorem 4.4. *A bounded sequence* $\{u_k\}$ *in* $L_\infty(X, \mathcal{B}, \lambda)$ *converges weakly to zero at* $x_0 \in X_\infty$ *if and only if for every* $\alpha > 0$, every strictly increasing sequence $\{k_i\}$ in N and every open $G \subset X_\infty$ with $x_0 \in G$ there exists J with $\lambda \left\{ \bigcap_{j=1}^J A_\alpha(u_{k_j}|_G) \right\} = 0$. Equivalently, in (3.3), $v_J \to 0$ in $L_\infty(G, \mathcal{B}, \lambda)$.

By analogy with (2.9), for $x_0 \in X_\infty$ the essential range of u at $x_0 \in X_\infty$ is defined by

$$
\mathcal{R}(u)(x_0) = \left\{ \int_X u \, d\omega : \omega \in \mathfrak{G}(x_0) \right\}.
$$
 (4.2)

As in Corollary 2.11, for open G with $x_0 \in G$,

$$
\mathcal{R}(u)(x_0) = \left\{ \int_G u \, d\omega : \omega \in \mathfrak{G}(x_0) \right\} = \left\{ \alpha : \lambda \{ x \in G : |\alpha - u(x)| < \epsilon \} > 0 \text{ for all } \epsilon > 0 \right\}. \tag{4.3}
$$

Note that $\mathcal{R}(u)(x_0)$ is closed in R because, by (4.3), for any $x_0 \in X$ its complement is open. It is immediate from (2.12), Lemmas 4.1 and 4.2 that $u_k \to u$ in $L_\infty(X, \mathcal{B}, \lambda)$ if and only if for all $x_0 \in X_\infty$

$$
\alpha_k := \int_X u_k \, d\omega \to \int_X u \, d\omega =: \alpha \text{ as } k \to \infty \text{ for all } \omega \in \mathfrak{G}(x_0),
$$

which is not equivalent to $\alpha_k \to \alpha$ when $\alpha_k \in \mathcal{R}(u_k)(x_0)$ and $\alpha \in \mathcal{R}(u)(x_0)$ because, possibly,

$$
\alpha_k = \int_X u_k \, d\omega_k \text{ and } \alpha = \int_X u \, d\omega, \text{ but } \omega_k \neq \omega.
$$

However, $\alpha = \int_X u \, d\omega \in \mathcal{R}(u)(x_0), \ \omega \in \mathfrak{G}(x_0)$, may be thought of as a directional limit of u at x_0 , the "direction" being determined by $\mathcal{F}(\omega) \in \mathfrak{F}(x_0)$. Then weak convergence in $L_{\infty}(X,\mathcal{B},\lambda)$ is equivalent to convergence, for each $\mathcal{F} \in \mathfrak{F}(x_0)$, of the directional limits of u_k at x_0 to corresponding directional limits of u at x_0 , for each $x_0 \in X_\infty$. Therefore, by Theorem 2.8, $u_k \to u$ in $L_\infty(X, \mathcal{B}, \lambda)$ if and only if for all $x_0 \in X_\infty$ and all $\omega \in \mathfrak{G}(x_0)$

$$
|\alpha_k - \alpha| \to 0 \text{ and } \omega \{x \in G : |u_k(x) - \alpha_k| + |u(x) - \alpha| < \epsilon\} = 1
$$
\n
$$
\text{for all } \epsilon > 0 \text{ and all open sets } G \subset X_\infty \text{ with } x_0 \in G, \quad \text{(4.4a)}
$$

equivalently $u_k \rightharpoonup u$ in $L_{\infty}(X, \mathcal{B}, \lambda)$ if and only if for all $x_0 \in X_{\infty}$ and all $\mathcal{F} \in \mathfrak{F}(x_0)$,

$$
|\alpha_k - \alpha| \to 0 \text{ and } \{x \in G : |u_k(x) - \alpha_k| + |u(x) - \alpha| < \epsilon\} \in \mathcal{F}
$$
\n
$$
\text{for all } \epsilon > 0 \text{ and all open sets } G \subset X_\infty \text{ with } x_0 \in G. \tag{4.4b}
$$

Remark 4.5. It follows that for $u_k \rightharpoonup u$ it is *necessary* that for every $x_0 \rightharpoonup X_\infty$ and every $\alpha \in \mathcal{R}(u)(x_0)$ there exist $\alpha_k \in \mathcal{R}(u_k)(x_0)$ such that $\alpha_k \to \alpha$ as $k \to \infty$ and *sufficient* that for every $x_0 \in X_\infty$

$$
\sup\left\{|\gamma|:\ \gamma\in\mathcal{R}(u_k-u)(x_0)\right\}\to 0 \ \ \text{as} \ \ k\to\infty.
$$

As noted earlier, the necessary condition is not sufficient. To see that the sufficient condition is not necessary, let $u_k = \chi_{A_k}$ where $\{A_k\}$ is a sequence of disjoint segments centred on the origin 0 of the unit disc X in \mathbb{R}^2 . Then $\mathcal{R}(u_k)(0) = \{0,1\}$ but $u_k \rightharpoonup 0$ by the last remark in Section 3.1 (1) or, equivalently, by Section 3.1 (2) with $\alpha_1 = 1$ and $\alpha_i = 0$, $i \ge 2$. In this example $\int_X u_k d\omega \to 0$, but not uniformly, for every $\omega \in \mathfrak{G}(0)$.

5 Restriction to $C_0(X,\tau)$ of Elements of $L^{\ast}_{\infty}(X,{\mathcal B},\lambda)$

Throughout this section (X, τ) is a locally compact Hausdorff topological space and $C_0(X, \tau)$ is the space of real-valued continuous functions v on X with the property that for all $\epsilon > 0$ there exists a compact set $K \subset X$ such that $|v(x)| < \epsilon$ for all $x \in X \setminus K$. When endowed with the maximum norm

$$
||v||_{\infty} = \max_{x \in X} |v(x)|, \quad v \in C_0(X, \tau), \tag{5.1}
$$

 $C_0(X, \tau)$ is a Banach space which if X is compact consists of all real-valued continuous functions on X. Let $\nu \in L^{\infty}_{\infty}(X, \mathcal{B}, \lambda)$, as in Theorem 2.1 define $f \in L_{\infty}(X, \mathcal{B}, \lambda)^*$ by

$$
f(u) = \int_X u \, d\nu, \ u \in L_{\infty}(X, \mathcal{B}, \lambda),
$$

and let \hat{f} denote the restriction of f to $C_0(X, \tau)$. By the Riesz Representation theorem [12, Thm. 6.19] there is a unique bounded regular Borel measure $\hat{\nu} \in \Sigma(\mathcal{B})$ corresponding to \hat{f} , and consequently

$$
\int_{X} v \, d\nu = \int_{X} v \, d\hat{\nu} \text{ for all } v \in C_{0}(X, \tau). \tag{5.2}
$$

The goal is to understand how $\hat{\nu}$ depends on ν and, since $\hat{\nu}^{\pm} = \nu^{\pm}$ (see (2.2b)), there is no loss of generality in restricting attention to non-negative $\nu \in L^*_{\infty}(X, \mathcal{B}, \lambda)$. Recall

- (i) from the Yosida-Hewitt decomposition (2.5), $\nu = \mu + g\lambda$ where $\mu \in L^*_{\infty}(X, \mathcal{B}, \lambda)$ is purely finitely additive and $g\lambda$, $g \in L_1(X, \mathcal{B}, \lambda)$, is σ -additive.
- (ii) from the Lebesgue-Radon-Nikodym Theorem [7, Thm. 3.8], [12, Thm. 6.10], $\hat{\nu} = \rho + k\lambda$ where ρ and kλ are σ-additive, $k \in L_1(X, \mathcal{B}, \lambda)$, and ρ is singular with respect to λ . Thus $\hat{\nu}$ has a singularity with respect to λ if $\hat{\nu}(E) \neq 0$ (equivalently $\rho(E) \neq 0$) for some $E \in \mathcal{N}$, and $\hat{\nu}$ is singular if in addition $k = 0$, where

$$
\int_X v \, d\mu + \int_X v g \, d\lambda = \int_X v \, d\nu = \int_X v \, d\hat{\nu} = \int_X v \, d\rho + \int_X v k \, d\lambda \text{ for all } v \in C_0(X, \tau), \tag{5.3}
$$

where $\rho \perp \lambda$ in $\Sigma(\mathcal{B}), \mu \perp \lambda$ in $\Upsilon(\mathcal{B})$ (see Remark 2.3 for the distinction), and $g, k \in L_1(X, \mathcal{B}, \lambda)$. Valadier was first to note that the relation between μ and ρ , and q and k is not straightforward.

Theorem (Valadier [13]). *When* λ *is Lebesgue measure on* [0, 1] *there is a non-negative* $\nu \in \Pi(\mathcal{B})$ *with*

$$
\int_0^1 v \, d\nu = \int_0^1 v \, d\lambda \, \text{for all } v \in C[0,1].
$$

Thus in (i), (ii) and (5.3), $0 \neq \mu \in \Pi(\mathcal{B})$ *and* $g = 0$ *but* $\rho = 0$ *and* $k \equiv 1$ *, and* $\hat{\nu}$ *has no singularity.*

Hensgen independently observed that the last claim in [15, Theorem 3.4] is false.

Theorem (Hensgen [8]). *With* $X = (0,1)$ *there exists* $\nu \in L^*_{\infty}(X,\mathcal{B},\lambda)$ *which is non-zero and not purely finitely additive but* $\int_0^1 v \, d\nu = 0$ *for all* $v \in C(0, 1)$ *.*

Subsequently Abramovich & Wickstead [1] provided wide ranging generalizations and recently Wrobel [14] gave a sufficient condition on ν for $\hat{\nu}$ to be singular with respect to Lebesgue measure on [0, 1]. To find a formula for $\hat{\nu}$ satisfying (5.2) for a given non-negative $\nu \in L^*_{\infty}(X,\mathcal{B},\lambda)$, and to characterise those ν for which $\hat{\nu}$ has a singularity, recall the following version of Urysohn's Lemma.

Lemma 5.1. [12, §2.12] *If* $K \subset G \subset X$ *where* K *is compact and* G *is open, there exists a continuous function* $f: X \to [0, 1]$ *such that* $f(K) = 1$, $\overline{\{x: f(x) > 0\}} \subset G$ *is compact, and hence* $f \in C_0(X, \tau)$ *.*

Lemma 5.2. Suppose $0 \le v \in L^*_{\infty}(X, \mathcal{B}, \lambda)$ and $B \in \mathcal{B}$. Then $\nu(K) \le \hat{\nu}(B) \le \nu(G)$ for compact K *and open G with* $K ⊂ B ⊂ G$ *. Moreover*

 $\nu(K) \le \hat{\nu}(K)$ and $\hat{\nu}(G) \le \nu(G)$ for all compact K and open G in X

and $\nu(F) \le \hat{\nu}(F) + \nu(X) - \hat{\nu}(X)$ *if* F *is closed. Thus* $\hat{\nu}(X) = \nu(X)$ *implies that* $\nu(F) \le \hat{\nu}(F)$ *for all closed sets* $F \subset X$ *. (That* $\nu(X) = \hat{\nu}(X)$ *when* (X, τ) *is compact was noted following* (5.2)*.*)

Proof. For a given Borel set B and $K \subset B \subset G$ as in the statement, let f be the continuous function determined in Lemma 5.1 by K and G . Then

$$
\nu(K) \leqslant \int_X f \, d\nu \leqslant \nu(G) \text{ and } \hat{\nu}(K) \leqslant \int_X f \, d\hat{\nu} \leqslant \hat{\nu}(G).
$$

It follows from (5.2) that $\nu(K) \leq \hat{\nu}(G)$ and $\hat{\nu}(K) \leq \nu(G)$ whence, since $\hat{\nu}$ is regular [12, Thm. 6.19], $\nu(K) \leq \hat{\nu}(B) \leq \nu(G)$. In particular, if $B = K$ is compact, $\nu(K) \leq \hat{\nu}(K)$, and if $B = G$ is open, $\hat{\nu}(G) \leq \nu(G)$. That $\nu(F) \leq \hat{\nu}(F) + \nu(X) - \hat{\nu}(X)$ when F is closed follows by finite additivity since $0 \leqslant \nu(X), \hat{\nu}(X) < \infty.$ \Box

Remark 5.3. A non-negative finitely additive set function ν on B is said to be regular [6, III.5.11] if for all $E \in \mathcal{B}$ and $\epsilon > 0$ there are sets $F \subset E \subset G$ with F closed, G open and $\nu(G \setminus F) < \epsilon$. If X is compact and ν is regular, by a theorem of Alexandroff [6, III.5.13] ν is σ -additive and hence $\hat{\nu} = \nu$. By Lemma 5.2, if $\nu(X) = \hat{\nu}(X)$ and $F \subset E \subset G$, where F is closed and G is open,

$$
\nu(F) \leq \hat{\nu}(F) \leq \hat{\nu}(E) \leq \hat{\nu}(G) \leq \nu(G).
$$

Hence if $\nu(X) = \hat{\nu}(X)$ and $\nu \ge 0$ regular implies that $\nu = \hat{\nu}$ is σ -additive on β .

Theorem 5.4. Suppose K is compact, G is open, $K \subset G$ and $0 \leq \nu \in L^*_{\infty}(X, \mathcal{B}, \lambda)$. Then for $n \in \mathbb{N}$ *there exist compact* K_n *and open* G_n *with*

$$
K \subset G_n \subset K_n \subset G, \quad G_n \subset G_{n-1}, \ K_n \subset K_{n-1},
$$

$$
\hat{\nu}(K) \leq \nu(K_n), \quad \hat{\nu}(G) \geq \nu(G_n) \text{ and } \lambda(K_n) < \lambda(K) + 1/n.
$$

Proof. Since λ is a regular Borel measure that is finite on compact sets there exist open sets G^k with $K \subset G^k \subset G$ and $\lambda(G^k) < \lambda(K) + 1/k$ for $k \in \mathbb{N}$. By Lemma 5.1 there exists a continuous function $f_k: X \to [0,1]$ such that $f_k(K) = 1$ and $\overline{\{x: f_k(x) > 0\}}$ is a compact subset of G^k . For $x \in X$, let $g_n(x) = \min\{f_k(x) : k \leq n\}$ so that $g_n \leq g_{n-1}$, g_n is continuous on X, $g_n(K) = 1$ and $\overline{\{x : g_n(x) > 0\}} \subset G^n$ is compact.

 \Box

Let $G_n = \{x : g_n(x) > 0\}$ and $K_n = \overline{\{x : g_n(x) > 0\}}$. Then $K \subset G_n \subset K_n \subset G^n \subset G$ and, by Lemma 5.2,

$$
\hat{\nu}(K)\leqslant\hat{\nu}(G_n)\leqslant\nu(G_n)\leqslant\nu(K_n),\quad\hat{\nu}(G)\geqslant\hat{\nu}(K_n)\geqslant\nu(K_n)\geqslant\nu(G_n),
$$

and $\lambda(K_n) < \lambda(K) + 1/n$ because $K_n \subset G^n$. Now $\{G_n\}$ and $\{K_n\}$ are nested sequences of open and compact sets, respectively, because $g_n(x)$ is decreasing in n, with the required properties. \Box

Corollary 5.5. *For G open, K compact and* $\nu \in L^*_{\infty}(X, \mathcal{B}, \lambda)$ *non-negative,*

$$
\hat{\nu}(G) = \sup \{ \nu(K) : K \subset G, \ K \text{ compact} \}, \quad \hat{\nu}(K) = \inf \{ \nu(G) : K \subset G, \ G \text{ open} \}.
$$

Proof. Let G be open. Then for any $\epsilon > 0$ there exists compact $K_{\epsilon} \subset G$ with $\hat{\nu}(K_{\epsilon}) > \hat{\nu}(G) - \epsilon$, since $\hat{\nu}$ is regular, and $\nu(K_{\epsilon}) \le \hat{\nu}(K_{\epsilon}) \le \hat{\nu}(G)$ by Lemma 5.2. Now by Theorem 5.4 there exists compact K_1 with $K_{\epsilon} \subset K_1 \subset G$ and $\hat{\nu}(G) \ge \hat{\nu}(K_1) \ge \nu(K_1) \ge \hat{\nu}(K_{\epsilon}) > \hat{\nu}(G) - \epsilon$. This establishes the first identity. Similarly for compact K and $\epsilon > 0$ there exists open G_{ϵ} with $K \subset G_{\epsilon}$ and $\hat{\nu}(G_{\epsilon}) < \hat{\nu}(K) + \epsilon$, and an open G_1 with $\hat{\nu}(G_{\epsilon}) \geq \nu(G_1)$, $K \subset G_1 \subset G_{\epsilon}$, whence $\hat{\nu}(K) + \epsilon > \hat{\nu}(G_{\epsilon}) \geq \nu(G_1)$. \Box

Corollary 5.6. *For* $0 \le v \in L^{\infty}_{\infty}(X, \mathcal{B}, \lambda)$, $\hat{\nu} \in \Sigma(\mathcal{B})$ *has a singularity if and only if there exists* $\alpha > 0$ *and a sequence of compact sets with* $\nu(K_n) \ge \alpha$, $K_{n+1} \subset K_n$ *for all n, and* $\lambda(K_n) \to 0$ *as* $n \to \infty$ *.*

Proof. If $\alpha > 0$ and such a sequence exists, by Lemma 5.2, $\hat{\nu}(K_n) \ge \alpha$ for all n. Since $\{K_n\}$ is nested and $\hat{\nu}$ is σ -additive it follows that $\hat{\nu}(K) \geq \alpha$ where $K = \cap_n K_n$. Since $K \in \mathcal{N}$, because $\lim_{n\to\infty}\lambda(K_n)=0$ and λ is σ -additive, ν has a singularity. Conversely if $\hat{\nu}\geqslant 0$ has a singularity there exists $E \in \mathcal{N}$ and $\alpha > 0$ with $\hat{\nu}(E) = 2\alpha$. Since $\hat{\nu}$ is regular, there exists a compact $K \subset E$ with $\hat{\nu}(K) \geq \alpha > 0$. Now since $\lambda(K) = 0$ because $K \subset E \in \mathcal{N}$, the existence of compact sets with $\nu(K_n) \geq \hat{\nu}(K) \geq \alpha$, $K_{n+1} \subset K_n$ for all n, and $\lambda(K_n) \to 0$ as $n \to \infty$ follows from Theorem 5.4. \Box

Theorem 5.7. *For* $B \in \mathcal{B}$ *and* $0 \leq \nu \in L^*_{\infty}(X, \mathcal{B}, \lambda)$ *,*

$$
\hat{\nu}(B) = \inf_{\substack{G \text{ open} \\ B \subset G}} \left\{ \sup_{\substack{K \text{ compact} \\ K \subset G}} \nu(K) \right\} = \sup_{\substack{K \text{ compact} \\ K \subset B}} \left\{ \inf_{\substack{G \text{ open} \\ K \subset G}} \nu(G) \right\}.
$$
\n(5.4)

Proof. This follows from Corollary 5.5 since $\hat{\nu}$ is a regular Borel measure.

Corollary 5.8. *(a) For* $\omega \in \mathfrak{G}$ *, either* $\hat{\omega}$ *is zero or* $\hat{\omega}$ *is a Dirac measure. (b) Both possibilities in (a) may occur when* (X, τ) *is not compact. (c)* If $\hat{\omega} = \delta_{x_0} \in \mathfrak{D}$ *, then* $\omega \in \mathfrak{G}(x_0)$ *.*

Proof. (a) If $\omega(K) = 0$ for all compact K, the first formula of (5.4) implies that $\hat{\omega} = 0$. If $\omega(K) = 1$ for some compact K, by Lemma 4.1 there is a unique $x_0 \in X$ for which $\omega(G) = 1$ if $x_0 \in G$ and G is open. From the second part of (5.4) it is immediate that $\hat{\omega}(B) = 1$ if and only if $x_0 \in B$. Hence $\hat{\omega} \in \mathfrak{D}$.

(b) For an example of both possibilities let $X = (0, 1)$ with the standard locally compact topology and Lebesgue measure. Let $\omega \in \mathfrak{G}$ be defined by Theorem 2.9 with $E_\ell = (0, 1/\ell), \ell \in \mathbb{N}$. Then $\omega(K) = 0$ for all compact $K \subset (0, 1)$ and hence $\hat{\omega} = 0$. On the other hand if $E_\ell = (1/2 + 1/\ell, 1/2)$ in Theorem 2.9, $\omega \in \mathfrak{G}$ with $\omega([1/2 + 1/\ell, 1/2]) = 1$ for all ℓ and hence $\hat{\omega} = \delta_{1/2} \in \mathfrak{D}$.

(c) When $\hat{\omega} = \delta_{x_0}$ let $x_0 \in G$, open. Since $\{x_0\}$ is compact by Lemma 5.1 there exists $v \in C_0(X, \tau)$ with $v(X) \subset [0,1], v(x_0) = 1, v(X \setminus G) = 0$. Now $\omega(G) = 1$ for every open set with $x_0 \in G$ since

$$
1 \geqslant \omega(G) \geqslant \int_G v \, d\omega = \int_X v \, d\omega = \int_X v \, d\hat{\omega} = v(x_0) = 1.
$$

 \Box

A Appendix: $\mathfrak G$ and Extreme Points of the Unit Ball in $L^*_{\infty}(X, \mathcal L, \lambda)$

Theorem A.1 (Rainwater [11]). *In a Banach space B,* $x_k \rightharpoonup x$ *as* $k \rightharpoonup \infty$ *if and only if* $f(x_k) \rightharpoonup f(x)$ \mathbb{R} *for all extreme points* f *of the closed unit ball in* B^* .

Recall that $L^*_{\infty}(X,\mathcal{L},\lambda)$ is the set of finitely additive measures on \mathcal{L} that are zero on N. Let $U^*_{\infty} = \{ \nu \in$ $L^{\infty}_{\infty}(X,\mathcal{L},\lambda): |\nu|(X) \leq 1$, the closed unit ball in $L^{\infty}_{\infty}(X,\mathcal{L},\lambda)$. Then $\nu \in U_{\infty}^*$ is an extreme point of U_{∞}^* if for $\nu_1, \nu_2 \in U_{\infty}^*$ and $\alpha \in (0,1)$

$$
\nu(E) = \alpha \nu_1(E) + (1 - \alpha)\nu_2(E)
$$
 for all $E \in \mathcal{L}$ implies that $\nu = \nu_1 = \nu_2$.

Clearly extreme points have $|\nu|(X) = 1$ and, by Theorem A.1, $u_k \to u_0$ in $L_\infty(X, \mathcal{L}, \lambda)$ if and only if for some M

$$
||u_k||_{\infty} \le M
$$
 and $\int_X u_k d\nu \to \int_X u_0 d\nu$ as $k \to \infty$ for all extreme points ν of U_{∞}^* .

Thus (2.12) is a consequence of the following result.

Lemma A.2. ν *is an extreme point of* U^*_{∞} *if and only if either* ν *or* $-\nu \in \mathfrak{G}$ *, see* (2.6)*.*

Proof. If $|\nu|(X) = 1$ but ν is not one signed, then $|\nu| = \nu^+ + \nu^-$ where $\nu^+ \wedge \nu^- = 0$ and $\nu^+(X) \in$ (0, 1). Let $0 < \epsilon_0 = \frac{1}{2} \min \{ \nu^+(X), 1 - \nu^+(X) \}$ and, by (2.2b), choose $A \in \mathcal{L}$ such that $\nu^+(X \setminus A)$ + $\nu^-(A) = \epsilon < \epsilon_0$. If $\nu(A) = 0$ then $\nu^+(X) = \nu^+(X \setminus A) + \nu^+(A) = \nu^+(X \setminus A) + \nu^-(A) = \epsilon < \epsilon_0$, which is false. So $\nu(A) \neq 0$ and hence $|\nu|(A) > 0$. If $|\nu|(A) = 1$ then $\nu^+(X) = 1 + \epsilon - 2\nu^-(A) \geq 1 - \epsilon$, and hence $1 - \nu^+(X) < \epsilon < \epsilon_0$, which is false. So $|\nu|(A) \in (0,1)$. Let

$$
\nu_1(E) = \frac{\nu(A \cap E)}{|\nu|(A)}, \quad \nu_2(E) = \frac{\nu((X \setminus A) \cap E)}{|\nu|(X \setminus A)} \text{ for all } E \in \mathcal{L}.
$$

Then $\nu_1, \nu_2 \in U^*_{\infty}$ and, for all $E \in \mathcal{L}$,

$$
\nu(E) = \alpha \nu_1(E) + (1 - \alpha) \nu_2(E), \text{ where } \alpha = |\nu|(A), (1 - \alpha) = |\nu|(X \setminus A).
$$

Since $\alpha \in (0,1)$, $\nu_1(A) = \nu(A)/|\nu|(A) \neq 0$ and $\nu_2(A) = 0$, this shows that ν is not an extreme element of U_{∞}^* if ν is not one-signed.

Now suppose $0 \le v \in U^*_{\infty}$ (for $v \le 0$ replace v with $-v$). If $v \notin \mathfrak{G}$ there exists $A \in \mathcal{L}$ with $\nu(A) \in (0,1)$. Let

$$
\nu_1(E) = \frac{\nu(A \cap E)}{\nu(A)}, \quad \nu_2(E) = \frac{\nu((X \setminus A) \cap E)}{\nu(X \setminus A)} \text{ for all } E \in \mathcal{L}.
$$

Then $\nu_1, \nu_2 \in U_{\infty}^*$,

$$
\nu(E) = \alpha \nu_1(E) + (1 - \alpha) \nu_2(E)
$$
 for all $E \in \mathcal{L}$, where $\alpha = \nu(A)$, $(1 - \alpha) = \nu(X \setminus A)$.

Since $\nu_1(A) = 1 \neq 0 = \nu_2(A)$, ν is not extreme. Hence ν extreme implies that $\pm \nu \in \mathfrak{G}$. Now suppose that $\nu \in \mathfrak{G}$ and for all $E \in \mathcal{L}$,

$$
\nu(E) = \alpha \nu_1(E) + (1 - \alpha)\nu_2(E), \quad \alpha \in (0, 1), \quad \nu_1, \nu_2 \in U^*_{\infty}.
$$

Then $\nu \geqslant 0$ and if $\nu(E) = 1$,

$$
1 = \nu(E) = \alpha \nu_1(E) + (1 - \alpha)\nu_2(E) \leq \alpha |\nu_1|(X) + (1 - \alpha)|\nu_2|(X) \leq 1
$$

which implies that $\nu_1(E) = \nu_2(E) = \nu(E) = 1$. In particular $\nu_1(X) = \nu_2(X) = 1$. If $\nu(E) = 0$ then $\nu(X \setminus E) = 1$ and so $\nu_1(X \setminus E) = \nu_2(X \setminus E) = 1$, whence $\nu_1(E) = \nu_2(E) = \nu(E) = 0$. Thus $\nu = \nu_1 = \nu_2$ and ν is extreme if $\nu \in \mathfrak{G}$. \Box Closing Remark. Although the main result, Theorem 3.6, is derived above from Yosida-Hewitt theory [15] without reference to other sources, Theorem A.1 and Lemma A.2 lead to (2.12), and Lemma 2.8 yields Corollary 3.1, thus dispensing with any need for Theorems 2.12 and 2.13. \Box

Acknowledgement. I am grateful to Charles Stuart for guiding me to the original source [3, Annexe], to Anthony Wickstead for copies of [13] and [14], to Geoffrey Burton, Brian Davies and Eugene Shargorodsky for their interest and comments, and to Mauricio Lobos whose question led to this study. \Box

References

- [1] Y. A. Abramovich and A. W. Wickstead. Singular extensions and restrictions of order continuous functionals. *Hokkaido Math. J.* 21 (1992), 475–482.
- [2] J. M. Ball. Weak continuity properties of mappings and semigroups. *Proc. Roy. Soc. Edin. Sect.* A 72 (4) (1975), 275–280.
- [3] S. Banach. *Theorie des Op ´ erations Lin ´ eaires. ´* Monografje Matematyczne, Tom I, Warszawa 1932; Chelsea Publishing Co. New York 1955; English translation by F. Jellett, Dover Books, 1987.
- [4] K. P. S. Bhaskara Rao and M. Bhaskara Rao. *Theory of Charges*. Academic Press, London 1983.
- [5] J. B. Conway. *A Course in Functional Analysis.* Second Edition, Springer, New York 2007,
- [6] N. Dunford and J. T. Schwartz. *Linear Operators.* Volume I, Wiley Interscience, New York 1988.
- [7] G. B. Folland. *Real Analysis.* Second Edition, John Wiley, New York, 1999.
- [8] W. Hensgen. An example concerning the Yosida-Hewitt decomposition of finitely additive measures. *Proc. Amer. Math. Soc.* 121 (1994), 641–642.
- [9] J. Heinonen. *Lectures on Analysis on Metric Spaces.* Springer, New York, 2001.
- [10] J. L. Kelley. *General Topology.* Van Nostrand Reinhold, Toronto, 1955.
- [11] J. Rainwater. Weak convergence of bounded sequences. *Proc. Amer. Math. Soc.* 14 (6), (1963), 999.
- [12] W. Rudin. *Real and Complex Analysis*. Third Edition, McGraw-Hill, New York, 1986.
- [13] M. Valadier. Une singulière forme linéaire sur L^∞ . *Sém. d'Analyse Convexe Montpelier*, **4**, (1987).
- [14] A. J. Wrobel. A sufficient condition for a singular functional on $L^{\infty}[0,1]$ to be represented on $C[0, 1]$ by a singular measure. *Indag. Math.* **29** (2), (2018), 746 – 751.
- [15] K. Yosida and E. Hewitt. Finitely additive measures. *Trans. Amer. Math. Soc.* 72, (1952), 46-66.

September 18, 2018