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Abstract

In a general measure space (X, £, A), a characterization of weakly null sequences in L., (X, £, \)
(ux — 0) in terms of their pointwise behaviour almost everywhere is derived from the Yosida-Hewitt
identification of Lo (X, £, \)* with finitely additive measures, and extreme points of the unit ball in
Loo(X, L, A\)* with £, where & denotes the set of finitely additive measures that take only values
0 or 1. When (X, 7) is a locally compact Hausdorff space with Borel o-algebra B, the well-known
identification of & with ultrafilters means that this criterion for nullity is equivalent to localized be-
haviour on open neighbourhoods of points x( in the one-point compactification of X. Notions of
weak convergence at x( and the essential range of u at x( are natural consequences. When a finitely
additive measure v represents f € Lo (X, B, A\)* and ¥ is the Borel measure representing f restricted
to Co(X, 7), a minimax formula for  in terms v is derived and those v for which # is singular with
respect to A are characterized.
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convergence; extreme points
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1 Introduction

In the usual Banach space C'(Z) of real-valued continuous functions on a compact metric space Z with
the maximum norm, it is well-known [3] that vy, converges weakly to v (v, — v) if and only if {||vg||}
is bounded and vi(z) — wv(z) for all z € Z. This observation amounts to a simple test for weak
convergence in C'(Z) from which follows, for example, the weak sequential continuity [2] of composition
maps u — fou, u € C(Z),when f : R — R is continuous. However u, — w in Lo (X, £, A) implies
that {||ug|| } is bounded and often that u () — w(z) almost everywhere (Lemma 3.3), but the converse
is false (Remark 3.5) and, despite the identification of Lo, (X, £, \) with C(Z) for some compact Z
[5, VIII 2.1], it can be difficult to decide whether or not a given sequence is weakly convergent in
Loo(X, L, \). To address this issue Theorem 3.6 characterises sequences that are weakly convergent to 0
in Loo (X, £, A) (hereafter referred to as weakly null) purely in terms of their pointwise behaviour almost
everywhere, and a practical test for weak nullity ensues (Corollary 3.7 and Section 3.1). When (X, 7) is a
locally compact Hausdorff topological space, localization in terms of opens sets, as opposed to pointwise,
follows from the identification of ultrafilters in the corresponding Borel measure space (X, B, \) with
extreme points in the unit ball of L, (X, B, \)*. When v is the finitely additive measure corresponding
to f € Loo(X, B, A\)* we give a formula for the Borel measure & that represent the restriction f of f to
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Co(X,T), defined in Section 5, and use it to characterize those v for which © is singular relative to \.
These observations are motivated by examples [8, 13] of singular finitely additive measures that do not
yield singular Borel measures when restricted to continuous functions, contrary to a claim by Yosida &
Hewitt [15, Thm. 3.4]. The material is organized as follows.

Section 2 is a brief survey of finitely additive measures on o-algebras and of weak convergence in
Loo(X, L, ) in terms of the Yosida-Hewitt representation of the dual space Lo (X, £, \)* as a space
L (X, L, \) of finitely additive measures. When & denotes elements of L’ (X, L, \) that take only
values {0, 1}, it follows that uy, — win Lo (X, £, \) if and only if f(ux) — f(u) for all f represented
by elements of &. Although obtained independently, this is a special case of Rainwater’s Theorem, see
Appendix and the Closing Remarks at the end of the paper. The section ends with a brief account of
weak sequential continuity of composition operators.

Section 3 begins by remarking that u;, — w if and only if |ug| — |u|, noting aspects of the pointwise
behaviour of weakly convergent sequences in Lo, (X, £, A), and observing that a necessary condition,
which turns out to be sufficient, is given by Mazur’s theorem. The characterization of null sequences
in terms of their pointwise behaviour in Theorem 3.6 follows from Yosida-Hewitt theory and the fact
that any u € Lo (X, £, \) is a constant w-almost everywhere in the sense of finitely additive measures
when w € & (see Remark following Theorem 2.8). An Lo (X, £, \) analogue of Dini’s theorem on the
uniform convergence of sequences of continuous functions that are monotonically convergent pointwise
is a corollary, and Theorem 3.6 is illustrated by several examples.

In Section 4, when (X, 7) is a locally compact Hausdorff space and (X, BB, \) is the corresponding Borel
measure space, the well-known one-to-one correspondence (2.8) between & and a set §§ of ultrafilters
(Definition 2.10) leads to a local description of weak convergence: a sequence is weakly convergent in
Lo (X, B, )\) if and only if it is weakly convergent at each g € X, the one-point compactification
of X. This notion of weak convergence at a point leads naturally to a definition of the essential range
R(u)(xo) of u at x9 € X. For the relation between weak convergence and the pointwise essential
range, see Remark 4.5.

For v € L% (X, B, \), let & denote the Borel measure that, by the Riesz Representation Theorem [12,
Thm. 6.19]), corresponds to the restriction to Cop(X, 7) of the functional defined on v on L (X, B, A) by
(2.1). Section 5 develops a minimax formula (Theorem 5.7) for © in terms of v. It follows that if (X, 7)
is not compact, ¥ may be zero when v > 0 is non-zero. In particular when w € &, either & = 0 or
& € © (a Dirac measure on X) and if (X, 7) is compact @ € ©. An arbitrary Hahn-Banach extension to
Lo (X, B, \) of a §-function on Cy (X, 7) need not be in &, but from Section 4.1 there may be infinitely
many extensions that are in &. Those v for which 7 is singular with respect to A are characterised in
Corollary 5.6.

2 L and its Dual

Let A be a non-negative, complete, countably additive measure on a o-algebra £ in a set X and let
N ={FE € L : XNE) = 0}. So (X, L, \) is a measure space and N denotes its null sets. As usual
(Loo(X, L, A), || - |lso) denotes the corresponding Banach space of (equivalence classes of) essentially
bounded functions. In notation summarised in Section 2.1, the analogue of the Riesz Representation
Theorem [12, Thm. 6.19] for functionals in Lo (X, £, A)* is the following.

Theorem 2.1. (Yosida & Hewitt [15], see also [6, Theorem IV.8.16]). For every bounded linear func-



tional on Lo (X, L, \) there exists a finitely additive measure (Definition 2.2) v on L such that

flw) = / wdv forallw € Loo(X, L, N), 2.1
X
v(N) =0 forall N € N and |[v|(X) = || f]leo < 00.
Conversely if v is a finitely additive measure on X with v(N) = 0 for all N € N, then f defined by
2.1)isin Loo(X, L, N)*. We write v € L% (X, L, \) if (2.1) holds for some f € Loo(X, L, \)*. O

Because v is finitely additive, but not necessarily o-additive, integrals in (2.1) should be treated with care.
For example, the Monotone Convergence Theorem and Fatou’s Lemma do not hold, and the Dominated
Convergence Theorem holds only in a restricted form. The next section is a review of notation and
standard theory; for a comprehensive account see [15], [6, Ch. III] or [4, Ch. 4]. When combined with
the Hahn-Banach theorem, Theorem 2.1 yields the existence of a variety of finitely additive measures.

2.1 Finitely Additive Measures: Notation and Definitions

Although finitely additive measures are defined on algebras (closed under complementation and finite
unions), here they are considered only on o-algebras, where their theory is somewhat more satisfactory,
because £ in Theorem 2.1 is a o-algebra.

Definition 2.2. [15, §1.2-§1.7] A finitely additive measure v on L is a mapping from L into R with
v(0) = 0and sup o [V(A)| < oo;
v(AUB) =v(A)+v(B) forall A, B € Lwith AN B = 0.

A finitely additive measure is o-additive if and only if

v (UrenEr) = > v(Ey) for all {Ex} C Lwith B; NV Ep = 0,5 # k.
keN

Let T (L) and X (L) denote, respectively, the families of finitely additive and o-additive measures on L.

Since finitely-additive measures are not one-signed, the hypothesis that sup 4. |V(A)| < oo does not
follow from the fact that v(X') < co. The following results are from [15, §1.9-§1.12].
For vy, 1y € T(ﬁ), Ee L, let

(1 V1n)(E) = supgopec{ni(F) +v2(E\ F)},

(1 A 1) (B) = ~((~) V (~12) (B). R

Then vy V va, v1 A vy € T(L), which is a lattice, and v € 7°(L£) can be written
v=vt —v wherevt =vVv0, v =(—v)VO0andvT Av™ =0. (2.2b)
v+ are the positive and negative parts of v and |v| := v+ + v_ is its total variation (see Theorem 2.1).

For vy, vy € T(L) write 11 < v, (11 is absolutely continuous with respect to 1), if for all € > 0 there
exists d such that |v; (E)| < € when |1»|(E) < 0, and write v1 L vy if for every € > 0 there exists E € L
such that |11|(E) + |[2|(X \ E) < e.

Remark 2.3. When v, v, € X (L£) C T(L) the above definitions imply:
v1 < vy if and only if |v2|(F) = 0 implies v1(E) = 0 forall E € L;
vi Ly ifand only if [v1|(E) 4 |v2|(X \ E) = 0 for some E € L.

However it is important that a non-negative finitely additive measure v which vanishes on N (see Theo-
rems 2.1 and 2.9) need not satisfy v < N if v ¢ X(L). O



Definition 2.4. [15, §1.13] A non-negative v € T (L) is purely finitely additive (written v € II1(L)) if
{yeX(L):0<y<v}={0}.

Equivalently, 0 < v € II(L) ifand only if v Ay = 0 for all 0 < v € X(L). In general, v € T(L) is
purely finitely additive if v and v~ are purely finitely additive.

Note that I7(£) N X (L) = {0} and if « € Rand v € II(L) then av € II(L). Moreover II(L) is a
lattice [15, Thm. 1.17]: if v; € II(L), i = 1, 2, then v1 + va, 1 A va, 11 V g € II(L). The sense
in which a purely finitely additive measure on a o-algebra is singular with respect to any o-additive
measure is captured by the following observation which is not true if £ is only an algebra.

Theorem 2.5. [15, Thm 1.22] For 0 < v € X (L£) and 0 < p € II(L) there exists { Ex} C L with
Exi1 CEy, w(Ey) = pu(X) forall k and v(Ey) — 0 as k — oo.

Conversely if 0 < p € Y (L) and for all 0 < v € X (L) a sequence { Ey} with these properties exists,
then jn € II(L).

The significance of purely finitely additive measures is evident from the following.

Theorem 2.6. [15, Thms 1.23 & 1.24] Any v € T(L) can be written uniquely as v = p + ~ where
we Il(L)andy € X(L). Anyv € L’ (X, L, \) can be written uniquely as

V=t e (L (X, L) NIIL)) @ (L (X, £,0) N S(L)). 2.3)

If v = 0 the elements of the decomposition are non-negative. This is the Yosida-Hewitt Decomposition
of finitely additive measures.

By (2.3),v = p+ vy where p € (L} (X, L,\)NII(L)) and A > v € X(L). If (X, L, ) is o-finite, by
the Lebesgue-Radon-Nikodym Theorem [7, Ch. 3.8] there exists g € L1 (X, £, \) with

/ud’y:/ ugdX forallu € Loo(X, L, ). 2.4)
X X

In this case (2.3) can be re-written
v=p+gA pe€H(L)NLL(X,L,A), g€ Li(X,LA). (2.5)

The relation between this and the Lebesgue decomposition of Borel measures is the topic of Section 5.

2.2 & :0-1 Measures

Recall that L’ (X, £, \) is the set of finitely additive measures on L that are zero on V. Let
S ={we Ll (X,L,\): w(X)=1andw(A) € {0,1} forall A € L}. (2.6)
A € Liscalled a A\-atom if A(A) > 0andif A D E € L implies A(E) € {0, A\(4)}.

Theorem 2.7. Suppose w € &. (a) Either w € II(L) or w € X(L). (b) If (X, L, \) is o-finite and
w € X(L), there exists a \-atom E,, such that w(E) = N(E N E,,)/\(E,) forall E € L.

Remark. Hence & C II(L)if (X, £, \) is o-finite and £ has no A-atoms. A stronger statement, Lemma
4.1, can be made when L is the Borel o-algebra of a locally compact Hausdorff space. O
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Proof. (a) For w € &, by Theorem 2.6, w = pu + v where p € II(L£) and v < A\, v € X(L) are
non-negative. By Theorem 2.5 there exists { E,} C £ with u(Ey) = pu(X) for all k£ and v(Eg) — 0
as k — oo. If w(E)) = 0 for some k then 0 = w(Ey) > p(Er) = p(X)and sow = v € X(L). If
w(Ey) = 1 for all k, then

= w(Ek) = p(Ek) +v(Ex) = p(X) +v(Er) = p(X) as k — oo.

Hence w(X) = 1 = u(X) and consequently v(X) = 0. Thus w = p € II(L).

(b) Since w < A where w € X(L) is finite and \ is o-additive, by (2.4) there exists g € L1(X, L, \)
with w(E) = [ gd\forall E € £. So g > 0 A-almost everywhere on X. Since g € L1(X, L, \),
A({x € X : g(x) > n}) = 0asn — oo, and hence, by [7, Cor. 3.6],

w({xeX:g(w)}n}):/ gd\ — 0asn — oo.
{reX:g(x)>n}

Since w € & it follows that w ({x € X : g(xz) > N}) = 0 for some N € N. Now, by finite additivity,
w(X) = 1and w(E) € {0, 1} implies that for every K € N there exists a unique k, € {1,--- , N2K}
such that

= k-1 k

1=w(X) =Y w(Ey)=w(Ey, ) where B = {a: € X <ygl) < 2K}

k=1
Hence EkK+1 C Ej, and since w is o-additive it follows that w(E,) = 1 where B, = {z € X :
g(x) = a} for some « € [0, N]. Then A(E,,) > 0 because w(E,,) =1 and, forall E € L,

w(E):w(EﬂEw):/EmE 0d) = aA(E N By).

Hence o = 1/A(E,), and E,, is a A-atom with the required properties because w € & . O
Theorem 2.8. Foru € Loo(X, L, \) and w € & there is a unique o € I := [—||ul|c0, |t||cc] such that
w{z e X |u(z) —al <e})=1foralle >0, (2.7a)
/ udw = « and / |u| dw = |a]. (2.7b)
X X

Remark. Thus, on Lo (X, £, \) elements of & are analogous to Dirac measures ® in the theory of
continuous functions on topological spaces. When (2.7a) holds we say that © = « on X w-almost
everywhere even though it does not imply that w ({z € X : u(x) = a}) = w(X) if w & X (L). O

Proof. Since w is zero on N, it is clear that o € I if (2.7a) holds. Now (2.7a) cannot hold for distinct
a1 < ag because, with € = (ag — a)/4 the sets w({z € X : |u(z) — a;] < €}), i = 1, 2, are disjoint
and by finite additivity the w-measure of their union would be 2. Since w € &, there is at most one « for
which (2.7a) holds.

Now suppose that there is no « for which (2.7a) holds. Then for each o € I there is an ¢, > 0 such
that w ({z € X : |u(x) — o] < €n}) = 0. By compactness there exists {ay, -+ ,ax} C I such that
IC Uﬁil(ak — €y, O + €4, ) and consequently

1 =w(X) :w({x cu(z) € UK (ay —eak,ak+€ak))

K
Zw ({7 1 u(®) € (ag — €ay,, k +€q,)}) = 0.
k=1



Hence (2.7a) holds for a unique . The first part of (2.7b) follows because, by (2.7a), u = «a w-almost
everywhere on X and w(X) = 1. Finally, w ({z € X : |Ju(z)| — ||| < €}) = 1 forall € > 0, and the
second part of (2.7b) follows. ]

The next result give the existence elements of &.

Theorem 2.9. [15, Thm. 4.1] Let £ C L\ N have the property that Ey € £, 1 < ¢ < L implies that
NL_ E, ¢ N. Then there exists w € & withw(E) = 1forall E € €.

The proof is by Zorn’s lemma and for given &£ there can be uncountably many w. The same argument
underlies the correspondence between elements of & and ultrafilters.

Definition 2.10. Given (X, L, ), a filter is a family F of subsets of X satisfying: (i) X € F and N' N
F = 0; (ii) By, Ey € F, implies that Ey N\ Es € F; (iii) E; D Ey € F implies that E5 € F. A maximal
filter F, one which satisfies (iv) F C F implies F = F, is called an ultrafilter. Let § denote the family
of ultrafilters.

It is obvious that when w € &

Fw)={FeLl: wE)=1}€3. (2.8a)
Conversely, when F € §,
1if e F
w(kE) := { 0 otherwise } (2.8b)

This holds because, exactly as in the proof of [15, Thm. 4.1], the maximality of F € § implies that for
E € L precisely one of E and X \ E is in F. Thus (2.8b) defines w € & with F = F(w) and hence
w 4> F(w) is a one-to-one correspondence between & and §.

By the essential range of v is meant the set
R(u):={aeR: AX{z: |Ju(z) —a| <e}) > 0foralle > 0}. (2.9)

Corollary 2.11. Foru € Loo(X, L, \),

{/Xudw: we@}:R(u).

Proof. Tt follows from Theorems 2.8 and 2.9 that the right side is a subset of the left. Since w(E) =
1, E € L, implies A(E) > 0, it is immediate from Theorem 2.8 that the right side contains the left. [

In a topological space (2.8), (2.9) and Corollary 2.11 can be localized to points, (4.1), (4.2) and (4.3).

ForAe Llet Ay ={we &: w(A)=1}andlet {A4 : A € L} be a base for the topology t on &.
Note from Theorem 2.9 that A 4 is empty if and only if A € N and A 4 is both open and closed because
B\ Ag = Ax\a. Foru € Loo(X, L, \) let L[u] : & — R be defined by

Llu](w) = /Xudw forallw € &. (2.10)

Theorem 2.12. [15, Thms. 4.2 & 4.3] (a) (&, t) is a compact Hausdorff topological space.
(b) For u € Loo(X, L, \), L[u] is continuous on (&, t) with

lulloo = LUl llc(o,y . = suPuee [Lul(w)],



and v — L[u] is linear from Lo (X, L, \) to C(B,t). Moreover, for u,v € Loo(X, L, ),
Lu](w)L[v](w) = Ljuv)(w) forall w € &. (2.11)

Conversely, for every real-valued continuous function U on (®,t) there exists uw € Loo(X, L, \) with
U = L[ul. So L is an isometric isomorphism between Banach algebras Lo (X, L, \) and C (&, t).

Since Loo(X, £, \) and C(®,t) are isometrically isomorphic, uy — up in Lo (X, £, A) if and only if
L{uy] — Lug] in C(®,1). Since (&, 1) is a compact Hausdorff topological space, it follows from the
opening remarks of the Introduction that L[ug] — L[ug] in C(8&,t) if and only if {[|L[ug]||c(es} is
bounded and L[uj] — L[ug] pointwise on &. Hence u, — wug in Loo (X, £, A) if and only if

lug|loo < M and / ug dw —>/ ugdw as k — oo forallw € &. (2.12)
X s

Sequential weak continuity of composition operators is an obvious consequence.

Theorem 2.13. If uf — ul in Loo(X,L,\) as k — oo, n € {1,--- ,N}, and F : RN — R is
continuous, then F(u},--- ,ull) — F(ud, -+ ,ul)) in Loo(X, L, \).

Proof. When u} — wug in Loo(X, L, \), Lju}] — Llug] in C(&,t) and consequently L[u}](w) —
Lug](w) pointwise in & as k — oo. Therefore, for continuous F,

F(Llug)(w), -+, Llug )(w)) = F(Llug)(w), -, Lug'|(w)), w € &.
If F'is a polynomial it follows from (2.11) that
L[F (ug, ,ufﬁv)](oj) — L[F (u, - Jud )] (w), w € B,
and this holds for continuous F', by approximation. Consequently, for continuous F’,
L[F(up, -+ yup )] = LIF (ug, -+ ,ud’)] in C(&, 1)

and so F(up, - ,upy ) = F(ud, -+ ,ud))]in Loo (X, L, \). O

3 Pointwise and Weak Convergence in L., (X, L, \)
The goal is to characterise weakly null sequences in Lo, (X, £, A) in terms of their pointwise behaviour,
but we begin with some observations on the pointwise behaviour of weakly convergent sequences.

Lemma 3.1. In Loo(X, L, \), ux — 0 if and only if |uy| — 0.

Proof. ‘Only if’ follows from Theorem 2.13 and ‘if” is a consequence of (2.12) since ug = u; — Uy,
0 < upt < |ug| and w > 0. O

Lemma 3.2. If (X, £, \) is o-finite and {uy } is weakly null, there is a subsequence {uy, } with uy, (z) —
0 A-almost everywhere on X.

Proof. Since (X, L, \) is o-finite there exists f € Li(X, £, \) which is positive almost everywhere.
Since |ug|f — 0in L1(X, £, \), there is a subsequence with |ug,(x)| — 0 for A-almostall z € X. [J



Lemma 3.3. Suppose that (X, p) is a metric space on which \ is a regular Borel measure with the
property that for all locally integrable functions f and balls B(x, ) centred at x and radius r,

1
lim fd\ = f(x) for A-almost all x € X where ][ fdX = /fd/\. 3.1
0<r—0 B(JJ,T’) ( ) B(.Z‘,’I‘) A(B(-:U7 ’r))

Then up, — ug in Loo(X, L, \) implies that up(x) — ug(x) pointwise \-almost everywhere.

Remark 3.4. From [9, Ch. 1], (3.1) holds in particular when \ is a doubling measure on (X, p) (i.e.
there exists a constant C' such that \(B(x, 2r)) < CA(B(z, 7)), or on R” with the standard metric when
A is any Radon measure (i.e. A is finite on compact sets). ]

Proof. By hypothesis, for u € Lo (X, £, A) there exists a set E(u) € B with A(X \ E(u)) = 0 and

u(z) = Ogrgo o udX forall x € E(u). (3.2)

Now for u — ug the set E = N5°E(uy) has full measure. Let V' denote the subspace of Lo (X, £, \)
spanned by {uy : £ > 0} and for fixed = € E define a linear functional ¢, on V' by /;(u) = u(x). Then

lim ][ ud
0<r—0 B(z,r)

and, by the Hahn-Banach Theorem, there exists L, € Lo (X, £, \)* with L,(u) = £,(u) forallu € V.
Therefore since up — ug,

up(r) = ly(ug) = Ly(ug) = Ly(uo) = (ug) = up(x) forall z € E.

[z (u)| = u(z)] = < ulloo, we v,

Hence ug, — ug in Loo (X, £, ) implies uy(x) — up(z) for almost all z € X. O

Remark 3.5. By contrast there follows an example where {||u||oo } is bounded, uy is continuous except
at one point and ug(z) — 0 everywhere as k — o0, but ux, /2 01in Loo(X, L, \). Let X = (—1,1),
for each k > 2 let ui(0) = 0, ux(x) = 0 when |z| > 2/k, up(x) = 1if 0 < |z| < 1/k, and linear
elsewhere. Now in Theorem 2.9 let £, = (—1/2¢,0)U(0, 1/2¢) for each ¢ and let w be a finitely additive
measure that takes the value 1 on Fy for all £. Then w € & and, by Theorem 2.8, f Uk dw =1 for all k.
So ug A 0, yet it is clear that ug(z) — 0 forall z € X. O

By a well-known result of Mazur, y, — y in a normed linear space implies, for any strictly increasing
sequence {k;} in N, that some {7;} in the convex hull of {yx : j € N} converges strongly to y. Hence
if up — 0in Loo(X, £, ), by Lemma 3.1 there exists {%; } in the convex hull of {|ug,| : j € N} with

m; mg
u; — 0asi — oo and, forall i, w; = ny}]ukjL 'y;- € [0,1] and ny; =1, for some m; € N.
j=1 j=1

Since ’y; may be zero there is no loss in assuming that {m;} is increasing. Therefore, for a strictly
increasing sequence {k;} in N,
0 < wi(z) :=inf {Jug, ()] : j € {1, -+ ,mi}} <T(a), v € X,
defines a non-increasing sequence in Lo, (X, £, \) with ||w;||c — 0. It follows that if uy — 0
vy(z) = inf {|ug, ()] : j € {1,--- , J}} (3.3)

is a non-increasing sequence in Lo (X, £, A) with ||v]|cc — 0as J — co. We now show that a sequence
is weakly null in L (X, £, \) if and only if every sequence {v;}, defined as above in terms of a strictly
increasing {k; }, converges strongly to 0 in L (X, £, X). To do so, for u € Lo (X, £, ) and a > 0, let

Ag(u) ={z € X : |u(x)| > a}.



Theorem 3.6. A bounded sequence {uy} in Loo(X, L, \) converges weakly to zero if and only if for
every o > 0 and every strictly increasing sequence {k;} in N there exists J € N with the property that

AN Aalug,)} = 0. (3.4)
This criterion is equivalent to saying that for every strictly increasing sequence {k;} in N the corre-

sponding sequence {v;} in (3.3) converges strongly to zero in Loo(X, L, \).

Proof. Suppose, for a strictly increasing sequence {k;} and o > 0, that (3.4) is false for all J € N.
Then £ = {An(ug;) : j € N} satisfies the hypothesis of Theorem 2.9. Hence there exists w € & such
that w(Aq (ug,)) = 1 for all j. It follows that

/ |ug, |dw > / |ug,|dw > o > 0 for all j.

Hence |ug| # 0 by (2.12) and so, by Lemma 3.1, ug 4 0.

Conversely suppose u; 7 0. Then by Lemma 3.1 and (2.12), there exists « > 0, a strictly increasing
sequence {k;} C Nand w € & such that

/X\uk].|dw =:a; >a>0forall j € N.

Since aj — « > 0, by Theorem 2.8,
w({z : [luk,| — o] < aj —a}) =1forall j.

Therefore, since |uy, | — o = |ug;| — aj +a; — v, it follows that w(Aq (ug,)) = 1 for all j. Hence, since
w is a 0-1 measure, by finite additivity w( N, Aa(ukj)) — 1forall J. Sincew € & C L% (X, £, \),
it follows that (3.4) is false for all J. Finally note that for a strictly increasing sequence {k;} and o > 0,

Mz rvg(x) > ay = Mo |ug, (x)] > aforall j € {1,---, J}} = A{ ﬂ}-le Aalug,)}.
Since vy (x) > vyp1(z) > 0 it follows that vy — 0 in Lo (X, £, A) if and only if (3.4) holds for every

a > 0. This completes the proof. O

There follows an analogue of Dini’s theorem that on compact topological spaces monotone, pointwise
convergence of sequences of continuous functions to a continuous function is uniform; equivalently, for
bounded monotone sequences weak and strong convergence coincide.

Corollary 3.7. Suppose {uy} is bounded in Loo(X, L, \) and |uy(x)| = |ug41(x)
all z € X. Then up, — 0 if and only if u, — 0in Loo(X, L, N).

, k €N, for A-almost

Proof. The monotonicity of {|ug|} implies that vy coincides with |u 7| in Theorem 3.6 and so that |u | —
0in Loo(X, £, ) as J — oo when uy, — 0if in Lo (X, £, ). The converse is obvious. O

3.1 Ilustrations of Theorem 3.6

(1) In this example X = (—1, 1) with Lebesgue measure, uy, is supported in [—1/2,1/2], ||ux||cc = 1 and
g, u, — 0,butw A 0 where uif (x) = ug(z+£1/251). To see this, let Ay, = [1/2F1,1/2F), AF =
Ap F1/28 wy = ya, and vy = X - Clearly u () = ug(z £ 1/251) and u;} A 0 because vy,
defined in (3.3) by u;",is 1 on (0,1/27"1). Butsince { Ay} and { A, } are two mutually disjoint families,



in (3.3) v, defined for any {k;} C N by wuy, or “1; , is zero for J > 2. Hence uy, — 0 and u,, — 0.
That x 4, — 0 for a disjoint family of sets is used in Remark 4.5. O

(2) In Loo(X, £, ) let ug(z) = 3.2, aiXai,v € X, where Y2, lai] < oo and, for each i € N,
{A}c} keN is a family of mutually disjoint non-null measurable sets. Then uy, — 0 in Loo (X, £, A).

To see this, note that for each € X and ¢ € N there exists at most one £ € N, denoted, if it exists, by
r(x,1), such that € Aj if and only if k& = k(x,7). Note also that for e > 0 there exists /. € N such
that X'7°, ; |a;| < e. Hence, for any given k € Nand z € X,

& > il +e
lug(z)] < Z |ailxai (2) + €= iefi 1}
i—1 k(z,0)=k,
Since {x(x,i) : i € {1,---,I.}} has at most I, elements, there exists k € {1,---,I. + 1} such that
k # k(x,1) forany i € {1,---,I.}. Consequently inf{|ug(z)| : 1 < k < I, + 1} < ¢, independent of
x € X. Since this argument can be repeated with £ € N replaced by any strictly increasing subsequence
{k;}, it follows that {v s} defined in terms of any subsequence in (3.3) has ||v|lcc — 01in Lo (X, £, A).
The weak convergence of {uy, } follows. For the special case, take &; = 1 and o; = 0, 7 > 2. O

(3) Let u : R — R be essentially bounded and measurable with |u(z)| — 0 as || — oo and let
ug(z) = u(z + k). Then up, — 0in Lo (X, £, \) where )\ is Lebesgue measure on R. To see this, for
e > 0 suppose that |u(z)| < eif |x| > K. The for any {k;} C N, |[vs]|cc < €forall J > K. where
{vs} is defined in terms of {wy; } by (3.3), and the result follows. O

(4) Let u : R — R be essentially bounded and measurable with u(z) — 0 as z — oo and u(z) — 1
as x — —oo. Let ug(x) = u(x + k). Then ug(z) — 0 as k — oo for all z € R, but uy, is not weakly
convergent to 0 because of Theorem 3.6. However, in the notation of Definition 4.3, u;r — 0 at every
point of R, but not at the point at infinity in its one-point compactification. O

(5) Define {ux}ren C Loo(X, L, A) by ug(x) = sin(1/(kzx)), z € X = (0,2n), with the standard
measure A on the Lebesgue o-algebra on X. Clearly |ug(z)| — 0 as k — oo uniformly on (e, 27) for
any e € (0, 2). Therefore if a subsequence {uy;, } is weakly convergent, its weak limit must be zero.

To see that no subsequence of {uy } is weakly convergent to 0, consider first a strictly increasing sequence
{k;} of natural numbers for which there exists a prime power p™ which does not divide k; for all j. Then,
for J € N sufficiently large, let

—1
m
xJ:{]ﬂnlcm{kl,-~-,kJ}} G(O,Qﬁ),
where lcm denotes the least common multiple. Then, since p™ { k; and p is prime,

1 _ lCm{kl,"' ’kJ}TI' where lCm{k’l,"' 7kJ}
kjx; p™k; kj

=rmodp™, re{l,---,p"—1},

from which it follows that [uy, (zs)| = |sin(7/p™)| > 0, independent of J. Since, for all j €
{1,--+,J}, ug, is continuous at z s, it follows that ||vs| . (x,cx) = |sin(7/p™)[ > 0 for all J suffi-
ciently large. By Theorem 3.6 this shows that uy; 7 0if {k;} has a subsequence {k} }for which p"™ { &/
for all j € N. Note that if this hypothesis is not satisfied by {k;} for any prime p and m € N, then
every K € Nis a divisor of k; for all j sufficiently large, how large depending on K. Consequently, if
ug; — 0, {k;} has subsequence {k/} with the property that 2 +2k‘; divides &, ; for all 5. In other words

22k, = k)., n; € N, and [0, K], ) is a union of 2F2n; disjoint intervals of length &/.

Now fixed J € N, let m; denote the mid-point of I; := [0,k’), and let I;_y := [m; — k';_;,my),
which is a half open interval of length &/,_; to the left of m ;. Then

K’ 1 K
x = r mod k'; where r € {2‘] (1 - 2JnJ1) ,2‘]] forallz € 151,
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since 27T J—1k’;_; = k';. Note that m , and hence the end-points of I;_, are integer multiples of
k';_,. Now denote the mid-point of I;_; by mj_j andlet I;_5 = [mj_1 — k/;_,, mj_1), the interval
of length &/, _, to the left of my_1. Then I;_o C I;—; C I and

K 1 K
x =rmod k’;_, where r € [ J271 (1 ~ 3, 2) , J21] forall z € I;_o,

since 27 nj—ok';_o = k’;_,. Repeating this construction leads to a nested sequence of intervals, Iy C
I) C --- C Ij_; with the property that

K. 1 K.
x =rmod ki, where r € [ 1;1 <1 — 2i+1ni> , ’;1] forall x € I;.

Now let 75 = {mgm} ! where mg € Iy. Since Iy = ﬂ;jz’ollz- and % (1 — ﬁ) > % fori > 0,

. [ mo . .
’ = —_— 2 4) = 5 17"'7 )
e sm<k3 w> sinn/4) = . € {10+ 7}

independent of J € N. Hence {v,} defined by (3.3) using the subsequence {£’} does not converge to 0
in Loo(X, £, A). Tt follows that uy, # 0 as j — oo for any {k;} C N. O

4 L (X,B,\) when (X, 7) is a Topological Space

This section deals with L’ (X, B, A) when (X, 7) is a locally compact Hausdorff topological space, B
is the corresponding Borel o-algebra and A > 0 is a measure on B as described in Section 2. In addition
here A is assumed regular and finite on compact sets. In that setting a regular Borel measure that takes
only values O or 1 is a Dirac measure concentrated at a point xg € X. As before, & is defined by (2.6).

Lemma 4.1. For w € & there exists a compact set K € B with w(K) = 1 if and only if there exists
xo € X such that w(G) = 1 for all open sets G with xo € G. For all w € & there is at most one such x
and when (X, T) is compact there is exactly one such x.

Proof. Suppose that w(K') = 1, K compact, and the result is false. Then for x € K there is an open G,
with € G and w(G,) = 0. By compactness, K C Ufile where w(G4,) = 0, 1 < i < K, which
implies w(K') = 0. Since this is false, w(K) = 1 for compact K implies the existence of 2o € K with
the required property. Since X is Hausdorff, if there is another 1 € X with this property there are open
sets with xg € Gy, ¥1 € G4, and Gz, N G, = (). But this is impossible because by finite additivity
w(GxO U Gm) = 2. Now suppose that w(K) = 0 for all compact sets K. By local compactness, for
x € X there is an open set G, with x € G, and its closure G, is compact. Since w(G,) < w(G,) =0,
there is no x € X with the required property. Finally, the existence of o when X is compact follows
because w(X ) = 1. This completes the proof. O

Let (X0, Too) denote the one-point compactification [10] of (X, 7). Then Xoo = X U{Zoo}, oo & X
(the “point at infinity”), and a subset G of X is openif either G C X isopenin X, or G = {xc JU(X'\
K) for some compact K C X. Then (X, 7o) is @ compact Hausdorff topological space because (X, 7)
is locally compact Hausdorff, and (X, 7) is compact if and only if {z} is an isolated point (open and
closed) in (Xoo, Too ). For w € &, let wo, be defined on Borel subsets F of X by weo (E) = w(ENX).
Then wy is the unique finitely additive measure on X, which takes only values O and 1 and coincides
with w on Borel sets in X. In this setting Lemma 4.1 can be re-stated:

Lemma 4.2. Let (X, 7) be a locally compact Hausdorff space and w € &. Then there exists a unique
o € Xoo such that woo(G) = 1 for all open sets G in Xo with zy € G; 1y = T if and only if
w(K) = 0 for all compact K C X and xo € X if (X, 7) is compact.
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4.1 Localization of Weak Convergence in L., (X, B, \)

By (2.8) there is a one-to-one correspondence between & and §. For zp € X, let &(z9) C & denote
the set of w € & for which the conclusions of Lemma 4.1 holds, and let §(x() C § be the corresponding
family of ultrafilters. Then, by Lemma 4.1,

6= UonXw®($0)7 3 — ULI:()EXOOS(:CO)a (41)
which leads to the following definition of weak pointwise convergence.

Definition 4.3. vy converges weakly to u at xg € X if

/ukdw—>/ udw forall w € B(xp).
X X

The localized version of Theorem 3.6 is immediate. For u € Loo(X,L,\), @« > 0and E € L let
Ag(ulg) ={z € E: |u(z)| > a}.

Theorem 4.4. A bounded sequence {uy} in Loo(X, B, \) converges weakly to zero at vy € X« if and
only if for every a > 0, every strictly increasing sequence {k;} in N and every open G C X, with
xo € G there exists J with )\{ ﬁ}»le Aa(ug, |G)} = 0. Equivalently, in (3.3), v; — 0in Loo(G, B, \).

By analogy with (2.9), for g € X the essential range of v at zg € X is defined by

R(u)(xz0) = {/Xudw e 05(x0)}. 2)

As in Corollary 2.11, for open G with zg € G,
R(u)(xo) = {/ udw :w € QS(QEO)} ={a: Mz eG:|la—u(x)| <e}>0foralle >0}. (4.3)
G

Note that R(u)(zp) is closed in R because, by (4.3), for any zy € X its complement is open. It is
immediate from (2.12), Lemmas 4.1 and 4.2 that u;, — u in Lo (X, B, \) if and only if for all g € X

o, ::/ uy, dw —>/ udw =: aask — oo forall w € B(xg),
X X
which is not equivalent to oy, — o when oy, € R(ug)(xo) and o € R(u)(xg) because, possibly,
Qp = / uy, dwy, and o = / udw, but wy # w.
X X

However, @ = [, udw € R(u)(20), w € &(xo), may be thought of as a directional limit of u at 2, the
“direction” being determined by F(w) € §(xo). Then weak convergence in L (X, B, A) is equivalent
to convergence, for each F € §(xg), of the directional limits of uy at g to corresponding directional
limits of u at x¢, for each zy € X .. Therefore, by Theorem 2.8, uy — u in Lo (X, B, A) if and only if
for all zp € X and all w € &(x)

lag —al = 0and w {z € G : |ug(z) — ag| + |u(z) —al <e} =1
for all € > 0 and all open sets G C X, with zg € G, (4.4a)

equivalently uy — win Lo (X, B, \) if and only if for all zy € X, and all F € §(xg),

lag —a| = 0and {z € G : |ug(z) — ag| + |u(z) —a| < e} € F
for all e > 0 and all open sets G C X, with zg € G. (4.4b)
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Remark 4.5. It follows that for u — wu it is necessary that for every x¢ € X, and every o € R(u) ()
there exist oy € R(ug)(zo) such that a, — « as k — oo and sufficient that for every xg € X

sup{|y]: v € R(ugp —u)(zo)} = 0 as k — oo.

As noted earlier, the necessary condition is not sufficient. To see that the sufficient condition is not
necessary, let up, = x4, where {A;} is a sequence of disjoint segments centred on the origin O of the
unit disc X in R2. Then R(uy)(0) = {0,1} but u;, — 0 by the last remark in Section 3.1 (1) or,
equivalently, by Section 3.1 (2) with a1 = 1 and o; = 0, ¢ > 2. In this example |  Urdw — 0, but not
uniformly, for every w € &(0).

5 Restriction to Cy(X, 7) of Elements of L’_(X, B, \)

Throughout this section (X, 7) is a locally compact Hausdorff topological space and Cy(X, 7) is the
space of real-valued continuous functions v on X with the property that for all ¢ > 0 there exists a
compact set K C X such that |v(z)| < e forall z € X \ K. When endowed with the maximum norm

lvlloo = rgglg)((\v(m)], veCyX,T), 5.1

Co(X,7) is a Banach space which if X is compact consists of all real-valued continuous functions on
X.Letv e L (X, B, ), as in Theorem 2.1 define f € Lo (X, B, A\)* by

flu) = /Xudl/, u € Loo(X, B, N,

and let f denote the restriction of f to Cy(X, 7). By the Riesz Representation theorem [12, Thm. 6.19]
there is a unique bounded regular Borel measure © € X () corresponding to f, and consequently

/vdu—/ vdp forallv € Co(X, 7). (5.2)
X X

The goal is to understand how 2 depends on v and, since vt = 17} (see (2.2b)), there is no loss of
generality in restricting attention to non-negative v € L% (X, B, \). Recall

(i) from the Yosida-Hewitt decomposition (2.5), v = pu+gA where u € L% (X, B, \) is purely finitely
additive and g\, g € L1(X, B, \), is o-additive.

(ii) from the Lebesgue-Radon-Nikodym Theorem [7, Thm. 3.8], [12, Thm. 6.10], # = p + kA where
p and kX are o-additive, k € L1(X, B, \), and p is singular with respect to A. Thus © has a singu-
larity with respect to \ if 2(E) # 0 (equivalently p(E) # 0) for some E € N, and ¥ is singular if
in addition k£ = 0, where

/vd,u—l—/vgd/\:/vdl/:/vdﬁ:/vdp—l—/vk:d)\forallveCo(X,T), (5.3)
X X X X X X

where p L A in X(B), p L X in T(B) (see Remark 2.3 for the distinction), and g,k € Li(X, B, \).
Valadier was first to note that the relation between y and p, and g and k is not straightforward.

Theorem ( Valadier [13]). When X is Lebesgue measure on [0, 1] there is a non-negative v € 11 (B) with
1 1
/ vdv = / vdA forall v € C[0,1].
0 0
Thus in (i), (ii) and (5.3), 0 # p € II(B) and g = 0 but p = 0 and k = 1, and ¥ has no singularity.
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Hensgen independently observed that the last claim in [15, Theorem 3.4] is false.

Theorem (Hensgen [8]). With X = (0,1) there exists v € L% (X, B, \) which is non-zero and not
purely finitely additive but fol vdy = 0forallv € C(0,1).

Subsequently Abramovich & Wickstead [1] provided wide ranging generalizations and recently Wrobel
[14] gave a sufficient condition on v for ¥ to be singular with respect to Lebesgue measure on [0, 1]. To
find a formula for # satisfying (5.2) for a given non-negative v € L% (X, B, \), and to characterise those
v for which © has a singularity, recall the following version of Urysohn’s Lemma.

Lemma 5.1. [12, §2.12] If K C G C X where K is compact and G is open, there exists a continuous
Sfunction f : X — [0,1] such that f(K) =1, {z : f(x) > 0} C G is compact, and hence f € Co(X,T).

Lemma 5.2. Suppose 0 < v € L (X,B,\) and B € B. Then v(K) < v(B) < v(G) for compact K
and open G with K C B C G. Moreover

v(K) < v(K) and v(G) < v(G) for all compact K and open G in X

and v(F) < 0(F) +v(X) —0(X) if F is closed. Thus v(X) = v(X) implies that v(F) < v(F) for all
closed sets F C X. (That v(X) = 0(X) when (X, T) is compact was noted following (5.2).)

Proof. For a given Borel set B and K C B C G as in the statement, let f be the continuous function
determined in Lemma 5.1 by K and G. Then

V(K) < /X fdv < v(G) and D(K) < /X fdi < 0(G).

It follows from (5.2) that v(K) < #(G) and 7(K) < v(G) whence, since © is regular [12, Thm. 6.19],
v(K) < ©(B) < v(G). In particular, if B = K is compact, v(K) < (K), and if B = G is open,
(G) < v(G). That v(F) < 0(F) + v(X) — 2(X) when F is closed follows by finite additivity since
0 <v(X), P(X) < . O

Remark 5.3. A non-negative finitely additive set function v on B is said to be regular [6, II1.5.11] if for
all E € Band e > 0 there are sets F' C E C G with F closed, G open and v(G \ F) < e. If X is
compact and v is regular, by a theorem of Alexandroff [6, I11.5.13] v is o-additive and hence 7 = v. By
Lemma 5.2, if v(X) = (X ) and F' C E C G, where F'is closed and G is open,

v(F)<0(F) <0(E) <v(G) <v(G).
Hence if v(X) = ©(X) and v > 0 regular implies that v = ¥ is o-additive on B. O

Theorem 5.4. Suppose K is compact, G is open, K C G and 0 < v € L} (X,B,\). Then forn € N
there exist compact K,, and open G, with

KCGnCKnCG) GnCGn—la KnCKn—17
V(K)<v(K,), v(G)=v(Gy)and \(K;,) < AK)+1/n.

Proof. Since \ is a regular Borel measure that is finite on compact sets there exist open sets G* with
K c GF ¢ G and \(G¥) < MNK) + 1/k for k € N. By Lemma 5.1 there exists a continuous
function f;, : X — [0,1] such that fx(K) = 1 and {z : fi(x) > 0} is a compact subset of G*. For
x € X, let gp(z) = min{ fr(x) : & < n} so that g, < gn—1, gn is continuous on X, g,(K) = 1 and
{z : gn(x) > 0} C G™ is compact.
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Let G, = {z : gp(x) > 0} and K,, = {x: gp(x) > 0}. Then K C G,, C K,, C G" C G and, by
Lemma 5.2,

D(K) < 0(Gn) S v(Gn) Sv(Kn), 0(G) 2 0(Kn) 2 v(Kn) 2 v(Gn),

and A\(K,) < A(K) + 1/n because K,, C G". Now {G,,} and {K,,} are nested sequences of open and
compact sets, respectively, because g, () is decreasing in n, with the required properties. O

Corollary 5.5. For G open, K compact and v € L} (X, B, \) non-negative,

V(G) =sup{v(K): K C G, K compact}, v(K)=inf{v(G): K C G, G open}.

Proof. Let G be open. Then for any € > 0 there exists compact K, C G with 0(K,) > 0(G) — e, since
v is regular, and v(K.) < v(K,) < 7(G) by Lemma 5.2. Now by Theorem 5.4 there exists compact
Ky with K. C Ky C Gand 0(G) > v(K;) > v(K;) > v(K.) > U(G) — e. This establishes the first
identity. Similarly for compact K and e > 0 there exists open G with K C G and 7(G¢) < 0(K) + €,
and an open G with 0(G.) > v(G1), K C G C G¢, whence 0(K) 4+ € > 0(Ge) > v(Gh). O

Corollary 5.6. For0 < v € L’ (X,B,\), v € X(B) has a singularity if and only if there exists o > 0
and a sequence of compact sets with v(K,,) > o, K,+1 C K, for all n, and \(K,,) — 0 as n — oc.

Proof. If a > 0 and such a sequence exists, by Lemma 5.2, 7(K,) > « for all n. Since {K,} is
nested and © is o-additive it follows that (K) > « where K = N,K,. Since K € N, because
lim,, 00 A(K,) = 0 and A is o-additive, v has a singularity. Conversely if # > 0 has a singularity there
exists F € N and o > 0 with 7(E) = 2«. Since @ is regular, there exists a compact K C E with
U(K) > a > 0. Now since A\(K) = 0 because K C E € N, the existence of compact sets with
v(Ky,) 2 0(K) 2 a, Kpy1 C K, forall n, and A(K;,) — 0 as n — oo follows from Theorem 5.4. [

Theorem 5.7. For B € Band0 < v € L} (X, B, ),

v(B) = infGOpen {Suchompact y(K)} = SUD et {infGopen V(G)} . (5.4)
BCG KcG KCRB KCG
Proof. This follows from Corollary 5.5 since © is a regular Borel measure. O

Corollary 5.8. (a) For w € &, either w is zero or W is a Dirac measure. (b) Both possibilities in (a) may
occur when (X, 7) is not compact. (c) If 0 = 65, € D, then w € &(xp).

Proof. (a) If w(K) = 0 for all compact K, the first formula of (5.4) implies that © = 0. If w(K) =1
for some compact K, by Lemma 4.1 there is a unique z¢p € X for which w(G) = 1if g € G and G is
open. From the second part of (5.4) it is immediate that &(B) = 1 if and only if zp € B. Hence w € D.

(b) For an example of both possibilities let X = (0, 1) with the standard locally compact topology and
Lebesgue measure. Let w € & be defined by Theorem 2.9 with Ey = (0,1/¢), ¢ € N. Then w(K) =0
for all compact K C (0, 1) and hence & = 0. On the other hand if E, = (1/2 + 1/¢,1/2) in Theorem
29,w € 6 withw([1/2+1/¢,1/2]) = 1 for all £ and hence & = ;5 € D.

(c) When @ = d,, let zp € G, open. Since {zo} is compact by Lemma 5.1 there exists v € Cy(X, 7)
with v(X) C [0, 1], v(xo) = 1, v(X \ G) = 0. Now w(G) = 1 for every open set with 2y € G since

12w(G)>/vdw:/vdw:/vd@:v(:ﬁo)zl.
G X X
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A Appendix: & and Extreme Points of the Unit Ball in L*_(X, £, \)

Theorem A.1 (Rainwater [11]). In a Banach space B, xj, — x as k — oo if and only if f(x) — f(x)
in R for all extreme points f of the closed unit ball in B*. O

Recall that L% (X, £, \) is the set of finitely additive measures on £ that are zero on N. Let U, = {v €
L: (X, L,\) : |v|(X) < 1}, the closed unit ball in L% (X, £, \). Then v € UZ is an extreme point of
U% if for vy, vy € U and a € (0,1)

V(E) = av1(E) + (1 — a)rp(E) forall E € L implies that v = vy = vs.
Clearly extreme points have |v|(X) = 1 and, by Theorem A.1, uj, — ug in Loo (X, £, A) if and only if
for some M

||ug]|oo < M and / ug dv — / ug dv as k — oo for all extreme points v of U, .
X X

Thus (2.12) is a consequence of the following result.

Lemma A.2. v is an extreme point of UY, if and only if either v or —v € &, see (2.6).

Proof. 1If |v|(X) = 1 but v is not one signed, then |v| = v + v~ where v+ Av™ = 0 and v (X) €
(0,1). Let 0 < €9 = 3 min{r"(X),1 — v+ (X)} and, by (2.2b), choose A € L such that v (X \ 4) +
v (A)=€e<e. Ifv(A) =0thenvt(X)=vH(X\A) +vH(A) =vT(X\A)+v (4) =€ < e,
which is false. Sov(A) # 0 and hence |v|(A) > 0. If |v|(A) = 1thenvt(X) = 1+e—2v7(A) > 1—¢,
and hence 1 — v+ (X) < € < €, which is false. So |v|(A) € (0,1). Let

 WANE) (X \A)NE)
A= Ty T T

Then vy, v € UZ and, forall E € L,

v(E) =av(E)+ (1 — a)in(E), where o = |[v](A), (1 —a) = |v|(X \ A4).

forall E € L.

Since @ € (0,1), v1(A) = v(A)/|v|(A) # 0 and v2(A) = 0, this shows that v is not an extreme element
of UZ, if v is not one-signed.

Now suppose 0 < v € UZ (for v < 0 replace v with —v). If v ¢ & there exists A € £ with
v(A) € (0,1). Let

X\A)NE)
v(X\ 4)

n(E) = v(ANE)

e vo(E) = v((

forall E € L.

Then vy, v € UL,
v(E) =av(E)+ (1 —a)re(E) forall E € £, where o = v(A), (1 —a)=v(X\ A).
Since v1(A) =1 # 0 = 15(A), v is not extreme. Hence v extreme implies that +v € &.
Now suppose that v € & and for all £ € L,
V(E)=ar(F)+ (1 —a)wn(E), ac(0,1), v, eUL.
Thenv > Oand if v(E) = 1,
1= u(E) = an(E) + (1 — a)ua(E) < aln](X) + (1 - a)l](X) < 1

which implies that v1(E) = 1»(F) = v(F) = 1. In particular v1(X) = 1»(X) = 1. fv(E) =0
then v(X \ E) = land so v1(X \ E) = 1»(X \ E) = 1, whence 11 (E) = v»2(E) = v(E) = 0. Thus
v=11 =1 and visextremeif v € &. ]
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Closing Remark. Although the main result, Theorem 3.6, is derived above from Yosida-Hewitt theory
[15] without reference to other sources, Theorem A.1 and Lemma A.2 lead to (2.12), and Lemma 2.8
yields Corollary 3.1, thus dispensing with any need for Theorems 2.12 and 2.13. O
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