SOME INEQUALITIES RELATED TO DIFFERENTIAL MONOMIALS

BIKASH CHAKRABORTY

ABSTRACT. The aim of this paper is to consider the value distribution of a differential monomial generated by a transcendental meromorphic function.

1. INTRODUCTION

In this article, we use the standard notations of value distribution theory (see, Hayman's Monograph ([1])). It will be convenient to let E denote any set of positive real numbers of finite linear (Lebesgue) measure, not necessarily the same at each occurrence. For any non-constant meromorphic function f, we denote by S(r, f) any quantity satisfying

$$S(r, f) = o(T(r, f))$$
 as $r \to \infty$, $r \notin E$.

In addition, in this paper, we also use another type of notation $S^*(r, f)$ which is defined as

$$S^*(r, f) = o(T(r, f))$$
 as $r \to \infty$, $r \notin E^*$,

where E^* is a set of logarithmic density 0.

By small function with respect to a non-constant meromorphic function f, we mean a meromorphic function $b = b(z) (\not\equiv 0, \infty)$ which satisfies that T(r, b) = S(r, f) as $r \longrightarrow \infty, r \notin E$.

Throughout this paper, we always assume that f is a transcendental meromorphic function in the complex plane \mathbb{C} .

In 1979, Mues ([6]) proved that for a transcendental meromorphic function f(z) in \mathbb{C} , $f^2 f' - 1$ has infinitely many zeros. In 1992, Q. Zhang ([10]) proved the quantitative version of Mues's Result as follows:

Theorem A. For a transcendental meromorphic function f, the following inequality holds :

$$T(r, f) \le 6N\left(r, \frac{1}{f^2 f' - 1}\right) + S(r, f).$$

In this direction Huang and Gu ([2]) obtained the following result:

Theorem B. Let f be a transcendental meromorphic function and k be a positive integer. Then

$$T(r, f) \le 6N\left(r, \frac{1}{f^2 f^{(k)} - 1}\right) + S(r, f).$$

In this connection, one can easily see that the following result is an immediate corollary of *Theorem 3.2* of Lahiri and Dewan ([4]).

Theorem C. Let f be a transcendental meromorphic function and a be a non zero complex constant. Let $l \ge 3$, $n \ge 1$, $k \ge 1$ be positive integers. Then

$$T(r,f) \le \frac{1}{l-2}\overline{N}\left(r,\frac{1}{f^l(f^{(k)})^n-a}\right) + S(r,f).$$

Next we introduce the following definition:

²⁰¹⁰ Mathematics Subject Classification: 30D30, 30D20, 30D35.

Key words and phrases : Transcendental Meromorphic function, Differential Monomials.

B. CHAKRABORTY

Definition 1.1. Let $q_1, q_2, ..., q_k$ be $k \geq 1$ non-negative integers and a be a non zero complex constant. Then the expression defined by

$$M[f] = a(f)^{q_0} (f')^{q_1} \dots (f^{(k)})^{q_k}$$

is known as differential monomial generated by f. Next we define $\mu = q_0 + q_1 + ... + q_k$ and $\mu_* = q_1 + 2q_2 + \ldots + kq_k$. In literature, the terms μ and $\mu + \mu_*$ are known as the degree and weight of the differential monomial respectively.

Here, in our paper, we always take $q_0 \ge 1$, $q_k \ge 1$.

Since differential monomial M[f] is the general form of $(f)^{q_0}(f^{(k)})^{q_k}$, so from the above discussion it is natural to ask the following questions:

Question 1.1. Are there any positive constants $B_1, B_2 > 0$ such that following hold?

i)
$$T(r, f) \leq B_1 N\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$$

ii) $T(r, f) \leq B_2 \overline{N}\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$

where M[f] is a differential monomial generated by a non-constant transcendental meromorphic function f and c is any non zero constant.

To answer the above questions are the motivations of this paper. Before going to our main results we first explain some notations and definitions:

Definition 1.2. Let k be a positive integer, for any constant a in the complex plane. We denote

- i) by $N_k(r, \frac{1}{(f-a)})$ the counting function of *a*-points of *f* with multiplicity $\leq k$, ii) by $N_{(k}(r, \frac{1}{(f-a)})$ the counting function of *a*-points of *f* with multiplicity $\geq k$.

Similarly, the reduced counting functions $\overline{N}_{k}(r, \frac{1}{(f-a)})$ and $\overline{N}_{k}(r, \frac{1}{(f-a)})$ are defined.

2. Main Results

Theorem 2.1. Let f be a transcendental meromorphic function and $k \ge 2$, $q_0 \ge 2$, $q_i \ge 0$ (i = $(1, 2, ..., k - 1), q_k \geq 2$ be integers. Then

(2.1)
$$T(r,f) \le \frac{1}{q_0 - 1} N\left(r, \frac{1}{M[f] - 1}\right) + S^*(r,f),$$

where $S^*(r, f) = o(T(r, f))$ as $r \to \infty, r \notin E$, E is a set of logarithmic density 0.

Corollary 2.1. Let f be a transcendental meromorphic function and $k \geq 2$, $q_0 \geq 2$, $q_i \geq 2$ 0 $(i = 1, 2, ..., k - 1), q_k \ge 2$ be integers. For a no zero complex constant α , we have

(2.2)
$$T(r,f) \le \frac{1}{q_0 - 1} N\left(r, \frac{1}{(f)^{q_0} (f')^{q_1} \dots (f^{(k)})^{q_k} - \alpha}\right) + S^*(r,f)$$

Corollary 2.2. Let f be a transcendental meromorphic function and $k \ge 2$, $q_0 \ge 2$, $q_i \ge 2$ $0 \ (i = 1, 2, ..., k - 1), \ q_k \ge 2$ be integers. Then $(f)^{q_0} (f')^{q_1} ... (f^{(k)})^{q_k}$ assumes every non-zero finite value infinitely often.

Theorem 2.2. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 3$, $q_0 \ge 1$, $q_i \ge 0 \ (i = 1, 2, ..., k - 1), \ q_k \ge 1$ be integers. Then

(2.3)
$$T(r,f) \le \frac{1}{\mu - \mu^* - 2} \overline{N}\left(r, \frac{1}{M[f] - 1}\right) + S(r,f),$$

where S(r, f) = o(T(r, f)) as $r \to \infty, r \notin E$, E is a set of finite linear measure.

Corollary 2.3. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 3$, $q_0 \ge 1$, $q_i \ge 0$ (i = 1, 2, ..., k - 1), $q_k \ge 1$ be integers. For a no zero complex constant α , we have

(2.4)
$$T(r,f) \le \frac{1}{\mu - \mu^* - 2} \overline{N} \left(r, \frac{1}{(f)^{q_0} (f')^{q_1} \dots (f^{(k)})^{q_k} - \alpha} \right) + S(r,f).$$

Corollary 2.4. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 3$, $q_0 \ge 1$, $q_i \ge 0$ (i = 1, 2, ..., k - 1), $q_k \ge 1$ be integers. Then $(f)^{q_0}(f')^{q_1}...(f^{(k)})^{q_k}$ assumes every non-zero finite value infinitely often.

Theorem 2.3. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 5 - q_0$, $q_0 \ge 1$, $q_i \ge 0$ (i = 1, 2, ..., k - 1), $q_k \ge 1$ be integers. Then

(2.5)
$$T(r,f) \le \frac{1}{\mu - \mu^* - 4 + q_0} \overline{N}\left(r, \frac{1}{M[f] - 1}\right) + S(r,f).$$

Corollary 2.5. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 5 - q_0$, $q_0 \ge 1$, $q_i \ge 0$ (i = 1, 2, ..., k - 1), $q_k \ge 1$ be integers. For a no zero complex constant α , we have

(2.6)
$$T(r,f) \le \frac{1}{\mu - \mu^* - 4 + q_0} \overline{N} \left(r, \frac{1}{(f)^{q_0} (f')^{q_1} \dots (f^{(k)})^{q_k} - \alpha} \right) + S(r,f)$$

Corollary 2.6. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 5 - q_0$, $q_0 \ge 1$, $q_i \ge 0$ (i = 1, 2, ..., k - 1), $q_k \ge 1$ be integers. Then $(f)^{q_0} (f')^{q_1} ... (f^{(k)})^{q_k}$ assumes every non-zero finite value infinitely often.

3. Lemmas

Let a be a non zero complex constant and $q_1, q_2, ..., q_k$ be $k \geq 1$ non-negative integers. Define $\mu = q_0 + q_1 + ... + q_k$ and $\mu_* = q_1 + 2q_2 + ... + kq_k$.

Let $M[f] = a(f)^{q_0}(f')^{q_1}...(f^{(k)})^{q_k}$ be a differential monomial generated by a non constant transcendental meromorphic function f where we take $q_0 \ge 1$, $q_k \ge 1$.

Lemma 3.1. For a non constant meromorphic function g,

$$N(r,\frac{g'}{g}) - N(r,\frac{g}{g'}) = \overline{N}(r,g) + N(r,\frac{1}{g}) - N(r,\frac{1}{g'}).$$

Proof. For the proof, one go through the technique of formula (12) of ([3]).

Now the following Lemma which plays the major role to prove Theorem2.1 is a immediate corollary of Yamanoi's Celebrated Theorem([8]). Yamanoi's Theorem is a correspondent result to the famous Gol'dberg Conjecture.

Lemma 3.2. ([8]) Let f be a transcendental meromorphic function in \mathbb{C} and let $k \geq 2$ be an integer. Then

$$(k-1)\overline{N}(r,f) \le N(r,\frac{1}{f^{(k)}}) + S^*(r,f),$$

where $S^*(r, f) = o(T(r, f))$ as $r \to \infty, r \notin E$, E is a set of logarithmic density 0.

Lemma 3.3. For any small function $b = b(z) (\neq 0, \infty)$ of f, b(z)M[f] can not be a constant.

Proof. On contrary, let us assume

$$(3.1) b(z)M[f] \equiv C$$

for some constant C.

As f is non constant transcendental meromorphic function, so $C \neq 0$.

Thus from (3.1) and Lemma of logarithmic derivative, it is clear that

(3.2)
$$m(r,\frac{1}{f}) = S(r,f).$$

Also it is clear from that (3.1) that

(3.3)
$$N(r,0;f) \le N(r,0;M[f]) = S(r,f).$$

Thus T(r, f) = S(r, f), which is absurd as f is transcendental.

Lemma 3.4. Let f be a transcendental meromorphic function, then T(r, b(z)M[f]) = O(T(r, f))and S(r, b(z)M[f]) = S(r, f).

Proof. The proof is similar to the proof of the Lemma 2.4 of ([5]).

Lemma 3.5. Let f be a transcendental meromorphic function. Then

$$(3.4)\,\mu T(r,f) \leq \mu N(r,\frac{1}{f}) + \overline{N}(r,\infty;f) + N(r,\frac{1}{bM[f]-1}) - N(r,\frac{1}{(bM[f])'}) + S(r,f).$$

Proof. As Lemma 3.3 yields that $b(z)M[f] \not\equiv \text{constant}$, so we can write

$$\frac{1}{f^{\mu}} = \frac{bM[f]}{f^{\mu}} - \frac{(bM[f])'}{f^{\mu}} \frac{(bM[f]-1)}{(bM[f])'}.$$

Thus in view of Lemma 3.4, First Fundamental Theorem and Lemma 3.1 we have

$$(3.5) \qquad \mu m(r, \frac{1}{f}) \leq m(r, \frac{bM[f]}{f^{\mu}}) + m(r, \frac{(bM[f])'}{f^{\mu}}) + m(r, \frac{bM[f] - 1}{(bM[f])'}) + O(1) \\ \leq 2m(r, \frac{bM[f]}{f^{\mu}}) + m(r, \frac{(bM[f])'}{bM[f]}) + m(r, \frac{bM[f] - 1}{(bM[f])'}) + O(1) \\ \leq T(r, \frac{bM[f] - 1}{(bM[f])'}) - N(r, \frac{bM[f] - 1}{(bM[f])'}) + S(r, f) \\ \leq \overline{N}(r, \infty; f) + N(r, \frac{1}{bM[f] - 1}) - N(r, \frac{1}{(bM[f])'}) + S(r, f)$$

Thus

$$\mu T(r,f) \leq \mu N(r,\frac{1}{f}) + \overline{N}(r,\infty;f) + N(r,\frac{1}{bM[f]-1}) - N(r,\frac{1}{(bM[f])'}) + S(r,f).$$

Lemma 3.6. Let f be a transcendental meromorphic function. If $q_0 \ge 1$, $q_k \ge 1$, then (3.6) $\mu T(r, f) \le \overline{N}(r, \infty; f) + \overline{N}(r, 0; f) + \mu_* \overline{N}_{(k+1)}(r, 0; f) + (\mu - q_0) N_{k}(r, 0; f)$ $+ \overline{N}(r, \frac{1}{M[f] - 1}) - N_0(r, \frac{1}{M[f]'}) + S(r, f),$

where $N_0(r, \frac{1}{(M[f])'})$ is the counting function of the zeros of (M[f])' but not the zeros of f(M[f]-1).

Proof. Clearly

(3.7)
$$\mu N(r, \frac{1}{f}) + N(r, \frac{1}{M[f] - 1}) - N(r, \frac{1}{(M[f])'})$$
$$\leq \mu N(r, \frac{1}{f}) - N_{\star}(r, \frac{1}{(M[f])'}) + \overline{N}(r, \frac{1}{M[f] - 1}) - N_0(r, \frac{1}{(M[f])'}),$$

where $N_{\star}(r, \frac{1}{(M[f])'})$ is the counting function of the zeros of (M[f])' which comes from the zeros of f.

Let z_0 be a zero of f with multiplicity q. Case-1 $q \ge k + 1$.

It is easy to observe that

$$q\mu - \mu_* \geq k\mu - \mu_* + \mu \\ \geq \sum_{i=0}^{k-1} (k-i)q_i + \mu \\ \geq (k+1)q_0 + q_k \\ \geq 3.$$

Then z_0 is the zero of (M[f])' of order at least $q\mu - \mu_* - 1$. Case-2 $q \leq k$.

Then z_0 is the zero of (M[f])' of order at least $qq_0 - 1$. Thus

(3.8)
$$\mu N(r, \frac{1}{f}) - N_{\star}(r, \frac{1}{(M[f])'})$$

$$\leq (\mu - q_0) N_{k}(r, \frac{1}{f}) + \overline{N}_{k}(r, \frac{1}{f}) + (\mu_* + 1) \overline{N}_{(k+1)}(r, \frac{1}{f})$$

Now the proof follows from the Lemma 3.5 and the inequalities (3.7), (3.8).

4. Proof of the Theorems

Proof of Theorem 2.1. It is given that, f is a transcendental meromorphic function and $k \ge 2, q_0 \ge 2, q_k \ge 2$. It is clear that

$$(q_0 - 1)N(r, 0; f) + (q_k - 1)N(r, 0; f^{(k)}) \le N(r, 0; (M[f])').$$

Now in view of Lemma 3.2 and Lemma 3.5, we have

$$\mu T(r, f)$$

$$\leq (\mu - q_0 + 1)N(r, \frac{1}{f}) + (1 - (k - 1)(q_k - 1))\overline{N}(r, \infty; f) + N(r, \frac{1}{M[f] - 1})$$

$$+ S(r, f) + S^*(r, f)$$

$$\leq (\mu - q_0 + 1)N(r, \frac{1}{f}) + N(r, \frac{1}{M[f] - 1}) + S^*(r, f).$$

Thus

$$(q_0 - 1)T(r, f) \leq N(r, \frac{1}{M[f] - 1}) + S^*(r, f),$$

This completes the proof.

Proof of Theorem 2.2. In view of Lemma 3.6, we can write

$$(4.1) \qquad \mu T(r,f) \\ \leq \overline{N}(r,\infty;f) + \overline{N}(r,0;f) + (\mu - q_0) \{N_{k}(r,0;f) + \overline{N}_{(k+1}(r,0;f)\} \\ + (\mu_* - \mu + q_0)\overline{N}_{(k+1}(r,0;f) + \overline{N}(r,\frac{1}{M[f]-1}) - N_0(r,\frac{1}{(M[f])'}) + S(r,f).$$

Thus

$$(\mu - \mu_* - 2)T(r, f) \leq \overline{N}(r, \frac{1}{M[f] - 1}) + S(r, f),$$

This completes the proof.

Proof of Theorem 2.3 . Since $k \ge 1$ and $2\overline{N}_{(k+1)}(r,0;f) \le N(r,0,f)$, so from inequality (4.1), we can write

$$(q_0 - 2)T(r, f) \leq \frac{(\mu_* - \mu + q_0)}{2}N(r, 0; f) + \overline{N}(r, \frac{1}{M[f] - 1}) - N_0(r, \frac{1}{(M[f])'}) + S(r, f).$$

Thus

$$(\mu - \mu_* - 4 + q_0)T(r, f) \leq \overline{N}(r, \frac{1}{M[f] - 1}) + S(r, f)$$

This completes the proof.

5. Applications

If there exists positive constants $B_1, B_2 > 0$ such that

(1)
$$T(r, f) \leq B_1 N\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$$

(2) $T(r, f) \leq B_2 \overline{N}\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$

holds, then we can write

(1)
$$T(r, M[f]) \leq (\mu + \mu_*)T(r, f) + S(r, f) \leq B_1(\mu + \mu_*) N\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$$

(2) $T(r, M[f]) \leq (\mu + \mu_*)T(r, f) + S(r, f) \leq B_2(\mu + \mu_*) \overline{N}\left(r, \frac{1}{M[f]-c}\right) + S(r, f),$

where M[f] is a differential monomial generated by a non-constant transcendental meromorphic function f and c is any non zero constant.

/

Let $\psi = (f)^{q_0} (f')^{q_1} \dots (f^{(k)})^{q_k}$ and a be a non zero finite value. Then

(5.1)
$$\delta(a;\psi) = 1 - \limsup_{r \to \infty} \frac{N(r,a;\psi)}{T(r,\psi)}$$
$$\leq 1 - \frac{1}{B_1(\mu + \mu_*)}.$$

and

(5.2)
$$\Theta(a;\psi) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r,a;\psi)}{T(r,\psi)}$$
$$\leq 1 - \frac{1}{B_2(\mu + \mu_*)}.$$

Thus the following theorems are immediate in view of Theorems 2.1, 2.2, 2.3.

Theorem 5.1. Let f be a transcendental meromorphic function and $k \ge 2$, $q_0 \ge 2$, $q_i \ge 0$ (i = $1, 2, ..., k - 1), q_k \ge 2$ be integers. Then

(5.3)
$$\delta(a;\psi) \le 1 - \frac{q_0 - 1}{(\mu + \mu_*)}.$$

Remark 5.1. Thus the Theorem 5.1 improves, extends and generalizes the result of Lahiri and Dewan ([4]).

Theorem 5.2. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 3$, $q_0 \ge 1$, $q_i \ge 0$ $(i = 1, 2, ..., k - 1), q_k \ge 1$ be integers. Then

(5.4)
$$\Theta(a;\psi) \le 1 - \frac{\mu - \mu^* - 2}{(\mu + \mu_*)}.$$

Theorem 5.3. Let f be a transcendental meromorphic function and $k \ge 1$, $\mu - \mu_* \ge 5 - q_0$, $q_0 \ge 1, q_i \ge 0 \ (i = 1, 2, .., k - 1), q_k \ge 1$ be integers. Then

(5.5)
$$\Theta(a;\psi) \le 1 - \frac{\mu - \mu^* - 4 + q_0}{(\mu + \mu_*)}.$$

References

- [1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
- [2] X. Huang and Y. Gu, On the value distribution of $f^2 f^{(k)}$, J. aust. Math. Soc., 78(2005), 17-26.
- [3] Y. Jiang and B. Huang, A note on the value distribution of $f^l(f^{(k)})^n$, Arxiv: 1405.3742v1 [math.CV] 15 May 2014.
- [4] I. Lahiri and S. Dewan, Inequalities arising out of the value distribution of a differential monomial, J. Inequal. Pure Appl. Math. 4(2003), no. 2, Article 27.
- [5] N. Li and L. Z. Yang, Meromorphic function that shares one small functions with its differential polynomial, Kyungpook Math. J., 50(2010), 447-454.
- [6] E. Mues, Über ein Problem von Hayman, Math. Z., 164(1979), 239-259.
- [7] N. Steinmetz, Über die Nullstellen von Differential polynomen, Math. Z., 176(1981), 255-265.
- [8] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex plane, Proc. Lond. Math. Soc., (3), 106(2013), no. 4, 703-780.
- [9] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers.
- [10] Q. D. Zhang, A growth theorem for meromorphic functions, J. Chengdu Inst. Meteor., 20, (1992), 12-20.

DEPARTMENT OF MATHEMATICS, RAMAKRISHNA MISSION VIVEKANANDA CENTENARY COLLEGE, RAHARA, WEST BENGAL 700 118, INDIA.

E-mail address: bikashchakraborty.math@yahoo.com, bikashchakrabortyy@gmail.com