EQUIDIMENSIONALITY AND REGULARITY

YING ZONG

Theorem. — Let S be a locally noetherian normal algebraic space of residue characteristics zero with regular formal fibers. Assume that there is a morphism $f : X \to S$, which is locally of finite type, equidimensional and étale locally on S admits sections, from a regular algebraic space X. Then S is regular and f is flat.

Proof. The hypothesis on S says that every affine scheme étale over S is a noetherian **Q**-scheme with normal excellent local rings.

The hypothesis on f implies that it is surjective, for étale locally on S it admits sections, and that it is universally open (EGA IV 14.4.1), for S is normal. Hence, by EGA O 17.3.3+IV 6.1.5, the statement "S is regular" is equivalent to the statement "f is flat".

Suppose given S' a locally noetherian algebraic space with regular formal fibers and given a regular surjective morphism $S' \to S$. Then S' is normal and $X \times_S S'$ is regular, for $S' \to S$ and $X \times_S S' \to X$ are regular morphisms. And $f \times_S S'$ is equidimensional with sections étale locally on S'. It amounts evidently the same to verifying "S' is regular and $f \times_S S'$ is flat".

In particular, the question is local on S for the étale topology. Thus, assume S affine and then local and f given a section. Now S being excellent, its subset R consisting of all those points at which S is regular is open. Localizing at a maximal point of S - R if this set is not empty, one can suppose S of dimension ≥ 2 and regular outside its closed point s. One can suppose furthermore S complete. For, the completion S'of S along s is excellent and the projection $S' \to S$ regular surjective and one replaces (S, X, f) by $(S', X \times_S S', f \times_S S')$.

Observe that S is pure along s. Indeed, let E be a locally constant constructible sheaf of sets on $S - \{s\}$ for the étale topology. If j denotes the open immersion of $X - f^{-1}(s)$ in X, j_*f^*E is locally constant constructible on X (SGA 2 X 3.4), for X is regular and for as f is equidimensional $f^{-1}(s)$ is of codimension ≥ 2 in X. Take $g: S \to X$ a section of f which one assumes is given. Then $g^*j_*f^*E$ extends E to S. A similar argument shows that S is also parafactorial along s,

YING ZONG

namely (EGA IV 21.13.11), factorial. (If S is of dimension 2, purity suffices to imply regularity by Mumford.)

Let the given section of f be $g: S \to X$. Replacing X by an étale neighborhood of g(s), one can suppose X affine and that every irreducible component of $f^{-1}(s)$ contains g(s) and, taking a further finite étale base change $S' \to S$ if necessary, that every irreducible component of $f^{-1}(s)$ is geometrically irreducible.

Choose a maximal point a of $f^{-1}(s)$. Let $\widetilde{X} = \operatorname{Spec}(\mathcal{O}_{X,a})$ and \overline{X} its completion along a; the projection $\overline{X} \to \widetilde{X}$ is regular, for \widetilde{X} is excellent. Notice that

— The morphism $f: \widetilde{X} - \{a\} \to S - \{s\}$ is regular and bijective :

As S is regular outside s and as X is regular, f is smooth along $g(S - \{s\})$. Consider an arbitrary point v of $S - \{s\}$, choose a spectra V of discrete valuation ring and a morphism $V \to S$ such that the generic point v' (resp. closed point s') of V is mapped to v (resp. s), and let $X_V = X \times_S V$, $f_V = f \times_S V$, $g_V = g \times_S V$. Since f_V is universally open and is smooth at $g_V(v')$, every sufficiently small open neighborhood U of $g_V(s')$ in X_V has smooth geometrically connected fiber over v'; hence, the localization of U at each maximal point of the closed fiber $U_{s'}$ is irreducible of dimension 1. As f is flat outside $f^{-1}(s)$ and as every irreducible component of $f^{-1}(s)$ is geometrically irreducible, the assertion follows.

Let k = k(s). By Artin [1] 4.7 one finds a connected affine k-scheme of finite type T and a point $t \in T(k)$ such that T is k-smooth outside t and such that S is isomorphic to the completion of T along t; by means of this isomorphism k is a chosen coefficient field of $\Gamma(S, \mathcal{O})$.

As S is normal, T is normal at t and thus normal. As moreover T has a k-rational point, it is geometrically connected over k. Let k' be a coefficient field of the formally smooth k-algebra $\Gamma(\overline{X}, \mathcal{O})$. Consider the induced k'-algebra homomorphism

$$\Gamma(T,\mathcal{O})\otimes_k k'\to \Gamma(\overline{X},\mathcal{O})$$

and the k'-morphism

 $p: \overline{X} \to \overline{T'}$

where $\overline{T'}$ is the completion of $T' := T_{k'}$ along t', the unique k'-point of T' above t; the morphism $\overline{T'} \to S$ induced from $T' \to T$ is regular, for it is formally smooth and S excellent.

This morphism p is finite by the choice that a is a maximal point of $f^{-1}(s)$, and p is surjective, for $\overline{T'}$ is normal of the same dimension as that of \overline{X} .

If $q: \overline{X} \to \widetilde{X}$ denotes the projection, note that

$$i := (q, p) : \overline{X} \to \widetilde{X} \times_S \overline{T'}$$

is a closed immersion; it is a regular closed immersion since \overline{X} and $\widetilde{X} \times_S \overline{T'}$ are regular. In particular, the conormal module of i, N is free over $\mathcal{O}_{\overline{X}}$. On writing p as the composition

$$\overline{X} \stackrel{i}{\longrightarrow} \widetilde{X} \times_S \overline{T'} \stackrel{f \times_S \overline{T'}}{\longrightarrow} \overline{T'}$$

one deduces the canonical exact sequence

$$H^{-1}(L_p) \to N \to q^* \Omega^1_{\widetilde{X}/S} \to \Omega^1_p \to 0$$

where L_p is the cotangent complex of p and where $H^{-1}(L_p) \to N$ is 0, the $\mathcal{O}_{\overline{X}}$ -module $H^{-1}(L_p)$ (resp. N) being torsion (resp. free). By approximation, the injection $N \to q^*\Omega^1_{\widetilde{X}/S}$ is isomorphic to an injection of the form

$$q^*(\alpha): q^*\widetilde{N} \to q^*\Omega^1_{\widetilde{X}/S}$$

where \widetilde{N} is a free $\mathcal{O}_{\widetilde{X}}$ -module and $\alpha : \widetilde{N} \to \Omega^1_{\widetilde{X}/S}$ an injective $\mathcal{O}_{\widetilde{X}}$ homomorphism. So $\Omega^1_p = q^* \omega$ with $\omega = \operatorname{Coker}(\alpha)$.

To finish, it is sufficient to show that

— The morphism $p: \overline{X} \to \overline{T'}$ is étale outside the closed point of \overline{X} .

For then p is étale, as the argument proving the purity of S along s applies to $(\overline{T'}, X \times_S \overline{T'}, f \times_S \overline{T'})$, and then, as \overline{X} is regular, $\overline{T'}$ and S are regular.

Write again a (resp. t') for the closed point of \overline{X} (resp. $\overline{T'}$). The finite surjective morphism

$$p: \overline{X} - \{a\} \to \overline{T'} - \{t'\}$$

is flat, since $\overline{T'} - \{t'\}$ and $\overline{X} - \{a\}$ are regular. By SGA 2 X 3.4 it remains to show that p is unramified, that is, $\Omega_p^1 = q^* \omega$ vanishes, at every codimension 1 point of \overline{X} . In view that

$$f: \widetilde{X} - \{a\} \to S - \{s\}$$

is regular and bijective, it amounts to showing that

$$V(h\mathcal{O}_{\overline{X}}) \cap (\overline{X} - \{a\})$$

is reduced for each prime element h of the factorial ring $\Gamma(S, \mathcal{O})$. Both $\overline{X} \to \widetilde{X}$ and $\widetilde{X} - \{a\} \to S - \{s\}$ being regular morphisms, this is clear, hence the proof.

YING ZONG

References

1. M. Artin. The implicit function theorem in algebraic geometry. Algebraic Geometry, Bombay, 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO *E-mail address*: zongying@math.utoronto.ca

4