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Abstract

On a smooth projective variety over C, there is the coniveau from
the coniveau filtration, which is called geometric coniveau. On the
same variety, there is another coniveau from the maximal sub-Hodge
structure, which is called Hodge coniveau. In this paper we show they
are equivalent.
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1 Introduction

Let X be a smooth projective variety over the complex numbers. There is an
associated compact complex manifold denoted by the same letter X . Then
such X is equipped with the Euclidean topology, which has the well-known Z

module – cohomology group I. The question we are trying to answer: What
and how does algebro-geometric structure on X determine the structures of
the cohomology group? The structures on the cohomology may be expressed
as filtrations of subspaces of the linear space, obtained from the cohomology
tensored with Q. In this paper we study two well-known filtrations

1.1 Result

Let X be a complex projective manifold of dimension n. Let p, k be whole
numbers. We’ll denote the coniveau filtration of coniveau p and degree 2p+k

by
NpH2p+k(X) ⊂ H2p+k(X ;Q) (1.1)

and the linear span of sub-Hodge structures of coniveau p and degree 2p+ k

by
MpH2p+k(X) ⊂ H2p+k(X ;Q). (1.2)

In this paper we prove that

Theorem 1.1.

NpH2p+k(X) = MpH2p+k(X) (1.3)

for all X, p, k.

Remark Geometric coniveau is the algebro-geometric index used to de-
scribe certain subgroups of cohomology – coniveau filtration, while Hodge
coniveau is the index, depending on non-algebraic structures, and used to
describe another subgroups of cohomology –maximal sub-Hodge structures.
Theorem 1.1 says these two descriptions give the same subgroups, i.e. two
indexes are equivalent.

IOther topological structures do not concern this paper.
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1.2 Idea of the proof

Our proof is based on four proved facts which will be introduced with refer-
ences in Appendix:

(1) Intersection of currents exists;
(2) Theorem 1.1 holds for surfaces and 3-folds;
(3) Generlized Lefschetz standard conjecture is true or equivalently

Lefschetz standard conjecture is true;
(4) The projection from the Cartesian product is supportive.

With the facts (1), (3) and (4), there is a process of manipulations that
reduces the equality (1.3) to the same equality on 3-folds through multiple
transformations between

X × E and X,

where E is an elliptic curve. This paper is the presentation of this process
II. The argument in this paper is so soft that it sometimes obscures the
principle: the roots of structures of the cohomology lie beyond the category
of cohomology. The four facts above are closer to this principle. But without
the content of this paper they lack transparency in the connection to theorem
1.1. Thus it should be considered as the last step in the proof of theorem 1.1.
Coming back to the technical transformations in this paper, our proof is an
inductive reasoning on the dimension of the manifold. So starting from the
fact (2), we assume theorem 1.1 holds for all X of dim(X) < n. Let’s prove
it for X of dim(X) = n. First we deal with cohomology classes of degree
6= n. Applying the fact (3), we can easily reduce theorem 1.1 to the middle
dimension. On the middle dimensional cohomology our strategy is to focus
on different cycles of different degrees, different coniveaus and study them in
a different space

X ×E. (1.4)

The following is the sketch of the process. Let a, a′ ∈ H1(E;Q) be a standard
basis such that

a ∪ a = 0 = a′ ∪ a′, a ∪ a′ = 1.

IIThere is a different type of interplays between X × C and X for a curve C observed
by Grothendieck ([2]) and carried out by Voision ([3]), and it is limited to sub-Hodge
structures of levels ≤ 1. Our interplay deals with higher levels.
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We denote the intersection number between two cycles in the space S by

(·, ·)S.

To have the induction going forward, we must first assume

H1(X ;Q) 6= 0.

Let α ∈ MpH2p+k(X) be non-zero such that 2p + k = n is the middle
dimension. Then it is well-known that it suffices to show that there is a cycle
β ∈ NpH2p+k(X) such that the intersection number

(α, β)X 6= 0. (1.5)

We call any cycle β satisfying (1.5) a dual of α. (This is because

NpH2p+k(X) ⊂ MpH2p+k(X)

and the non-zero intersection (1.5) implies

dim(MpH2p+k(X)) ≤ dim(NpH2p+k(X)).

). To find such a β we begin with the different cycle

α⊗ a′ ∈ MpH2p+k+1(X × E). (1.6)

By the Poincaré duality, a generic vector

θ ∈ MpH2p+k+1(X × E)

is a dual of α⊗ a′, i.e. it satisfies the intersection formula,

(α⊗ a′, θ)X×E 6= 0. (1.7)

Next we focus on this generic θ. Using transformations between X × E and
X , supported by the four facts and the assumption

H1(X ;Q) 6= 0,

we turn θ form Hodge leveled to geometrically leveled, i.e. we prove that

θ ∈ NpH2p+k+1(X × E).
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At last, we use the notion of intersection currents, the fact (1) to extract/construct
a cycle class

β ∈ NpH2p+k(X), (1.8)

from the Künneth’s decomposition of θ such that the intersection number

(α, β)X 6= 0. (1.9)

Once theorem 1.1 holds for X with non-zero H1(X ;Q), it will hold for
all X through the projection X × E → X .

2 Proof

First we use induction on n, the dimension of X satisfying

H1(X ;Q) 6= 0. (2.1)

Recall the indices p, q, k satisfying

p+ q + k = n.

The cases for surfaces and threefolds are proved in the Appendix B. So we
assume that the theorem 1.1 holds for all X satisfying

0 ≤ dim(X) ≤ n− 1

where n ≥ 4. Next we consider the case dim(X) = n. By [1] and [2],

NpH2p+k(X) ⊂ MpH2p+k(X)

for all p. Applying the fact (3), we obtain

NpH2p+k(X) = (N qH2q+k(X))∨.

for all p, q. Then it suffices to prove that the intersection pairing gives the
injectivity of

MpH2p+k(X) → (N qH2q+k(X))∨ (2.2)

In the following subsections we prove it in all cases.
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Notation:
(1) In the rest of the paper including appendix, we let u ∈ H2(X ;Z) be

a hyperplane section class represented by a generic hyperplane section V of
a polarization of X . Furthermore V h, h > 0 denotes the generic complete
intersection in the projective space by the plane sections.

(2) We say classes and representatives of classes are Nk leveled or have
geometric level k if the classes are in NpH2p+k(X). The index p is the
geometric coniveau in the abstract. Similarly they are Mk leveled or have
Hodge level k if the classes are in MpH2p+k(X) and p is the Hodge coniveau
in the abstract.

2.1 Non middle dimension

This section does not use the assumption in the formula (2.1).

Proposition 2.1. The map (2.2) is injective for p + q = n− k, p 6= q.

Proof. Suppose q > p. Let α ∈ MpH2p+k(X) be a non-zero cycle. Let

h = q − p > 0.

Then by the hard Lefschetz theorem αuh 6= 0 in H2q+k(X ;Q). Let

Z = X ∩ V h

be a smooth plane section of X and

i : Z →֒ X (2.3)

be the inclusion map. Note Z is irreducible. Then applying lemma 6.2, [4],
we obtain that

αuh = i! ◦ i
∗(α).

Hence i∗(α) 6= 0 in H2p+k(Z;Q). By the proposition 5.2, [4]

i∗(α)
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is also Mk leveled. Since h > 0, we can apply the inductive assumption to
the variety Z to obtain an Nk leveled cycle β such that

(i∗(α), β)Z 6= 0. (2.4)

Then applying lemma 6.2 , [4], we have

(α, i!(β))X = (i∗(α), β)Z 6= 0 (2.5)

Notice by the proposition 5.2, [4], i!(β) is Nk leveled. Thus the proposition
in this case is proved.

Next we consider the case q < p. Let h = p− q > 0. We start with

α ∈ MpH2p+k(X).

Using hard Lefschetz theorem there is a αh ∈ H2q+k(X ;Q) such that

α = αhu
h. (2.6)

By the same argument above we obtain aNk leveled cycle β inH2p+k(X ;Q)
such that

(αh, β)X 6= 0. (2.7)

Now applying the fact (3), there is an Nk leveled cycle βh ∈ H2q+k(X ;Q)
such that

βhu
h = β. (2.8)

Then the formula (2.7) becomes

(αh, βhu
h)X = (αhu

h, βh)X = (α, βh)X 6= 0. (2.9)

where βh is Nk leveled. Thus we complete the proof for the case p 6= q.

2.2 Middle dimension

This section uses assumption in the formula (2.1).

Proposition 2.2. The map (2.2) is injective for p = q.
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Proof. It suffices to prove that for an Mk leveled cycle α ∈ MpH2p+k(X ;Q),
there is an Nk leveled cycle

β ∈ NpH2p+k(X ;Q)

such that
(α, β)X 6= 0.

Since p = 0 is a trivial case, we consider two cases: 1). p ≥ 2; 2). p = 1.
Case 1: p ≥ 2.
Let E be an elliptic curve and

Y = X ×E.

Also let
P : Y → X

be the projection.
Let α ∈ MpHn(X). So k = n − 2p. Let a, a′ ∈ H1(E;Q) be a standard

basis, i.e.
a ∪ a′ = 1, a ∪ a = a′ ∪ a′ = 0.

Let
Λ ⊂ Hn(X ;Q) (2.10)

be the sub-Hodge structure of X , containing α. Then

Λ⊗H1(E;Q) (2.11)

is the sub-Hodge structure of Y of level k + 1 containing α⊗ a′. Thus

α⊗ a′ ∈ MpH2p+k+1(Y ). (2.12)

By Poincaré duality, there is a θ ∈ MpH2p+k+1(Y ) such that

(α⊗ a′, θ)Y 6= 0. (2.13)

Let θ be generic in MpH2p+k+1(Y ). Next we prove that θ is Nk+1 leveled
III

III In general, turning from M leveled to N leveled is the theorem 1.1. But now we’ll
only prove it in a special setting.
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Now we consider the Gysin homomorphism

P! : H
•(Y ;C) → H•−2(X ;C). (2.14)

Notice that if n is odd,

Mp−1H2p+k−1(X)

is non-zero because it contains a non-zero cycle u
n−1

2 . If n is even, it contains
subspace H1(X ;Q)u

n

2
−1 which is also non-zero by the assumption. Hence

the
im(P!) = Mp−1H2p+k−1(X) 6= 0.

Since θ is generic in the linear space MpH2p+k+1(Y ), P!(θ) 6= 0.
Now we obtained a non-zero cycle

P!(θ) ∈ Mp−1H2p+k−1(X). (2.15)

Notice 2p + k − 1 = n − 1 which is less than middle dimension of X .
Applying the hard Lefschetz theorem on X , P!(θ)u is non-zero in

MpH2p+k+1(X).

Let
i : Xn−1 →֒ X (2.16)

be the inclusion map of a smooth hyperplane section Xn−1 = V ∩X . Then
by lemma 6.2, [4]

i! ◦ i
∗(P!(θ)) = P!(θ)u. (2.17)

Because P!(θ)u is non-zero, neither is

i∗(P!(θ)).

Notice
i∗(P!(θ)) ∈ Mp−1H2p+k−1(Xn−1). (2.18)

and
dim(Xn−1) = n− 1.

By the induction

i∗(P!(θ)) ∈ Np−1H2p+k−1(Xn−1). (2.19)
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Hence by the formula (2.17)

P!(θ)u ∈ NpH2p+k+1(Xn−1). (2.20)

Applying the fact (3), we obtain that

P!(θ) ∈ Np−1H2p+k−1(X). (2.21)

Next we show that

Claim 2.3.

θ ∈ NpH2p+k+1(Y ). (2.22)

Proof of claim 2.3: The argument of claim 2.3 below follows the principle:
it is in the category beyond the cohomology. We consider cellular cycles.
Let T ′

θ be a cellular cycle on Y representing θ. By the fact (4) (proved in
Appendix C), there is another singular cycle T ′′

θ on Y finite to X such that

T ′′
θ = T ′

θ + dK (2.23)

Then the push-forward P#(T
′′
θ ) is again a cellular cycle of dimension n + 1

in X . Considering the cohomology, by the formula (2.21), we know that the
cohomology class of P#(T

′′
θ ) is

P!(θ)) ∈ Np−1H2p+k−1(X). (2.24)

Hence we have formula

P#(T
′′
θ ) = Ta + dL, (2.25)

where Ta is a non-zero cellular cycle supported on an algebraic set Z ′ of
dimension at most p+ k + 1, and L is a singular chain (This shows that the
non vanishing P!(θ) leads to the existence of Z ′). Now we let

Tθ = T ′′
θ − dL× {e} (2.26)

where e ∈ E is a point. Because P : Tθ → X is again 1-to-1 on each Euclidean
open set, the singular cycle Tθ must lie in the algebraic set Z ′ × E = Z of
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codimension p−1. The following graph summarizes what we obtained in the
category of singular cycles.

Spaces Cohomology Singular Cycles Algebraic subsets

−−−− −−−−−− −−−−−−−−− −−−−−−−−−
Y θ Tθ ⊂ Z

↓ P ↓ P! ↓ P∗ ↓ P

X P!(θ) Ta ⊂ Z ′

(2.27)
Next argument returns to the category of cohomology. Let Z̃ be the

smooth resolution of Z. We have the following composition map j:

j : Z̃ → Z → Y. (2.28)

By corollary 8.2.8, [1], there is an exact sequence

Hk+3(Z̃;Q)
j!→ H2p+k+1(Y ;Q) → H2p+k+1(Y − Z;Q). (2.29)

Since non-zero Tθ is supported on Z, θ is in the kernel of

H2p+k+1(Y ;Q) → H2p+k+1(Y − Z;Q). (2.30)

Hence there is a class
θZ̃ ∈ M1Hk+3(Z̃) (2.31)

such that
j!(θZ̃) = θ. (2.32)

In the following we discuss a couple of cases for the class θZ̃ on Z̃, whose
dimension is

p+ k + 2 = 2− p + n.

(a) If the coniveau p > 2, then k + 4 < dim(Z) < n. By the induction

θZ̃ ∈ N1H3+k(Z̃). (2.33)

Then by [4], the geometric level of a cycle under the Gysin homomorphism
j! must be preserved. Thus we obtain that,

j!(θZ̃) = θ ∈ NpH2p+k+1(Y ). (2.34)

This proves the claim 2.3 in case (a).
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(b) If p = 2, then Z has dimension n = k+4. Thus k+3 is not a middle
dimension for Z̃. Then we consider the Lefschetz isomorphism

u : M1Hk+3(Z̃) → M2Hk+5(Z̃) (2.35)

where u is a hyperplane section class represented by the hyperplane V . Let

l : V ∩ Z̃ →֒ Z̃

be the inclusion map. Then
l∗(θZ̃) (2.36)

is a class on V ∩ Z̃ which must be Mn−2 leveled. Since V ∩ Z̃ has dimension

k + 3 = n− 1, IV

and V ∩ Z̃ satisfies assumption 2.1, we apply the induction to obtain that

l∗(θZ̃) (2.37)

is Nn−3 leveled in V ∩ Z̃. Notice

l! ◦ l
∗(θZ̃) = θZ̃ · u (2.38)

Hence θZ̃ · u is Nn−3 leveled in Z̃. Now we use the fact (3) to obtain

θZ̃

is Nn−2 leveled in Z̃. In the coniveau, it says

θZ̃ ∈ N1H3+k(Z).

Then by the formula (2.34) we complete the proof for the claim 2.3.
Applying the claim 2.3, we obtain a non-empty algebraic set W of dimen-

sion at most p+ k + 1 such that θ is Poincaré dual to a cellular cycle

Tθ ⊂ W. (2.39)

Next argument is called “descending construction”. It extracts a lower
algebraically leveled cycle from θ. This argument occurs in the category of

IVThis shows that the lowest n for our method is 4. Our method does not apply to the
case n = 2 or 3.
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currents. Cellular chains above represent currents of integrations over the
chains. We denote the associated currents by the same letters. Applying the
Künneth decomposition, Tθ must be in the form of

Tθ = B ⊗ b+B′ ⊗ b′ + ς + dK ∈ D′(X ×E) (2.40)

where B,B′ represent singular cycles in X , whose cohomology class have
Hodge levels k, b, b′ represent a, a′, dK is exact and ς is the sum of currents
in the form ζ ⊗ c with deg(c) = 0, 2. Let

β = 〈B〉, β ′ = 〈B′〉,

where 〈·〉 denotes the cohomology class. Let b′′ be a closed 1-current in E

such that the intersection satisfy

[b′′ ∧ b′] = 0, [b′′ ∧ b] = {e}

where e ∈ E. The the intersection of currents from the fact (1) yields

[(X ⊗ b′′) ∧ Tθ] = [(X ⊗ b′′) ∧ dK] +B ⊗ {e} (2.41)

is a current supported on W . Let W̃ be a smooth resolution of the scheme
W . We obtain the diagram

Hk+2(W̃ ;Q)
q!→ H2p+k+2(Y ;Q)

R
→ Hq(Y −W ;Q)

ν!ց ↓P!

Hq−1(X ;Q) ,

(2.42)

where the top sequence is the Gysin exact sequence, and ν!, which is a Gysin
map, is the composition of Gysin maps q!, P!. By (2.41), cohomology of
B ⊗ {e}, denoted by

β ⊗ 〈{e}〉

is in the kernel of R. Hence it has a preimage

φ ∈ Hk+2(W̃ ;Q).

Because q! is an algebraic correspondence, φ can be chosen to have Hodge
level k. (this is the strictness of the morphism of Hodge structures). Since
the dim(W̃ ) = n+1− p < n, the inductive assumption says the Hodge level
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is the geometric level. The Gysin image ν!(φ) then also has geometric level
k. Looking back at the formula (2.41), the class

P!〈B ⊗ {e}〉

is β. Hence β is the class ν!(φ) which is Nk leveled. On the other hand the
intersection number

(α⊗ a′, θ)Y = (α, β)X 6= 0. (2.43)

This completes the proof of proposition 2.2 for the case p 6= 1.

Case 2: Coniveau p = 1.
Now we deal with the minor case when p = 1. In this case we already

theorem 1.1 for p 6= 1. We consider α ∈ M1Hn(X) where n = dim(X)
is any whole number. Then as before E is an elliptic curve, Y = X × E

and a, a′ ∈ H1(E;Q) form a standard basis in the cohomology ring. In the
following we’ll use the projection P : Y → X , but on a different type of
cycles. First

α⊗ 1 ∈ M1Hn(Y ). (2.44)

Let θ ∈ M2Hn+2(Y ) be its generic dual. Since we proved

M2Hn+2(Y ) = N2Hn+2(Y )

(geometric coniveau is 2) we obtain that

θ ∈ N2Hn+2(Y ).

Now we apply the Künneth decomposition,

θ = β ⊗ ω + βi ⊗ a + β ′ ⊗ a′ + γ ⊗ 1 (2.45)

where ω is the fundamental class of E. Because P!(θ) and θ will have the
same geometric level, P!(θ) lies in

N1Hn(X).

Looking back to the formula (2.45), P!(θ) = β. This shows

β ∈ N1Hn(X).

On the other hand, we see that

(α⊗ 1, θ)Y = (α, β)X 6= 0. (2.46)

This completes injectivity of the map (2.2) in the case of H1(X ;Q) 6= 0.
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Proof. of theorem 1.1: Proposition 2.1, 2.2 show theorem 1.1 is correct for
all X with non-zero H1(X ;Q). Assume X is arbitrary and may not satisfy
H1(X ;Q) 6= 0. Notice that X × E has non-zero first cohomology. Thus
theorem 1.1 holds on X × E. Let α ∈ MpH2p+k(X). Then

α⊗ ω ∈ Mp+1H2p+k+2(X × E). (2.47)

where ω is the fundamental class of E. By the proved theorem 1.1 for X×E,

α⊗ ω ∈ Np+1H2p+k+2(X ×E). (2.48)

Then for the Gysin image, we have

P!(α⊗ ω) ∈ NpH2p+k(X), (2.49)

where P : X × E → X is the projection. Since P!(α⊗ ω) = α, we complete
the proof of theorem 1.1.

A Intersection of currents

Denote the real vector space of real currents of degree i by D′i. Let

R(X) ⊂ D′i(X)×D′j(X) (A.1)

be the subset of currents satisfying some expected condition (de Rham con-
dition in [6]). Then we show that there is a well-defined homomorphism
∧

R(X) → D′(i+j)(X) (A.2)

such that ∧ is reduced to the cap product and the algebraic intersection. The
new notion of intersection ∧ is a variant depending on the variant de Rham
data U of holomorphic coordinates charts.

Nevertheless carrying the U , the intersection satisfies basic properties:
(a) graded commutativity,
(b) associativity,
(c) continuity,
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(d) topologicity, (i.e. coincides with the cap product)
(e) algebraicity (i.e. coincides with algebraic intersection),
(f) Supportivity ( i.e. the support of the intersection is the

intersection of the supports).

For a full exploration of this notion, we refer the readers to [6].

B Surfaces and threefolds

Proposition B.1. Theorem 1.1 holds for all X of dim(X) ≤ 3.

Proof. When X is a curve, the proposition is trivial. so we consider
Case 1: dim(X) = 2.
We have

N0(X) =

2
∑

i=0

N iH2i(X ;Q).

By the Lefschetz theorem on (1,1) classes,

2
∑

i=0

N iH2i(X) =
2

∑

i=0

M iH2i(X) = M0(X).

Now we consider the level 1.

N1(X) = N0 ⊕N0H1(X)⊕N1H3(X).

Thus
N1(X) = M0 ⊕H1(X ;Q)⊕N1H3(X).

By the fact (3),

N1H3(X) ≃ N0H1(X) = H1(X ;Q) = M0H1(X).

By the Poincaré duality,

M0H1(X) ≃ M1H3(X).
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Thus because M0H1(X) = H1(X ;Q),

N1H3(X) ≃ M1H3(X).

The maximal level k = 2 is a trivial case. Now we conclude theorem 1.1 for
dim(X) = 2.

Case 2: dim(X) = 3. In this case, the only non trivial assertion is

M1H3(X) = N1H3(X). (B.1)

This is a non-trivial case of the generalized Hodge conjecture of level 1 on
threefolds for which a well-known example was constructed by Grothendieck
in [2]. Let’s start with Voisin’s construction. Suppose L ⊂ H3(X ;Q) is
a sub-Hodge structure of coniveau 1. In [3], Voisin showed that there is a
smooth curve C, and a Hodge cycle

Ψ̃ ∈ Hdg4(C ×X) (B.2)

such that
Ψ̃∗(H

1(C;Q)) = L. (B.3)

where Ψ̃∗ is defined as the Gysin image

P!

(

Ψ̃ ∪ (•)⊗ 1)

)

,

with the projection P : X × C → X . Notice P!(Ψ̃) is a Hodge cycle in X .
By the assumption it is algebraic on X , i.e there is a closed current TΨ̃ on
X × C representing the class Ψ̃ such that

P∗(TΨ̃) = Sa + bK (B.4)

where Sa is a current of integration over the algebraic cycle S, and bK is an
exact current of dimension 4 in X . (adjust Ψ̃ so Sa is non-zero). Consider
another current in C ×X

T := TΨ̃ − [e]⊗ bK (B.5)

denoted by T , where [e] is a current of evaluation at a point e ∈ C. By the
fact (4), we can adjust the exact current on the right hand side of (B. 5) to
have

P (supp(T )) = supp(P∗(T )). (B.6)
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Let Θ be a collection of closed currents on C representing the classes in
H1(C;Q). Then by the correspondence of currents in [6],

T∗(Θ), (B.7)

is a family of currents supported on the support of the current

P∗(T ) = Sa. (B.8)

which is the integration over an algebraic cycle, i.e. the the family of currents
are all supported on the algebraic set |S|. This is known as a criterion for
coniveau filtrationV, i.e. for β ∈ T∗(Θ), the cohomology 〈β〉 of β satisfies

〈β〉 ∈ ker

(

H3(X ;Q) → H3(X − |S|;Q)

)

(B.9)

Using the fact (1), cohomology of the currents in T∗(Θ) consists of all
classes in L. This shows L ⊂ N1H3(X). We complete the proof.

C Generalized Lefschetz standard conjecture

Theorem C.1. The map

uq−p
a : NpH2p+k(X) → N qH2q+k(X)

α → α · uq−p.
(C.1)

is an isomorphism on coniveau filtration for

p+ q = n− k, p ≤ q, k ≥ 0.

The speculation of the truth of the theorem will be referred to as the
generalized Lefschetz standard conjecture. It turns out to be equivalent to
the Grothendeick’s Lefschetz standard conjecture over C.

The theorem, therefore the standard conjectures over C, is proved by
using the fact (1). We refer readers to [5].

VFor instance, see [4].
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D Supportive projection

Let X be a compact manifold of dimension n. A p-cell S consists of three
elements: a p dimensional polyhedron ∆p in Rv (an open set), an orientation
of Rv, and a C∞ map f of Rv to X restricted to a one-to-one map on ∆p. A
chain C is a linear combination of cells. The support |C| of C is the image
of all ∆p in X . A point in C is a point in |C|.

Let Y be another compact manifold of dimension m. Let

P : Y ×X → X (D.1)

be the projection.

Definition D.1. Let C be a C∞ p-chain of Y ×X. Let a ∈ P (|C|). If

P−1(a) ∩ |C|

is a finite set, we say C is finite at a. If C is finite at all points, we say C

is finite to X.

Proposition D.2. For any C∞ p-cell S in the coordinates chart of Y ×X

with p < dim(X), S is homotopic to a chain that has the same boundary and
is finite to X.

Proof. Let
Rm,Rn,Rm × Rn

be the coordinate’s charts for Y,X, Y × X respectively. Since we are deal-
ing with a single cell, we may replace the polyhedron by the unit ball B.
Let Bǫ be a ball with radius ǫ that is sufficiently small. Then we can use
multiple barycentric subdivisions to divide S to a chain

∑N

i=0 ci where c0 is
represented by Bǫ, and rest of cells ci are supported on the image of B−Bǫ.
We use the same notation ci to denote the polyhedron representing the cell
ci. Composing each cell map

ci → Y ×X (D.2)

with the projection P , we obtain a map denoted by fi from subsets ci ⊂ B

to Rn. Let ∪i 6=0ci = c, fc be the united fi for all i. Let r, γ1, · · · , γp−1 be
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the polar coordinates of Rp − Bǫ, i.e. (r, rγ1, · · · , rγp−1) are the rectangular
coordinates of Rp. We denote (γ1, · · · , γp−1) by γ. Next we consider the
homotopy of the maps

Rp − Bǫ → Rn

in polar coordinates

tfc + (1− t)h, t ∈ [0, 1] (D.3)

where
h(r, γ) = fc(r, γ) + (1− r)g(r, γ).

By this homotopy, fc(r, γ) is homotopic to h(r, γ) whose boundary h(1, γ) is
fc(1, γ). The Jacobian of h at r 6= 1 varies with the Jacobian of (1−r)g(r, γ).
Hence the Jacobian of h is non zero for all the bounded r, γ of B except for
r = 1. By the inverse function theorem, each ci, i 6= 0 is on-to-one to its
image in X . We may assume the center 0 of B maps to an arbitrary point of
S. Then the above proof also showed there is a homotopy making the center
one-to-one to X . Overall we obtain a homotopy that fixes the boundary of S
and deform the interior of cells to these that are finite to X . This completes
the proof.

Proposition D.3. For any cellular cycle S in Y ×X, of dimension

p < dim(X),

S is homopotic to a cycle finite to X.

Proof. For each cell Si of S, by proposition D.2, there is a homotopical chain
ci that is finite to X and agree with Si on the all faces of Si. Thus we can
glue all ci along their faces to obtain a cellular cycle S ′ that is homotopic to
S. Since there are only finitely many such chains cji , the projection S ′ → X

must also be finite on the interior of each cell.
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