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Abstract In this paper, an optimal consensus problem with local inequality con-

straints is studied for a network of single-integrator agents. The goal is that a group

of single-integrator agents rendezvous at the optimal point of the sum of local con-

vex objective functions. The local objective functions are only available to the corre-

sponding agents that only need to know their relative distances from their neighbors

in order to seek the final optimal point. This point is supposed to be confined by

some local inequality constraints. To tackle this problem, we integrate the primal-

dual gradient-based optimization algorithm with a consensus protocol to drive the

agents toward the agreed point that satisfies KKT conditions. The asymptotic conver-

gence of the solution of the optimization problem is proven with the help of LaSalle’s

invariance principle for hybrid systems. A numerical example is presented to show

the effectiveness of our protocol.
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1 Introduction

Over the last decade, cooperative control in a network of autonomous agents have

been considered in scientific communities by virtue of big breakthroughs in wire-

less communication technology. Among these problems, consensus in dynamical net-

works is a central problem that has been studied from many aspects [2, 3, 15, 16]. In

particular, the problem of optimal consensus among networked agents has recently

gained considerable attention. In this setup, the final consensus value is required to

minimize the sum of individual uncoupled convex functions. For instance, the pa-

per [14] resolved the optimal consensus problem over a network of single-integrator

agents with time-varying objective function under the confining condition that Hes-

sians associated with all local convex functions being identical. Later, they suggested

a more sophisticated algorithm to relax this restriction. The authors of [19] proposed

a bounded control law applied to a network of single-integrator agents to resolve the

similar problem. In these works, agents admit no constraint. The optimal consensus

problem can be formulated as distributed optimization problem [9, 10, 12]. In this

setup, all interconnected agents cooperate with each other to seek the global opti-

mal solution in a cooperative manner. Each agent minimizes its local cost function

and exchanges its states’ information with its neighbors so that the team achieves the

global optimum solution. In [12], a consensus protocol is integrated with a projec-

tion operator to reach an agreed point that is limited to the intersection of local con-

straint sets to solve a distributed constrained optimization problem. The article [9]

extended the work by [12] to study the problem of constrained consensus in unbal-

anced networks. The authors in [10] presented a set of continuous-time algorithms

called Zero-Gradient-Sum, by which the states of a whole network asymptotically

converge to the solution to the associated unconstrained convex optimization prob-

lem along an invariant zero-gradient-sum manifold.

To resolve distributed optimization problems with inequality/equality constraints,

some researches were conducted based on primal-dual methods. For example, the

reference [21] proposed a continuous-time dynamics for seeking the saddle point of

the sum of agents’ local Lagrangians to solve a distributed optimization problem with

both inequality and equality constraints per node. The research paper [20] presented

a continuous-time protocol for distributed optimization problems with general con-

straints, relaxing the assumption of global convexity on each local objective function

to convexity of locally bounded feasible region. In the both above-mentioned works,

to attain consensus on the globally optimal solution, a Lagrangian multiplier is as-

signed to each agent for accommodating to consensus equality constraints. Then, all

agents exchange the information of their Lagrangian multipliers (dual states) as well

as the primal decision variables with their neighbors in order to reach consensus on

the optimal solution. The papers [5, 13, 18] exploited the same technique to fulfill

consensus over networks.

In particular, in this paper, a novel solution to optimal consensus problems over undi-

rected networks of single-integrator agents is presented. Such solution must also sat-

isfy local convex inequalities for all agents. To tackle this problem, we split it into

two parts, namely, a consensus sub-problem and an optimization one. Following this

segmentation, we then propose a distributed continuous-time solution that consists of
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two parts: the first part yields the optimal points associated with local cost functions,

and, at the same time, the second part drives the agents toward reaching consensus.

In the proposed algorithm, each agent only needs to know its relative distances from

its neighbors as well as its own objective function and constraint information. It is

worthwhile noting that in applications such as swarm robots, the relative positions

with their neighbors might be the only information that agents can have access to for

constructing proper control actions. Our proposed algorithm makes the communica-

tion establishment, which is essential in the literature for exchanging the information

of Lagrangian multipliers for reaching optimal consensus value, redundant and un-

necessary. Besides, by the present approach less communication burdens are imposed

on the agents in communication-based control setups. To establish the proposed algo-

rithm, we present the stability analysis associated with perturbed dynamical systems

and introduce a novel convergence proof with the help of LaSalle’s invariance prin-

ciple for hybrid systems.

The results of the current paper provides further developments compared to the ex-

isting literature in this area.

i) Compared to [5, 18, 20], in the present approach the agents do not need to ex-

change the information of their dual variables and can reach optimal consensus by

only knowing their relative positions with respect to their neighbors.

ii) From design perspective, the penalty-based protocol studied in [5,8,13,18,20,21]

only admits linear consensus paradigm. This restricts the protocol illustrated in these

references from adopting nonlinear consensus strategies that can in turn deliver fast

convergence outcomes, see e.g. [14]. Besides, in the case of high order dynamics,

this approach does not work, see e.g. [14, 19]. The algorithm introduced here does

not have such limitation.

iii) Even though the problem studied here is closely related to that of in [8,10,14,19],

unlike the current paper, these references only addressed unconstrained optimization.

iv) While the references [9,12] explored constrained optimization problems with con-

vex set constraints, the projection operator utilized therein is difficult to handle in

real-time specially when a large number of constraints are involved. Since a closed

convex set can be approximated by a polyhedron set that is constituted by a set of

linear equalities and inequalities, one can cast the optimization problem of [9, 12]

into the present formulation and adopt an easy-to-handle gradient-based primal-dual

method discussed here to resolve it.

v) The proposed algorithm achieves a less perplexed states’s trajectories toward the

final point compared to the existing penalty-based algorithms (see Section 4).

This paper is organized as follows. The problem formulation is given Section 2.

Then, our proposed solution is presented in Section 3. A numerical example is pre-

sented in Section 4. Finally, the concluding remarks and suggestions for future studies

are given in Section 5.

2 Problem Formulation

Consider N physical agents over a network with time-invariant undirected graph G =
(N ,E,A), where N = {1, . . . ,N} is the node set, E ⊆ N ×N is the edge set ,
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and A = [ai j] is a weighted adjacency matrix. Each pair e = (i, j) ∈ E indicates link

between the node i and the node j in an undirected graph. Suppose that each agent is

described by the continuous-time single-integrator dynamics

ẋi(t) = ui(t), (1)

where xi(t) ∈ R represents the position of agent i, and ui(t) is the control input to

agent i. We shall drop the argument t throughout this paper unless it is necessary. It

is worhwhile noting that here we consider only one dimensional agents for the sake

of simplicity in notations. However, it is straightforward to show that our algorithm

can be extended to higher dimensional dynamics as each dimension is decoupled

from others and can be treated independently. The agents are supposed to reach at an

agreed point that shall minimize a convex optimization problem as

min f (x) =
N

∑
i=1

fi(x)

subject togi(x)≤ 0,

(2)

in which fi(·) :R→R is the local cost function associated with node i in the network.

Furthermore, gi(·) : R→ R represents a constraint on the optimal position and is as-

sociated with node i. It is supposed that each agent knows only its associated cost

function and inequality constraint function. We assumed only one inequality con-

straint per node for complexity avoidance; our algorithm can solve the same problem

with a desired number of inequality constraints.

We consider the following assumptions in relation to the problem (2).

Assumption 1.

(i) The objective functions fi(·), i ∈ N , and gi(·), i ∈ N , are convex and contin-

uously differentiable on R.

(ii) The aggregate cost function ∑N
i=1 fi(·) is radially unbounded on R.

Assumption 2. (Slater’s Condition) There exists x∗ ∈R such that gi(x
∗)≤ 0.

The Assumption 1 and 2 fulfill the solution existence conditions for the opti-

mization problem (2). Note that the constrained optimal consensus problem that was

defined above is equivalent with the following distributed convex optimization prob-

lem
min

xi
i=1,··· ,N

∑N
i=1 fi(xi)

subject toxi = x j andgi(xi)≤ 0,
(3)

In the problem (3), the consensus constraint, i.e. xi = x j, i, j = 1, . . . ,N, is imposed

to guarantee the same decision variable is achieved eventually. Here, the agents with

dynamics as in (1) shall seek the optimal point x∗ i.e. xi = x∗, i ∈ N , which mini-

mize the collective cost function ∑N
i=1 fi(xi) in a distributed fashion, given inequality

constraints gi(xi)≤ 0, i ∈N . To this end, each agent searches for the minimum of its

associated cost function, fi(xi), with regards to its local inequality constraint, gi(xi),
not knowing other local cost functions and constraint inequalities. Furthermore, all

agents shall reach an agreement on their positions through only knowing the relative
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distances from their neighboring agents. Now, we shall design the control input ui to

fulfill these requirements.

One can say that the problem (3) consists of a minimization sub-problem, with

inequality constraints, and a consensus sub-problem. This splitting is the cornerstone

of our approach to resolve the problem (2). The minimization sub-problem can be

defined as

min
xi

i=1,··· ,N

N

∑
i=1

fi(xi)

subject togi(xi)≤ 0,

(4)

and the consensus sub-problem is

lim
t→∞

(xi − x j) = 0, i, j = 1, . . . ,N. (5)

Before proceeding to solving the above mentioned sub-problems, i.e. the minimiza-

tion sub-problem (4) and the consensus sub-problem (5), we present some optimality

conditions for the optimization sub-problem through the following lemma. Later in

Section 3, we will use these conditions to show the convergence of our algorithm.

Lemma 1 [1, p. 243] (KKT Conditions) Given Assumption 1 and 2, x∗ = [x1 . . .xN ]
⊤

is the optimal solution of the problem (4) if and only if there exist Lagrangian multi-

pliers, λ ∗
i > 0 , i = 1, . . . ,N, such that the following conditions are satisfied

gi(x
∗
i )≤ 0, λ ∗

i gi(x
∗
i ) = 0, i = 1, . . . ,N, (6)

N

∑
i

∂ fi(x
∗
i )

∂xi

+λ ∗
i

∂gi(x
∗
i )

∂xi

= 0, i = 1, . . . ,N. (7)

To solve the minimization sub-problem (4), we focus on the primal-dual method

that seeks the saddle point of the Lagrangian associated with convex optimization

sub-problem (4). The Lagrangian is defined by

L(x̄, λ̄ ) =
N

∑
i=1

fi(xi)+λigi(xi), (8)

where λ̄ = [λ1 . . .λN ]
⊤

and x̄ = [x1 . . .xN ]
⊤

. L(x̄, λ̄ ) is convex in x̄ and concave in λ̄ .

We have the following properties for L(x̄, λ̄ ),

L(x̄∗, λ̄ ) ≥ L(x̄, λ̄ )+∇x̄L(x̄, λ̄ )⊤.(x̄∗− x̄), (9)

L(x̄, λ̄ ∗) ≤ L(x̄, λ̄ )+∇λ̄ L(x̄, λ̄ )⊤.(λ̄ ∗− λ̄), (10)

where
(

x̄∗, λ̄ ∗
)

is said to be the saddle point of L(x̄, λ̄ ) [1, p. 238]. The following

inequalities hold for all (x̄, λ̄ ) ∈ dom(L)

L(x̄∗, λ̄ )≤ L(x̄∗, λ̄ ∗)≤ L(x̄, λ̄ ∗). (11)
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From (8), one can define the Lagrangian function for node i as

Li(xi,λi) = fi(xi)+λigi(xi). (12)

In the sequel, we will use L and Li to denote the aggregate Lagrangian (8) and the

Lagrangian corresponding to node i, i.e. (12), respectively. Hence, the main task of

this paper is to find the saddle point of (8) while consensus on the agents’ states is

also achieved.

3 Main Results

We propose the following algorithm to find the saddle point of (8) and satisfy the

consensus constraint (5)

ẋi = −α∇xi
Li + hi, i = 1, . . . ,N, (13)

λ̇i =
[

∇λi
Li

]+

λi
, (14)

where α > 0 and hi = −β ∑ j∈Ni
(xi − x j) with β > 0. Ni = { j| j ∈ N ,( j, i) ∈ E}

is the set of neighbors corresponding to node i. Note that −α∇xi
Li + hi acts as the

control input for agent i, i.e.

ui =−α∇xi
Li + hi. (15)

In (14), a positive projection is used to ensure that Lagrangian multipliers remain

non-negative. For scalars, [p]+q = p if p > 0 or q > 0, and [p]+q = 0 otherwise. When

[p]+q = 0, the projection is said to be active. Therefore, in (14) when λi > 0 and

gi(xi) < 0, λ̇i < 0 and λi decreases until it reaches 0 where the projection becomes

active and it remains 0 until the sign of gi(xi) turns. Note that we start with λi(0)> 0;

therefore, λi ≥ 0 for all t > 0. One can define the set of active projection by σ =
{i : λi = 0, gi(xi) < 0}. Note that the control command (15), consists of two parts.

The first part is to minimize the local cost function and the second part is associated

with the consensus error. The following lemma is instrumental to some of the results

presented in this paper.

Lemma 2 [6] (Courant-Fischer Formula) The second smallest non-zero eigenvalue

of the matrix M ∈R
N×N , that we denote by v2(M), satisfies v2(M)= min

x⊤1N=0,x6=0N

x⊤Mx

x⊤x
.

Before proving that the algorithm in (13) and (14) yields the saddle point of (8), we

show that the positions of agents, xi, i ∈ N , reach consensus, when taking control

input as ui =−α∇xi
Li + hi, i ∈ N . This is established in the next proposition.

Proposition 1 Suppose that the graph G is connected and undirected. Then, there

exists some finite t1 such that the agents (1) satisfy
∣

∣xi(t)− x j(t)
∣

∣≤ δ0, i, j = 1, . . . ,N,

with δ0 small as desired, for t > t1 (15), if
∣

∣∇xi
Li −∇x j

L j

∣

∣< ω0, i, j = 1, . . . ,N, with

ω0 ∈ R
+.
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Proof The aggregate dynamics of agents (1) with (15) is ˙̄x = −β DD⊤x̄+Ω , where

Ω = [−α∇x1
L1 . . .−α∇xN

LN ]
⊤. Let the network’s consensus error be defined by

ēx = Π x̄, where Π = IN − 1
N

1N1⊤N and x̄ denotes the aggregate state of the network,

that is defined by x̄ = [x1 . . .xN ]
⊤

. Note that 1⊤Π = 0 and Π1 = 0. Thus, one can

write
˙̄ex =−β DD⊤ēx +ΠΩ , (16)

where D = [dik] ∈ R
N×|E| is the incidence matrix associated with the topology G .

And, its entries i.e. dik, are obtained by assigning an arbitrary orientation for the

edges in G . For instance, if one considers the kth edge i.e. ek = (i, j), then dik = −1

if the edge ek leaves node i, dik = 1 if it enters node i, and dik = 0 otherwise. We

choose the Lyapunov candidate function V (ēx) =
1
2
ē⊤x ēx. By taking time derivative

from V (ēx) along the trajectories of ēx, one can write

V̇ (ēx) = −β ēT
x DD⊤ēx + ē⊤x ΠΩ

≤ −β v2(DD⊤)‖ēx‖
2 + ē⊤x ΠΩ

≤ −β v2(DD⊤)‖ēx‖
2 +α ‖ēx‖ω0 (17)

where v2(DD⊤) denotes the smallest non-zero eigenvalue of DD⊤. In the above, the

first inequality is resulted from Lemma 2, and the second inequality is resulted from

the assumption
∣

∣∇xi
Li −∇x j

L j

∣

∣< ω0 given in the statement of the proposition. From

(17), one can say that

V̇ (ēx)≤−θ ‖ēx‖
2 +

((

θ −β v2(DD⊤)
)

‖ēx‖+αω0

)

‖ēx‖ , (18)

where 0 < θ < 1. For ‖ēx‖ ≥
ω0α

β v2(DD⊤)θ
, we obtain V̇ (ēx)< 0. Now, we are ready

to invoke Theorem 5.1 from [7] that guarantees that by choosing β large enough, one

can make the consensus error, δ0, as small as desired.

Remark 1 Assumption
∣

∣∇xi
Li −∇x j

L j

∣

∣< ω0 in Proposition 1 seems to be unreason-

able at the first glance as it assumes that the primal and dual variables xi and λi,

i = 1, . . . ,N, must remain bounded. However, we will show by the following lemma

that this requirement always holds. It is worthwhile mentioning that by choosing a

conservative bound on ω0 one can adjust the protocol’s parameters to reach consensus

with any desired accuracy.

We now assert that the trajectories generated by the dynamics (13) and (14) are glob-

ally bounded.

Lemma 3 Given that the graph G is connected and undirected, the solutions of (13)

and (14) are globally bounded.

Proof We study boundedness of the solutions of (13) and (14) by Lyapunov stability

analysis. Let us define a quadratic Lyapunov function as

W (x̄, λ̄ ) =
1

2α
(x̄− x̄∗)⊤(x̄− x̄∗)+

1

2
(λ̄ − λ̄ ∗)⊤(λ̄ − λ̄ ∗). (19)
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In the above equation,
(

x̄∗, λ̄ ∗
)

represents a saddle point equilibrium associated with

L(x̄, λ̄ ). By taking derivative from both sides of (19) along the trajectories (13) and

(14), with respect to time, we will have

Ẇ (x̄, λ̄ ) = −(x̄− x̄∗)⊤∇x̄L+
1

α
(x̄− x̄∗)⊤H

+
N

∑
i=1

(λi −λ ∗
i )

[

∇λi
Li

]+

λi
, (20)

where ∇x̄L = [∇x1
L1 . . .∇xN

LN ]
⊤

and H = [h1 . . .hN ]
⊤

.

Suppose that for some index i, the projection becomes active i.e. i∈σ . In this case

λi = 0 and ∇λi
Li = gi(xi) < 0. It is worthwhile noting that λi < 0 never holds when

parameters are initialized by positive values. Thus, in this case one can conclude that

(λi −λ ∗
i )∇λi

Li ≥ 0 due to the fact that ∇λi
Li < 0 and λ ∗

i ≥ 0. On the other hand, for

the agents the projection is not active, (λi − λ ∗
i )

[

∇λi
Li

]+

λi
= (λi − λ ∗

i )∇λi
Li holds.

Thus, we can assert that the following inequality holds.

Ẇ (x̄, λ̄ )≤−(x̄− x̄∗)⊤∇x̄L+
1

α
(x̄− x̄∗)⊤H +(λ̄ − λ̄ ∗)⊤∇λ̄ L. (21)

Then, from (9) and (10), we have

Ẇ (x̄, λ̄ )≤−L(x̄∗, λ̄ )+L(x̄, λ̄ )+
1

α
(x̄− x̄∗)⊤H

−L(x̄, λ̄ )+L(x̄, λ̄ ∗)

≤
1

α
(x̄− x̄∗)⊤H (22)

=−
β

α

N

∑
i=1

(xi − x∗) ∑
j∈Ni

(xi − x j)

=−
β

α

N

∑
i=1

xi ∑
j∈Ni

(xi − x j). (23)

The inequality (22) is due to (11). Furthermore, the last equality results from the fact

that ∑N
i=1 ∑ j∈Ni

(xi − x j) = 0 in a network with the undirected graph G . It is easy to

show that −∑N
i=1 xi ∑ j∈Ni

(xi − x j) ≤ 0 in an undirected graph. Hence, Ẇ (x̄, λ̄ ) ≤ 0,

and, thus, the proof is concluded.

The dynamics (13) and (14) can be regarded as a hybrid system due to switching

projection operator on the right side of the relation (14). Thus, before proceeding to

the main result of this section, we introduce the LaSalle’s invariance principle for

hybrid systems through a lemma first given in [11] and later summarized in [4].

Lemma 4 [4] Consider the hybrid dynamics (13) and (14) with a compact invariant

set O and there exists a continuously differentiable positive function V ( ˙̄x, ˙̄λ ;σ) that

decreases along trajectories in O . Then, every trajectory generated by the hybrid

dynamics and initiated in O converges to M, the maximal invariant set within O ,

which satisfies
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a) V̇ ( ˙̄x, ˙̄λ ;σ) = 0 in intervals of fixed σ ,

b) V ( ˙̄x, ˙̄λ ;σ−) =V ( ˙̄x, ˙̄λ ;σ+) if σ switches between σ−and σ+.

Next, in the light of the above lemma, we express the main result of this section.

Theorem 1 Assume that fi(xi) and gi(xi), i ∈ N , are twice continuously differen-

tiable on R. Given Assumption 1 and 2, the dynamics (13) and (14) will converge to
(

x̄∗, λ̄ ∗
)

that is the solution to the optimization sub-problem (4).

Proof To prove the theorem, it suffices to show that dynamics (13) and (14) will

converge to a saddle point associated with the Lagrangian function (8). To this end,

we split the proof into two parts. We first illustrate that the Lyapunov function

V ( ˙̄x, ˙̄λ ;σ) =
1

2α

N

∑
i=1

ẋ2
i +

1

2

N

∑
i=1,i/∈σ

λ̇ 2
i . (24)

is always decreasing. Then, in the second part, we appeal to Lemma 4 to establish

that the optimality conditions in Lemma 1 hold. To examine the above Lyapunov

function, we only need to consider two scenarios, namely, the one in which the index

set σ changes and the other one where this set is fixed. One should note that in the

former case the Lyapunov function (24) might be discontinuous as λ̇i switches when

σ changes according to (14). However, in the latter, the Lyapunov function (24) is

continuous. In the following, we establish that in both cases the positive function

(24) is always non-increasing. We first assume that σ is fixed. Taking derivative of

V ( ˙̄x, ˙̄λ ;σ) along the trajectories (13) and (14) with respect to time, we obtain

V̇ ( ˙̄x, ˙̄λ ;σ) =
N

∑
i=1

ẋi

(

−
∂ 2Li

∂x2
i

ẋi −
∂ 2Li

∂λi∂xi

λ̇i +
ḣi

α

)

+
N

∑
i=1,i/∈σ

gi(xi)
∂gi(xi)

∂xi

ẋi

(25)

The above equations can be simplified by expanding some of its terms into two cases,

namely, i ∈ σ and i /∈ σ . Note that when i ∈ σ , λi = 0, λ̇i = 0. Thus, we can write

V̇ ( ˙̄x, ˙̄λ ;σ) =−
N

∑
i=1

ẋi

(

∂ 2 fi(xi)

∂x2
i

ẋi −
ḣi

α

)

−
N

∑
i=1,i/∈σ

ẋi

(

λi

∂ 2gi(xi)

∂x2
i

ẋi +
∂gi(xi)

∂xi

gi(xi)

)

+
N

∑
i=1,i/∈σ

gi(xi)
∂gi(xi)

∂xi

ẋi. (26)

Then after a simple algebraic simplification, it is easy to verify that

V̇ ( ˙̄x, ˙̄λ ;σ) = −
N

∑
i=1

ẋ2
i

∂ 2 fi(xi)

∂x2
i

−
N

∑
i=1,i/∈σ

λiẋ
2
i

∂ 2gi(xi)

∂x2
i

+
1

α

N

∑
i=1

ẋiḣi. (27)
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From the definition of hi, we attain the following equality.

N

∑
i=1

ẋiḣi =−
β

2

N

∑
i=1

∑
j∈Ni

(ẋi − ẋ j)
2 . (28)

Now, with substituting (28) in (27), we obtain

V̇ ( ˙̄x, ˙̄λ ;σ) = −
N

∑
i=1

ẋ2
i

∂ 2 fi(xi)

∂x2
i

−
N

∑
i=1,i/∈σ

λiẋ
2
i

∂ 2gi(xi)

∂x2
i

−
β

2α

N

∑
i=1

∑
j∈Ni

(ẋi − ẋ j)
2

(29)

From Assumption 1 and that
β
α > 0, it is attained that

V̇ ( ˙̄x, ˙̄λ ;σ) ≤ 0. (30)

Hence, V ( ˙̄x, ˙̄λ ;σ) is non-increasing when σ does not change.

In the following, we will show that the same property holds even when the set σ
changes. Consider conditions under which the index set σ varies: (1) Consider

the case at given time index, say t0, the index set σ is enlarged. This happens when

there is a larger number of constraints with gi(xi(t
+
0 )) < 0 compared to those with

gi(xi(t
−
0 ))< 0. We then obtain V (t+)≤V (t−0 ) as λ̇i(t

+
0 ) = 0. Here t−0 and t+0 stand for

the moment just before and after t0, respectively. (2) Now suppose that the index set

σ shrinks. This case occurs when the set loses a constraint i at time t0 and gi(xi(t
+
0 ))

becomes positive. Since gi (·) is a continuous function and xi is continuous as well, it

can be said that this function has passed through zero to become positive. The latter

supports that the new term λ̇ 2
i is added to V ( ˙̄x, ˙̄λ ;σ) but since gi(xi(t

+
0 )) = gi(xi(t

−
0 )),

no discontinuity happens. Therefore, one can say V ( ˙̄x, ˙̄λ ;σ) does not change in this

case and, therefore, remains non-increasing according to (30).

Now, we invoke Lemma 4 that presents LaSalles invariance principle for hybrid sys-

tems. From Lemma 3, we conclude that whole space R
2N represents an invariant set

for the hybrid dynamics (13) and (14). On the other hand, in the first part of the

proof, we showed that the Lyapunov function (24) decreases along the trajectories

produced by (13) and (14). According to the statement of Lemma 4 there should ex-

ist maximal invariant set, say M, that satisfies conditions (a) and (b) stated in Lemma

4. In the sequel, we will show that (13) and (14) will stabilize at the point in which

conditions (a) and (b) are met; moreover, the KKT conditions (6) and (7) are also

fulfilled.

We first attend to part (a). From the equation (29), we attain ẋi = 0, i ∈ N ,

i.e. x̄ ≡ x̄∗ since one can derive from (13) that x̄ is continuous. Also, ∑N
i=1 ẋi =

−α ∑N
i=1 ∇xi

Li. So, ∑N
i=1 ∇xi

Li = 0. Thereby, (7) is satisfied.

As for λ̄ , assume that gi(x
∗
i ) > 0, then, λi will grow unboundedly that it contra-

dicts its boundedness shown earlier in Lemma 3. Therefore, gi(x
∗
i ) ≤ 0, then two

possible cases happen: i) λi would decrease until it reaches at zero, producing a

discontinuity once the projection becomes active. This would contradict with part
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(b) of Lemma 4. ii) λi = 0; the corresponding projection is active for some i. Thus,

gi(x
∗
i )≤ 0 and λ ∗

i = 0 always hold, and, (6) is met.

In the above, we showed that the equilibrium point of the dynamics (13) and

(14) is a saddle point of the Lagrangian function (8), and in the light of Saddle Point

Theorem [17, Theorem 4.7], it is the optimal solution to (4).

One should note that through Proposition 1, we showed consensus on states, i.e.

xi = x j, i, j = 1, . . . ,N. Furthermore, by Theorem 1, we proved that the control inputs

(15) drive the agents towards the saddle point of the Lagrangian associated with (4).

Hence, the optimal consensus problem (3) associated with the network of single-

integrator agents (1) is resolved.

Remark 2 There exists a trade-off between size of the control command and permit-

ted consensus error when selecting parameters α and β . As β increases, according

to Proposition 1, the consensus error becomes smaller while the control input size

attains a larger value. On the other hand, with small α , the consensus error decreases;

however, this decelerates the optimization process.

4 Simulation Example

As mentioned earlier, results of the current paper also hold when agents are modeled

by several integrators i.e. xi ∈ R
m. We exploit this fact and consider the following

scenario that clearly exhibits the results of this paper through a numerical simulation.

Consider four agents that move in a 2-D space and are connected under a ring topol-

ogy. Assume that each agent is modeled by one single-integrator dynamics per co-

ordinate. Their local objective functions are as f1(x11,x12) = x2
11 + x2

12, f2(x21,x22) =
(x21−4)2+(x22−2)2, f3(x31,x32)= (x31−3)2+4(x32−1)2, f4(x41,x42) = (x41−1)2

Agent 1 has a local constraint as g1(x11,x12) = −x11 − x12 + 1 ≤ 0. Agent 2 suf-

fers the constraint g2(x21,x22) = x2
21 + x2

22 − 2 ≤ 0. Agent 3 has the local constraint

g3(x31,x32) = x2
31 + x2

32 − 1 ≤ 0, while agent 4 has no constraint. Let α = 0.1 and

β = 10 be the control law’s coefficients as in (15). Under the control law (15), the

trajectories of agents’ positions are shown in Fig. 1 when the initial positions of

the agents 1, 2, 3, and 4 are set as x1 =
[

2 3
]⊤

, x2 =
[

1 4
]⊤

, x3 =
[

3 4
]⊤

, and

x4 =
[

5 0
]⊤

, respectively. We set the initial values for the Lagrangian multipliers as

zero. The optimal solution to the problem is
[

0.85 0.53
]⊤

.

Among many existing penalty-based algorithm , due to the page limitation, we only

compare our result with that of the algorithm proposed by [21] on the above example

(see Fig. 2). As it is observed, with the primal-dual dynamics proposed in [21], the

agents spiral around the optimal point in a perplexed way to reach the optimal point.

Such trajectories towards the final point will impose too much energy consumption

and practically are not feasible to achieve.



12 Amir Adibzadeh et al.

0
1

2
3

4
5

0
1

2
3

4

0

5

10

15

20

 

x
i2

X: 0.8501
Y: 0.5283
Z: 21.21

x
i1 

t
agent 1
agent 2
agent 3
agent 4

Fig. 1 States’ trajectories for a ring network of single-integrator agents under the control law (15)
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Fig. 2 Simulation results of [21]: States’ trajectories for a ring network of single-integrator agents

5 Conclusion

We studied constrained optimal consensus problem for an undirected network of

single-integrator agents. We proposed a fusion algorithm in which: i) a primal-dual

gradient method was used to satisfy KKT conditions for constrained convex optimiza-

tion problems, and ii) a consensus protocol was adopted to make all agents reach the

agreed optimal value. Then, through the theory of stability of perturbed systems, we

showed that this algorithm delivers consensus. Moreover, we proved that the equilib-

rium point of the network’s dynamics coincides with the optimal solution to the op-

timization problem, adopting the LaSalle’s invariance principle for hybrid systems.

Finally, we illustrated the performance of our proposed algorithm through a numeri-

cal example.
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