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DETERMINANTAL ELLIPTIC SELBERG INTEGRALS

HJALMAR ROSENGREN

Dedicated to Christian Krattenthaler on his 60th birthday

Abstract. The classical Selberg integral contains a power of the Vandermonde determinant.
When that power is a square, it is easy to prove Selberg’s identity by interpreting it as a
determinant of one-variable integrals. We give similar proofs of summation and transformation
formulas for continuous and discrete elliptic Selberg integrals. In the continuous case, the
same proof was previously given by Noumi. Special cases of the resulting identities have

found applications in combinatorics.

1. Introduction

In 1944, Selberg proved the integral evaluation [S2]

∫ 1

x1,...,xn=0

∏

1≤j<k≤n

|xj − xk|2c
n
∏

j=1

xa−1
j (1− xj)

b−1 dxj

=

n
∏

j=1

Γ(a+ (j − 1)c)Γ(b+ (j − 1)c)Γ(1 + jc)

Γ(a + b+ (n + j − 2)c)Γ(1 + c)
, (1.1)

which had appeared in slightly different form in his earlier paper [S1]. Here, Γ
is the classical gamma function, not the elliptic gamma function that will appear
below. This holds under the natural convergence conditions

Re(a) > 0, Re(b) > 0, Re(c) > −min

(

1

n
,
Re(a)

n− 1
,
Re(b)

n− 1

)

.

The Selberg integral plays a fundamental role in random matrix theory and anal-
ysis on classical groups, and has been generalized in many directions [FW].

The general case of (1.1) is quite deep. It is instructive to note that in 1963
Mehta and Dyson [MD] conjectured that

∫ ∞

x1,...,xn=−∞

∏

1≤j<k≤n

|xj − xk|2c
n
∏

j=1

e−x2

j/2 dxj = (2π)n/2
n
∏

j=1

Γ(1 + jc)

Γ(1 + c)
. (1.2)

Although this was republished as a conjecture several times, no proof was found
until it was recognized as a degenerate case of (1.1) in the late 1970s, see [FW].

Mehta and Dyson could prove (1.2) for c = 1/2, 1 and 2, which are the most
important cases in random matrix theory. Their discussion of the case c = 1
is just one sentence: “The case β = 2 is the easiest; one needs only to introduce
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Hermite polynomials and exploit their orthogonality properties”. For our purpose,
it is useful to explain this starting from the algebraic identity [A] (see [F] for the
history of this result)

det
1≤j,k≤n

(
∫

fj(x)gk(x) dµ(x)

)

=
1

n!

∫

det
1≤j,k≤n

(fj(xk)) det
1≤j,k≤n

(gj(xk)) dµ(x1) · · ·dµ(xn), (1.3)

which holds for any linear functional f 7→
∫

f(x) dµ(x). If fj and gj are monic
polynomials of degree j − 1, then the determinants on the right are column-
equivalent to Vandermonde determinants and we obtain

det
1≤j,k≤n

(
∫

fj(x)gk(x) dµ(x)

)

=
1

n!

∫

∏

1≤j<k≤n

(xj − xk)
2 dµ(x1) · · · dµ(xn). (1.4)

If we now choose fj = gj as orthogonal with respect to dµ, then the left-hand
side of (1.4) reduces to the product of the squared norms of the first n monic
orthogonal polynomials. The identity (1.4) is then a classical result known to
Heine [I, Cor. 2.1.3]. The case of Jacobi and Hermite polynomials give the case
c = 1 of (1.1) and (1.2), respectively.

There is a less well-known but even more elementary proof of the case c = 1 of
(1.1), based on varying the parameters a and b. This proof is more relevant to the
present work, so we will explain it in detail. Let Ijk denote the one-variable case
of (1.1), after replacing (a, b) with (a+ j − 1, b+ n− k). By Euler’s beta integral
evaluation,

Ijk =

∫ 1

0

xa+j−2(1− x)b+n−k−1 dx =
Γ(a + j − 1)Γ(b+ n− k)

Γ(a + b+ n + j − k − 1)
.

Consider the determinant D = det1≤j,k≤n(Ijk). It can be identified with the left-
hand side of (1.4), where fj(x) = xj−1, gj(x) = (1− x)n−j and

∫

f(x) dµ(x) =

∫ 1

0

f(x) xa−1(1− x)b−1 dx.

Although gj is not monic of degree j − 1, the sign changes coming from replacing
(x−1)j−1 by (1−x)n−j cancel, so (1.4) still holds. Thus, the case c = 1 of (1.1) can
be expressed as n!D. This is another instance of the Vandermonde determinant.
The gamma functions in the numerator can be pulled out, and the denominator
can be expressed as

1

Γ(a + b+ n + j − k − 1)
=

pk−1(j)

Γ(a+ b+ n+ j − 2)
,



DETERMINANTAL ELLIPTIC SELBERG INTEGRALS 3

where pk−1 is a monic polynomial of degree k − 1, so that

det
1≤j,k≤n

(pk−1(j)) =
∏

1≤j<k≤n

(k − j) =

n
∏

j=1

(j − 1)! .

We conclude that

n!D =
n
∏

j=1

Γ(a+ j − 1)Γ(b+ j − 1)j!

Γ(a+ b+ n+ j − 2)
,

which agrees with the right-hand side of (1.1) for c = 1.
The same method works for many variations of the c = 1 Selberg integral; the

integration may be continuous, infinite discrete or finite, and the integrands may
live at the rational, trigonometric or elliptic level. (In the most common notation,
c = 1 corresponds to t = q at the trigonometric and elliptic level.) One can also
prove transformation formulas, stating that two Selberg-type integrals are equal.
The purpose of the present note is to illustrate this method with two examples:
an elliptic Selberg integral conjectured by Van Diejen and Spiridonov [DS1] and
a transformation formula for discrete Selberg integrals conjectured by Warnaar
[W]. Both these identities were first proved by Rains [R1, R3]; the second one also
independently by Coskun and Gustafson [CG].

We are not claiming that our proofs are new, and the present paper should
be viewed as expository. It is clear from our correspondence with Rains that he
is aware of similar proofs. Moreover, Noumi [N] gave a determinantal proof of
the transformation formula stated as (2.8) below. This generalizes the proof of
the continuous integration formula given below and is completely parallel to our
proof of the discrete transformation formula. The main motivation for writing the
present note is that we have seen several recent papers where the case t = q of
Warnaar’s identities for discrete Selberg integrals are applied [BK, BKW, FKX,
KS] but the reader is referred to work on the general case [CG, R1, Ro1] for the
proof. Even though it is known to some experts in the field, it seems useful to point
out to a wider community that much easier proofs exist. We also hope that the
same method can be used to find new results. In particular, we think of quadratic
and cubic transformation formulas for c = 1 Selberg-type integrals, which may
perhaps even admit extensions to general c. In this direction, we mention that
several quadratic transformations of elliptic Selberg integrals are given in [R4, R5].
Quadratic summations for c = 1 discrete Selberg integrals appear in connection
with tiling problems [C, Ro2].

Acknowledgement: It is a pleasure to dedicate this piece to Christian Krat-
tenthaler, a virtuoso of determinants, hypergeometry and much more. I am very
grateful for his patience and support over the years. I also thank Masatoshi Noumi,
Eric Rains and Ole Warnaar for useful correspondence.
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2. Continuous Selberg integrals

We recall the standard notation of elliptic hypergeometric functions. We fix
two parameters p and q with |p|, |q| < 1, which we suppress from the notation.
Ruijsenaars’ elliptic gamma function [Ru] is given by

Γ(z) =
n
∏

j,k=1

1− pj+1qk+1/z

1− pjqkz
.

It satisfies the functional equation

Γ(qz) = θ(z)Γ(z) (2.1)

and, more generally,

Γ(qkz) = (z)k Γ(z), (2.2)

where the theta function and elliptic shifted factorials are given by

θ(z) =
∞
∏

j=0

(1− pjz)

(

1− pj+1

z

)

, (z)k =
k−1
∏

j=0

θ(zqj).

Repeated variables in each of these functions is a short-hand for products. For
instance,

Γ(z1, . . . , zm) = Γ(z1) · · ·Γ(zm),
Γ(z±w±) = Γ(zw)Γ(z/w)Γ(w/z)Γ(1/wz).

For introductions to elliptic hypergeometric series, we refer to [GR, Ro3]. We will
make heavy use of elementary identities that can be found in these sources.

The elliptic Selberg integral is the evaluation

Cn

2nn!

∫

∏

1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n
∏

j=1

∏6
k=1 Γ(tkz

±
j )

Γ(z±2
j )

dzj
2πizj

=

n
∏

m=1

(

Γ(tm)

Γ(t)

∏

1≤j<k≤6

Γ(tm−1tjtk)

)

, (2.3)

where the parameters satisfy the balancing condition t2n−2t1t2t3t4t5t6 = pq and

C =

∞
∏

j=1

(1− pj)(1− qj).

If |t| < 1 and |tj| < 1 for all j, the integration is over |z1| = · · · = |zn| = 1; this
condition may be relaxed if the contour is deformed appropriately. The evaluation
(2.3) contains the classical Selberg integral (1.1) as a limit, see [R2].

The case p = 0 of (2.3) is due to Gustafson [G] and the case n = 1 to Spiridonov
[Sp1]. The general case was conjectured by Van Diejen and Spiridonov [DS1]
and first proved by Rains [R3]. Another proof follows by combining the results
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of [DS2, Sp2] and a third proof is given in [IN2]. For a quantum field theory
interpretation of (2.3), see [SV, §12.3.2].

The parameter c in (1.1) corresponds to logq t in (2.3). In particular, c = 1
corresponds to t = q. We proceed to give a simple proof of this special case.
Let Ijk denote the case n = 1 of (2.3), after the substitutions (t1, t2, t3, t4) 7→
(t1q

j−1, t2q
n−j, t3q

k−1, t4q
n−k). The balancing condition is then

q2n−2t1t2t3t4t5t6 = pq. (2.4)

By (2.2), the resulting integral can be written as

Ijk =
C

2

∫

(t1z
±)j−1(t2z

±)n−j(t3z
±)k−1(t4z

±)n−k

∏6
j=1 Γ(tjz

±)

Γ(z±2)

dz

2πiz
.

Let D = det1≤j,k≤n(Ijk). Then, (1.3) gives

D =
Cn

2nn!

∫

d(t1, t2)d(t3, t4)
n
∏

k=1

∏6
j=1 Γ(tjz

±
k )

Γ(z±2
k )

dzk
2πizk

,

where

d(a, b) = det
1≤j,k≤n

(

(az±k )j−1(bz
±
k )n−j

)

. (2.5)

By Warnaar’s determinant evaluation [W, Lemma 5.3],

d(a, b) = b(
n

2)q(
n

3)
n
∏

j=1

(qj−na/b, qn−jab)j−1

∏

1≤j<k≤n

z−1
k θ(zkz

±
j ). (2.6)

Note also that
∏

1≤j<k≤n

(

z−1
k θ(zkz

±
j )
)2

=
∏

1≤j<k≤n

Γ(qz±j z
±
k )

Γ(z±j z
±
k )

.

This gives

D = (t2t4)
(n
2
)q2(

n

3
)

n
∏

j=1

(qj−nt1/t2, q
n−jt1t2, q

j−nt3/t4, q
n−jt3t4)

× Cn

2nn!

∫

∏

1≤j<k≤n

Γ(qz±j z
±
k )

Γ(z±j z
±
k )

n
∏

j=1

∏6
k=1 Γ(tkz

±
j )

Γ(z±2
j )

dzj
2πizj

, (2.7)

where we recognize the integral as the case t = q of (2.3).
On the other hand, the case n = 1 of (2.3) (that is, Spiridonov’s elliptic beta

integral) gives

Ijk = Γ(t1t2q
n−1, t1t3q

j+k−2, t1t4q
n+j−k−1, t1t5q

j−1, t1t6q
j−1)

× Γ(t2t3q
n−j+k−1, t2t4q

2n−j−k, t2t5q
n−j, t2t6q

n−j, t3t4q
n−1)

× Γ(t3t5q
k−1, t3t6q

k−1, t4t5q
n−k, t4t6q

n−k, t5t6).
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Most of the factors are independent of either j or k and can thus be pulled out of
the determinant. Using again (2.2), we are left with

D = Γ(t1t2q
n−1, t3t4q

n−1, t5t6)
n

n
∏

m=1

∏

1≤j<k≤6
(j,k)6=(1,2), (3,4), (5,6)

Γ(tjtkq
m−1)

× det
1≤j,k≤n

(

(t1t3q
k−1, t1t4q

n−k)j−1(t2t3q
k−1, t2t4q

n−k)n−j

)

.

The final determinant is of the form (2.5), with a = t1
√

t3t4qn−1, b = t2
√

t3t4qn−1,

zk = qk−1
√

q1−nt3/t4. Using (2.6) and also (2.4) to write (qn−jab)j−1 = (t5t6)j−1,
we obtain after simplification

D = (t2t4)
(n
2
)q2(

n

3
)Γ(t1t2q

n−1, t3t4q
n−1)n

n
∏

m=1

∏

1≤j<k≤6
(j,k)6=(1,2), (3,4)

Γ(tjtkq
m−1)

×
n
∏

j=1

(q, qj−nt1/t2, q
j−nt3/t4)j−1.

Comparing this with (2.7) yields the case t = q of (2.3).
Essentially the same proof works for the case t = q of Rains’ integral transfor-

mation [R3]

∫

∏

1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n
∏

j=1

∏4
k=1 Γ(tkz

±
j , ukz

±
j )

Γ(z±2
j )

dzj
2πizj

=
n
∏

m=1

∏

1≤j<k≤4

Γ(tm−1tjtk, t
m−1ujuk)

×
∫

∏

1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n
∏

j=1

∏4
k=1 Γ(tkvz

±
j , ukv

−1z±j )

Γ(z±2
j )

dzj
2πizj

,

(2.8)

where v2 = pq/tn−1t1t2t3t4 = tn−1u1u2u3u4/pq. The details can be found in [N],
where the integral (2.8) is interpreted as a tau function for the elliptic Painlevé
equation.

3. Discrete Selberg integrals

The integral evaluation (2.3) and transformation (2.8) have analogues for finite
sums, which were conjectured by Warnaar [W] prior to the discovery of the contin-
uous versions. Warnaar’s summation can be obtained from the integral evaluation
(2.3) through residue calculus [DS1] (presumably, a similar argument applies to
the transformations). The conjectured summation was proved in [Ro1], see also
[IN1], and the more general transformation in [CG, R1].
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As one would expect, the case t = q of Warnaar’s identities admit simple de-
terminantal proofs. We will focus on the transformation, which can be written
as [S]

∑

0≤x1<x2<···<xn≤N

∏

1≤j<k≤n

(

qxjθ(qxk−xj)θ(aqxj+xk)
)2

×
n
∏

j=1

(

θ(aq2xj )

θ(a)

(a, b, c, d, e, f, g, q−N)xj

(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)xj

qxj

)

=
(a

λ

)(N+1−n)n (aq)nN
(λq)nN

n
∏

j=1

(b, c, d)j−1(λq/e, λq/f, λq/g)N+1−j

(λb/a, λc/a, λd/a)j−1(aq/e, aq/f, aq/g)N+1−j

×
∑

0≤x1<x2<···<xn≤N

∏

1≤j<k≤n

(

qxjθ(qxk−xj )θ(λqxj+xk)
)2

×
n
∏

j=1

(

θ(λq2xj )

θ(λ)

(λ, λb/a, λc/a, λd/a, e, f, g, q−N)xj

(q, aq/b, aq/c, aq/d, λq/e, λq/f, λq/g, λqN+1)xj

qxj

)

,

(3.1)

where bcdefg = q4+N−2na3 and λ = a2q2−n/bcd. When aq = cd, the factor
(λb/a)xn

= (q1−n)xn
on the right-hand side vanishes unless xn ≤ n − 1, so the

sum reduces to the term with (x1, . . . , xn) = (0, 1, . . . , n − 1). After a change of
variables, this gives the case t = q of Warnaar’s discrete Selberg integral, namely,

∑

0≤x1<x2<···<xn≤N

∏

1≤j<k≤n

(

qxjθ(qxk−xj)θ(aqxj+xk)
)2

×
n
∏

j=1

(

θ(aq2xj )

θ(a)

(a, b, c, d, e, q−N)xj

(q, aq/b, aq/c, aq/d, aq/e, aqN+1)xj

qxj

)

= bn(N+1−n)q
1

3
n(n−1)(3N+1−2n)(aq)nN

×
n
∏

j=1

(q, b, c, d, e, q−N)j−1(aq
2−j/bc, aq2−j/bd, aq2−j/be)N+1−n

(aq/b, aq/c, aq/d, aq/e)N+1−j

,

(3.2)

which holds for bcde = qN+3−2na2.
We will give a simple proof of (3.1), which is completely parallel to the con-

tinuous case. We need the case n = 1, which is the one-variable elliptic Bailey
transformation. It first appeared (rather implicitly and with some restrictions on
the parameters) in the work of Date et al. on Baxter’s elliptic solid-on-solid model
[D] and was proved in general by Frenkel and Turaev [FT], see [GR, Ro3] for more
elementary proofs.
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Let Sjk denote the case n = 1 of (3.1), after the substitutions (b, c, e, f) 7→
(bqj−1, cqn−j, eqk−1, fqn−k). After some elementary manipulation, we may write

Sjk =
N
∑

x=0

θ(aq2x)

θ(a)

(a, b, c, d, e, f, g, q−N)x
(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)x

qx(2n−1)

× (bqx, bq−x/a)j−1(cq
x, cq−x/a)n−j(eq

x, eq−x/a)k−1(fq
x, fq−x/a)n−k

(b, b/a)j−1(c, c/a)n−j(e, e/a)k−1(f, f/a)n−k
.

Let D = det1≤j,k≤n(Sjk). We expand D using the Cauchy–Binet identity

det
1≤j,k≤n

(

N
∑

x=0

ajxbkx

)

=
∑

0≤x1<x2<···<xn≤N

det
1≤j,k≤n

(aj,xk
) det
1≤j,k≤n

(bj,xk
).

This is a special case of (1.3), where symmetry is used to restrict the range of
summation. It follows that

D =
1

∏n
j=1(b, b/a, c, c/a, e, e/a, f, f/a)j−1

×
∑

0≤x1<x2<···<xn≤N

n
∏

k=1

(

θ(aq2xk)

θ(a)

(a, b, c, d, e, f, g, q−N)xk
qxk(2n−1)

(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)xk

)

× δ(b, c)δ(e, f),

where

δ(b, c) = det
1≤j,k≤n

(

(bqxk , bq−xk/a)j−1(cq
xk , cq−xk/a)n−j

)

.

This determinant is of the form (2.5), with (a, b, zk) replaced by (b/
√
a, c/

√
a,
√
aqxk).

Using (2.6) and simplifying, we find that D equals the left-hand side of (3.1) times

(

cf

a2

)(n
2
)
q2(

n

3
)

n
∏

j=1

(qj−nb/c, qn−jbc/a, qj−ne/f, qn−jef/a)j−1

(b, b/a, c, c/a, e, e/a, f, f/a)j−1
. (3.3)

Repeating the same computation but starting from the alternative expression

Sjk =
(a

λ

)N (aq, λq2−k/e, λq1−n+k/f, λq/g)N
(λq, aq2−k/e, aq1−n+k/f, aq/g)N

×
N
∑

x=0

θ(λq2x)

θ(λ)

(λ, λb/a, λc/a, λd/a, e, f, g, q−N)x
(q, aq/b, aq/c, aq/d, λq/e, λq/f, λq/g, λqN+1)x

qx(2n−1)

× (λbqx/a, bq−x/a)j−1(λcq
x/a, cq−x/a)n−j(eq

x, eq−x/λ)k−1(fq
x, fq−x/λ)n−k

(λb/a, b/a)j−1(λc/a, c/a)n−j(e, e/λ)k−1(f, f/λ)n−k
,

we obtain after simplification the same prefactor (3.3) times the right-hand side
of (3.1). This completes the proof of (3.1).
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