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EXISTENCE OF BOUND AND GROUND STATES FOR FRACTIONAL

COUPLED SYSTEMS IN R
N

JOSÉ CARLOS DE ALBUQUERQUE, JOÃO MARCOS DO Ó, AND EDCARLOS DOMINGOS SILVA

Abstract. In this work we consider the following class of nonlocal linearly coupled systems

involving Schrödinger equations with fractional laplacian
{

(−∆)s1u+ V1(x)u = f1(u) + λ(x)v, x ∈ R
N ,

(−∆)s2v + V2(x)v = f2(v) + λ(x)u, x ∈ R
N ,

where (−∆)s denotes de fractional Laplacian, s1, s2 ∈ (0, 1) and N ≥ 2. The coupling function

λ : RN → R is related with the potentials by |λ(x)| ≤ δ
√

V1(x)V2(x), for some δ ∈ (0, 1). We

deal with periodic and asymptotically periodic bounded potentials. On the nonlinear terms f1 and

f2, we assume “superlinear” at infinity and at the origin. We use a variational approach to obtain

the existence of bound and ground states without assuming the well known Ambrosetti-Rabinowitz

condition at infinity. Moreover, we give a description of the ground states when the coupling function

goes to zero.

1. Introduction

In this work we consider the following class of linearly coupled systems involving Schrödinger

equations with fractional laplacian
{

(−∆)s1u+ V1(x)u = f1(u) + λ(x)v, x ∈ R
N ,

(−∆)s2v + V2(x)v = f2(v) + λ(x)u, x ∈ RN ,
(1.1)

where N ≥ 2, s1, s2 ∈ (0, 1) and V1, V2 are bounded and continuous potentials. Here λ : RN → R

is also a bounded and continuous function satisfying some suitable hypotheses. It is worthwhile to

mention that a solution (u, v) of finite energy for (1.1) is called a bound state solution. It is well

known that (u, v) 6= (0, 0) is called ground state solution if admits the smallest energy among all

nontrivial bound states of (1.1). Our main contribution here is to consider fractional Schrödinger

equations which are linearly coupled finding existence of bound and ground state solutions. We deal

with two classes of potentials: periodic and asymptotically periodic. Furthermore, we study the

behavior of the ground state solutions when the coupling function goes to zero. By using variational

arguments we get our main results taking into account that the nonlinear terms does not verify the

well known Ambrosetti-Rabinowitz condition.
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1.1. Motivation and related results. In order to motivate our results we begin by giving a brief

survey on this subject. In the last few years, a great attention has been focused on the study

of problems involving fractional Sobolev spaces and corresponding nonlocal equations, both from

a pure mathematical point of view and their concrete applications, since they naturally arise in

many different contexts, such as, among the others, obstacle problems, flame propagation, minimal

surfaces, conservation laws, financial market, optimization, crystal dislocation, phase transition and

water waves, see for instance [7, 15] and references therein.

Coupled elliptic systems arise in various branches of mathematical physics and nonlinear optics

(see [1]). Solutions of System (1.1) are related with standing wave solutions of the following two-

component system of nonlinear equations











i
∂ψ

∂t
= (−∆)s1ψ + V1(x)ψ − f1(ψ)− λ(x)φ, x ∈ R

N , t ≥ 0,

i
∂φ

∂t
= (−∆)s2φ+ V2(x)φ− f2(φ)− λ(x)ψ, x ∈ R

N , t ≥ 0,
(1.2)

where i denotes the imaginary unit. For System (1.2), a solution of the form (ψ(x, t), φ(x, t)) =

(e−itu(x), e−itv(x)) is called standing wave. Assuming that f1(e
iθu) = eiθf1(u) and f2(e

iθv) =

eiθf2(v), for u, v ∈ R, it is well known that (ψ, φ) is a solution of (1.2) if and only if (u, v)

solves System (1.1). For more information on the physical background we refer the readers

to [1, 5, 6, 27,28,39] and references therein.

Notice that if λ ≡ 0, s1 = s2 = s and V1 = V2 = V , then System (1.1) reduces to the general

class of nonlinear fractional Schrödinger equations (−∆)su + V (x)u = f(u), in R
N . It is known

that when s → 1, the fractional Laplacian (−∆)s reduces to the standard Laplacian −∆, see [15].

There is a huge bibliography concerned to nonlinear Schrödinger equations, we refer the classical

works [4, 14, 22, 35] and references therein. Recently, fractional Schrödinger equations have been

studied under many different assumptions on the potential V (x) and on the nonlinearity f(u). For

instance, in [20], in order to overcome the lack of compactness, the authors used a comparison

argument to obtain positive solutions for the case when V ≡ 1. Another way to overcome this

difficulty is requiring coercive potentials, that is, V (x) → +∞, as |x| → +∞. In this direction,

we refer the readers to [11, 36]. For existence results involving another classes of potentials, we

refer [8, 16,21,37] and references therein.

There are some papers that have appeared in the recent years regarding the local case of

System (1.1), which corresponds to the case s1 = s2 = 1. In [2, 3], A. Ambrosetti et al. considered

the following class of linearly coupled systems involving subcritical terms of the form

{

−∆u+ µu = (1 + a(x))|u|p−1u+ λv, x ∈ R
N ,

−∆v + νv = (1 + b(x))|v|q−1v + λu, x ∈ R
N .

They used concentration compactness type arguments to prove the existence of positive bound and

ground states when µ = ν = 1, λ ∈ (0, 1), 1 < p = q < 2∗ − 1, a(x) and b(x) vanishing at infinity.

In [9], Z. Chen and W. Zou extended and complemented some results introduced in [3] by studying
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the following class of coupled systems
{

−∆u+ µu = f1(u) + λv, x ∈ R
N ,

−∆v + νv = f2(v) + λu, x ∈ R
N .

(1.3)

In [18,19], the authors studied the existence of positive ground states for System (1.3) when N = 2

and µ = V1(x), ν = V2(x), λ = λ(x) are nonnegative functions satisfying suitable assumptions.

For more existence results regarding to coupled systems in the local case, we refer the readers

to [10, 13, 23–25, 32, 33] and references therein. However, there are few works regarding to coupled

systems in the nonlocal case, that is, when s1, s2 ∈ (0, 1). In [26], it was studied the following class

of coupled systems
{

(−∆)su+ u = (|u|2p + b|u|p−1|v|p+1)u, x ∈ R
N ,

(−∆)sv + ω2sv = (|v|2p + b|v|p−1|u|p+1)v, x ∈ R
N ,

(1.4)

where ω > 0, b > 0 and 2 < 2p+2 < 2∗s. By using the Nehari manifold method, the authors proved

the existence of ground states for the nonlocal system (1.4). Moreover, they proved that if b > 0 is

large enough, then System (1.4) admits a positive ground state solution. Their results extend and

complement the results obtained in [33] for the local case. In [31], it was considered the fractional

linearly coupled system (1.1) involving Berestycki-Lions type nonlinearities. In [17], the authors

studied System (1.1) involving nonlinear terms with critical exponential growth of Trudinger-Moser

type. We also refer the readers to [12,34] and references therein.

It is important to emphasize that in most of the cited works it was considered the case where the

nonlinear term is a powerlike function or a sum of powerlike functions. In this setting was proved

several results concerned in existence of solutions with different assumptions on the potentials. For

example, in [33] was a considered the case where f1, f2 are a cubic. Another works considered a

more general nonlinear term which satisfies the well known Ambrosetti-Rabinowitz condition at

infinity. Namely, for i = 1, 2 there exist θi > 2 in such way that

0 < θiFi(t) = θi

∫ t

0
fi(τ) dτ ≤ tfi(t), for all t ∈ R. (AR)

Under this condition it follows that any Palais-Smale sequence is bounded. However, there are some

superlinear functions fi such that (AR) is not satisfied, see Remark 1.4. In the present paper we

consider the nonquadraticity condition at infinity introduced by D.G. Costa and C.A. Magalhães

[14]. Taking into account the nonquadraticity condition, we are able to prove that any Cerami

sequence for the energy functional associated to System (1.1) is bounded. This is a powerful tool

in order to recover the compactness required in variational procedures.

The class of systems considered here imposes several difficulties. The first one is the presence of

the fractional laplacian which is a nonlocal operator, that is, it takes care of the behavior of the

solution in the whole space. This class of systems is also characterized by its lack of compactness

inherent to problem defined on unbounded domains. Here we emphasize that we consider potentials

V1, V2 that are bounded from below and above by positive constants. Then the loss of compactness

provide a serious difficulty in order to guarantee existence of solutions for the System (1.1). Another

obstacle is the fact that the nonlinearities does not verify the well known Ambrosetti-Rabinowitz
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condition. Moreover, the Schrödinger equations are strongly coupled because of the linear terms in

the right hand side of System (1.1). In order to overcome these difficulties, we apply a fractional

version of a result due to P.L. Lion’s (see Lemma 4.2) and we explore the fact that V1, V2 are periodic

or asymptotically periodic. Our approach is variational based on a minimization technique over the

Nehari manifold. To our best acknowledgment this is the first work where it is proved the existence

of ground states for this class of systems under assumptions involving periodic and asymptotically

periodic potentials and nonlinearities which do not satisfy the Ambrosetti-Rabinowitz at infinity.

1.2. Assumptions and main theorems. Initially, we deal with the following class of coupled

systems
{

(−∆)s1u+ V1,p(x)u = f1(u) + λp(x)v, x ∈ R
N ,

(−∆)s2v + V2,p(x)v = f2(v) + λp(x)u, x ∈ R
N ,

(Sλ,p)

where V1,p, V2,p and λp are 1-periodic functions for each x1, x2, ..., xN . In order to establish a

variational approach to treat System (Sλ,p), we need to require some suitable assumptions on the

potentials V1,p and V2,p. For each i = 1, 2, we assume that:

(V1) Vi,p ∈ C(RN) and there is a constant Vp > 0 such that Vi,p(x) ≥ Vp, for all x ∈ R
N .

(V2) |λp(x)| ≤ δ
√

V1,p(x)V2,p(x), for some δ ∈ (0, 1), for all x ∈ R
N .

Since we are looking for positive solutions we suppose that fi(s) = 0 for all s ≤ 0. Furthermore, for

i = 1, 2, we make the following assumptions on the nonlinearities:

(H1) fi ∈ C(R) and satisfies

lim
t→0+

fi(t)

t
= 0 and lim

t→+∞

fi(t)

t
= +∞.

(H2) There exist a1 > 0 and pi ∈ (2, 2∗si) such that

|fi(t)| ≤ a1(1 + tpi−1), for all t > 0.

(H3) There exist a2 > 0 and α > N
2 (p0 − 2) such that

fi(t)t− 2Fi(t) ≥ a2t
α, for all t > 0,

where Fi(t) =
∫ t
0 fi(τ) dτ and p0 = max{p1, p2}.

Now we can state our first result in following form:

Theorem 1.1 (Periodic case). Suppose (V1), (V2), (H1)-(H3). Then System (Sλ,p) admits at least

one nontrivial weak solution. If λp(x) > 0 for all x ∈ R
N , then System (Sλ,p) admits at least one

weak solution which is strictly positive.

We are also concerned with the existence of solutions for the following class of coupled systems
{

(−∆)s1u+ V1(x)u = f1(u) + λ(x)v, x ∈ R
N ,

(−∆)s2v + V2(x)v = f2(v) + λ(x)u, x ∈ R
N ,

(Sλ)

when the potentials V1, V2 and λ satisfy an asymptotic periodicity condition at infinity. More

specifically, for any ε > 0, we define the following class of functions

F :=
{

g ∈ C(RN) ∩ L∞(RN ) :
∣

∣{x ∈ R
N : |g(x)| ≥ ε}

∣

∣ <∞
}

,
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where | · | denotes the Lebesgue measure of a set. For i = 1, 2, we assume the following hypotheses:

(V3) Vi,p − Vi ∈ F and there is a constant V0 > 0 such that Vi,p(x) > Vi(x) ≥ V0, for all x ∈ R
N .

(V4) λp − λ ∈ F , λ(x) > λp(x) and |λ(x)| ≤ δ
√

V1(x)V2(x), for some δ ∈ (0, 1), for all x ∈ R
N .

The assumptions (V3) and (V4) imply that V1, V2 and λ are perturbations of periodic functions at

infinity. This class of asymptotic periodic functions was introduced by Elves A.B. Silva and Haendel

F. Lins in [29].

In order to obtain a ground state solution, we also consider the following hypothesis:

(H4)
fi(t)

t
is increasing on (0,+∞).

The assumption (H4) allows us to compare the mountain pass level with the energy level associated

with Nehari manifold (see Lemma 5.3). Under these conditions we are able to state our second

main result which can be write in the following form:

Theorem 1.2 (Asymptotically periodic case). Suppose (V1)-(V4), (H1)-(H4). Then System (Sλ)

admits at least one ground state solution. If λ(x) > 0 for all x ∈ R
N , then the ground state is

strictly positive.

Finally, we study the behavior of the ground state solutions of System (Sλ) when the coupling

function goes to zero. In fact, we prove that the sequence of solutions goes to a positive ground

state solution of the uncoupled Schrödinger equation. Precisely, we obtain the following result:

Theorem 1.3. Suppose (V1)-(V4), (H1)-(H4). Let (λn)n ⊂ L∞(RN ) be a sequence of positive

functions such that ‖λn‖∞ → 0 as n → +∞. For each n ∈ N, let (uλn
, vλn

)n be a positive ground

state solution for System (Sλ) with λ = λn. Then, up to a subsequence, (uλn
, vλn

) ⇀ (U0, V0) as

n→ +∞ with one of the following conclusions holding:

(i) V0 ≡ 0 and U0 is a positive ground state of

(−∆)s1u+ V1(x)u = f1(u), x ∈ R
N .

(ii) U0 ≡ 0 and V0 is a positive ground state of

(−∆)s2v + V2(x)v = f2(v), x ∈ R
N .

Remark 1.4. A typical example of nonlinearity satisfying (H1)-(H4) is given by f(t) = tln(1+ |t|)

for t > 0 and f(t) = 0 for t ≤ 0. More generally, we can consider also fi(t) = tlnγi(1+ |t|) for t > 0

with γi ≥ 1 and fi(t) = 0 for t ≤ 0, i = 1, 2. In these examples the functions satisfy assumptions

(H1)-(H4). However, these functions do not verify the Ambrosetti-Rabinowtiz condition. In fact,

if Ambrosetti-Rabinowitz condition (AR) is satisfied then we have Fi(t) ≥ c1|t|
θi , t > 0 for each

i = 1, 2 and for some c1 > 0. In particular, we obtain that lim
t→+∞

Fi(t)/|t|
θi > 0 holds true. A simple

calculation shows that these examples satisfy lim
t→+∞

Fi(t)/|t|
θi = 0 for any θi > 2, which implies that

(AR) does not work.
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1.3. Outline. The remainder of this paper is organized as follows: In the forthcoming Section,

we recall some preliminary concepts about the fractional Laplace operator and we introduce the

variational framework to the coupled systems (Sλ,p) and (Sλ). Section 3 is devoted to the mountain

pass geometry to the elliptic system (Sλ,p). In Section 4 we give the proof of Theorem 1.1. In order

to obtain ground states, in Section 5 we introduce and give some properties of Nehari manifold.

Moreover, we study the behavior of the ground state energy level. Finally, Sections 6 and 7 are

devoted to the proof of Theorems 1.2 and 1.3 respectively.

1.4. Notation. Let us introduce the following notation:

• C, C̃, C1, C2,... denote positive constants (possibly different).

• on(1) denotes a sequence which converges to 0 as n→ ∞;

• The norm in Lq(RN ) and L∞(RN ), will be denoted respectively by ‖ · ‖q and ‖ · ‖∞.

• The norm in Lq(RN )× Lq(RN ) is given by ‖(u, v)‖q = (‖u‖qq + ‖v‖qq)
1/q

.

2. Preliminaries and variational framework

In order to give a variational approach to our problems, we start this section recalling some

preliminary concepts about the fractional Laplace operator, for a more complete discussion we

refer the readers to [15]. For s ∈ (0, 1), the fractional Laplace operator of a measurable function

u : RN → R is defined by

(−∆)su(x) = −
1

2
C(N, s)

∫

RN

u(x+ y) + u(x− y)− 2u(x)

|y|1+2s
dy,

where

C(N, s) =

(
∫

RN

1− cos(ξ1)

|ξ|N+2s
dξ

)−1

, ξ = (ξ1, ..., ξN ).

We recall the definition of the fractional Sobolev space

Hs(RN ) =
{

u ∈ L2(RN ) : [u]s <∞
}

,

endowed with the natural norm

‖u‖s =

(

[u]2s +

∫

RN

u2 dx

)1/2

, [u]s =

(
∫

RN

∫

RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

where the term [u]s is the so-called Gagliardo semi-norm of the function u. In light of [15,

Proposition 3.6] we have that

2C(N, s)−1‖(−∆)s/2u‖22 =

∫

RN

∫

RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy, for all u ∈ Hs(RN ).

For the sake of simplicity, throughout the paper we omit the normalization constants. In view of

the presence of the periodic potentials V1,p and V2,p in System (Sλ,p), we denote by Ei,p the Sobolev

space Hsi(RN ) endowed with the inner product

(u, v)Ei,p
=

∫

RN

(−∆)
si
2 u(−∆)

si
2 v dx+

∫

RN

Vi,p(x)uv dx,

to which corresponds the induced norm ‖u‖2Ei,p
= (u, u)Ei,p

. The fractional critical Sobolev exponent

is given by 2∗s = 2N/(N − 2s). In light of [15, Theorem 6.7] we recall that Ei,p is continuously
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embedded into Lq(RN ), for q ∈ [2, 2∗si ]. Here we set the product space Ep = E1,p × E2,p which is a

Hilbert space endowed with the natural inner product

((u, v), (w, z))Ep =

∫

RN

(

(−∆)
s1
2 u(−∆)

s1
2 w + V1,p(x)uw + (−∆)

s2
2 v(−∆)

s2
2 z + V2,p(x)vz

)

dx.

We consider the induced norm ‖(u, v)‖2Ep
= ((u, v), (u, v))Ep . Associated to System (Sλ,p) we have

the energy functional Iλ,p : Ep → R given by

Iλ,p(u, v) =
1

2

(

‖(u, v)‖2Ep
− 2

∫

RN

λp(x)uv dx

)

−

∫

RN

(F1(u) + F2(v)) dx.

It follows from assumptions (H1) and (H2) that for any ε > 0 there exists Cε > 0 such that

Fi(t) ≤ ε|t|2 + Cε|t|
pi , for all t ∈ R and i = 1, 2. (2.1)

Therefore, Iλ,p is well defined functional on Ep. Furthermore, we check that Iλ,p ∈ C1(Ep,R) and

〈I ′λ,p(u, v), (φ,ψ)〉 = ((u, v), (φ,ψ))Ep −

∫

RN

(f1(u)φ+ f2(v)ψ) dx−

∫

RN

λp(x) (uψ + vφ) dx.

Hence, critical points of Iλ,p correspond to weak solutions of System (Sλ,p) and conversely.

Now we shall consider the elliptic system (Sλ). Taking into account the presence of the bounded

potentials V1 and V2 we denote by Ei the Sobolev space Hsi(RN ) endowed with the inner product

(u, v)Ei
=

∫

RN

(−∆)
si
2 u(−∆)

si
2 v dx+

∫

RN

Vi(x)uv dx,

to which corresponds the induced norm ‖u‖2Ei
= (u, u)Ei

. By the same reason of periodic case, we

have that Ei is continuously embedded into Lq(RN ), for q ∈ [2, 2∗si ]. Here we set the product space

E = E1 × E2 which is a Hilbert space endowed with the natural inner product

((u, v), (w, z))E =

∫

RN

(

(−∆)
s1
2 u(−∆)

s1
2 w + V1(x)uw + (−∆)

s2
2 v(−∆)

s2
2 z + V2(x)vz

)

dx.

Moreover, we also consider the induced norm ‖(u, v)‖2E = ((u, v), (u, v))E .

Associated to System (Sλ) we have the energy functional Iλ : E → R given by

Iλ(u, v) =
1

2

(

‖(u, v)‖2E − 2

∫

RN

λ(x)uv dx

)

−

∫

RN

(F1(u) + F2(v)) dx. (2.2)

By similar arguments it can be checked that Iλ ∈ C1(E,R) and

〈I ′λ(u, v), (φ,ψ)〉 = ((u, v), (φ,ψ))E −

∫

RN

(f1(u)φ + f2(v)ψ) dx−

∫

RN

λ(x) (uψ + vφ) dx.

Hence, critical points of Iλ correspond to weak solutions of System (Sλ) and conversely.
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3. Mountain pass geometry

In this section we give the mountain pass geometry to the energy functional associated to System

(Sλ,p). The same ideas discussed in this section can be applied for the elliptic system (Sλ). It is

important to mention that some kind of compactness is required in variational methods. Let X be

a Banach space and I : X → R a functional of C1 class. It is important to recall that a sequence

(un)n ⊂ X is said to be a Palais-Smale sequence at the level c ∈ R, whenever Iλ(un) → c and

‖I ′(un)‖X → 0 as n → ∞. Recall also that a sequence (un)n ⊂ X is said to be a Cerami sequence

at the level c ∈ R, in short (Ce)c sequence, whenever Iλ(un) → c and (1 + ‖un‖X)‖I ′(un)‖X∗ → 0

as n → ∞. Since the Ambrosetti-Rabinowitz condition (AR) it is not available in our setting,

we are not able to consider the Palais-Smale condition. In fact, under this condition, we can not

verify that any Palais-Smale is bounded. However, by considering the nonquadraticity assumption

(H3), we are able to ensure that any Cerami sequence is bounded. For this purpose, in order to

get a nontrivial solution for the fractional coupled systems (Sλ,p) and (Sλ), we shall make use of

the following variant of the Mountain Pass Theorem (see [38]) where it is considered the Cerami

condition instead of the Palais-Smale condition.

Theorem A. Let X be a real Banach space with its dual space X∗, and J ∈ C1(X,R) be such that

(I1) there exists τ > 0 and ̺ > 0 such that J(u) ≥ τ provided ‖u‖X = ̺;

(I2) there exists e ∈ X with ‖e‖X > ̺ such that J(e) < 0.

Define

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where

Γ = {γ ∈ C([0, 1],X) : γ(0) = 0 and γ(1) = e}. (3.1)

Then, there exists a sequence (un)n ⊂ X such that

J(un) → c and (1 + ‖un‖X)‖J ′(un)‖X∗ → 0.

The following Lemma is a consequence of assumption (V2) and will be useful to overcome the

difficulty imposed by the coupling function when we study the geometry of the energy functional.

Lemma 3.1. If (V2) holds, then

‖(u, v)‖2Ep
− 2

∫

RN

λp(x)uv dx ≥ (1− δ)‖(u, v)‖2Ep
, for all (u, v) ∈ Ep. (3.2)

Proof. In fact, for all (u, v) ∈ Ep we have

0 ≤

(

√

V1,p(x)|u| −
√

V2,p(x)|v|

)2

= V1,p(x)u
2 − 2

√

V1,p(x)|u|
√

V2,p(x)|v| + V2,p(x)v
2.

Thus, by using assumption (V2) we deduce that

−2

∫

RN

λp(x)uv dx ≥ −δ

(
∫

RN

V1,p(x)u
2 dx+

∫

RN

V2,p(x)v
2 dx

)

≥ −δ‖(u, v)‖2Ep
,

which implies (3.2). �
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In the next Lemma we check that Iλ,p satisfies the mountain pass geometry introduced in

Theorem A.

Lemma 3.2. The energy functional Iλ,p satisfies the mountain pass geometry (I1) and (I2).

Proof. Using (2.1), (3.2) and Sobolev embedding we can deduce that

Iλ,p(u, v) ≥ (1− δ)‖(u, v)‖2Ep
− ε(‖u‖22 + ‖v‖22)− Cε‖u‖

p1
p1 − Cε‖v‖

p2
p2

≥ ‖(u, v)‖2Ep

(

1− δ − Cε− Cε‖(u, v)‖
p1−2
Ep

− Cε‖(u, v)‖
p2−2
Ep

)

,

for all (u, v) ∈ Ep. Let ε > 0 be fixed such that 1 − δ − Cε > 0. Hence, since p1, p2 > 2 we

may choose ̺ > 0 sufficiently small such that 1 − δ − Cε − Cε̺
p1−2 − Cε̺

p2−2 > 0. Therefore, if

‖(u, v)‖Ep = ̺ then Iλ,p(u, v) ≥ τ , where

τ := ̺2
(

1− δ − Cε− Cε̺
p1−2 − Cε̺

p2−2
)

> 0,

which finishes the proof of (I1).

In order to prove (I2), notice from assumption (H1) that

lim
t→+∞

Fi(t)

t2
= +∞, for each i = 1, 2.

Let ϕ ∈ C∞(RN ), ϕ > 0 be fixed. Thus, using Fatou’s Lemma we have that

lim sup
t→+∞

Iλ,p(tϕ, tϕ)

t2
≤

1

2

(

‖(ϕ,ϕ)‖2Ep
− 2

∫

RN

λp(x)ϕ
2 dx

)

−

∫

RN

lim inf
t→+∞

F1(tϕ) + F2(tϕ)

(tϕ)2
ϕ2 dx = −∞.

Therefore, the result follows considering (e1, e2) = (tϕ, tϕ) for t sufficiently large. �

Remark 3.3. We emphasize that all results of this section remain true for asymptotically periodic

functions proving that Iλ given in (2.2) has the mountain pass geometry.

4. Proof of Theorem 1.1

As we checked in the preceding section (Lemma 3.2), the energy functional Iλ,p satisfies

the mountain pass geometry. Therefore, in view of Theorem A there exists a (Ce)c sequence

(un, vn)n ⊂ Ep, that is,

Iλ,p(un, vn) → c and (1 + ‖(un, vn)‖Ep)‖I
′
λ,p(un, vn)‖E∗

p
→ 0, (4.1)

where c is the mountain pass level introduced in Theorem A. Notice that we can take a nonnegative

Cerami sequence. In fact, let us denote un = u+n − u−n and vn = v+n − v−n , where u
+
n := max{un, 0},

u−n := max{−un, 0}, v
+
n := max{vn, 0} and v−n := max{−vn, 0}. It follows from (V4) that

∫

λp(x)(unv
−
n + vnu

−
n ) dx ≥ −2

∫

λp(x)u
−
n v

−
n dx ≥ −δ‖(u−n , v

−
n )‖

2.

Thus, since fi(s) = 0 for s ≤ 0 and i = 1, 2, by using (4.1) we conclude that

on(1) = I ′λ,p(un, vn)(−u
−
n ,−v

−
n ) = ‖(u−n , v

−
n )‖

2 +

∫

λp(x)(unv
−
n + vnu

−
n ) dx ≥ (1− δ)‖(u−n , v

−
n )‖

2,

which implies that (u−n , v
−
n ) → 0 strongly Ep. Therefore, (u+n , v

+
n )n is a Cerami sequence. For the

sake of simplicity we keep the notation (un, vn)n.
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Proposition 4.1. The sequence (un, vn)n given just above is bounded in Ep.

Proof. First of all, by using assumption (H3) we have

c+ on(1) = Iλ,p(un, vn)−
1

2
〈I ′λ,p(un, vn), (un, vn)〉

=
1

2

∫

RN

(f1(un)un − 2F1(un)) dx+
1

2

∫

RN

(f2(vn)vn − 2F2(vn)) dx

≥
a2
2
‖(un, vn)‖

α
α,

which implies that ‖(un, vn)‖
α
α ≤ C. Now, recall the following interpolation inequality

‖u‖p ≤ ‖u‖tα‖u‖
1−t
β , u ∈ Lα(RN ) ∩ Lβ(RN ),

where 0 < α ≤ p ≤ β, p−1 = tα−1 + (1 − t)β−1 and t ∈ [0, 1]. Without any loss of generality we

assume that α < pi, for i = 1, 2. Hence, by choosing β = 2∗si we get

‖un‖
p1
p1 ≤ 2‖un‖

tp1
α ‖un‖

(1−t)p1
2∗s1

and ‖vn‖
p2
p2 ≤ 2‖vn‖

tp2
α ‖vn‖

(1−t)p2
2∗s2

. (4.2)

By using (3.2) one has

1

2
(1− δ)‖(un, vn)‖

2
Ep

≤

∫

RN

(F1(un) + F2(vn)) dx+ Iλ,p(un, vn),

which together with (2.1), (4.1) and Sobolev embedding implies that

1

2
(1− δ)‖(un, vn)‖

2
Ep

≤ εC‖(un, vn)‖
2
Ep

+ Cε(‖un‖
p1
p1 + ‖vn‖

p2
p2) + C.

Taking ε > 0 small such that 1− δ − εC > 0 and using (4.2) we deduce that

1

2
(1− δ − εC)‖(un, vn)‖

2
Ep

≤ C̃ε‖(un, vn)‖
(1−t)p1
Ep

+ C̃ε‖(un, vn)‖
(1−t)p2
Ep

+ C. (4.3)

Since α > N
2 (p0 − 2) we conclude that (1 − t)p0 < 2. Therefore, (4.3) implies that (un, vn)n is

bounded in Ep. This ends the proof. �

According to Proposition 4.1, we may assume, up to a subsequence, that

• (un, vn)⇀ (u0, v0) weakly in Ep;

• un → u0 strongly in Lr
loc(R

N ), for all 2 ≤ r < 2∗s1 ;

• vn → v0 strongly in Ls
loc(R

N ), for all 2 ≤ s < 2∗s2 ;

• un(x) → u0(x) and vn(x) → v0(x), almost everywhere in R
N .

Since C∞
0 (RN ) × C∞

0 (RN ) is dense into the space Ep, it follows by standard arguments that

I ′λ,p(u0, v0) = 0, that is, (u0, v0) is a solution for System (Sλ,p).

The next result is important tool to overcome the lack of compactness. The vanishing lemma was

proved originally by P.L. Lions [30, Lemma I.1] and here we use the following version to fractional

Sobolev spaces (see [36, Lemma 2.4]).

Lemma 4.2. Assume that (un)n is a bounded sequence in Hs(RN ) satisfying

lim
n→+∞

sup
y∈RN

∫

BR(y)
u2n dx = 0, (4.4)
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for some R > 0. Then, un → 0 strongly in Lr(RN ), for 2 < r < 2∗s.

In order to get a nontrivial solution, we shall consider the following result:

Proposition 4.3. Let (un, vn)n ⊂ Ep be the (Ce)c sequence satisfying (4.1). Then, (un, vn)n

satisfies exactly one of the following conditions:

(i) (un, vn) → (0, 0) strongly in Ep;

(ii) There exist a sequence (yn)n ⊂ R
N and constants R, η > 0 such that |yn| → ∞ as n → ∞,

and

lim inf
n→+∞

∫

BR(yn)
(u2n + v2n) dx ≥ η > 0. (4.5)

Proof. Let us suppose that (ii) does not hold. Thus, for any R > 0 we have

lim
n→∞

sup
y∈RN

∫

BR(y)
(u2n + v2n) dx = 0.

Hence, it follows from Lemma 4.2 that un → 0 strongly in Lr(RN ) for r ∈ (2, 2∗s1) and vn → 0

strongly in Ls(RN ) for s ∈ (2, 2∗s2). Hence, using growth conditions (H1), (H2), (4.1) and Lemma 3.1,

we deduce that

on(1) = 〈I ′λ,p(un, vn), (un, vn)〉 ≥ (1− δ − εC)‖(un, vn)‖
2
Ep

+ on(1).

Therefore, taking ε > 0 small enough such that 1− δ − εC > 0 we conclude that (i) holds. �

Proof of Theorem 1.1 completed. If (u0, v0) 6= (0, 0), then we already have a nontrivial solution for

System (Sλ,p). If (u0, v0) = (0, 0), since Iλ,p(un, vn) → c > 0 and Iλ,p is continuous, it follows

that (un, vn)n can not go to zero strongly in Ep. Thus, from Proposition 4.3, we obtain a sequence

(yn)n ⊂ R
N and constants R, η > 0 such that

lim inf
n→+∞

∫

BR(yn)
(u2n + v2n) dx ≥ η > 0. (4.6)

Let us consider the shift sequence (ũn(x), ṽn(x)) = (un(x + yn), vn(x + yn)). Since V1,p(·), V2,p(·)

and λp(·) are periodic, it follows that the energy functional Iλ,p is invariant by translations of the

form (u, v) 7→ (u(· − z), v(· − z)) with z ∈ Z
N . By a standard computation we can deduce that

‖(un, vn)‖Ep = ‖(ũn, ṽn)‖Ep and Iλ,p(un, vn) = Iλ,p(ũn, ṽn) → c.

Furthermore, we also have

(1 + ‖(ũn, ṽn)‖Ep)‖I
′
λ,p(ũn, ṽn)‖E∗

p
→ 0.

Moreover, arguing as in the proof of Proposition 4.1 we can conclude that (ũn, ṽn)n is a bounded

sequence in Ep. Thus, up to a subsequence, (ũn, ṽn) ⇀ (ũ, ṽ) weakly in Ep and (ũn, ṽn) → (ũ, ṽ)

strongly in L2(BR(0))×L
2(BR(0)). Moreover, (ũ, ṽ) is a critical point of Iλ,p. Using (4.6) we obtain

∫

BR(0)
(ũ2 + ṽ2) dx = lim inf

n→∞

∫

BR(0)
(ũ2n + ṽ2n) dx = lim inf

n→∞

∫

BR(yn)
(u2n + v2n) dx ≥ η > 0.

Therefore, (ũ, ṽ) is a nontrivial weak solution for System (Sλ,p).
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Finally, let us prove that if λp(x) > 0 for all x ∈ R
N , then the weak solution is positive. First,

let us prove that ũ 6≡ 0 and ṽ 6≡ 0. Suppose without loss of generality that ũ 6≡ 0. If ṽ ≡ 0, then

0 = 〈I ′λ,p(ũ, ṽ), (0, ψ)〉 = −

∫

RN

λp(x)ũψ dx, for all ψ ∈ C∞
0 (RN ).

Since λp(x) > 0 for all x ∈ RN we have that ũ ≡ 0 which is a contradiction. Therefore, ṽ 6≡ 0. Let us

denote ũ = ũ+− ũ− and ṽ = ṽ+ − ṽ−, where ũ+ := max{ũ, 0}, ũ− := max{−ũ, 0}, ṽ+ := max{ṽ, 0}

and ṽ− := max{−ṽ, 0}. It follows from (V4) that
∫

RN

λp(x)(ũṽ
− + ṽũ−) dx ≥ −2

∫

RN

λp(x)ũ
−ṽ− dx ≥ −δ‖(ũ−, ṽ−)‖2.

Thus, since fi(s) = 0 for s ≤ 0 and i = 1, 2, we have that

0 = I ′λ,p(ũ, ṽ)(−ũ
−,−ṽ−) = ‖(ũ−, ṽ−)‖2 +

∫

RN

λp(x)(ũṽ
− + ṽũ−) dx ≥ (1− δ)‖(ũ−, ṽ−)‖2,

which implies that ‖(ũ−, ṽ−)‖2 = 0. Therefore, (ũ−, ṽ−) = (0, 0) and (ũ, ṽ) = (ũ+, ṽ+) is a

nonnegative solution for System (Sλ,p). By using Strong Maximum Principle in each equation

of System (Sλ,p), we conclude that ũ and ṽ are positive which finishes the proof of Theorem 1.1. �

5. The Nehari manifold

In order to get a ground state solution, we introduce the Nehari manifolds associated to

Systems (Sλ,p) and (Sλ) respectively defined by

Nλ,p := {(u, v) ∈ Ep\{(0, 0)} : 〈I ′λ,p(u, v), (u, v)〉 = 0},

Nλ := {(u, v) ∈ E\{(0, 0)} : 〈I ′λ(u, v), (u, v)〉 = 0}.

Since fi(t) = 0 for all t ≤ 0 and each i = 1, 2, it is not hard to check that if (u, v) ∈ Nλ,p,Nλ, then

|{u > 0}| > 0 or |{v > 0}| > 0. Let us define the set

E+ = {(u, v) ∈ E\{(0, 0)} : |{u > 0}| > 0 or |{v > 0}| > 0}.

By similar ideas to [18,19] we can obtain the following Lemma:

Lemma 5.1. For any (u, v) ∈ E+, there exists a unique t0 > 0, depending on (u, v) and λ, such that

(t0u, t0v) ∈ Nλ and Iλ(t0u, t0v) = max
t≥0

Iλ(tu, tv).

Lemma 5.2. If (H4) holds, then fi(t)s− 2Fi(t) is increasing for t > 0 and i = 1, 2.

Proof. In fact, let 0 < t1 < t2 be fixed. Using (H4) we deduce that

fi(t1)t1 − 2Fi(t1) <
fi(t2)

t2
t21 − 2Fi(t2) + 2

∫ t2

t1

fi(τ) dτ. (5.1)

Moreover,

2

∫ t2

t1

fi(τ) dτ < 2
fi(t2)

t2

∫ t2

t1

τ dτ =
fi(t2)

t2
(t22 − t21). (5.2)

Combining (5.1) and (5.2) we conclude that

fi(t1)t1 − 2Fi(t1) < fi(t2)t2 − 2Fi(t2),
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which finishes the proof. �

We introduce the Nehari energy levels associated with Systems (Sλ,p) and (Sλ) respectively by

cNλ,p
= inf

(u,v)∈Nλ,p

Iλ,p(u, v) and cNλ
= inf

(u,v)∈Nλ

Iλ(u, v).

By using standard arguments it is not hard to check that under our assumptions the levels cNλ,p
and

cNλ
are positive for all nonnegative coupling function λ. The remainder of this section is devoted to

study the behavior of cNλ,p
and cNλ

. The next Lemma establish some estimates in order to compare

the mountain pass level and the least energy level.

Lemma 5.3. The following estimates hold:

(i) c ≤ cNλ
;

(ii) cNλ
< cNλ,p

.

Proof. Let (u, v) ∈ Nλ be fixed. In view of Lemma 5.1 we have that Iλ(u, v) = maxt≥0 Iλ(tu, tv). Let

γ : [0, 1] → E be defined by γ(t) = (tt0u, tt0v), where t0 > 0 large enough such that Iλ(t0u, t0v) < 0.

Thus, γ ∈ Γ. Therefore,

c ≤ max
t∈[0,1]

Iλ(γ(t)) ≤ max
t≥0

Iλ(tu, tv) = Iλ(u, v). (5.3)

Since (5.3) holds for all (u, v) ∈ Nλ, we conclude that c ≤ cNλ
.

In order to prove (ii), let (un, vn)n ⊂ Nλ,p be a minimizing sequence for cNλ,p
, that is,

Iλ,p(un, vn) → cNλ,p
. It is well known that under our assumptions Nλ,p is a natural constraint

to our problem, that is, critical points of Iλ,p |Nλ,p
are critical points of Iλ,p. This is a consequence

of Lagrange multiplier Theorem. Hence, similarly to Section 4, we are able to prove that, up to

a subsequence, (un, vn) ⇀ (u, v) weakly in Ep, where u > 0, v > 0 and I ′λ,p(u, v) = 0. Obviously,

cNλ,p
≤ Iλ,p(u, v). On the other hand, in view of Lemma 5.2 and Fatou’s Lemma, we deduce that

cNλ,p
+ on(1) = Iλ,p(un, vn)−

1

2
〈I ′λ,p(un, vn), (un, vn)〉

=
1

2

∫

RN

(f1(un)un − 2F1(un)) dx+
1

2

∫

RN

(f2(vn)vn − 2F2(vn)) dx

≥
1

2

∫

RN

(f1(u)u− 2F1(u)) dx+
1

2

∫

RN

(f2(v)v − 2F2(v)) dx+ on(1)

= Iλ,p(u, v) −
1

2
〈I ′λ,p(u, v), (u, v)〉 + on(1)

= Iλ,p(u, v) + on(1),

which implies that cNλ,p
≥ Iλ,p(u, v). Therefore, Iλ,p(u, v) = cNλ,p

. In light of (V4) one has
∫

RN

{

[V1(x)− V1,p(x)]u
2 + [V2(x)− V2,p(x)]v

2 + [λp(x)− λ(x)]uv
}

dx < 0.

In view of Lemma 5.1, there exists a unique t0 > 0 such that (t0u, t0v) ∈ Nλ. Hence, it follows that

Iλ(t0u, t0v)− Iλ,p(t0u, t0v) < 0. Therefore, we have

cNλ
≤ Iλ(t0u, t0v) < Iλ,p(t0u, t0v) ≤ max

t≥0
Iλ,p(tu, tv) = Iλ,p(u, v) = cNλ,p

,
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which implies (ii) and finishes the proof. �

Proposition 5.4. The map λ 7→ cNλ
is decreasing in the following sense: if λ1, λ2 ∈ L∞(RN )

satisfy λ1(x) < λ2(x) for all x ∈ R
N , then cNλ2

< cNλ1
.

Proof. Let (u, v) ∈ Nλ1
be such that Iλ1

(u, v) = cNλ1
(see Section 6). In view of Lemma 5.1, there

exists t0 > 0 such that (t0u, t0v) ∈ Nλ2
. Notice that Iλ2

(t0u, t0v) < Iλ1
(t0u, t0v). Thus, we have

cNλ2
≤ Iλ2

(t0u, t0v) < Iλ1
(t0u, t0v) ≤ max

t≥0
Iλ1

(tu, tv) = Iλ1
(u, v) = cNλ1

.

Therefore, cNλ2
< cNλ1

and the map λ 7→ cNλ
is decreasing. �

Proposition 5.5. Let (λn)n ⊂ L∞(RN ) be a sequence of positive functions such that λn → λ

strongly in L∞(RN ). Then, one has

lim
n→+∞

cNλn
= cNλ

.

Proof. Let (uλ, vλ) ∈ Nλ be a positive ground state solution for System (Sλ) (see Section 6). For

each n ∈ N, there exists tn > 0 such that (tnuλ, tnvλ) ∈ Nλn
. Thus, taking account that λn → λ

strongly in L∞(RN ) we can deduce that

on(1) =

∫

RN

(

f1(tnuλ)

tn
uλ − f1(uλ)uλ

)

dx+

∫

RN

(

f2(tnvλ)

tn
vλ − f2(vλ)vλ

)

dx.

We claim that limn→+∞ tn = 1. In fact, arguing by contradiction let us suppose that

lim supn→+∞ tn > 1. Hence, tn ≥ 1 + ε0 for n ∈ N large. By using (H4) we obtain

on(1) ≥

∫

RN

(

f1((1 + ε0)uλ)

1 + ε0
uλ − f1(uλ)uλ

)

dx+

∫

RN

(

f2((1 + ε0)vλ)

1 + ε0
vλ − f2(vλ)vλ

)

dx.

Thus, it follows that

on(1) >

∫

RN

(f1(uλ)uλ − f1(uλ)uλ) dx+

∫

RN

(f2(vλ)vλ − f2(vλ)vλ) dx = 0,

which is not possible. Thus, we have concluded that lim supn→+∞ tn ≤ 1. If we suppose that

lim supn→+∞ tn < 1, we get a contradiction applying similar arguments. Hence, lim supn→+∞ tn =

1. Analogously, we can check that lim infn→+∞ tn = 1. Therefore, limn→+∞ tn = 1. Finally, since

(tnuλ, tnvλ) ∈ Nλn
, we have that

cNλn
≤ Iλn

(tnuλ, tnvλ)

=
t2n
2

(

‖(uλ, vλ)‖E − 2

∫

RN

λn(x)uλvλ dx

)

−

∫

RN

(F1(tnuλ) + F2(tnvλ)) dx

=
1

2

(

‖(uλ, vλ)‖E − 2

∫

RN

λ(x)uλvλ dx

)

−

∫

RN

(F1(uλ) + F2(vλ)) dx+ on(1)

= Iλ(uλ, vλ) + on(1),
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which implies that limn→+∞ cNλn
≤ cNλ

. On the other hand, for each n ∈ N let (un, vn)n ∈ Nλn
be

such that Iλn
(un, vn) = cNλn

. Notice that

cNλ
+ on(1) = Iλn

(un, vn)−
1

2
〈I ′λn

(un, vn), (un, vn)〉

=
1

2

∫

RN

(f1(un)un − 2F1(un)) dx+
1

2

∫

RN

(f2(vn)vn − 2F2(vn)) dx

≥
a2
2
‖(un, vn)‖

α
α,

which implies that ‖(un, vn)‖
α
α ≤ C. Arguing as in the proof of Proposition 4.1, we can conclude

that (un, vn)n is bounded in E. In view of Lemma 5.1, there exists a sequence (tn)n ⊂ (0,+∞)

such that (tnun, tnvn)n ⊂ Nλ. Arguing as before, it is not hard to check that limn→+∞ tn = 1.

Therefore, we have

cNλ
≤ Iλ(tnun, tnvn)

=
t2n
2

(

‖(un, vn)‖E − 2

∫

RN

λ(x)unvn dx

)

−

∫

RN

(F1(tnun) + F2(tnvn)) dx

= Iλn
(tnun, tnvn) + t2n

∫

RN

(λn(x)− λ(x))unvn dx

≤ max
t≥0

Iλn
(tun, tvn) + on(1)

= Iλn
(un, vn) + on(1),

which implies that cNλ
≤ limn→+∞ cNλn

and finishes the proof. �

6. Proof of Theorem 1.2

In this Section we study the existence of ground states for the class of linearly coupled systems

(Sλ). For this purpose, we introduce the following sets:

Ib := {(u, v) ∈ E : Iλ(u, v) ≤ b},

K := {(u, v) ∈ E : I ′λ(u, v) = 0},

Kb := {(u, v) ∈ K : Iλ(u, v) = b}.

In order to get a nontrivial solution for (Sλ), we can not repeat the idea used in Section 4, since

the energy function I is not invariant by translations. In order to overcome this difficulty, we shall

use the following local version of the Mountain Pass Theorem (see [29]):

Theorem B. Let X be a real Banach space. Suppose that J ∈ C1(X,R) satisfies J(0) = 0, (I1)

and (I2) (see Theorem A). If there exists γ0 ∈ Γ, Γ defined by (3.1), such that

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) = max
t∈[0,1]

J(γ0(t)) > 0,

then J possesses a nontrivial critical point u ∈ Kc ∩ γ0([0, 1]).

For any ε > 0, R > 0 and h ∈ F we set Dε(R) := {x ∈ R
N : |h(x)| ≥ ε}. In [29], the authors

proved the following lemma:
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Lemma 6.1. For h ∈ F it follows that |Dε(R)| → 0, as R→ ∞.

In order to get a nontrivial solution for System (Sλ), we prove the following technical lemma:

Lemma 6.2. Let (un, vn)n ⊂ E be a bounded sequence and (ϕn(x), ψn(x)) = (ϕ(x−yn), ψ(x−yn)),

where (ϕ,ψ) ∈ C∞
0 (RN )× C∞

0 (RN ), where (yn)n ⊂ R
N such that |yn| → ∞, as n → ∞. Then, we

have the following convergences

(V1,p(x)− V1(x))unϕn → 0, (6.1)

(V2,p(x)− V2(x))vnψn → 0, (6.2)

(λp(x)− λ(x))(unψn + vnϕn) → 0, (6.3)

strongly in L1(RN ), as n→ ∞.

Proof. The proof is quite similar to [29, Lemma 5.1] and for reader’s convenience we sketch the

proof here. Let us consider the proof for (6.1). It is well known that given ϕ ∈ L2(RN ) and δ > 0,

there exists ε ∈ (0, δ) such that for every measurable set A ⊂ R
N satisfying |A| < ε, we have

∫

A
ϕdx < δ. (6.4)

It follows from Lemma 6.1 that for any ε > 0, there exists R > 0 such that |Dε(R)| < ε. By using

Hölder inequality we deduce that
∫

RN\BR(0)
|V1,p(x)− V1(x)||un||ϕn|dx ≤ 2‖V1,p‖∞

∫

(RN\BR(0))∩Dε(R)
|un||ϕn|dx

+ ε

∫

(RN\BR(0))∩Dε(R)c
|un||ϕn|dx

≤ 2‖V1,p‖∞‖un‖L2(Dε(R))‖ϕn‖L2(Dε(R)) + ε‖un‖2‖ϕ‖2,

which together with (6.4) and the fact that (un, vn)n is bounded in E implies that
∫

RN\BR(0)
|V1,p(x)− V1(x)||un||ϕn|dx ≤ C1(δ

1/2 + δ). (6.5)

On the other hand, using the fact that ϕ ∈ L2(RN ) and |yn| → ∞, we obtain n0 ∈ N such that
∫

BR(0)
|V1,p(x)− V1(x)||un||ϕn|dx ≤ C2‖ϕ‖L2(BR(x−yn)) ≤ C2δ, for all n ≥ n0. (6.6)

Since δ > 0 is arbitrary, the inequalities (6.5) and (6.6) imply (6.1). The convergences (6.2) and

(6.3) follow by a similar argument. �

Proof of Theorem 1.2 completed. It is easy to see that Lemma 3.2 remains true for the energy

functional I, that is, I satisfies the mountain pass geometry. Thus, it follows from Theorem A that

there exists a nonnegative (Ce)c sequence (un, vn)n ⊂ E, that is,

Iλ(un, vn) → c and (1 + ‖(un, vn)‖E)‖I
′
λ(un, vn)‖E∗ → 0. (6.7)

By the same ideas used in Proposition 4.1 we can conclude that (un, vn)n is bounded in E. Thus, we

may assume, up to a subsequence, that (un, vn)⇀ (u0, v0) weakly in E. Hence, by using a density
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argument, we can deduce that I ′λ(u0, v0) = 0. If (u0, v0) 6= (0, 0), then we are done. Now, let us

suppose that (u0, v0) = (0, 0). Since Proposition 4.3 also holds for the asymptotically periodic case,

there exist a sequence (yn)n ⊂ R
N and constans R, η > 0 such that

lim inf
n→+∞

∫

BR(yn)
(u2n + v2n) dx ≥ η > 0. (6.8)

Let us consider the shift sequence (ũn(x), ṽn(x)) = (un(x+ yn), vn(x+ yn)). Note that (ũn, ṽn)n is

not necessarily a (Ce)c sequence for Iλ. On the other hand, using (V3) we can check that (ũn, ṽn)n

is bounded in Ep. Hence, up to a subsequence, we have that

• (ũn, ṽn)⇀ (ũ0, ṽ0) weakly in Ep;

• ũn → ũ0 strongly in Lr
loc(R

N ), for all 2 ≤ r < 2∗s1 ;

• ṽn → ṽ0 strongly in Ls
loc(R

N ), for all 2 ≤ s < 2∗s2 ;

• ũn(x) → ũ0(x) and ṽn(x) → ṽ0(x), almost everywhere in R
N .

Thus, we can deduce from (6.8) that (ũ0, ṽ0) 6= (0, 0).

Claim. I ′λ,p(ũ0, ṽ0) = 0.

By density, it suffices to prove that

〈I ′λ,p(ũ0, ṽ0), (ϕ,ψ)〉 = 0, for all (ϕ,ψ) ∈ C∞
0 (RN )× C∞

0 (RN ). (6.9)

For (ϕ,ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ) we denote (ϕn(x), ψn(x)) = (ϕ(x − yn), ψ(x − yn)). Thus, using

Lebesgue Dominated Convergence Theorem, we can deduce that

〈I ′λ,p(ũ0, ṽ0), (ϕ,ψ)〉 = 〈I ′λ,p(un, vn), (ϕn, ψn)〉+ on(1). (6.10)

Moreover, we have that

〈I ′λ,p(un, vn), (ϕn, ψn)〉 = 〈I ′λ(un, vn), (ϕn, ψn)〉+

∫

RN

(V1,p(x)− V1(x))unϕn dx+

+

∫

RN

(V2,p(x)− V2(x))vnψn dx−

∫

RN

(λp(x)− λ(x))(unψn + vnϕn) dx.

By using Lemma 6.2 we conclude that

〈I ′λ,p(un, vn), (ϕn, ψn)〉 = 〈I ′λ(un, vn), (ϕn, ψn)〉+ on(1). (6.11)

Thus, since ‖(ϕn, ψn)‖Ep = ‖(ϕ,ψ)‖Ep , it follows from (V3) and (6.7) that

〈I ′λ(un, vn), (ϕn, ψn)〉 ≤ ‖I ′λ(un, vn)‖E∗‖(ϕn, ψn)‖E ≤ ‖I ′λ(un, vn)‖E∗‖(ϕn, ψn)‖Ep → 0, (6.12)

as n→ ∞. Therefore, combining (6.10), (6.11) and (6.12) we get (6.9) and the claim is proved. �
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Hence, using Lemma 5.2, (6.7), Fatou’s Lemma and the preceding assertion, we have

c+ on(1) = Iλ(un, vn)−
1

2
〈I ′λ(un, vn), (un, vn)〉

=
1

2

∫

RN

(f1(un)un − 2F1(un)) dx+
1

2

∫

RN

(f2(vn)vn − 2F2(vn)) dx

=
1

2

∫

RN

(f1(ũn)ũn − 2F1(ũn)) dx+
1

2

∫

RN

(f2(ṽn)ṽn − 2F2(ṽn)) dx

≥
1

2

∫

RN

(f1(ũ0)ũ0 − 2F1(ũ0)) dx+
1

2

∫

RN

(f2(ṽ0)ṽ0 − 2F2(ṽ0)) dx+ on(1)

= Iλ,p(ũ0, ṽ0) + on(1),

which implies that Iλ,p(ũ0, ṽ0) ≤ c. Thus, using (V3) and (V4) we conclude that

c ≤ max
t≥0

Iλ(tũ0, tṽ0) ≤ max
t≥0

Iλ,p(tũ0, tṽ0) = Iλ,p(ũ0, ṽ0) ≤ c.

Therefore, there exists γ0 ∈ Γ such that c = maxt∈[0,1] Iλ(γ0(t)). It follows from Theorem B that

I possesses a nontrivial critical point (u0, v0) ∈ Kc ∩ γ0([0, 1]). By using Lemma 5.3 (i), we note

that Iλ(u0, v0) = c ≤ cNλ
. Since (u0, v0) ∈ Nλ, it follows that (u0, v0) is a ground state solution for

System (Sλ). Arguing as in the proof of Theorem 1.1, we conclude that if λ is positive, then u0 and

v0 are positive. �

7. Proof of Theorem 1.3

This Section is devoted to the proof of Theorem 1.3. For this purpose we obtain the following

Lemma which study the sign of the ground state solution of System (Sλ) in the limit case, that is,

when λ = 0.

Lemma 7.1. Let (u0, v0) ∈ E be a ground state solution for System (Sλ) with λ = 0. Then either

u0 > 0, v0 ≡ 0 or u0 ≡ 0 and v0 > 0.

Proof. Let I0 be the energy functional associated to System (Sλ) with λ = 0. Notice that

{

I0(u, v) > I0(u, 0), for all (u, v) ∈ E with v 6= 0,

I0(u, v) > I0(0, v), for all (u, v) ∈ E with u 6= 0.

Since (u0, v0) is a ground state, that is, I0(u0, v0) has minimum energy among all nontrivial solutions,

we conclude that either u0 = 0 or v0 = 0. By using similar ideas of the preceding sections jointly

with the fact that fi(t) = 0 for s ≤ 0 and i = 1, 2, we conclude that either u0 > 0 or v0 > 0. �

From now on, for any n ∈ N, we consider (uλn
, vλn

)n ∈ Nλn
the positive ground state solution

for System (Sλ) with λ = λn. Suppose that ‖λn‖∞ → 0 as n→ ∞. It follows from Proposition 6.2

that cλn
→ c0, as n→ +∞ where c0 is the least energy level for the System (Sλ) with λ = 0. Thus,

the sequence (cλn
)n is bounded. By similar ideas to used in Proposition 4.1, it is not difficulty to

prove that (uλn
, vλn

)n is bounded in E. Thus, up to a subsequence, (uλn
, vλn

) ⇀ (U0, V0) weakly



EXISTENCE OF BOUND AND GROUND STATES FOR FRACTIONAL COUPLED SYSTEMS IN R
N 19

in E. We claim that (U0, V0) 6= (0, 0). Suppose by contradiction that (U0, V0) = (0, 0). Notice that

(uλn
, vλn

)n can not converge stronlgy to (0, 0). Indeed, in this case, there holds

0 < c0 = lim
n→+∞

cλn
= lim

n→+∞
Iλn

(uλn
, vλn

) = 0,

which is not possible. Thus, in light of Proposition 4.3, there exist a sequence (yn)n ⊂ R
N and

constants R, η > 0 such that |yn| → ∞ as n→ ∞, and

lim inf
n→+∞

∫

BR(yn)
(u2λn

+ v2λn
) dx ≥ η > 0. (7.1)

We denote (ũλn
(x), ṽλn

(x)) = (uλn
(x + yn), vλn

(x + yn)). By using (V3) it follows that (ũλn
, ṽλn

)n

is bounded in Ep. Hence, up to a subsequence, (ũλn
, ṽλn

) ⇀ (Ũ0, Ṽ0) weakly in Ep. Arguing as in

(6.9), it is not hard to conclude that I ′λn,p
(Ũ0, Ṽ0) = 0. Therefore, we can deduce that

cNλn,p
≤ Iλn,p(Ũ0, Ṽ0)−

1

2
〈I ′λn,p(Ũ0, Ṽ0), (Ũ0, Ṽ0)〉

=
1

2

∫

RN

(f1(Ũ0)Ũ0 − 2F1(Ũ0)) dx+
1

2

∫

RN

(f2(Ṽ0)Ṽ0 − 2F2(Ṽ0)) dx

≤
1

2

∫

RN

(f1(ũλn
)ũλn

− 2F1(ũλn
)) dx+

1

2

∫

RN

(f2(ṽλn
)ṽλn

− 2F2(ṽλn
)) dx+ on(1)

=
1

2

∫

RN

(f1(uλn
)uλn

− 2F1(uλn
)) dx+

1

2

∫

RN

(f2(vλn
)vλn

− 2F2(vλn
)) dx+ on(1)

= Iλn
(uλn

, vλn
)−

1

2
〈I ′λn

(uλn
, vλn

), (uλn
, vλn

)〉+ on(1)

= cNλn
+ on(1),

which contradicts Lemma 5.3 (ii). Therefore, (U0, V0) 6= (0, 0). Now, notice that

〈I ′0(uλn
, vλn

), (ϕ,ψ)〉 = 〈I ′λn
(uλn

, vλn
), (ϕ,ψ)〉 +

∫

RN

λn(x)(uλn
ψ + vλn

ϕ) dx = on(1),

for all (ϕ,ψ) ∈ C∞
0 (RN )× C∞

0 (RN ). Moreover, one has

〈I ′0(U0, V0), (ϕ,ψ)〉 = 〈I ′0(uλn
, vλn

), (ϕ,ψ)〉 − (uλn
− U0, ϕ)E1

− (vλn
− V0, ψ)E2

−

∫

RN

(f1(un)− f1(U0))ϕdx−

∫

RN

(f2(vn)− f2(V0))ψ dx = on(1),

for all (ϕ,ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ), which implies that I ′0(U0, V0) = 0. Hence, it follows that

I0(U0, V0) ≥ c0. On the other hand, we have

I0(U0, V0) = I0(U0, V0)−
1

2
〈I ′0(U0, V0), (U0, V0)〉

=
1

2

∫

RN

(f1(U0)U0 − 2F1(U0)) dx+
1

2

∫

RN

(f2(V0)V0 − 2F2(V0)) dx

≤
1

2

∫

RN

(f1(uλn
)uλn

− 2F1(uλn
)) dx+

1

2

∫

RN

(f2(vλn
)vλn

− 2F2(vλn
)) dx+ on(1)

= Iλn
(uλn

, vλn
)−

1

2
〈I ′λn

(uλn
, vλn

), (uλn
, vλn

)〉+ on(1)

= cNλn
+ on(1).
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Therefore I0(U0, V0) = c0 and (U0, V0) is a ground state solution for System (Sλ) with λ = 0. By

using Lemma 7.1, we conclude that one of the following conclusions holds:

(i) V0 ≡ 0 and U0 is a positive ground state of

(−∆)s1u+ V1(x)u = f1(u), x ∈ R
N . (7.2)

(ii) U0 ≡ 0 and V0 is a positive ground state of

(−∆)s2v + V2(x)v = f2(v), x ∈ R
N . (7.3)

In particular, c0 = min{cNV1
, cNV2

} where cNV1
and cNV2

denotes the least energy level for the scalar

equations (7.2) and (7.3), respectively. The sets NV1
and NV2

denotes also the Nehari manifold for

the scalar equations (7.2) and (7.3), respectively. This finishes the proof of Theorem 1.3.
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