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Abstract

In this paper, we consider the fractional Schrödinger–Kirchhoff equations with electromag-
netic fields and critical nonlinearity

{

ε2sM([u]2s,Aε
)(−∆)sAε

u+ V (x)u = |u|2
∗

s−2u+ h(x, |u|2)u, x ∈ R
N ,

u(x) → 0, as |x| → ∞,

where (−∆)sAε
is the fractional magnetic operator with 0 < s < 1, 2∗s = 2N/(N−2s), M : R+

0 →
R

+ is a continuous nondecreasing function, V : RN → R
+

0 and A : RN → R
N are the electric

and magnetic potentials, respectively. By using the fractional version of the concentration
compactness principle and variational methods, we show that the above problem: (i) has at
least one solution provided that ε < E ; and (ii) for any m∗ ∈ N, has m∗ pairs of solutions if
ε < Em∗ , where E and Em∗ are sufficiently small positive numbers. Moreover, these solutions
uε → 0 as ε → 0.

Keywords: Fractional Schrödinger–Kirchhoff equation; Fractional magnetic operator; Crit-
ical nonlinearity; Variational methods.

2010 MSC: 35J10; 35B99; 35J60; 47G20.

1 Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions for the
fractional Schrödinger–Kirchhoff equations with external magnetic operator and critical nonlinearity

{
ε2sM([u]2s,Aε

)(−∆)sAε
u+ V (x)u = |u|2

∗

s−2u+ h(x, |u|2)u, x ∈ RN ,

u(x) → 0, as |x| → ∞,
(1.1)

where ε > 0 is a positive parameter, N > 2s, 0 < s < 1,

[u]2s,Aε
:=

∫∫

R2N

|u(x)− ei(x−y)·Aε(
x+y
2 )u(y)|2

|x− y|N+2s
dxdy,

where 2∗s = 2N
N−2s is the critical Sobolev exponent, V ∈ C(RN ,R+

0 ) is the electric potential, A ∈

C(RN ,RN ) is a magnetic potential, and Aε(x) := ε−1A(x). Further assumptions for the functions

∗Corresponding author. E-mail address: liangsihua@126.com (S. Liang), dusan.repovs@guest.arnes.si (D. Repovš),
zhangbinlin2012@163.com (B. Zhang)
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V (x), M(x) and h(x) will be given in Section 3. If A is a smooth function, the fractional operator
(−∆)sA, which up to normalization constants can be defined on smooth functions u as

(−∆)sAu(x) := 2 lim
ε→0

∫

RN\Bε(x)

u(x)− ei(x−y)·A(x+y
2 )u(y)

|x− y|N+2s
dy, x ∈ R

N ,

has recently been introduced in [14]. Hereafter, Bε(x) denotes the ball in R
N centered at x ∈ R

N

and of radius ε > 0. As stated in [45], up to correcting the operator by the factor (1− s), it follows
that (−∆)sAu converges to −(∇u − iA)2u as s → 1. Thus, up to normalization, the nonlocal case
can be seen as an approximation of the local one. The motivations for its introduction are described
in more details in [14, 45] and rely essentially on the Lévy-Khintchine formula for the generator of
a general Lévy process. If the magnetic field A ≡ 0, then the operator (−∆)sAε

can be reduced to
the fractional Laplacian operator (−∆)s, which is defined as

(−∆)su := P.V.

∫

RN

|u(x)− u(y)|

|x− y|N+2s
dy, x ∈ R

N ,

where P.V. stands for the principal value. It may be viewed as the infinitesimal generator of a
Lévy stable diffusion processes [4]. This operator arises in the description of various phenomena in
applied sciences, such as phase transitions, materials science, conservation laws, minimal surfaces,
water waves, optimization, plasma physics and so on, see [15] and references therein for more detailed
introduction. Indeed, the study of fractional and nonlocal operators of elliptic type has recently
attracted more attention. For example, for the case in which bounded domains and the entire space
are involved, we refer the readers to [1, 8, 31, 32, 51, 52] and the references therein for more related
results.
The main driving force for the study of problem (1.1) arises in the following time-dependent

Schrödinger equation when s = 1:

i~
∂ψ

∂t
=

1

2m
(−i~∇+A(x))2ψ + P (x)ψ − ρ(x, |ψ|)ψ, (1.2)

where ~ is the Planck constant, m is the particle mass, A : RN → R
N is the magnetic potential,

P : RN → RN is the electric potential, ρ is the nonlinear coupling, and ψ is the wave function
representing the state of the particle. This equation arises in quantum mechanics and describes
the dynamics of the particle in a non-relativistic setting, see for example [3, 40]. Clearly, the form

ψ(x, t) = e−iωt~−1

u(x) is a standing wave solution of (1.2) if and only if u(x) satisfies the following
stationary equation:

(−iε∇+A)2u+ V (x)u = f(x, |u|)u, (1.3)

where ε = ~, V (x) = 2m(P (x)−ω) and f = 2mρ, see [11, 16, 18, 25] and the references cited therein
for recent results in this direction. When A ≡ 0, problem (1.3) becomes the classical Schrödinger
equation

− ε2∆u+ V (x)u = f(x, u), x ∈ R
N . (1.4)

Similarly, we can deduce the following fractional Schrödinger equation:

ε2s(−∆)su+ V (x)u = f(x, u), x ∈ R
N . (1.5)

Felmer, Quaas and Tan [14] studied the existence and regularity of positive solutions for problem
(1.5) with ε = 1 when f has subcritical growth and satisfies the Ambrosetti-Rabinowitz condition.
Secchi in [41] obtained the existence of ground state solutions of (1.5) when V (x) → ∞ as |x| → ∞
and the Ambrosetti-Rabinowitz condition holds. Dong, Xu and Wei [19] obtained the existence of
infinitely many weak solutions for (1.5) by a variant of the fountain theorem when f has subcritical
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growth. For the case of critical growth, Shang and Zhang [42] studied the existence and multiplicity
of solutions for the critical fractional Schrödinger equation:

ε2s(−∆)su+ V (x)u = |u|2
∗

s−2u+ λf(u) x ∈ R
N . (1.6)

Based on variational methods, they showed that problem (1.6) has a nonnegative ground state
solution for all sufficiently large λ and small ε. Moreover, Shen and Gao [44] proved the existence of
nontrivial solutions for problem (1.6) under various assumptions on f and potential function V (x),
among which they also assumed the well-known Ambrosetti-Rabinowitz condition. See also recent
papers [2, 6, 41, 43] for more results. Teng and He [46], were concerned with the following fractional
Schrödinger equation involving a critical nonlinearity

ε2s(−∆)su+ u = Q(x)|u|2
∗

s−2u+ P (x)|u|p−2u, x ∈ R
N , (1.7)

where 2 < p < 2∗s and potential functions P (x) and Q(x) satisfy certain hypotheses. Using the
s-harmonic extension technique of Caffarelli and Silvestre [13], the concentration-compactness prin-
ciple of Lions [28] and methods of Brézis and Nirenberg [12], they proved the existence of ground
state solutions. On the other hand, Feng [20] investigated the following fractional Schrödinger
equation

(−∆)su+ V (x)u = λ|u|pu x ∈ R
N , (1.8)

where 2 < p < 2∗s and V (x) is a positive continuous function. By using the fractional version
of concentration compactness principle of Lions [28], he obtained the existence of ground state
solutions to problem (1.8) for some λ > 0. By applying another fractional version of concentration
compactness principle and radially decreasing rearrangements, Zhang et al. [54] proved the existence
of a ground state solutions for problem (1.6) with V (x) = 1 for large enough λ > 0, see [53] for
related result with application of the same method.
Another important reason for studying problem (1.1) lies in the following feature of the Kirchhoff

problems. More precisely, Kirchhoff proposed the following model in 1883

ρ
∂2u

∂t2
−

(
p0
λ

+
E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0 (1.9)

as a generalization of the well-known D’Alembert’s wave equation for free vibrations of elastic strings.
Here, L is the length of the string, h is the area of the cross section, E is the Young modulus of
the material, ρ is the mass density and p0 is the initial tension. Essentially, Kirchhoff’s model takes
into account the changes in the length of the string produced by transverse vibrations. For recent
results in this direction, for example, we refer the reader to [26, 27] and references therein. Recently,
Fiscella and Valdinoci [24] first deduced a stationary fractional Kirchhoff model which considered
the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of
the string, see the Appendix of [24] for more details. Moreover, they investigated in [24] also the
following Kirchhoff type problem involving critical exponent:

{
M([u]2s)(−∆)su = λf(x, u) + |u|2

∗

s−2u in Ω

u = 0 in RN \ Ω.
(1.10)

where Ω is an open bounded domain in RN . By using the mountain pass theorem and the concen-
tration compactness principle, together with a truncation technique, they obtained the existence of
non-negative solutions for problem (1.10), see for example [5, 36, 49] for more recent results. For
the results on the entire space, see for instance [23, 37, 38].
Mingqi et al. [29] first studied the following Schrödinger–Kirchhoff type equation involving the

fractional p–Laplacian and the magnetic operator

M([u]2s,A)(−∆)sAu+ V (x)u = f(x, |u|)u in R
N , (1.11)
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where the right-hand term in (1.11) satisfies the subcritical growth. By using variational methods,
they obtained several existence results for problem (1.11). Following similar methods, for M(t) =
a + bt with a ∈ R

+
0 and p = 2, Wang and Xiang [47] proved the existence of two solutions and

infinitely many solutions for fractional Schrödinger-Choquard-Kirchhoff type equations with external
magnetic operator and critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
Binlin et al. [9] first considered the following fractional Schrödinger equations:

ε2s(−∆)sAε
u+ V (x)u = f(x, |u|)u+K(x)|u|2

∗

α−2u in R
N , (1.12)

where V (x) satisfies the assumption (V ) which will be introduced in Section 3. By using variational
methods, they proved the existence of ground state solution (mountain pass solution) uε which tends
to the trivial solution as ε→ 0. Moreover, they proved the existence of infinite many solutions and
sign-changing solutions for problem (1.12) under some additional assumptions.
Inspired by the above works, in particular by [9, 17, 29, 53], we consider in this article the

existence and multiplicity of semiclassical solutions of the fractional Schrödinger–Kirchhoff equations
with electromagnetic fields and critical nonlinearity in RN . It is worthwhile to remark that in the
arguments developed in [9, 17], one of the key points is to prove the (PS)c condition. Here we use
the fractional version of Lions’ second concentration compactness principle to prove that the (PS)c
condition holds, which is different from methods used in [9, 17]. Some difficulties arise when dealing
with this problem, because of the appearance of the magnetic field and the critical frequency, and
of the nonlocal nature of the fractional Laplacian. Therefore, we need to develop new techniques to
overcome difficulties induced by these new features. As far as we know, this is the first time that
the fractional version of the concentration compactness principle and variational methods have been
combined to get the multiplicity of solutions for the fractional Schrödinger–Kirchhoff equations with
electromagnetic fields and critical nonlinearity. We believe that the ideas used here can be applied
in other situations to deal with similar potentials.
The paper is organized as follows. In Section 2, we will introduce the working space and give

some necessary definitions and properties, which will be used in the sequel. In Section 3, we will
give an equivalent form of problem (1.1). In Section 4, we will use the fractional version of Lions’
second concentration compactness principle to prove that the (PS)c condition holds. In Section 5,
using the critical point theory, we will prove the main result (see Section 3).

2 Preliminaries

For the convenience of the reader, we recall in this part some definitions and basic properties
of fractional Sobolev spaces Hs

Aε
(RN ,C). For a deeper treatment of the (magnetic) fractional

Sobolev spaces and their applications to fractional Laplacian problems of elliptic type, we refer to
[9, 15, 22, 29, 30, 35, 34] and the references therein.
For any s ∈ (0, 1), the fractional Sobolev space Hs

Aε
(RN ,C) is defined by

Hs
Aε

(RN ,C) =
{
u ∈ L2(RN ,C) : [u]s,Aε

<∞
}
,

where [u]s,Aε
denotes the so-called Gagliardo semi-norm, that is

[u]s,Aε
=

(∫∫

R2N

|u(x)− ei(x−y)·Aε(
x+y
2 )u(y)|2

|x− y|N+2s
dxdy

)1/2

and Hs
Aε

(RN ,C) is endowed with the norm

‖u‖Hs
Aε

(RN ,C) =
(
[u]2s,Aε

+ ‖u‖2L2

) 1
2 .
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If A = 0, then Hs
Aε

(RN ,C) reduces to the well-known space Hs(RN ) with the norm [u]s := [u]s,0.

The space Hs
Aε

(RN ,C) is also a Hilbert space with the real scalar product

〈u, v〉s,Aε
:= 〈u, v〉L2 +Re

∫∫

R2N

(u(x) − ei(x−y)·Aε(
x+y
2 )u(y))(v(x) − ei(x−y)·Aε(

x+y
2 )v(y))

|x− y|N+2s
dxdy,

for any u, v ∈ Hs
Aε

(RN ,C). The operator ((−∆)sAε
) : Hs

Aε
(RN ,C) → H−s

Aε
(RN ,C) is defined by

〈(−∆)sAε
u, v〉 := Re

∫∫

R2N

(u(x)− ei(x−y)·Aε(
x+y
2 )u(y))(v(x) − ei(x−y)·Aε(

x+y
2 )v(y))

|x− y|N+2s
dxdy,

via duality.
We recall the following embedding theorem:

Proposition 2.1. (See [14, Lemma 3.5]). Let A ∈ C(RN ,RN ). Then the embedding

Hs
Aε

(RN ,C) →֒ Lθ(RN ,C),

is continuous for any θ ∈ [2, 2∗s]. Moreover, the embedding

Hs
Aε

(RN ,C) →֒→֒ Lθ
loc(R

N ,C)

is compact for any θ ∈ [1, 2∗s).

In this paper, we will use the following subspace of Hs
Aε

(RN ,C) defined by

E =

{
u ∈ Hs

Aε
(RN ,C) :

∫

RN

V (x)|u|2dx <∞

}

with the norm

‖u‖E :=

(
[u]2s,Aε

+

∫

RN

V (x)|u|2dx

) 1
2

,

where V is non-negative. By the assumption (V ) (see Section 3), we know that the embedding
E →֒ Hs

Aε
(RN ,C) is continuous. Note that the norm ‖ · ‖E is equivalent to the norm ‖ · ‖ε defined

by

‖u‖ε :=

(
[u]2s,Aε

+ ε−2s

∫

RN

V (x)|u|2dx

) 1
2

,

for each ε > 0. It is obvious that for each θ ∈ [2, 2∗s], there is cθ > 0, independent of 0 < ε < 1, such
that

‖u‖Lθ ≤ cθ‖u‖E ≤ cθ‖u‖ε. (2.1)

We have the following diamagnetic inequality:

Lemma 2.1. For every u ∈ Hs
Aε

(RN ,C), we get |u| ∈ Hs(RN ). More precisely,

[|u|]s ≤ [u]s,Aε
.

Proof. The assertion follows directly from the pointwise diamagnetic inequality

||u(x)| − |u(y)|| ≤ |u(x)− ei(x−y)·Aε(
x+y
2 )u(y)|,

for a.e. x, y ∈ RN , see [14, Lemma 3.1, Remark 3.2].
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By Proposition 3.6 in [15], we have

[u]s = ‖(−∆)
s
2 u‖L2

for any u ∈ Hs(RN ), i.e.
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

∫

RN

|(−∆)
s
2 u(x)|2dx.

Thus ∫∫

R2N

(u(x)− u(y))(v(x) − v(y))

|x− y|N+2s
dxdy =

∫

RN

(−∆)
s
2u(x) · (−∆)

s
2 v(x)dx.

3 The main result

Throughout the paper, without explicit mention, we suppose that the functions V (x), M(x) and
h(x) satisfy the following conditions:

(V ) V (x) ∈ C(RN ,R), minx∈RN V (x) = 0 and there is τ0 > 0 such that the set V τ0 = {x ∈ R
N :

V (x) < τ0} has finite Lebesgue measure;

(M) (m1) M : R+
0 → R+ is a continuous nondecreasing function. Furthermore, there exists α0 > 0

such that and M(t) ≥ α0 for all t ∈ R
+
0 ;

(m2) there exists σ ∈ (2/2∗s, 1] satisfying M̃(t) ≥ σM(t)t for all t ≥ 0, where M̃(t) =∫ t

0 M(s)ds;

(H) (h1) h ∈ C(RN × R,R) and h(x, t) = o(|t|) uniformly in x as t→ 0;

(h2) there exist c0 > 0 and q ∈ (2, 2∗s) such that |h(x, t)| ≤ c0(1 + t
q−1
2 );

(h3) there exist l0 > 0, 2/σ < r and 2/σ < µ < 2∗s such that H(x, t) ≥ l0|t|r/2 and µH(x, t) ≤

2h(x, t)t for all (x, t) ∈ RN × R, where H(x, t) =
∫ t

0 h(x, s)ds.

To obtain the solution of problem (1.1), we will use the following equivalent form




M
(
[u]2s,Aε

)
(−∆)sAε

u+ ε−2sV (x)u = ε−2s|u|2
∗

s−2u+ ε−2sh(x, |u|2)u, x ∈ R
N ,

u(x) → 0, as |x| → ∞,
(3.1)

for ε→ 0.
The energy functional Jε : E → R associated with problem (3.1)

Jε(u) :=
1

2
M̃
(
[u]2s,Aε

)
+
ε−2s

2

∫

RN

V (x)|u|2dx−
ε−2s

2∗s

∫

RN

|u|2
∗

sdx−
ε−2s

2

∫

RN

H(x, |u|2)dx

is well defined. Define the Nehari manifold

N = {u ∈ E : 〈J ′
ε(u), u〉E = 0} .

Under the assumptions, it is easy to check that as shown in [39, 48], Jε ∈ C1(E,R) and its critical
points are weak solutions of problem (3.1).
We recall that u ∈ E is a weak solution of problem (3.1), if

M
(
[u]2s,Aε

)
Re

∫∫

R2N

(u(x) − ei(x−y)·Aε(
x+y
2 )u(y))(v(x) − ei(x−y)·Aε(

x+y
2 )v(y))

|x− y|N+2s
dxdy

+ ε−2sRe

∫

RN

V (x)uv̄dx = ε−2sRe

∫

RN

(
|u|2

∗

s−2u+ h(x, |u|2)u
)
v̄dx,

where v ∈ E.
The following is the main result of the present paper. It will be proved in Section 5.
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Theorem 3.1. Let the conditions (V ), (M) and (H) be satisfied. Then the following statements
hold:
(1) For any κ > 0, there is Eκ > 0 such that if 0 < ε < Eκ, then problem (3.1) has at least one
solution uε satisfying

σµ− 1

2

∫

RN

H(x, |uε|
2)dx+

(
2

σ
−

1

2∗s

)∫

RN

|uε|
2∗sdx ≤ κεN , (3.2)

(
σ

2
−

1

µ

)
α0ε

2s[uε]
2
s,A +

(
1

2
−

1

µ

)∫

RN

V (x)|uε|
2dx ≤ κεN . (3.3)

Moreover, uε → 0 in E as ε→ 0.
(2) For any m ∈ N and κ > 0, there is Emκ > 0 such that if 0 < ε < Emκ, then problem (3.1) has
at least m pairs of solutions uε,i, uε,−i, i = 1, 2, · · · ,m which satisfy the estimates (3.2) and (3.3).
Moreover, uε,i → 0 in E as ε→ 0, i = 1, 2, · · · ,m.

4 Behaviour of (PS) sequences

In this section, we recall the fractional version of concentration compactness principle in the frac-
tional Sobolev space, see [33, 50, 54] for more details. Note that Prokhorov theorem (see Theorem
8.6.2 in [10]) ensures that bounded sequences {un}n are relatively sequentially compact in Hs(RN )
if and only if the sequence is tight in the sense that for any ε > 0, there exists a compact subset Ω ⊆
RN such that supn

∫
RN\Ω

|un|dx < ε.

Lemma 4.1. ([33, Theorem 1.5]) Let Ω ⊆ R
N be an open subset and let {un}n be a weakly convergent

sequence in Hs(RN ), weakly converging to u as n→ ∞ and such that |un|2
∗

s ⇀ ν and |(−∆)
s
2un|2 ⇀

η in the sense of measures. Then either un → u in L
2∗s
loc(R

N ) or there exist a (at most countable)
set of distinct points {xj}j∈I ⊆ Ω and positive numbers {νj}j∈I such that

ν = |u|2
∗

s +
∑

j∈I

δxj
νj , νj > 0.

If, in addition, Ω is bounded, then there exist a positive measure η̃ ∈ M(RN ) with supp η̃ ⊆ Ω and
positive numbers {ηj}j∈I such that

η = |(−∆)
s
2u|2 + η̃ +

∑

j∈I

δxj
ηj , ηj > 0

and

νj ≤ (S−1η({xj}))
2∗s
2 ,

where S is the best Sobolev constant, i.e.

S = inf
u∈Hs(RN )

∫

RN

|(−∆)
s
2u|2dx

∫

RN

|u|2
∗

sdx

,

xj ∈ RN , δxj
are Dirac measures at xj, and µj, νj are constants.

Remark 4.1. In the case Ω = RN , the above principle of concentration compactness does not
provide any information about the possible loss of mass at infinity. The following result expresses
this fact in quantitative terms.
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Lemma 4.2. ([54, Lemma 3.5]) Let {un}n ⊂ Hs(RN ) be such that un ⇀ u weakly converges in
Hs(RN ), |un|2

∗

s ⇀ ν and |(−∆)
s
2 un|2 ⇀ η weakly-∗ converges in M(RN ) and define

(i) η∞ = lim
R→∞

lim sup
n→∞

∫

{x∈RN :|x|>R}

|(−∆)
s
2 un|

2dx,

(ii) ν∞ = lim
R→∞

lim sup
n→∞

∫

{x∈RN :|x|>R}

|un|
2∗sdx.

Then the quantities ν∞ and η∞ exist and satisfy the following

(iii) lim sup
n→∞

∫

RN

|(−∆)
s
2un|

2dx =

∫

RN

dη + η∞,

(iv) lim sup
n→∞

∫

RN

|un|
2∗sdx =

∫

RN

dν + ν∞,

(v) ν∞ ≤ (S−1η∞)
2∗s
2 .

We recall that a C1 functional J on Banach space X is said to satisfy the Palais-Smale con-
dition at level c ((PS)c in short) if every sequence {un}n ⊂ X satisfying lim

n→∞
Jλ(un) = c and

lim
n→∞

‖J ′
λ(un)‖X∗ = 0 has a convergent subsequence.

Lemma 4.3. Suppose that conditions (V ), (M) and (H) hold. Then any (PS)c sequence {un}n is
bounded in E and c ≥ 0.

Proof. Let {un}n be a (PS) sequence in E. Then

c = Jε(un)

=
1

2
M̃
(
[un]

2
s,Aε

)
+
ε−2s

2

∫

RN

V (x)|un|
2dx−

ε−2s

2∗s

∫

RN

|un|
2∗sdx −

ε−2s

2

∫

RN

H(x, |un|
2)dx,(4.1)

〈J ′
ε(un), v〉 = Re

{
M
(
[un]

2
s,Aε

) ∫∫

R2N

(un(x) − ei(x−y)·Aε(
x+y
2 )un(y))(v(x) − ei(x−y)·Aε(

x+y
2 )v(y))

|x− y|N+2s
dxdy

+ε−2s

∫

RN

V (x)unv̄dx− ε−2s

∫

RN

|un|
2∗s−2unv̄dx− ε−2s

∫

RN

h(x, |un|
2)unv̄dx

}

= o(1)‖un‖ε. (4.2)

By (4.1), (4.2), (M) and condition (h3), we have

c+ o(1)‖un‖ε = Jε(un)−
1

µ
〈J ′

ε(un), un〉 =
1

2
M̃
(
[un]

2
s,Aε

)
−

1

µ
M
(
[un]

2
s,Aε

)
[un]

2
s,Aε

+

(
1

2
−

1

µ

)
ε−2s

∫

RN

V (x)|un|
2dx+

(
1

µ
−

1

2∗s

)
ε−2s

∫

RN

|un|
2∗sdx

+ ε−2s

∫

RN

[
1

µ
h(x, |un|

2)u2n −
1

2
H(x, |un|

2)

]
dx

≥

(
σ

2
−

1

µ

)
α0[un]

2
s,Aε

+

(
1

2
−

1

µ

)
ε−2s

∫

RN

V (x)|un|
2dx. (4.3)

Therefore, (4.3) implies that {un}n is bounded in E. Passing to the limit in (4.3) shows that c ≥ 0.
This completes the proof.

The main result in this section is the following compactness result:
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Theorem 4.1. Suppose that conditions (V ), (M) and (H) hold. Then for any 0 < ε < 1, Jε

satisfies (PS)c condition, for all c ∈
(
0, σ0ε

N−2s
)
, where σ0 :=

(
1
µ − 1

2∗s

)
(α0S)

N/(2s), that is any

(PS)c-sequence {un}n ⊂ E has a strongly convergent subsequence in E.

Proof. Let {un}n be a (PS)c sequence. By Lemma 4.3, {un}n is bounded in E. Hence, by diamag-
netic inequality, {|un|}n is bounded in Hs(RN ). Then, for some subsequence, there is u ∈ E such
that un ⇀ u in E. We claim that as n→ ∞

∫

RN

|un|
2∗sdx→

∫

RN

|u|2
∗

sdx. (4.4)

In order to prove this claim, we invoke Prokhorov’s Theorem (see Theorem 8.6.2 in [10]) to conclude
that there exist η, ν ∈ M(RN ) such that

|(−∆)
s
2 un|

2 ⇀ η (weak*-sense of measures),

|un|
2∗s ⇀ ν (weak*-sense of measures),

where µ and ν are a nonnegative bounded measures on RN . For this, we have to show the tightness
of sequences {|(−∆)s/2un|2}n and {|un|2

∗

s}n, which follows easily from the boundedness of {|un|}n
in Hs(RN ) and absolute continuity of the Lebesgue integral. Then, in view of Lemma 4.1, we know

that either un → u in L
2∗s
loc(R

N ) or ν = |u|2
∗

s +
∑

j∈I δxj
νj , as n → ∞, where I is a countable set,

{νj}j ⊂ [0,∞), {xj}j ⊂ RN .
Take φ ∈ C∞

0 (RN ) such that 0 ≤ φ ≤ 1; φ ≡ 1 in B(xj , ρ), φ(x) = 0 in RN \ B(xj , 2ρ). For any

ρ > 0, define φρ = φ
(

x−xj

ρ

)
, where j ∈ I. It follows that

∫∫

R2N

|un(x)φρ(x) − un(y)φρ(y)|2

|x− y|N+2s
dxdy

≤ 2

∫∫

R2N

|un(x)− un(y)|2φ2ρ(y)

|x− y|N+2s
dxdy + 2

∫∫

R2N

|φρ(x) − φρ(y)|2|un(x)|2

|x− y|N+2s
dxdy

≤ 2

∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2s
dxdy + 2

∫∫

R2N

|φρ(x)− φρ(y)|2|un(x)|2

|x− y|N+2s
dxdy. (4.5)

Similar to the proof of Lemma 3.4 in [53], we have
∫∫

R2N

|φρ(x) − φρ(y)|2|un(x)|2

|x− y|N+2s
dxdy ≤ Cρ−2s

∫

B(xi,Kρ)

|un(x)|
2dx+ CK−N , (4.6)

where K > 4. In fact, we notice that

R
N × R

N = ((RN \B(xj , 2ρ)) ∪B(xj , 2ρ))× ((RN \B(xj , 2ρ)) ∪B(xj , 2ρ))

= ((RN \B(xj , 2ρ))× (RN \B(xj , 2ρ))) ∪ (B(xj , 2ρ)× R
N )

∪ ((RN \B(xj , 2ρ))×B(xj , 2ρ)).

Then we have
∫∫

R2N

|un(x)|2|φρ(x)− φρ(y)|2

|x− y|N+2s
dxdy =

∫∫

B(xj,2ρ)×RN

|un(x)|2|φρ(x)− φρ(y)|2

|x− y|N+2s
dxdy

+

∫∫

(RN\B(xj,2ρ))×B(xj ,2ρ)

|un(x)|2|φρ(x)− φρ(y)|2

|x− y|N+2s
dxdy

≤ Cρ−2s

∫

B(xj ,Kρ)

|un(x)|
2dx+ CK−N

(∫

RN\B(xj ,Kρ)

|un(x)|
2∗sdx

)2/2∗s

≤ Cρ−2s

∫

B(xj ,Kρ)

|un(x)|
2dx+ CK−N .
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Since {un}n is bounded in E, it follows from (4.5) and (4.6) that {unφρ}n is bounded in E. Then
〈J ′

ε(un), unφρ〉 → 0, which implies

M
(
[un]

2
s,Aε

) ∫∫

R2N

|un(x)− ei(x−y)·Aε(
x+y
2 )un(y)|

2φρ(y)

|x− y|N+2s
dxdy + ε−2s

∫

RN

V (x)|un|
2φρ(x)dx

= −Re

{
M
(
[un]

2
s,Aε

) ∫∫

R2N

(un(x) − ei(x−y)·Aε(
x+y
2 )un(y))un(x)(φρ(x) − φρ(y))

|x− y|N+2s
dxdy

}

+ ε−2s

∫

RN

|un|
2∗sφρdx+ ε−2s

∫

RN

h(x, |un|
2)|un|

2φρ(x)dx + on(1). (4.7)

It follows from
∫
RN

|un(x)−un(y)|
2

|x−y|N+2s dy ⇀ η weakly * in M(RN ) that

lim
n→∞

∫

RN

∫

RN

|un(x) − un(y)|2φρ(y)

|x− y|N+2s
dydx =

∫

RN

φρdη.

By the diamagnetic inequality in Lemma 2.1, we have
∫∫

R2N

||un(x)| − |un(y)||
2 φρ(y)

|x− y|N+2s
dxdy ≤

∫

RN

φρdη,

as n→ ∞ and and ∫

RN

φρdµ→ η({xi})

as ρ→ 0. Note that the Hölder inequality implies
∣∣∣∣∣Re

{
M
(
[un]

2
s,Aε

) ∫∫

R2N

(un(x)− ei(x−y)·Aε(
x+y
2 )un(y))un(x)(φρ(x) − φρ(y))

|x− y|N+2s
dxdy

}∣∣∣∣∣

≤ C

∫∫

R2N

|un(x) − ei(x−y)·Aε(
x+y
2 )un(y)| · |φρ(x) − φρ(y)| · |un(x)|

|x− y|N+2s
dxdy

≤ C

(∫∫

R2N

|un(x)|
2|φρ(x)− φρ(y)|

2

|x− y|N+2s
dxdy

)1/2

. (4.8)

Now, we claim that

lim
ρ→0

lim
n→∞

∫∫

R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x− y|N+2s
dxdy = 0. (4.9)

Note that un ⇀ u weakly converges inE. By Proposition 2.1 we obtain that un → u in Lt
loc(R

N ), 1 ≤
t < 2∗s, which implies in (4.6)

Cρ−2s

∫

B(xi,Kρ)

|un(x)|
2dx+ CK−N → Cρ−2s

∫

B(xi,Kρ)

|u(x)|2dx+ CK−N ,

as n→ ∞. Then the Hölder inequality yields

Cρ−2s

∫

B(xi,Kρ)

|u(x)|2dx+ CK−N ≤ CK2s

(∫

B(xi,Kρ)

|u(x)|2
∗

sdx

)2/2∗s

+ CK−N → CK−N

as ρ→ 0. Furthermore, by (4.6) we have

lim sup
ρ→0

lim sup
n→∞

∫∫

R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x− y|N+2s
dxdy

= lim
K→∞

lim sup
ρ→0

lim sup
n→∞

∫∫

R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x− y|N+2s
dxdy = 0.
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Hence the claim is proved.
It follows from the definition of φρ and un → u in Lt

loc(R
N ), 1 ≤ t < 2∗s, that

lim
ρ→0

lim
n→∞

∫

RN

h(x, |un|
2)|un|

2φρ(x)dx = 0, (4.10)

and

lim
ρ→0

lim
n→∞

∫

RN

V (x)|un|
2φρ(x)dx = 0. (4.11)

Since φρ has compact support, letting n → ∞ in (4.7), we can deduce from (4.8)–(4.11) and the
diamagnetic inequality that

α0η({xj}) ≤ ε−2sνj .

Combining this fact with Lemma 4.1, we obtain νj ≥ α0ε
2sSν

2/2∗s
j . This result implies that

(I) νj = 0 or (II) νj ≥ (α0S)
N
2s εN .

To obtain the possible concentration of mass at infinity, we similarly define a cutoff function φR ∈
C∞

0 (RN ) such that φR(x) = 0 on |x| < R and φR(x) = 1 on |x| > R + 1. We can verify that
{unφR}n is bounded in E, hence 〈J ′

ε(un), unφR〉 → 0, as n→ ∞, which implies

M
(
[un]

2
s,Aε

) ∫∫

R2N

|un(x)− ei(x−y)·Aε(
x+y
2 )un(y)|2φR(y)

|x− y|N+2s
dxdy + ε−2s

∫

RN

V (x)|un|
2φR(x)dx

= −Re

{
M
(
[un]

2
s,Aε

) ∫∫

R2N

(un(x) − ei(x−y)·Aε(
x+y
2 )un(y))un(x)(φR(x) − φR(y))

|x− y|N+2s
dxdy

}

+ ε−2s

∫

RN

|un|
2∗sφRdx+ ε−2s

∫

RN

h(x, |un|
2)|un|

2φR(x)dx + on(1). (4.12)

It is easy to verify that

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

||un(x)| − |un(y)||2φR(y)

|x− y|N+2s
dxdy = η∞

and
∣∣∣∣∣Re

{
M
(
[un]

2
s,Aε

) ∫∫

R2N

(un(x) − ei(x−y)·Aε(
x+y
2 )un(y))un(x)(φR(x) − φR(y))

|x− y|N+2s
dxdy

}∣∣∣∣∣

≤ C

(∫∫

R2N

|un(x)|2|φR(x) − φR(y)|2

|x− y|N+2s
dxdy

)1/2

.

Note that

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|un(x)|2|φR(x)− φR(y)|2

|x− y|N+2s
dxdy

= lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|un(x)|2|(1− φR(x)) − (1− φR(y))|2

|x− y|N+2s
dxdy.

Similar to the proof of Lemma 3.4 in [53], we have

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|un(x)|2|(1− φR(x)) − (1− φR(y))|2

|x− y|N+2s
dxdy = 0. (4.13)
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It follows from the definition of φR that

lim
R→∞

lim
n→∞

∫

RN

h(x, |un|
2)|un|

2φR(x)dx = 0 (4.14)

and

lim
R→∞

lim
n→∞

∫

RN

V (x)|un|
2φR(x)dx = 0. (4.15)

It follows from (4.13)–(4.15) that

α0µ∞ ≤ ε−2sν∞

as R→ ∞ in (4.12). By Lemma 4.2, we obtain ν∞ ≥ α0ε
2sSν

2/2∗s
∞ . This result implies that

(III) ν∞ = 0 or (IV) ν∞ ≥ (α0S)
N
2s εN .

Next, we claim that (II) and (IV ) cannot occur. If the case (IV ) holds for some j ∈ I, then by
Lemma 4.2, (M) and (H), we have

c = lim
n→∞

(
Jε(un)−

1

µ
〈J ′

ε(un), un〉

)

≥

(
σ

2
−

1

µ

)
M
(
[un]

2
s,Aε

)
[un]

2
s,Aε

+

(
1

2
−

1

µ

)
ε−2s

∫

RN

V (x)|un|
2dx

+

(
1

µ
−

1

2∗s

)
ε−2s

∫

RN

|un|
2∗sdx+ ε−2s

∫

RN

[
1

µ
h(x, |un|

2)|un|
2 −

1

2
H(x, |un|

2)

]
dx

≥

(
1

µ
−

1

2∗s

)
ε−2s

∫

RN

|un|
2∗sdx ≥

(
1

µ
−

1

2∗s

)
ε−2sν∞ ≥ σ0ε

N−2s,

where σ0 =
(

1
µ − 1

2∗s

)
(α0S)

N/(2s), which contradicts the condition c ∈
(
0, σ0ε

N−2s
)
. Consequently,

νj = 0 for all j ∈ I. Similarly, we can prove that (II) cannot occur for any j. Thus

∫

RN

|un|
2∗sdx→

∫

RN

|u|2
∗

sdx, (4.16)

as n→ ∞. Since |un − u|2
∗

s ≤ 22
∗

s (|un|2
∗

s + |u|2
∗

s ), it follows from the Fatou lemma that

∫

RN

22
∗

s+1|u|2
2∗s
dx =

∫

RN

lim inf
n→∞

(22
∗

s |un|
22

∗

s
+ 22

∗

s |u|2
2∗s − |un − u|2

2∗s
)dx

≤ lim inf
n→∞

∫

RN

(22
∗

s |un|
22

∗

s
+ 22

∗

s |u|2
2∗s − |un − u|2

2∗s
)dx

=

∫

RN

22
∗

s+1|u|2
2∗s
dx− lim sup

n→∞

∫

RN

|un − u|2
2∗s
dx,

which implies that lim sup
n→∞

∫
RN |un − u|2

∗

sdx = 0. Then

un → u in L2∗s (RN ) as n→ ∞.
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By the weak lower semicontinuity of the norm, conditon (m1) and the Brézis-Lieb lemma, we have

o(1)‖un‖ = 〈J ′
ε(un), un〉 =M

(
[un]

2
s,Aε

)
[un]

2
s,Aε

+ ε−2s

∫

RN

V (x)|un|
2dx

− ε−2s

∫

RN

|un|
2∗(s)dx− ε−2s

∫

RN

h(x, |un|
2)|un|

2dx

≥ α0

(
[un]

2
s,Aε

− [u]2s,Aε

)
+ ε−2s

∫

RN

V (x)(|un|
2 − |u|2)dx+M

(
[u]2s,Aε

)
[u]2s,Aε

+ ε−2s

∫

RN

V (x)|u|2dx− ε−2s

∫

RN

|u|2
∗

sdx− ε−2s

∫

RN

h(x, |u|2)|u|2dx

≥ min{α0, 1}‖un − u‖2ε + o(1)‖u‖ε.

Here we use the fact that J ′
ε(u) = 0. Thus we have proved that {un}n strongly converges to u in

E. Hence the proof is complete.

5 Proof of Theorem 3.1

In the following, we will always consider 0 < ε < 1. By the assumptions (V ), (M) and (H), one can
see that Jε(u) has the mountain pass geometry.

Lemma 5.1. Assume that conditions (V ), (M) and (H) hold. Then there exist αε, ̺ε > 0 such
that Jε(u) > 0 if u ∈ B̺ε

\ {0} and Jε(u) ≥ αε if u ∈ ∂B̺ε
, where B̺ε

= {u ∈ E : ‖u‖ε ≤ ̺ε}.

Proof. By (H), for 0 < ξ ≤
(
2min

{
σα0

2 , 12
}
c22
)−1

ε2s, there is Cξ > 0 such that

1

2∗s

∫

RN

|u|2
∗

sdx+
1

2

∫

RN

H(x, |u|2)dx ≤ ξ‖u‖2L2 + Cξ‖u‖
2∗s
L2∗s

,

where c2 is the embedding constant in (2.1) with θ = 2. it follows from (V ), (M) and (H), that

Jε(u) =
1

2
M̃
(
[u]2s,Aε

)
+
ε−2s

2

∫

RN

V (x)|u|2dx−
ε−2s

2∗s

∫

RN

|u|2
∗

sdx−
ε−2s

2

∫

RN

H(x, |u|2)dx

≥ min

{
σα0

2
,
1

2

}
‖u‖2ε − ε−2sξ‖u‖2L2 − ε−2sCξ‖u‖

2∗s
L2∗s

≥
1

2
min

{
σα0

2
,
1

2

}
‖u‖2ε − ε−2sCξ‖u‖

2∗s
L2∗s

≥
1

2
min

{
σα0

2
,
1

2

}
‖u‖2ε − ε−2sCξc

2∗s
2∗s
‖u‖

2∗s
ε .

Then, for all u ∈ E, with ‖u‖ε = ρε, ρε ∈ (0, 1) sufficiently small so that

1

2
min

{
σα0

2
,
1

2

}
− ε−2sCξc

2∗s
2∗s
ρ
2∗s−2
ε > 0.

Thus, the lemma is proved by taking

αε =
1

2
min

{
σα0

2
,
1

2

}
ρ2ε − ε−2sCξc

2∗s
2∗s
ρ
2∗s
ε .

The proof is finished.

Lemma 5.2. Under the assumptions of Lemma 5.1, for any finite dimensional subspace F ⊂ E,

Jε(u) → −∞ as ‖u‖ε → ∞ with u ∈ F.
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Proof. By integrating (m2), we obtain

M̃(t) ≤
M̃(t0)

t
1/σ
0

t1/σ = C0t
1/σ for all t ≥ t0 > 0. (5.1)

Using conditions (V ) and (H), we can get

Jε(u) ≤
C0

2
‖u‖

2
σ
ε +

1

2
‖u‖2ε −

ε−2s

2∗s
‖u‖

2∗s
L2∗s

− ε−2sl0‖u‖
r
Lr

for all u ∈ F . Since all norms in a finite-dimensional space are equivalent and 2 ≤ 2/σ < 2∗s, we
conclude that Jε(u) → −∞ as ‖u‖ε → ∞. The proof is thus complete.

Note that Jε(u) does not satisfy (PS)c condition for any c > 0. Thus, in the sequel we will find
a special finite-dimensional subspace by which we will construct sufficiently small minimax levels.
Recall that the assumption (V ) implies that there is x0 ∈ RN such that V (x0) = minx∈RN V (x) =

0. Without loss of generality we can assume from now on that x0 = 0. We first notice that condition
(h3) implies

ε−2s

2∗s

∫

RN

|u|2
∗

sdx+
ε−2s

2

∫

RN

H(x, |u|2)dx ≥ l0ε
−2s

∫

RN

|u|rdx.

Define the functional Iε ∈ C1(E,R) by

Iε(u) :=
1

2
M
(
[u]2s,Aε

)
+
ε−2s

2

∫

RN

V (x)|u|2dx − l0ε
−2s

∫

RN

|u|rdx.

Then Jε(u) ≤ Iε(u) for all u ∈ E and it suffices to construct small minimax levels for Iε.
Note that

inf

{∫∫

R2N

|φ(x) − φ(y)|2

|x− y|N+2s
dxdy : φ ∈ C∞

0 (RN ), |φ|q = 1

}
= 0,

see [9, Theorem 3.2] for this proof. For any 0 < ζ < 1 one can choose φζ ∈ C∞
0 (RN ) with ‖φζ‖Lq = 1

and suppφζ ⊂ Brζ (0) so that

∫∫

R2N

|φζ(x) − φζ(y)|2

|x− y|N+2s
dxdy ≤ Cζ

2N−(N−2s)q
q .

Set
ψζ(x) = eiA(0)xφζ(x) (5.2)

and
ψε,ζ(x) = ψζ(ε

−1x). (5.3)

By condition (5.1), we get for any t > 0

Iε(tψε,ζ) ≤
C0

2
t

2
σ

(∫∫

R2N

|ψε,ζ(x)− ei(x−y)·Aε(
x+y
2 )ψε,ζ(y)|2

|x− y|N+2s
dxdy

)1/σ

+
t2

2
ε−2s

∫

RN

V (x)|ψε,ζ |
2dx− trl0ε

−2s

∫

RN

|ψε,ζ |
rdx

≤ εN−2s


C0

2
t

2
σ

(∫∫

R2N

|ψζ(x) − ei(x−y)·A(εx+εy
2 )ψζ(y)|

2

|x− y|N+2s
dxdy

)1/σ

+
t2

2

∫

RN

V (εx) |ψζ |
2dx− trl0

∫

RN

|ψζ |
rdx

]

= εN−2sΨε(tψζ),
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where Ψε ∈ C1(E,R) defined by

Ψε(u) :=
C0

2

(∫∫

R2N

|u(x)− ei(x−y)·A( εx+εy
2 )u(y)|2

|x− y|N+2s
dxdy

)1/σ

+
1

2

∫

RN

V (εx) |u|2dx− l0

∫

RN

|u|rdx.

Since r > 2/σ, there exists a finite number t0 ∈ [0,+∞) such that

max
t≥0

Ψε(tψζ) =
C0

2
t
2/σ
0

(∫∫

R2N

|ψζ(x) − ei(x−y)·A( εx+εy
2 )ψζ(y)|2

|x− y|N+2s
dxdy

)1/σ

+
t20
2

∫

RN

V (εx) |ψζ |
2dx− tr0l0

∫

RN

|ψζ |
rdx

≤
C0

2
t
2/σ
0

(∫∫

R2N

|ψζ(x) − ei(x−y)·A( εx+εy
2 )ψζ(y)|2

|x− y|N+2s
dxdy

)1/σ

+
t20
2

∫

RN

V (εx) |ψζ |
2dx.

Let ψζ(x) = eiA(0)xφζ(x), where φζ(x) is as defined above. We have the following lemma.

Lemma 5.3. For any ζ > 0 there exists ε0 = ε0(ζ) > 0 such that

∫∫

R2N

|ψζ(x)− ei(x−y)·A(εx+εy
2 )ψζ(y)|2

|x− y|N+2s
dxdy ≤ Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s,

for all 0 < ε < ε0 and some constant C > 0 depending only on [φζ ]s,0.

Proof. For any ζ > 0, we have

∫∫

R2N

|ψζ(x)− ei(x−y)·A( εx+εy
2 )ψζ(y)|2

|x− y|N+2s
dxdy

≤

∫∫

R2N

|eiA(0)·xφζ(x)− ei(x−y)·A( εx+εy
2 )eiA(0)·yφζ(y)|2

|x− y|N+2s
dxdy

≤ 2

∫∫

R2N

|φζ(x) − φζ(y)|2

|x− y|N+2s
dxdy + 2

∫∫

R2N

|φζ(y)|2|ei(x−y)·(A(0)−A(εx+εy
2 )) − 1|2

|x− y|N+2s
dxdy.

Next, we will estimate the second term in the above inequality. Notice that

∣∣∣ei(x−y)·(A(0)−A( εx+εy
2 )) − 1

∣∣∣
2

= 4 sin2

[
(x− y) · (A(0)−A( εx+εy

2 ))

2

]
. (5.4)

For any y ∈ Brζ , if |x− y| ≤ 1
ζ ‖φζ‖

1/α
L2 , then |x| ≤ rζ +

1
ζ ‖φζ‖

1/α
L2 . Hence, we have

∣∣∣∣
εx+ εy

2

∣∣∣∣ ≤
ε

2

(
2rζ +

1

ζ
‖φζ‖

1/α
L2

)
.

Since A : RN → RN is continuous, there exists ε0 > 0 such that for any 0 < ε < ε0, we have

∣∣∣∣A(0)−A

(
εx+ εy

2

)∣∣∣∣ ≤ ζ‖φζ‖
−1/α
L2 for |y| ≤ rζ and |x| ≤ rζ +

1

ζ
‖φζ‖

1/α
L2 ,
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which implies
∣∣∣ei(x−y)·(A(0)−A( εx+εy

2 )) − 1
∣∣∣
2

≤ |x− y|2ζ2‖φζ‖
−2/α
L2 .

For all ζ > 0 and y ∈ Brζ , let us define

Nζ,y :=

{
x ∈ R

N : |x− y| ≤
1

ζ
‖φζ‖

1/α
L2

}
.

Then together with the above facts, we have for all 0 < ε < ε0
∫∫

R2N

|φζ(y)|2|ei(x−y)·(A(0)−A( εx+εy
2 )) − 1|2

|x− y|N+2s
dxdy

=

∫

Brζ

|φζ(y)|
2dy

∫

Nζ,y

∣∣∣ei(x−y)·(A(0)−A(εx+εy
2 )) − 1

∣∣∣
2

|x− y|N+2s
dx+

∫

Brζ

|φζ(y)|
2dy

∫

RN\Nζ,y

∣∣∣ei(x−y)·(A(0)−A(εx+εy
2 )) − 1

∣∣∣
2

|x− y|N+2s
dx

≤

∫

Brζ

|φζ(y)|
2dy

∫

Nζ,y

|x− y|2

|x− y|N+2s
ζ2|φζ |

− 2
α

L2 dx+

∫

Brζ

|φζ(y)|
2dy

∫

RN\Nζ,y

4

|x− y|N+2s
dx

≤
1

2− 2s
ζ2s +

4

2s
ζ2s.

This completes the proof.

Next, since V (0) = 0 and suppφζ ⊂ Brζ (0), there is ε∗ > 0 such that

V (εx) ≤
ζ

‖φζ‖2L2

for all |x| ≤ rζ and 0 < ε < ε∗.

This together with Lemma 5.3 implies that

max
t≥0

Ψε(tφζ) ≤
C0

2
t
2/σ
0

(
Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s
)1/σ

+
t20
2
ζ. (5.5)

Therefore, we have for all 0 < ε < min{ε0, ε∗},

max
t≥0

Jε(tψε,ζ) ≤

[
C0

2
t
2/σ
0

(
Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s
)1/σ

+
t20
2
ζ

]
εN−2s. (5.6)

We are now ready to prove the following lemma.

Lemma 5.4. Under the assumptions of Lemma 5.1, for any κ > 0 there exists Eκ > 0 such that for
each 0 < ε < Eκ, there is êε ∈ E with ‖êε‖ε > ̺ε, Jε(êε) ≤ 0, and

max
t∈[0,1]

Jε(têε) ≤ κεN−2s. (5.7)

Proof. Choose ζ > 0 so small that

C0

2
t

2
σ

0

(
Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s
) 1

σ

+
1

2
t20ζ ≤ κ.

Let ψε,ζ ∈ E be the function defined by (5.3). Set Eκ = min{ε0, ε∗}. Let t̂ε > 0 be such that
t̂ε‖ψε,ζ‖ε > ̺ε and Jε(tψε,ζ) ≤ 0 for all t ≥ t̂ε. Invoking (5.6), we let êε = t̂εψε,ζ and check that the
conclusion of Lemma 5.4 holds.
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For any m∗ ∈ N, one can choose m∗ functions φiζ ∈ C∞
0 (RN ) such that suppφiζ ∩ suppφkζ = ∅,

i 6= k, ‖φiζ‖Ls = 1 and
∫∫

R2N

|φiζ(x) − φiζ(y)|
2

|x− y|N+2s
dxdy ≤ Cζ

2N−(N−2s)q
q .

Let rm
∗

ζ > 0 be such that suppφiζ ⊂ Bi
rζ (0) for i = 1, 2, · · · ,m∗. Set

ψi
ζ(x) = eiA(0)xφiζ(x) (5.8)

and
ψi
ε,ζ(x) = ψi

ζ(ε
−1x). (5.9)

Denote
Hm∗

εζ = span{ψ1
ε,ζ , ψ

2
ε,ζ , · · · , ψ

m∗

ε,ζ }.

Observe that for each u =

m∗∑

i=1

ciψ
i
ε,ζ ∈ Hm∗

εζ , we have

[u]2s,Aε
≤ C

m∗∑

i=1

|ci|
2[ψi

ε,ζ ]
2
s,Aε

,

for some constant C > 0,

∫

RN

V (x)|u|2dx =
m∗∑

i=1

|ci|
2

∫

RN

V (x)|ψi
ε,ζ |

2dx

and

1

2∗s

∫

RN

|u|2
∗

sdx+
1

2

∫

RN

H(x, |u|2)dx =

m∗∑

i=1

(
1

2∗s

∫

RN

|ciψ
i
ε,ζ |

2∗sdx+
1

2

∫

RN

H(x, |ciψ
i
ε,ζ |

2)dx

)
.

Therefore

Jε(u) ≤ C

m∗∑

i=1

Jε(ciψ
i
ε,ζ)

for some constant C > 0. By a similar argument as before, we can see that

Jε(ciψ
i
ε,ζ) ≤ εN−2sΨ(|ci|ψ

i
ζ).

As before, we can obtain the following estimate:

max
u∈Hm∗

εζ

Jε(u) ≤ Cm∗

[
C0

2
t
2/σ
0

(
Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s
)1/σ

+
t20
2
ζ

]
εN−2s (5.10)

for all small enough ζ and some constant C > 0. Using the estimate (5.10) we shall prove the
following lemma.

Lemma 5.5. Under the assumptions of Lemma 5.1, for any m∗ ∈ N and κ > 0 there exists Em∗κ > 0
such that for each 0 < ε < Em∗κ, there exists an m∗-dimensional subspace Fεm∗ satisfying

max
u∈Fεm∗

Jε(u) ≤ κεN−2s.
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Proof. Choose ζ > 0 so small that

Cm∗

[
C0

2
t

2
σ

0

(
Cζ

2N−(N−2s)q
q +

1

1− s
ζ2s +

4

s
ζ2s
)1/σ

+
t20
2
ζ

]
≤ κ.

Set Fεm∗ = Hm∗

εζ = span{ψ1
ε,ζ , ψ

2
ε,ζ , · · · , ψ

m∗

ε,ζ }. Now the conclusion of Lemma 5.5 follows from
(5.10).

We are now ready to prove our main result which establishes the existence and multiplicity of
solutions.

Proof of Theorem 3.1 (1). For any 0 < κ < σ0, by Theorem 4.1, we can choose Eκ > 0 and
define for 0 < ε < Eκ, the minimax value

cε := inf
γ∈Γε

max
t∈[0,1]

Jε(têε),

where
Γε := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = êε}.

By Lemma 5.1, we have αε ≤ cε ≤ κεN−2s. By virtue of Theorem 4.1, we know that Jε satisfies
the (PS)cλ condition. In view of Lemmas 5.1 and 5.4, it follows from the mountain pass theorem
that there is uε ∈ E such that J ′

ε(uε) = 0 and Jε(uε) = cε, then uε is a nontrivial mountain pass
solution of problem (3.1).
Since uε is a critical point of Jε, by (M) and (H) we have for τ ∈ [2, 2∗s],

κεN−2s ≥ Jε(uε) = Jε(uε)−
1

τ
J ′
ε(uε)uε

=
1

2
M̃
(
[uε]

2
s,Aε

)
−

1

τ
M
(
[uε]

2
s,Aε

)
[uε]

2
s,Aε

+

(
1

2
−

1

τ

)
ε−2s

∫

RN

V (x)|uε|
2dx

+

(
1

τ
−

1

2∗s

)
ε−2s

∫

RN

|uε|
2∗sdx+ ε−2s

∫

RN

[
1

τ
h(x, |uε|

2)uε −
1

2
H(x, |uε|

2)

]
dx

≥

(
σ

2
−

1

τ

)
α0[uε]

2
s,Aε

+

(
1

2
−

1

τ

)
ε−2s

∫

RN

V (x)|uε|
2dx

+

(
1

τ
−

1

2∗s

)
ε−2s

∫

RN

|uε|
2∗sdx+

(
µ

τ
−

1

2

)
ε−2s

∫

RN

H(x, |uε|
2)dx. (5.11)

Taking τ = 2/σ, we obtain the estimate (3.2) and taking τ = µ we obtain the estimate (3.3). This
completes the proof of the first part of Theorem 3.1.

Proof of Theorem 3.1 (2). Denote the set of all symmetric (in the sense that −Z = Z) and
closed subsets of E by Σ. For each Z ∈ Σ, let gen(Z) be the Krasnoselski genus and

j(Z) := min
ι∈Γm∗

gen(ι(Z) ∩ ∂B̺ε
),

where Γm∗ is the set of all odd homeomorphisms ι ∈ C(E,E) and ̺ε is the number from Lemma
5.1. Then j is a version of Benci’s pseudoindex [7]. Let

cεi := inf
j(Z)≥i

sup
u∈Z

Jε(u), 1 ≤ i ≤ m∗.

Since Jε(u) ≥ αε for all u ∈ ∂B+
̺ε

and j(Fεm∗) = m∗ = dimFεm∗ , we obtain by Lemma 5.5

αε ≤ cε1 ≤ · · · ≤ cεm∗ ≤ sup
u∈Fεm∗

Jε(u) ≤ κεN−2s.
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It follows from Theorem 4.1 that Jε satisfies the (PS)cε condition at all levels c < σ0ε
N−2s. By the

usual critical point theory, all cεi are critical levels and Jε has at least m∗ pairs of nontrivial critical
points satisfying

αε ≤ Jε(uε) ≤ κεN−2s.

Hence, problem (3.1) has at least m∗ pairs of solutions. Finally, as in the proof of the first of
Theorem 3.1, we see that these solutions satisfy the estimates (3.2) and (3.3). This completes the
proof of the second part of Theorem 3.1. ✷
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[12] H. Brézis, L. Nirenberg, Positive solutions of nonlinearelliptic equations involving critical ex-
ponents, Commun. Pure Appl. Math. 34 (1983) 437–477.

19

http://arxiv.org/abs/1607.00170


[13] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm.
Partial Differential Equations 32 (2007) 1245–1260.

[14] P. d’Avenia, M. Squassina, Ground states for fractional magnetic operators, ESAIM: Control
Optim. Calc. Var. doi: 10.1051/cocv/2016071.

[15] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math. 136 (2012) 521–573.

[16] J. Di Cosmo, J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger
equations under a strong external magnetic field, J. Differential Equations 259 (2015) 596–627.

[17] Y.H. Ding, F.H. Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity,
Calc. Var. Partial Differential Equations 30 (2007) 231–249.

[18] Y.H. Ding, Z.-Q. Wang, Bound states of nonlinear Schrödinger equations with magnetic fields,
Annali di Matematica 190 (2011) 427–451.

[19] W. Dong, J. Xu, Z. Wei, Infinitely many weak solutions for a fractional Schrödinger equation,
Boundary Value Problems (2014) 2014 159.

[20] B.H. Feng, Ground states for the fractional Schrödinger equation, Electron. J. Differential
Equations 2013 (2013) 1–11.

[21] G.M. Figueiredo, G.Molica Bisci, R. Servadei, On a fractional Kirchhoff-type equation via
Krasnoselskii’s genus, Asymptotic Anal. 94 (2015) 347–361.

[22] A. Fiscella, A. Pinamonti, E. Vecchi, Multiplicity results for magnetic fractional problems, J.
Differential Equations 263 (2017) 4617–4633.

[23] A. Fiscella, P. Pucci, p–fractional Kirchhoff equations involving critical nonlinearities, Nonlinear
Anal. Real World Appl. 35 (2017) 350–378.

[24] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator,
Nonlinear Anal. 94 (2014) 156–170.

[25] S. Fournais, L. L. Treust, N. Raymond, J. Van Schaftingen, Semiclassical Sobolev constants for
the electro-magnetic Robin Laplacian, to appear in J. Math. Soc. Japan.

[26] S. Liang, S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in
RN , Nonlinear Anal. 81 (2013) 31–41.

[27] S. Liang, J. Zhang, Existence of solutions for Kirchhoff type problems with critical nonlinearity
in R

3, Nonlinear Anal. Real World Appl. 17 (2014) 126–136.

[28] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally
compact case. Parts I and II, Ann. Inst. H. Poincare Anal. Non. Lineaire. 1 (1984). pp. 109–145
and 223–283.

[29] X. Mingqi, P. Pucci, M. Squassina, B.L. Zhang, Nonlocal Schrödinger–Kirchhoff equations with
external magnetic field, Discrete Contin. Dyn. Syst. 37 (2017) 503–521.
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