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NONASSOCIATIVE CYCLIC EXTENSIONS OF FIELDS AND CENTRAL

SIMPLE ALGEBRAS

C. BROWN AND S. PUMPLÜN

Abstract. We define nonassociative cyclic extensions of degree m of both fields and

central simple algebras over fields. If a suitable field contains a primitive mth (resp., qth)

root of unity, we show that suitable nonassociative generalized cyclic division algebras

yield nonassociative cyclic extensions of degree m (resp., qs). Some of Amitsur’s classical

results on non-commutative associative cyclic extensions of both fields and central simple

algebras are obtained as special cases.

Introduction

Analogously as both for commutative field extensions [6, 2, 3, 26] and for associative

cyclic extensions of fields and central simple algebras [5], nonassocative cyclic extensions

of degree m of a field or a central division algebra are investigated separately for prime

characteristics and for the case that the characteristic is zero or a prime p with gcd(p,m) = 1.

Nonassociative cyclic extensions of degree p in characteristic p were already studied in [18].

Let D be a finite-dimensional central division algebra over a field K. An (associative)

central division algebra A over a field F is called a non-commutative cyclic extension of

degree m of D over K, if AutF (A) has a cyclic subgroup of automorphisms of order m which

are all extended from idD, and if A is a free left D-module of rank m [5]. For instance, if F

contains a primitive mth root of unity, then generalized cyclic algebras (D, σ, a) are cyclic

extensions of D of degree m [5, Theorem 6]. We recall that a generalized cyclic algebra

(D, σ, a) is a quotient algebra D[t;σ]/(tm − a)D[t;σ], where D[t;σ] is a twisted polynomial

ring, σ ∈ Aut(D) is an automorphism such that σ|K has finite order m, F0 = Fix(σ) ∩K,

and f(t) = tm − a ∈ D[t;σ] with d ∈ F×

0 . The special case where D = F and F0 = Fix(σ)

yields the cyclic algebra (F/F0, σ, a) [12, p. 19].

A finite-dimensional central simple algebra A over F is called a G-crossed product if it

contains a maximal field extension K/F which is Galois with Galois group G = Gal(K/F ).

If G is solvable then A is called a solvable G-crossed product. In [9] we revisited a result by

Albert [1] on solvable crossed products and gave a proof for Albert’s result using generalized

cyclic algebras following Petit’s approach [17], proving that a G-crossed product is solvable

if and only if it can be constructed as a chain of generalized cyclic algebras. Hence any

solvable G-crossed product division algebra is always a generalized cyclic division algebra.

In particular, hence if F contains a primitive mth root of unity, solvable crossed product

division algebras over F are non-commutative cyclic extensions.

2010 Mathematics Subject Classification. Primary: 17A35; Secondary: 17A60, 16S36.

Key words and phrases. Skew polynomial, Ore polynomial, cyclic algebra, cyclic extension.

1

http://arxiv.org/abs/1803.05698v1


2 C. BROWN AND S. PUMPLÜN

A generalization of associative cyclic extensions of simple rings instead of division rings

was considered in [13].

In this paper, we define and investigate nonassociative cyclic extensions of degree m of

both fields and central simple algebras employing nonassociative generalized cyclic division

algebras: Let A be a unital nonassociative division algebra. Then A is called a nonassociative

cyclic extension of D of degree m, if A is a free left D-module of rank m and Aut(A) has a

cyclic subgroup G of order m, such that for all H ∈ G, H |D = idD.

We show that if F contains a primitive mth root of unity (i.e., F has characteristic 0

or characteristic p with gcd(m, p) = 1), then the nonassociative generalized cyclic division

algebras (D, σ, a) = D[t;σ]/(tm−a)D[t;σ] with a ∈ D× are nonassociative cyclic extensions

of D of degree m. Additionally, the subgroup of order m in AutF0
(D, σ, a) that consists of

automorphisms extending idD contains only inner automorphisms (Corollary 10). We also

investigate the structure of the automorphism groups of nonassociative generalized cyclic

algebras in general.

Note that nonassociative cyclic division algebras (K/F, σ, a) are a special case of nonas-

sociative generalized cyclic division algebras. If F contains a primitive mth root of unity the

nonassociative cyclic division algebras (K/F, σ, a) are nonassociative cyclic extensions of K

of degree m. The subgroup of the automorphisms extending idK has order m, is isomorphic

to ker(NK/F ), and contains only inner automorphisms. If F has no non-trivial mth root

of unity and a ∈ K× is not contained in any proper subfield of K, all automorphisms of

(K/F, σ, a) are inner and leave idK fixed (Theorem 3).

We point out that nonassociative generalized cyclic algebras have been recently success-

fully used both in constructing space-time block codes and linear codes [19, 20, 21, 22].

The paper is organized as follows: After introducing the basic terminology in Section 1,

we define nonassociative cyclic extensions and nonassociative generalized cyclic algebras in

Section 2 and investigate nonassociative cyclic extensions of a field. In Section 3 we show

when generalized cyclic division algebras (D, σ, d) are nonassociative cyclic extensions of D

of degree m. We briefly look at the question when a nonassociative overring is a nonasso-

ciative cyclic extension of a field or a central simple algebra in Section 4.

The results presented in this paper complements the ones for the nonassociative algebras

(K, δ, d) = K[t; δ]/K[t; δ]f(t) for f(t) = tp − t − d ∈ K[t; δ] constructed using a field K of

characteristic p together with some derivation δ with minimum polynomial g(t) = tp − t ∈

F [t], F = Const(δ), and of the nonassociative algebras (D, δ, d) = D[t; δ]/D[t; δ]f(t) for

f(t) = tp − t − d ∈ D[t; δ] constructed using a division algebra D, where the derivation δ

has minimum polynomial g(t) = tp − t ∈ F [t] and the field F characteristic p. [18].

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be an F -vector space. A is an

algebra over F if there exists an F -bilinear map A×A → A, (x, y) 7→ x · y, denoted simply

by juxtaposition xy, the multiplication of A. An algebra A is called unital if there is an
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element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only consider

unital algebras without saying so explicitly.

The associator of A is given by [x, y, z] = (xy)z−x(yz). The left nucleus of A is defined as

Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus of A is Nucm(A) = {x ∈ A | [A, x,A] =

0} and the right nucleus of A is Nucr(A) = {x ∈ A | [A,A, x] = 0}. Nucl(A), Nucm(A), and

Nucr(A) are associative subalgebras of A. Their intersection Nuc(A) = {x ∈ A | [x,A,A] =

[A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative subalgebra of A

containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z lies in Nuc(A). The

center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication

with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A has

finite dimension over F , A is a division algebra if and only if A has no zero divisors [24, pp.

15, 16]. An element 0 6= a ∈ A has a left inverse al ∈ A, if Ra(al) = ala = 1, and a right

inverse ar ∈ A, if La(ar) = aar = 1. If mr = ml then we denote this element by m−1.

An automorphism G ∈ AutF (A) is an inner automorphism if there is an element m ∈ A

with left inverse ml such that G(x) = (mlx)m for all x ∈ A. We denote such an automor-

phism by Gm. The set of inner automorphisms {Gm |m ∈ Nuc(A) invertible} is a subgroup

of AutF (A). Note that if the nucleus of A is commutative, then for all 0 6= n ∈ Nuc(A),

Gn(x) = (n−1x)n = n−1xn is an inner automorphism of A such that Gn|Nuc(A) = idNuc(A).

1.2. Division algebras obtained from twisted polynomial rings. Let D be a unital

division ring and σ a ring automorphism of D. The twisted polynomial ring D[t;σ] is the set

of polynomials a0 + a1t + · · · + ant
n with ai ∈ D, where addition is defined term-wise and

multiplication by ta = σ(a)t (a ∈ D) [16]. That means, atnbtm = aσn(b)tn+m and tna =

σn(a)tn for all a, b ∈ D [12, p. 2]. R = D[t;σ] is a left principal ideal domain and there is

a right division algorithm in R, i.e. for all g, f ∈ R, f 6= 0, there exist unique r, q ∈ R such

that deg(r) < deg(f) and g = qf + r [12, p. 3]. (Our terminology is the one used by Petit

[17] and different from Jacobson’s [12], who calls what we call right a left division algorithm

and vice versa.)

An element f ∈ R is irreducible in R if it is no unit and it has no proper factors, i.e there

do not exist g, h ∈ R such that f = gh [12, p. 11].

Let f ∈ D[t;σ] be of degree m and let modrf denote the remainder of right division by

f . Then the vector space Rm = {g ∈ D[t;σ] | deg(g) < m} together with the multiplication

g ◦ h = gh modrf

becomes a unital nonassociative algebra Sf = (Rm, ◦) over F0 = {z ∈ D | zh = hz for all h ∈

Sf} (cf. [17, (7)]), and F0 is a subfield of D. We also denote this algebra R/Rf .

We note that when deg(g)deg(h) < m, the multiplication of g and h in Sf is the same as

the multiplication of g and h in R [17, (10)].

A twisted polynomial f ∈ R is right-invariant if fR ⊂ Rf . If f is right invariant then

Rf is a two-sided ideal and conversely, every two-sided ideal in R arises this way.

Sf is associative if and only if f is right-invariant. In that case, Sf is the usual quotient

algebra D[t; δ]/(f) [17, (9)].
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2. Nonassociative generalized cyclic algebras and nonassociative cyclic

extensions

In the following, let D be a division algebra which is finite-dimensional over its center

F = C(D) and σ ∈ Aut(D) such that σ|F has finite order m and fixed field F0 = Fix(σ)∩F .

Note that F/F0 is automatically a cyclic Galois field extension of degreem with Gal(F/F0) =

〈σ|F 〉.

2.1. Following Jacobson [12, p. 19], an (associative) generalized cyclic algebra is an asso-

ciative algebra Sf = D[t;σ]/D[t;σ]f constructed using a right-invariant twisted polynomial

f(t) = tm − d ∈ D[t;σ]

with d ∈ F×

0 . We write (D, σ, d) for this algebra. If D is a central simple algebra over F of

degree n, then (D, σ, d) is a central simple algebra over F0 of degree mn and the centralizer

of D in (D, σ, d) is F [12, p. 20]. In particular, if D = F , F/F0 is a cyclic Galois extension

of degree m with Galois group generated by σ and f(t) = tm − d ∈ F [t;σ], we obtain the

cyclic algebra (F/F0, σ, d) of degree m.

This definition generalizes to nonassociative algebras as follows:

Definition 1. A nonassociative generalized cyclic algebra of degree mn is an algebra Sf =

D[t;σ]/D[t;σ]f over F0 with f(t) = tm − d ∈ D[t;σ], d ∈ D×. We denote this algebra by

(D, σ, d).

The algebra A = (D, σ, d), d ∈ D×, has dimension m2n2 over F0. In particular, if D = F

and F/F0 is a cyclic Galois extension of degree m with Galois group generated by σ, then

(F/F0, σ, d) is a nonassociative cyclic algebra [25]. A is associative if and only if d ∈ F0. If

(D, σ, d) is not associative then Nucl(A) = Nucm(A) = D and Nucr(A) = {g ∈ Sf | fg ∈

Rf}.

(D, σ, d) is a division algebra over F0 if and only if f(t) = tm − d ∈ D[t;σ] is irreducible

[17, (7)]. Moreover, we know that f(t) = t2−d ∈ D[t;σ] is irreducible if and only if σ(z)z 6= d

for all z ∈ D, f(t) = t3−d ∈ D[t;σ] is irreducible if and only if d 6= σ2(z)σ(z)z for all z ∈ D,

and f(t) = t4 − d ∈ D[t;σ] is irreducible if and only if

σ2(y)σ(y)y + σ2(x)y + σ2(y)σ(x) 6= 0 or σ2(x)x + σ2(y)σ(y)x 6= d

for all x, y ∈ D (cf. [17] or [19], [7, Theorem 3.19], see also [11]). More generally, if F0

contains a primitive mth root of unity and m is prime then f(t) = tm − d ∈ D[t;σ] is

irreducible if and only if d 6= σm−1(z) · · ·σ(z)z for all z ∈ D ([7, Theorem 3.11], see also [19,

Theorem 6]).

Amitsur’s definition [5] of cyclic extensions generalizes to the nonassociative setting as

follows:

Definition 2. Let m ≥ 2. Let A be a nonassociative division algebra with center F0 and D

an associative division algebra with center F . Then A is a nonassociative cyclic extension

of D of degree m, if A is a free left D-module of rank m and Aut(A) has a cyclic subgroup

G of order m, such that for all H ∈ G, H |D = id.
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2.2. Nonassociative cyclic extensions of a field. For a nonassociative cyclic algebra

(K/F, σ, d) of degree m, and for all k ∈ K such that NK/F (k) = 1, the map

Hid,k(

m−1
∑

i=0

ait
i) = a0 +

m−1
∑

i=1

ai
(

i−1
∏

l=0

σl(k)
)

ti

is an inner F -automorphism of (K/F, σ, d) extending idK . The subgroup generated by the

automorphisms Hid,k is isomorphic to ker(NK/F ) [8, Theorem 19].

The maps Hid,k are the only F -automorphisms of (K/F, σ, d), unless for some j ∈

{1, . . . ,m − 1}, σj can be extended to an F -automorphism of (K/F, σ, d) as well. More

precisely, the automorphism τ = σj with j ∈ {1, . . . ,m − 1} can be extended to an F -

automorphism H of (K/F, σ, d), if and only if there is an element k ∈ K such that

(1) σj(d) = NK/F (k)d.

The extension then has the form H = Hτ,k with

(2) Hτ,k(

m−1
∑

i=0

ait
i) = τ(a0) +

m−1
∑

i=1

τ(ai)
(

i−1
∏

l=0

σl(k)
)

ti

[8, Theorem 4]. We then immediately get the following partial generalization of [5, Theorem

6]:

Theorem 1. Suppose F contains a primitive mth root of unity ω, A = (K/F, σ, d) is a

nonassociative cyclic division algebra of degree m over F , and d ∈ K \ F . Then A is a

nonassociative cyclic extension of K of degree m. The generating automorphism of the

subgroup of AutF (A) of order m is given by Hid,ω.

Proof. 〈Hid,ω〉 is a cyclic subgroup of AutF (A) of order m by [8, Theorem 20]. It consists

of automorphisms extending idK , therefore A is a nonassociative cyclic extension of K. �

Corollary 2. If m is prime, F contains a primitive mth root of unity and K/F is a cyclic

Galois extension of degree m, then K has a nonassociative cyclic extension of degree m.

Proof. Let d ∈ K \ F and suppose Gal(K/F ) = 〈σ〉. Then since m is prime, the nonasso-

ciative cyclic algebra A = (K/F, σ, d) is a division algebra [25, Corollary 4.5]. Thus A is a

nonassociative cyclic extension of K by Theorem 1. �

If F has no non-trivial mth root of unity, we obtain:

Theorem 3. Suppose F has no non-trivial mth root of unity. Let A = (K/F, σ, d) be a

nonassociative cyclic algebra of degree m where d ∈ K× is not contained in any proper

subfield of K. Then every F -automorphism of A leaves K fixed and

AutF (A) ∼= ker(NK/F ).

In particular, all automorphisms of A are inner.
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Proof. Every automorphism of A has the formHid,k: suppose that there exist j ∈ {1, . . . ,m−

1} and k ∈ K× such that Hσj ,k ∈ AutF (A). This implies H2
σj ,k = Hσj ,k ◦Hσj ,k ∈ AutF (A)

and

H2
σj ,k

(

m−1
∑

i=0

xit
i
)

= σ2j(x0) +
m−1
∑

i=1

σ2j(xi)
(

i−1
∏

q=0

σj+q(k)σq(k)
)

ti.(3)

Now H2
σj ,k must have the form Hσ2j ,l for some l ∈ K×, and comparing (2) and (3) yields

l = kσj(k). Similarly, H3
σj ,k = Hσ3j ,s ∈ AutF (A) where s = kσj(k)σ2j(k). Continuing

in this manner we conclude that the automorphisms Hσj ,k, Hσ2j ,l, Hσ3j ,s, . . . all satisfy (1)

implying that

σj(d) = NK/F (k)d,

σ2j(d) = NK/F (kσ
j(k))d = NK/F (k)

2d,

...
...

d = σnj(d) = NK/F (k)
nd,

(4)

where n = m/gcd(j,m) is the order of σj . Note that σij(d) 6= d for all i ∈ {1, . . . , n−1} since

d is not contained in any proper subfield of K. Therefore NK/F (k)
n = 1 and NK/F (k)

i 6= 1

for all i ∈ {1, . . . , n− 1} by (4), i.e. NK/F (k) is a primitive nth root of unity, thus also an

mth root of unity, a contradiction. This proves the assertion. �

Note that if d ∈ K× is not contained in any proper subfield of K then 1, d, . . . , dm−1 are

linearly independent over F and thus A is a division algebra [25]. In particular, if m is prime

then 1, d, . . . , dm−1 are linearly independent over F . This yields for a field F of arbitrary

characteristic:

Corollary 4. Suppose that F has no non-trivial mth root of unity. If d ∈ K× is not

contained in any proper subfield of K (e.g. if m is prime), and ker(NK/F ) has a subgroup

of order m, then any cyclic algebra A = (K/F, σ, d) is a cyclic extension of K of degree m.

Example 5. Let K = Fqm be a finite field, q = pr for some prime p, σ an automorphism of

K of order m ≥ 2 and F = Fix(σ) = Fq, i.e. K/F is a cyclic Galois extension of degree m

with Gal(K/F ) = 〈σ〉. Then ker(NK/F ) is a cyclic group of order s = (qm − 1)/(q − 1) and

any division algebra (K/F, σ, d) has exactly s inner automorphisms, all of them extending

idK . The subgroup they generate is cyclic and isomorphic to ker(NK/F ) [10]. Hence if

m divides s, which is the case if F contains a primitive mth root of unity, then there is

a subgroup of automorphisms of order m extending idK and hence (K/F, σ, d) is a cyclic

extension of K of degree m.

3. Nonassociative cyclic extensions of a central simple algebra

3.1. From now until stated otherwise, let A = (D, σ, d) be a nonassociative generalized

cyclic algebra of degree mn over F0, for some d ∈ D \ F0. We first determine the automor-

phisms of A:
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Theorem 6. (i) Suppose τ ∈ AutF0
(D) commutes with σ. Then τ can be extended to

an automorphism H ∈ AutF0
(A), if and only if there is some k ∈ F× such that τ(d) =

NF/F0
(k)d. In that case, the extension H of τ has the form H = Hτ,k with

Hτ,k(

m−1
∑

i=0

ait
i) = τ(a0) +

m−1
∑

i=1

τ(ai)
(

i−1
∏

l=0

σl(k)
)

ti.

All maps Hτ,k where τ ∈ AutF0
(D) commutes with σ and where k ∈ F× such that τ(d) =

NF/F0
(k)d (hence NF/F0

(k)mn = 1), are automorphisms of A.

In particular, for τ 6= id and d 6∈ Fix(τ), NF/F0
(k) 6= 1.

(ii) id ∈ Aut(D) can be extended to an automorphism H ∈ AutF0
(A), if and only if there

is some k ∈ F× such that NF/F0
(k) = 1. In that case, the extension H of id has the form

H = Hid,k with

Hid,k(

m−1
∑

i=0

ait
i) = a0 +

m−1
∑

i=1

ai
(

i−1
∏

l=0

σl(k)
)

ti.

All Hid,k where k ∈ F× such that NF/F0
(k) = 1 are automorphisms of A.

Proof. (i) Let H ∈ AutF0
(A), then H |D ∈ AutF0

(D), since H leaves the left nucleus invari-

ant. Thus H |D = τ for some τ ∈ AutF0
(D). Write H(t) =

∑m−1
i=0 kit

i for some ki ∈ D, then

we have

H(tz) = H(t)H(z) =
(

m−1
∑

i=0

kit
i
)

τ(z) =

m−1
∑

i=0

kiσ
i(τ(z))ti,

and

H(tz) = H(σ(z)t) = τ(σ(z))

m−1
∑

i=0

kit
i =

m−1
∑

i=0

τ(σ(z))kit
i

for all z ∈ D. Comparing the coefficients of ti yields

kiσ
i(τ(z)) = kiτ(σ

i(z)) = τ(σ(z))ki for all i = {0, . . . ,m− 1}

for all z ∈ D since σ and τ commute. In particular, we obtain

ki(τ(σ
i(z))− τ(σ(z))) = 0 for all i ∈ {0, . . . ,m− 1}

for all z ∈ F , i.e. ki = 0 or σ|F = σi|F for all i ∈ {0, . . . ,m− 1}. As σ|F has order m, this

means ki = 0 for all 1 6= i ∈ {0, . . . ,m− 1}. For i = 1, this yields k1τ(σ(z)) = τ(σ(z))k1 for

all z ∈ D, hence k1 ∈ F . This implies H(t) = kt for some k ∈ F×.

Since

H(zti) = H(z)H(t)i = τ(z)(kt)i = τ(z)
(

i−1
∏

l=0

σl(k)
)

ti,

for all i ∈ {1, . . . ,m− 1} and all z ∈ D, H has the form

Hτ,k :

m−1
∑

i=0

ait
i 7→ τ(a0) +

m−1
∑

i=1

τ(ai)
(

i−1
∏

l=0

σl(k)
)

ti,

for some k ∈ F×.

Comparing the constant terms in H(t)m = H(tm) = H(d) implies

τ(d) = kσ(k) · · ·σm−1(k)d = NF/F0
(k)d.
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Let N = NF/F0
◦ND/F be the norm of the F0-algebra D. Applying N to both sides of the

equation yields N(d) = N(k)mN(d), so that N(k)m = 1. Now k ∈ F× and D has degree n,

thus

N(k) = NF/F0
(ND/F (k)) = NF/F0

(kn) = NF/F0
(k)n,

and so N(k)m = NF/F0
(k)nm = 1.

Finally, the fact that the maps Hτ,k are automorphisms when τ commutes with σ, and

τ(d) = NF/F0
(k)d, can be shown similarly to the proof of [8, Theorem 4], see also [7].

(ii) In particular, for τ = id, we get from (i) that H has the form

Hid,k :

m−1
∑

i=0

ait
i 7→ a0 +

m−1
∑

i=1

ai
(

i−1
∏

l=0

σl(k)
)

ti

for some k ∈ F× with kσ(k) · · · σm−1(k) = NF/F0
(k) = 1. �

The above is proved for a more general set-up in the first author’s PhD thesis [7]. Note

that the automorphisms Hτ,k are restrictions of automorphisms of the twisted polynomial

ring D[t;σ].

Corollary 7. (i) The subgroup of F0-automorphisms of A extending idD ∈ AutF0
(D) is

isomorphic to

{k ∈ F× | kσ(k) · · ·σm−1(k) = 1}.

(ii) If F0 contains a primitive mth root of unity ω, then 〈Hid,ω〉 is a cyclic subgroup of

AutF0
(A) of order m.

3.2. We obtain the following generalization of [5, Theorem 6]:

Corollary 8. Suppose F0 contains a primitive mth root of unity. If f(t) = tm − d ∈ D[t;σ]

is irreducible, then A is a nonassociative cyclic extension of D of degree m. In particular,

if m is prime and

d 6= σm−1(z) · · ·σ(z)z

for all z ∈ D, then A is a nonassociative cyclic extension of D of degree m.

Proof. If F0 contains a primitive mth root of unity ω, then 〈Hid,ω〉 is a cyclic subgroup of

AutF0
(A) of order m by Corollary 7 (ii). If m is prime, then f(t) = tm − d ∈ D[t;σ] is

irreducible if and only if

d 6= σm−1(z) · · ·σ(z)z

for all z ∈ D. The rest is trivial. �

Proposition 9. Every automorphism Hid,k of A is an inner automorphism

Gc(

m−1
∑

i=0

ait
i) = (c−1

m−1
∑

i=0

ait
i)c

for some c ∈ F× satisfying k = σ(c)c−1.
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Proof. For all k ∈ F such that NF/F0
(k) = 1, Hid,k is an F -automorphism extending idD.

These are the only F0-automorphisms of A, unless τ 6= id can be also extended. By Hilbert’s

Satz 90, NF/F0
(k) = 1 if and only if there is c ∈ F× such that k = c−1σ(c) [14]. So there is

c ∈ F× such that k = c−1σ(c) and

kσ(k) · · ·σi−1(k) = cσi(c), i = 1. . . . ,m− 1

yields that Hid,k = G with

G(

m−1
∑

i=0

ait
i) = a0 + a1c

−1σ(c)t+

m−1
∑

i=2

aic
−1σi(c)ti,

which is an inner automorphism, since G = Gc with

Gc(

m−1
∑

i=0

ait
i) = (c−1

m−1
∑

i=0

ait
i)c.

Note that here we use that F = C(D). �

Corollary 10. If F0 contains a primitive mth root of unity ω, then A is a cyclic extension

of D of order m, and all automorphisms extending idD are inner.

Example 11. Let F and L be fields and let K be a cyclic Galois extension of both F and L

such that [K : F ] = n, [K : L] = m, Gal(K/F ) = 〈γ〉 and Gal(K/L) = 〈σ〉, and σ◦γ = γ◦σ.

Define F0 = F ∩ L.

LetD = (K/F, γ, c) be a cyclic division algebra of degree n with c ∈ F0, i.e. D ∼= D0⊗F0
K

for some cyclic algebra D0 = (F/F0, γ, c). Let 1, e. . . . , en−1 be the canonical basis of D,

that is en = c, ex = γ(x)e for every x ∈ K. For x = x0 + x1e+ x2e
2 + · · ·+ xn−1e

n−1 ∈ D,

define an L-linear map σ ∈ AutL(D) via

σ(x) = σ(x0) + σ(x1)e+ σ(x2)e
2 + · · ·+ σ(xn−1)e

n−1

(note that c ∈ L implies σ(xy) = σ(x)σ(y) for all x, y ∈ D). Then σ ∈ AutF0
(D) has order

m. For all d ∈ D×,

D[t;σ]/D[t;σ](tm − d) = (D, σ, d)

is a generalized nonassociative cyclic algebra of degree mn over F0 (used for instance in

[20]). (D, σ, d) is associative if and only if d ∈ F0. In the special case that d ∈ F×,

(D, σ, d) = (L/F0, γ, c)⊗F0
(F/F0, σ, d)

is the tensor product of an associative and a nonassociative cyclic algebra.

If F0 contains a primitive mth root of unity and d ∈ D× \ F0 is chosen such that f(t) =

tm − d ∈ D[t;σ] is irreducible, then (D, σ, d) is a cyclic extension of D of order m, and

all automorphisms extending idD are inner (Corollary 10). Recall that if m is prime then

f(t) = tm − d ∈ D[t;σ] is irreducible if and only if d 6= σm−1(z) · · ·σ(z)z for all z ∈ D.

For m = 2, this algebra is studied in [21], and used in the codes constructed in [15]. For

d ∈ F× the algebra is used in [23], see also [20].
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3.3. In the following, let D be a division algebra which is finite-dimensional over its center

F = C(D), σ ∈ Aut(D) an automorphism such that σ|F has finite order q and fixed

field F0 = Fix(σ) ∩ F . If D has degree n then the associative generalized cyclic algebra

A = (D, σ, a) has degree qn over F0. We choose a ∈ F0 such that A is a division algebra.

Now assume F0 contains a primitive qth root of unity ω. Then τ = HidD,ω : A → A

generates a cyclic subgroup of AutF0
(A) of order q by [5, Theorem 6] which consists of

automorphisms which all extend idD. We obtain the following generalization of [5, Theorem

7]:

Theorem 12. Suppose there exists ρ ∈ Aut(A), b ∈ A and 1 6= k ∈ F0 such that

(1) τ commutes with ρ,

(2) τ(b) = kρ(k) · · · ρm−1(k)b,

(3) kq is a primitive mth root of unity,

(4) tm − b ∈ A[t; ρ] is irreducible, and

(5) the algebra B = A[t; ρ]/A[t; ρ](tm − b) is either associative, or finite-dimensional over

F0 ∩ Fix(ρ), or finite-dimensional over Nucr(B).

Then B is a nonassociative cyclic extension of D of degree mq which contains A.

Proof. Since B is a free left A-module of rank m and A is a free left D-module of rank q,

B is a free left D-module of rank mq. Furthermore, (4) and (5) yield that B is a division

algebra by [17, (7)]. Define the map

Hτ,k : B → B,

m−1
∑

i=0

xit
i 7→ τ(x0) +

m−1
∑

i=1

τ(xi)
(

i−1
∏

l=0

ρl(k)
)

ti (xi ∈ A),

then (1) and (2) together imply that Hτ,k is an automorphism of B by [8, Theorem 4].

Hτ,k has order mq: We have τ(k) = k because k ∈ F0 ⊂ D. Therefore straightforward

calculations yield H2
τ,k = Hτ,k ◦Hτ,k = Hτ2,kτ(k) = Hτ2,k2 , H3

τ,k = Hτ3,k3 etc., thus Hτ,k

will have order at least q. After q steps we obtain Hq
τ,k = HidA,v with v = kq and so Hτ,k

has order mq by (3).

Finally Hτ,k|D = τ |D = idD, hence we conclude B is a nonassociative cyclic extension of

D of degree mq. �

4. When is an ring a nonassociative cyclic extension?

A nonassociative ring A 6= 0 is called a right division ring, if for all a ∈ A, a 6= 0, the right

multiplication with a, Ra(x) = xa, is bijective. If D is a division ring and f is irreducible,

then Sf = D[t;σ]/D[t;σ]f is a right division algebra and has no zero divisors ([17, (6)] or

[11]).

Theorem 13. (cf. [17, (3), (6)])

(i) Let S be a nonassociative ring with multiplication ◦. Suppose that

(1) S has an associative subring D which is a division algebra and S is a free left D-module

of rank m, and there is t ∈ S such that tj, 0 ≤ i < m is a basis of S over D, when defining

tj+1 = t ◦ tj, t0 = 1;

(2) for all a ∈ D, a 6= 0, there are a1, a2 ∈ D, a1 6= 0, such that t ◦ a = a1 ◦ t+ a2;
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(3) for all a, b, c ∈ D, i+ j < m, k < m, we have [a ◦ ti, b ◦ tj , c ◦ tk] = 0.

Then S ∼= Sf with f(t) ∈ D[t;σ, δ] and σ, δ defined via t ◦ a = σ(a) ◦ t + δ(a) and where

the polynomial f(t) = tm −
∑m−1

i=0 dit
i is given by tm =

∑m−1
i=0 dit

i with t0 = 1, ti+1 = t ◦ ti,

0 ≤ i < m.

(ii) If S is a right division ring in (i) then f is irreducible.

Theorem 13 yields the nonassociative analogues to the existence conditions for associative

cyclic extensions in [5, Theorem 6].

Theorem 14. (i) Let S be a nonassociative ring with multiplication ◦, which has a field K

as a subring, and is a free left K-vector space of dimension m. Suppose that

(1) there is t ∈ S such that ti, 0 ≤ i < m, is a basis of S over K when defining t0 = 1,

ti+1 = t ◦ ti, 0 ≤ i < m;

(2) for all a ∈ K, a 6= 0, there is a′ ∈ K×, such that t ◦ a = a′ ◦ t;

(3) for all a, b, c ∈ K, i+ j < m, k < m, we have [a ◦ ti, b ◦ tj , c ◦ tk] = 0;

(4) tm = d for some d ∈ K×;

(5) the map σ : K → K, σ(a) = a′, has order m and fixed field F = {a ∈ K | t ◦ a = a ◦ t}

containing a primitive mth root of unity ω, and K/F is a finite cyclic Galois extension.

Then S ∼= Sf = (K/F, σ, d) with f(t) = tm − d ∈ K[t;σ].

(ii) If S is a right division ring in (i) then f is irreducible and S ∼= (K/F, σ, d) is a nonas-

sociative cyclic extension of K of degree m.

Proof. (1), (2) and (3) imply that S ∼= Sf with f ∈ K[t;σ] and σ defined via t◦a = σ(a)◦ t,

i.e. σ(a) = a′, and where the polynomial f(t) = tm−
∑m−1

i=0 dit
i is given by tm =

∑m−1
i=0 dit

i

for some suitably chosen di (cf. [17, (3)]). (4) implies that indeed f(t) = tm − d. (5)

guarantees that (K/F, σ, d) where F contains a primitive mth root of unity ω.

(ii) Here we are in the setup of Theorem 1 which yields the assertion: F contains a primitive

mth root of unity ω, so 〈Hid,ω〉 is a cyclic subgroup of order m of the division algebra

(K/F, σ, d). �

For nonassociative cyclic extensions of a central simple algebraD we obtain from Theorem

13:

Theorem 15. (i) Let S be a nonassociative ring with multiplication ◦, which has an as-

sociative subring D which is a division algebra and S is a free left D-module of rank m.

Suppose that

(1) there is t ∈ S such that ti, 0 ≤ i < m, is a basis of S over D when defining t0 = 1,

ti+1 = t ◦ ti, 0 ≤ i < m;

(2) for all a ∈ D, a 6= 0, there are a′ ∈ D, a′ 6= 0, such that t ◦ a = a′ ◦ t;

(3) for all a, b, c ∈ D, i+ j < m, k < m, we have [a ◦ ti, b ◦ tj , c ◦ tk] = 0;

(4) tm = d;

(5) the map σ : D → D, σ(a) = a′, has order m, fixed field {a ∈ D | t ◦ a = a ◦ t} and D/F

is a central simple algebra, where F0 = F ∩Fix(σ) contains a primitive mth root of unity ω.

Then S ∼= Sf = (D, σ, d) with f(t) = tm − d ∈ D[t;σ].

(ii) If S is a right division ring and D a central simple algebra in (i), then f is irreducible

and S a nonassociative cyclic extension of D of degree m.
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Proof. (1), (2) and (3) imply that S ∼= Sf with f ∈ D[t;σ] and σ defined via t ◦ a = σ(a) ◦ t,

i.e. σ(a) = a′, and where the polynomial f(t) = tm−
∑m−1

i=0 dit
i is given by tm =

∑m−1
i=0 dit

i

for some suitably chosen di (cf. [17, (3)]). (4) implies f(t) = tm − d. (5) guarantees that

S ∼= (D, σ, d) where F contains a primitive mth root of unity ω.

(ii) Here we are in the setup of Theorem 6 which yields the assertion, since F contains a

primitive mth root of unity ω, 〈Hid,ω〉 is a cyclic subgroup of order m of the division algebra

(D, σ, d). �
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