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Summary

In this paper we deal with the analysis of the solutions of traffic flow models at mul-
tiple scales, both in the case of a single road and of road networks. We are especially
interested in measuring the distance between traffic states (as they result from the
mathematical modeling) and investigating whether these distances are somehow pre-
served passing from the microscopic to the macroscopic scale. By means of both
theoretical and numerical investigations, we show that, on a single road, the notion of
Wasserstein distance fully catches the human perception of distance independently
of the scale, while in the case of networks it partially loses its nice properties.
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1 INTRODUCTION

In this paper we deal with the analysis of the solutions of traffic flow models at multiple scales. More precisely, we are interested
in measuring the distance between traffic states (as they result from the mathematical modeling) and investigating whether these
distances are somehow preserved passing from the microscopic to the macroscopic scale. We will consider both the case of a
single road and of road networks.
Connections between microscopic (agent-based) and macroscopic (fluid-dynamics) traffic flowmodels are already well estab-

lished. Aw et al.1, Greenberg2, and Di Francesco et al.3 investigated the many-particle limit in the framework of second-order
traffic models, deriving the macroscopic ARZ4,5 model from a particular second-order microscopic FtL6,7 model. Instead
Colombo and Rossi,8 Rossi,9 Di Francesco and Rosini,10 and Di Francesco et al.11 investigated the many-particle limit in the
framework of first-order traffic models, deriving the LWR12,13 model as the limit of a specific first-order FtL model. Let us also
mention the papers by Forcadel et al.,14 Forcadel and Salazar15 which investigate the many-particle limit exploiting the link
between conservation laws and Hamilton-Jacobi equations.
Moving to road networks, analogous connections are rarer. This is probably due to the fact that macroscopic traffic models on

networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at
junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in
different ways near the junctions. In this context let us mention the paper by Cristiani and Sahu16 which investigates the many-
particle limit of a first-order FtL model suitably extended to a road network. The corresponding macroscopic model appears to
be the extension of the LWR model on networks introduced by Hilliges and Weidlich17 and then extensively studied by Briani
and Cristiani18 and Bretti et al.19

0Abbreviations: ODE, ordinary differential equation; PDE, partial differential equation; LWR, Ligthill-Whitham-Richards; ARZ, Aw-Rascle-Zhang; FtL, Follow-
the-Leader; LP, linear programming
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2 CRISTIANI ET AL

This paper focuses in particular on the comparison of solutions to the equations associated to first-order traffic models. It
is useful to note here that many problems require the comparison of traffic states, or, in other words, the computation of the
“distance” between two vehicle arrangements (at microscopic scale) or vehicle density distributions (at macroscopic scale). For
example,

• Theoretical study of scalar conservation laws.

• Sensitivity analysis (quantifying how the uncertainty in the outputs of a model can be apportioned to different sources of
uncertainty in the inputs).

• Convergence of the numerical schemes (verifying that the numerical solution is close to the exact solution).

• Calibration (finding the values of the parameters for the predicted outputs to be as close as possible to the observed ones).

• Validation (checking if the outputs are close to the observed ones).

The question arises as to which notion of distance is the more appropriate in our context. Regarding conservation laws, which
are the foundations of macroscopic models like LWR and ARZ, it is nowadays quite established thatLp-distances are inadequate
for comparing solutions, i.e. vehicular density functions, since they lead to results which can mismatch the human perception
of physical distance.20, Sect. 7.1, 21 For example, the Lp-distance between two density functions �♭ and �♯ with equal total mass
∫ℝ �

♭dx = ∫ℝ �
♯dx = 1 and disjoint supports is equal to 2, regardless how “far” the masses are. A notion of distance which

instead better matches the intuition is that of Wasserstein distance (also known as Lip′-norm, earth mover’s distance, d̄-metric,
Mallows distance), which is able to quantify the effort needed to transport a certain amount of mass for a certain distance.
Unfortunately, a mere application of the Wasserstein distance in a microscopic framework would only be meaningful under the
assumptions that vehicles are indistinguishable and interchangeable, which of course do not hold true (ask drivers).

In this paper we study some distances between microscopic and macroscopic traffic states, which are actually usable in the
context of traffic flow. Then we investigate under which assumptions they coincide and we study their behavior as the number
of vehicles goes to infinity, in order to catch their scale-preserving properties.

The paper is organized as follows. In Section 2 we present the main ingredients of our investigations, i.e. the microscopic FtL
model, the macroscopic LWRmodel, and the limit relation between the two models (on a single road and on road networks). We
also recall the definition of Wasserstein distance. For all of these notions, references for numerical approximation are given. In
Section 3 we introduce the definition of some distance functions particularly suitable for comparing traffic states at micro- and
macro-scale. In Section 4 we investigate from the theoretical and numerical point of view the relations between the previously
introduced distance functions in the case of a single road. In Section 5 we replicate the analysis of Section 4 on a road network.
Finally, in Section 6 we sketch some conclusions.

2 INGREDIENTS

2.1 Many-particle limit on a single road
Let us assume that vehicles move on a single infinite road with a single lane, and that they cannot overtake each other.

2.1.1 FtL model
Adopting a microscopic point of view, we assume that we are able to track the position of every single vehicle on the road.
Moreover, we assume that the dynamics of each vehicle depend only on the vehicle itself and the vehicle in front of it, so that,
in a cascade, the whole traffic flow is determined by the dynamics of the very first vehicle, termed the leader.
We denote by n ∈ ℕ the number of vehicles and by ln > 0 their length (equal for all vehicles). We also denote by yi(t) the

position of (the barycenter of) the i-th vehicle and we assume that at the initial time t = 0 vehicles are labeled in order, i.e.
y1(0) < y2(0) <… < yn(0). This guarantees that the (i+ 1)-th car is just in front of the i-th one. Moreover, it is assumed that at
t = 0 cars do not overlap, i.e. yi+1(0) − yi(0) ≥ ln, i = 1,… , n − 1. We are now ready to introduce the model, described by the
following system of n ODEs

{

ẏi(t) = w
(

yi+1(t) − yi(t)
)

, i = 1,… , n − 1
ẏn(t) = vmax,

(1)
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where vmax > 0 is the maximal admissible velocity and w, which represents the velocity of the vehicles, is such that

w ∶ [ln,+∞)→ [0, vmax]. (2)

Note that the n-th vehicle is the leader and it moves at maximal velocity. In the following we will denote by y = (y1,… , yn) the
solution to (1), duly complemented with initial conditions.

Numerical approximation
System (1) will be numerically integrated by means of the explicit Euler scheme.

2.1.2 LWR model
Adopting a macroscopic point of view, we assume that we are able to track only averaged quantities like the velocity v and the
density � (number of vehicles per length unit). Hereafter, we will assumewithout loss of generality that the density is normalized,
i.e. � = 0 corresponds to the minimal density (empty road) and � = 1 corresponds to the maximal density (fully congested road).
The well known LWR12,13 model describes the evolution of the density � of vehicles by means of the following conservation

law
)t� + )x(�v(�)) = 0, t > 0, x ∈ ℝ. (3)

Here the unknown function �(t, x) represents the density at time t > 0 and point x ∈ ℝ, while v gives the velocity as a function
of the density, and must be specified to complete the model. We assume that v ∈ C1([0, 1]; [0, vmax]) is any function such that

v′ < 0, v(0) = vmax, v(1) = 0. (4)

A typical simple choice often used for theoretical investigations, and that we will employ in the rest of the paper, is

v(�) = vmax(1 − �). (5)

Numerical approximation
The conservation law (3) will be numerically solved bymeans of the classical Godunov scheme for the LWRmodel, as described,
e.g., in the paper by Bretti et al.22, Sect. 3.1

2.1.3 Relation between scales
In order to study themany-particle limit of the FtLmodel described above, the number n of vehicles must be no longer considered
as a model parameter, rather it has to be seen as a scale parameter which goes to +∞. From the physical point of view, the
quantity which is actually preserved is the total length (or mass) > 0 of vehicles. We translate this fact by setting

ln =

n − 1

. (6)

This relation is crucial for the micro-to-macro limit since it translates the fact that the total length does not change when the
number of vehicles tends to infinity, because vehicles “shrink” accordingly.
In order to recall precisely the results about the correspondence between the two models, we need to introduce first the natural

spaces for the macroscopic density � and for the vectors of vehicles’ positions y = (y1,… , yn), at any fixed time. We define

R ∶=
{

r ∈ L1(ℝ; [0, 1]) ∶ ∫
ℝ

r(x)dx = and spt(r) is compact
}

,

where spt(r) denotes the support of any function r, and

Yn ∶=
{

y ∈ ℝn ∶ yi+1 − yi ≥ ln, ∀i = 1,… , n − 1
}

.

We also introduce the operators En ∶ R→ Yn and Cn ∶ Yn → R, defined respectively as

En[r(⋅)] ∶= y =
⎧

⎪

⎨

⎪

⎩

yn = max(spt(r)),

yi = max
{

z ∈ ℝ ∶

yi+1

∫
z

r(x)dx = ln
}

, i = n − 1,… , 2, 1
(7)
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and

Cn[y] ∶=
n−1
∑

i=1

ln
yi+1(t) − yi(t)

�[yi,yi+1), (8)

where �I is the indicator function of any subset I ⊂ ℝ. The discretization operator En acts on a macroscopic density �(t, ⋅),
providing a vector of positions y(t) = En[�(t, ⋅)] whose components partition the support of the density into segments on which
� has fixed integral ln, see Fig. 1 (left). On the contrary, the operator Cn antidiscretizes a microscopic vector of positions y,
giving a piecewise constant density �n(t, ⋅) = Cn[y(t)], see Fig. 1 (right).

yn−1 yn

ln

r

y1 y2 y3 yn

ln
�n

FIGURE 1 Operators En (left) and Cn (right).

We are now ready to state the main result about the convergence of the microscopic model (1) to the macroscopic model (3).
The proof can be found in Di Francesco and Rosini10 (see also Colombo and Rossi8).

Theorem 1. Let (2) and (4) hold true and assume

w(Δ) = v
(

ln
Δ

)

, ln ≤ Δ < +∞. (9)

Choose �̄ ∈ R ∩ BV (ℝ; [0, 1]) and set ȳ = En[�̄]. Let y(⋅) be the solution to (1) with initial condition y(0) = ȳ. Define
�n(t, ⋅) = Cn[y(t)]. Then �n converges almost everywhere and in L1loc([0,+∞) × ℝ) to the unique entropy solution � to the
problem (3) with initial condition �(0, ⋅) = �̄.

Remark 1. Relationship (9) between the velocities makes the link between the microscopic and the macroscopic model.
Assumption v′ < 0 in (4) assures that the function w is increasing, as expected.

Remark 2. Under the same assumptions of Theorem 1, it is guaranteed10, Lemma 1 that

yi+1(t) − yi(t) ≥ ln, i = 1,… , n − 1, t > 0, (10)

provided the same non-overlapping condition holds at time t = 0.

2.2 Many-particle limit on networks
Let us consider the case of a road network. We define a road network as a directed graph consisting of a finite set of vertexes
(junctions) and a set of oriented edges (roads) connecting the vertexes. Edges have a positive length and they are provided with
a coordinate system. We assume that for each junction J , there exist disjoint subsets INC(J),OUT(J), representing, respectively,
the incoming roads to J and the outgoing roads from J. Among junctions, we distinguish two particular subsets consisting of
origins , which are the junctions J such that INC(J) = ∅, and destinations , which are the junctions J such that OUT(J) = ∅.
To our purposes, it is convenient to understand the network as an union of paths. More precisely, let us consider all the

possible paths on one can obtain joining all the origin nodes in  with all the destination nodes in , see Fig. 2 . Each path
is considered as a single uninterrupted road, with no junctions (except for its origin and destination). Note that paths can share
some arcs of the network. Finally, let us denote by P the total number of paths.
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(i, �)

(j, �)

FIGURE 2 A generic network . Two possible paths are highlighted. Note that the two paths share an arc of the network.

2.2.1 FtL model
Let us divide the n vehicles in P populations, on the basis of the path they are following. Let us denote by n� , � = 1,… , P ,
the number of vehicles following path � (we have

∑P
�=1 n� = n), and label univocally all vehicles by the multi-index (i, �),

i = 1,… , n� , � = 1,… , P . Let us also denote by yi,�(t) the position of the vehicle i of population � at time t, defined as the
distance from the origin of the path � (not from the origin of the current road). Since paths can overlap, a vehicle (j, �) belonging
to a population � ≠ � with position yj,�(t) can be found along path � at time t. Let us denote by c�(j, �, t) the distance between
the vehicle (j, �) at time t and the origin of path �, along path �. In other words c� acts as a change of coordinates between any
path � ≠ � intersecting path � and the path �. The function c� is trivially extended to vehicles already belonging to population
� simply setting c�(i, �, t) = yi,�(t).
In such a path-based framework the vehicle i+1 is no longer necessarily in front of vehicle i. This force us to introduce a new

notation to refer to the vehicle in front. First, we define NEXT(i, �, t) as the multi-index of the nearest vehicle (any population)
ahead of the vehicle (i, �) along the path � at time t (setting it to ∅ if there is no such a vehicle). Then we define, for any nonleader
vehicle of any population,

di,�(t) ∶= c�(NEXT(i, �, t), t) − c�(i, �, t).
It is important to note that di,� is in general discontinuous because at any time other vehicles can join or leave the i-th vehicle’s
path, thus reducing or increasing abruptly the distance di,� (or even changing the leader/follower status of the i-th vehicle). An
immediate consequence of this fact is that the non-overlapping condition (10) is no longer guaranteed, even if it holds at the
initial time t = 0. Nevertheless, the number of overlapping vehicles is bounded bymaxJ |INC(J)|which is finite (and usually very
low), therefore this issue has no impact in the many-particle limit (see Cristiani and Sahu16 for details).
In order to handle this issue we extend the function w defined in (2) by means of a new function w∗ defined as

w∗ ∶ [0,+∞)→ [0, vmax], w∗(Δ) =
{

w(Δ), if Δ ≥ ln
0, if Δ ≤ ln

, (11)

i.e. we assume that (smashed) vehicles closer than ln from the vehicle in front stops completely until the vehicle in front leaves
a space > ln, then they re-start moving normally.
We are now ready to introduce themodel, described by the following system ofP coupled systems of ODEswith discontinuous

right-hand side (see Cristiani and Sahu16 for details)
{

ẏi,�(t) = w∗(di,�(t)), if NEXT(i, �, t) ≠ ∅
ẏi,�(t) = vmax, if NEXT(i, �, t) = ∅

, i = 1,… , n� , (12)

for any � = 1,… , P . In the following we will denote by y� the vector (y1,� ,… , yn� ,�) for all � = 1,… , P , and by y the vector
(y1,… , yP ).

Numerical approximation
System (12) will be numerically integrated by means of the explicit Euler scheme, duly extended to manage the junctions as in
Cristiani and Sahu.16, Sect. 5.1
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2.2.2 LWR model
Many methods were proposed in the literature to extend the LWR model on networks. This task is not completely trivial since
the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. As a consequence, macroscopic
traffic models on networks are in general ill-posed unless additional conditions are imposed. A complete introduction to the field
can be found in the book by Garavello and Piccoli.23 Beside the classical method24 based on the maximization of the flux at
junctions, let us also mention the source-destination model,25 the buffer models,26,27,28 and the path-based model.18,19 The last
one is based on the path-based interpretation of the network introduced above and consists of a system of P conservation laws
with discontinuous flux

)t�
� + )x (��v∗(�)) = 0, t > 0, x ∈ ℝ (� = 1,… , P ), (13)

where �� is the density of vehicles following path � and � is the total density (all vehicles). For coherence with equation (11),
we employ here the extended velocity v∗ defined as

v∗ ∶ [0,+∞)→ [0, vmax], v∗(r) =
{

v(r), if r ≤ 1
0, if r ≥ 1. (14)

Numerical approximation
The system of conservation laws (13) will be numerically solved by means of a Godunov-based scheme introduced by Bretti et
al.,19 Briani and Cristiani,18 and successively used in other related papers.16,21

2.2.3 Relation between scales
Recalling the definitions given in Sect. 2.1.3, we can state the main result about the convergence of the microscopic model (12)
to the macroscopic model (13). The proof can be found in Cristiani and Sahu.16

Theorem 2. Let (2), (4) and (9) hold true, with the extensions (11) and (14). Fix � ∈ {1,… , P }, choose �̄� ∈ R ∩ BV (ℝ; [0, 1])
and set ȳ� = En[�̄�]. Let y�(⋅) be the solution to (12) with initial condition y�(0) = ȳ� (assuming the other solutions y�(⋅),
� ≠ �, are given). Define ��n (t, ⋅) = Cn[y�]. Then, ��(t, x) ∶= limn→+∞ ��n (t, x) is a weak solution to (13) (assuming the other
solutions �� , � ≠ � are given) with initial condition �̄� .

Note that the correspondence in the limit is only proved path by path, i.e. fixing � and assuming the other solutions to be
given. This is different from considering the convergence of the fully coupled system of ODEs to the system of PDEs, which is,
to our knowledge, still an open problem.

2.3 Wasserstein distance
Let us denote by (X,D) a complete and separable metric space with distanceD, and by (X) a Borel �-algebra of (X,D). Let
us also denote by +(X) the set of non-negative finite Radon measures on (X,(X)). Let �♭ and �♯ be two Radon measures in
+(X) such that �♭(X) = �♯(X).

Definition 1 (Wasserstein distance). For any p ∈ [1,+∞), the Lp-Wasserstein distance between �♭ and �♯ is

Wp(�♭, �♯) ∶=
⎛

⎜

⎜

⎝

inf
∈Γ(�♭,�♯) ∫

X×X

D(x, y)p d(x, y)
⎞

⎟

⎟

⎠

1∕p

(15)

where Γ is the set of transport plans connecting �♭ to �♯, i.e.

Γ(�♭, �♯) ∶=
{

 ∈ +(X ×X) s.t. (A ×X) = �♭(A), (X × B) = �♯(B), ∀ A,B ⊂ X
}

.

Remark 3. The measures �♭ and �♯ can be either absolutely continuous or singular with respect to the Lebesgue measure.

It is well known that the notion of Wasserstein distance can be put in relation with the Monge–Kantorovich optimal mass
transfer problem:29 a pile of, say, soil, has to be moved to an excavation with same total volume. Moving a unit quantity of mass
has a cost which equals the distance between the source and the destination point. We consequently are looking for a way to
rearrange the first mass onto the second which requires minimum cost.
In the particular caseX = ℝ1 andD(x, y) = |x− y| various characterizations give alternative, more manageable, definitions.

For example, in the case of two Dirac delta functions �(x), �(y) we simply haveWp(�(x), �(y)) = |y − x|, while in the case of
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two absolutely continuous measures with d�♭ = �♭dx and d�♯ = �♯dx, we have30, Rem. 2.19

W1(�♭, �♯) = ∫
ℝ

|F ♭(x) − F ♯(x)|dx = ∫
ℝ

|(F ♭)−1(x) − (F ♯)−1(x)|dx, with F ♭(x) ∶=

x

∫
−∞

�♭(z)dz, F ♯(x) ∶=

x

∫
−∞

�♯(z)dz

(16)
and, for p ≥ 1,

Wp(�♭, �♯) =
⎛

⎜

⎜

⎝

∫
ℝ

|T ∗(x) − x|p �♭(x)dx
⎞

⎟

⎟

⎠

1∕p

, where T ∗ ∶ ℝ → ℝ satisfies
x

∫
−∞

�♭(z)dz =

T ∗(x)

∫
−∞

�♯(z)dz ∀x ∈ ℝ. (17)

Equation (17) translates the fundamental property of monotone rearrangement of the mass,30, Rem. 2.19 i.e. the optimal strategy
consists in transferring the mass starting from the left, see Fig. 3 .

x T ∗(x)

�♭
�♯

FIGURE 3 Property of monotone rearrangement (17).

Numerical approximation
Numerical approximation of the Wasserstein distance is easy in the particular case X = ℝ1 and D(x, y) = |x − y|, since
quadrature formulas can be easily employed in (16) or (17).
The case of more general spaces, including networks embedded in ℝ2, is more difficult. Typically the problem is solved

by reformulating it in a fully discrete setting as a Linear Programming problem. The interested reader can find in the books
by Santambrogio31, Sec. 6.4.1 and Sinha32, Chap. 19 the complete procedure, recently used also in the context of traffic flow.21
More sophisticated characterizations based on a fluid-dynamic approach,33 p-Laplacian,34 or a variational approach34 are also
available.

3 COMPARING TRAFFIC STATES IN MACROSCOPIC AND MICROSCOPIC MODELS

In this paper we are mainly concerned with the measure of the “distance” between two traffic states, i.e. we want to quantify to
what extent two traffic states are close to each other. For example, if we run a traffic model in a real application, we would like
to measure how close the solution of the model is to the measured traffic state.
In the rest of the paper we will put ourself in the context of sensitivity analysis, broadly following Briani et al.21 Let us assume

to have run both the microscopic and macroscopic model twice, with different initial conditions or model parameters. Doing
so, at final time t = tf we end up with two different traffic scenarios to be compared. In the microscopic case we will have two
vectors y♭(tf ) and y♯(tf ), while in the macroscopic case we will have two density distributions �♭(tf , ⋅) and �♯(tf , ⋅).
Before specializing the discussion on a specific scale, let us introduce a suitable notion of distance on the road network. We

will denote by  (a, b), a, b ∈  , the distance between two points a and b on the network  , defined as the length of the
shortest path (in the Euclidean sense) on joining a and b. Note that the distance can be numerically computed by means
of, e.g., the Dijkstra algorithm.35
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3.1 Comparing vehicle positions
In themicroscopic framework each vehicle is uniquely labeled, and its position is known exactly. This means that we can compare
two traffic scenarios (vehicle arrangements) comparing the position of each vehicle in each scenario.
That said, it is natural to define the distance between any two microscopic traffic states y♭, y♯ ∈ ℝn as

F tL
p (y♭, y♯) ∶=

(

ln

n
∑

i=1
|y♭i − y

♯
i |
p

)1∕p

(on a single road), (18)

F tL
p (y♭, y♯) ∶=

(

ln
∑

(i,�)
 (y♭i,� , y

♯
i,�)

p

)1∕p

(on network  ). (19)

These definitions translate the fact that the two traffic states are regarded as “close” if each vehicle is approximately in the same
position in the two scenarios. The distance is then proportional to the effort one should make in order to move each vehicle
from the position occupied in the run ♭ to the position occupied in the run ♯. Note that the movement can only happen along the
network, but it must not necessarily respect road rules like road directions, priorities, traffic lights, etc.; cf. Briani et al.21
It is useful to note that theWasserstein distance can also be used to compute the distance between vectors y♭ and y♯, obtaining

Wp(�[y♭], �[y♯]), with �[y] ∶= ln
n
∑

i=1
�(yi) and D(x, y) = |x − y| (on a single road), (20)

Wp(�[y♭], �[y♯]), with �[y] ∶= ln
∑

(i,�)
�(yi,�) and D(x, y) =  (x, y) (on network  ). (21)

Doing this, we implicitly allow the possibility of exchange vehicles from one scenario to another since the optimal transport
plan ∗ ∈ Γ not necessarily moves vehicle i (resp., (i, �)) into vehicle i (resp., (i, �)) as we assume instead in (18)-(19). This is
is easily confirmed by the following characterization30, Introduction valid in the discrete case,

Wp(�[y♭], �[y♯]) = inf
�∈n

{

ln

n
∑

i=1
|y♭i − y

♯
�(i)|

}

(on a single road),

Wp(�[y♭], �[y♯]) = inf
�∈n

{

ln

n
∑

i=1
 (y♭i , y

♯
�(i))

}

(on network  ),

where n is the set of permutation in {1, 2,… , n}. We will show in Sect. 4 that the two distances defined in (18) and (20) actually
coincide in the framework of traffic flow models considered in this paper, but this is not the case, in general, for the distances
(19) and (21).

3.2 Comparing traffic densities
In the macroscopic framework we are not able to distinguish single vehicles, then we have to compare vehicle densities as a
whole. To do that, we can follow in a broad sense the same ideas described in the microscopic framework, quantifying the effort
one has to make in order to rearrange all the mass from the first scenario (mass density distribution �♭) to the second one (mass
density distribution �♯). Since there are infinite ways to rearrange the mass moving an elementary particle of mass �(x)dx at a
time, one should look at the “cheapest” one, in terms of a cost function to be suitably defined.
Contrary to the microscopic setting, in the macroscopic setting the Wasserstein distance is exactly what we are looking for,

thanks to the well known relation with the optimal mass transfer problem, see Section 2.3. Therefore, we simply define

LWR
p (�♭, �♯) ∶= Wp(�[�♭], �[�♯]), (22)

where the measure �[�], for � ∈ L1, is the unique measure such that

�[�](A) ∶= ∫
A

�dx, ∀A ⊆ X, (23)

where either X = ℝ,D(x, y) = |x − y| (single road) or X = ,D(x, y) =  (x, y) (road network).
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4 COMPARING COMPARISONS ON A SINGLE ROAD

Let us now consider the following two pairs of Cauchy problems

(♭)

⎧

⎪

⎨

⎪

⎩

ẏ♭i = w
♭(y♭i+1 − y

♭
i ), i = 1,… , n − 1

ẏ♭n = v
♭
max

y♭(0) = ȳ♭
, (♯)

⎧

⎪

⎨

⎪

⎩

ẏ♯i = w
♯(y♯i+1 − y

♯
i ), i = 1,… , n − 1

ẏ♯n = v
♯
max

y♯(0) = ȳ♯
, (24)

(♭)
{

)t�♭ + )x(�♭v♭(�♭)) = 0
�♭(0, ⋅) = �̄♭

, (♯)
{

)t�♯ + )x(�♯v♯(�♯)) = 0
�♯(0, ⋅) = �̄♯

, (25)

where v♭(�♭) = v♭max(1 − �
♭) and v♯(�♯) = v♯max(1 − �♯) for some constants v♭max, v

♯
max > 0, cf. (5). Assume also that (2),(4),(9)

hold true for both pairs (v♭, w♭) and (v♯, w♯).

4.1 Analytical results
We have the following result.

Theorem 3. Consider the problems (24)-(25) and fix a final time tf so that t < tf . Choose the initial data �̄♭, �̄♯ ∈ R ∩
BV (ℝ; [0, 1]) such that

�̄♭(x) > �min for a.e. x ∈ (inf spt(�̄♭), sup spt(�̄♭)),
�̄♯(x) > �min for a.e. x ∈ (inf spt(�̄♯), sup spt(�̄♯)).

(26)

for some �min > 0. Set ȳ♭ = En[�̄♭], ȳ♯ = En[�̄♯]. Let y♭(⋅) and y♯(⋅) be the solutions to Cauchy problems (♭) and (♯) in (24),
respectively. Define �♭n(t, ⋅) = Cn[y

♭(t)] and �♯n(t, ⋅) = Cn[y♯(t)]. Then

(i) F tL
p (y♭(t), y♯(t)) = Wp(�[y♭(t)], �[y♯(t)]), t < tf ;

(ii) limn→+∞F tL
p (y♭(t), y♯(t)) = LWR

p (�♭(t, ⋅), �♯(t, ⋅)), t < tf , where

�♭(t, x) ∶= lim
n→+∞

�♭n(t, x), for a.e. x ∈ ℝ, t < tf ,

�♯(t, x) ∶= lim
n→+∞

�♯n(t, x), for a.e. x ∈ ℝ, t < tf ,
(27)

are the entropy solutions to Cauchy problems (♭) and (♯) in (25), respectively.

Proof. For the sake of readability, from now on we will omit the dependence on time t.
Let us first recall here the crucial fact that the FtL model does not allow overtaking, thus, for any t < tf , we have y♭i < y♭i+1

and y♯i < y
♯
i+1 ∀i = 1,… , n − 1, see Remark 2.

Let us also note that, since �̄♭, �̄♯ ∈ R, we have ∫ℝ �̄
♭dx = ∫ℝ �̄

♯dx =. This implies that

∫
ℝ

�♭ndx = ∫
ℝ

�♯ndx = ∀n (28)

because �♭n and �
♯
n are defined by two vectors y♭, y♯ of the same size through the operators En and Cn.

(i) Let �♭n ∶= �[�
♭
n], �

♯
n ∶= �[�

♯
n] be the measures defined as in (23). By definition, they are absolutely continuous with respect

to the Lebesgue measure. Moreover, by (28) we have ∫ℝ d�
♭
n = ∫ℝ d�

♭
n = . Therefore it applies the property of monotone

rearrangement (see Section 2.3) which states that the measure �♭n is optimally transported onto �♯n by the map T ∗n ∶ ℝ → ℝ such
that

x

∫
−∞

d�♭n =

T ∗n (x)

∫
−∞

d�♯n, or, equivalently,
x

∫
−∞

�♭n(z)dz =

T ∗n (x)

∫
−∞

�♯n(z)dz, x ∈ ℝ. (29)

Moreover, we have

LWR
p (�♭n, �

♯
n) =

⎛

⎜

⎜

⎝

∫
ℝ

|T ∗n (x) − x|
p �♭n(x)dx

⎞

⎟

⎟

⎠

1∕p

. (30)
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It is useful to note here that (6), (8) and (10) imply �♭n > 0 in the interval [y
♭
1, y

♭
n) and �

♯
n > 0 in the interval [y

♯
1, y

♯
n). Therefore

the function T ∗n is uniquely determined in the interval (y♭1, y
♭
n), in the sense that for any x ∈ (y♭1, y

♭
n) there exists a unique value

of T ∗n (x) such that (29) holds. Outside the interval this is no longer true. For example, if x = y♭1 we have ∫
y♭1
−∞ �

♭
n(z)dz = 0 and

∫ y
−∞ �

♯
1(z)dz = 0 for any y ≤ y♯1. Analogously, if x = y

♭
n we have ∫

y♭n
−∞ �

♭
n(z)dz = and ∫ y

−∞ �
♯
n(z)dz = for any y ≥ y♯n. For

our purposes, it is useful to extend the definition of T ∗n setting

T ∗n (x) = y
♯
1 for x ≤ y♭1 and T ∗n (x) = y

♯
n for x ≥ y♭n. (31)

Doing this, we also have
T ∗n (x) ∈ spt(�

♯
n) = [y

♯
1(0), y

♯
n(0) + vmaxt], ∀x ∈ ℝ, t < tf , (32)

which is a natural fact considering that outside spt(�♯n) there is no mass to move to.

Setting x = y♭i in (29), we get
y♭i

∫
−∞

�♭n(z)dz =

T ∗n (y
♭
i )

∫
−∞

�♯n(z)dz, i = 1,… , n.

Using (7) and (39), we immediately get T ∗n (y
♭
i ) = y

♯
i for i = 1,… , n (see Fig. 4 ) and that the mass in [y♭i , y

♭
i+1) is transported

�♭n
ln

y♭1 y♭2 y♭3 y♭4 y♭5 y♭6

�♯n

T ∗n

ln

y♯1 y♯2 y♯3 y♯4 y♯5 y♯6

FIGURE 4 Optimal mass transport map T ∗n from �♭n into �
♯
n.

into [y♯i , y
♯
i+1) for i = 1,… , n − 1.

Now, to conclude let us focus on the concentrated distributions �[y♭] and �[y♯]. We note that, for all i = 1,… , n, spt(�y♭i ) =
y♭i ∈ [y

♭
i , y

♭
i+1). Therefore the mass in y♭i must be optimally moved into the interval [y♯i , y

♯
i+1) (otherwise the previous construction

would not be optimal). Since the arrival mass in [y♯i , y
♯
i+1) is all concentrated in y

♯
i , the optimal mass transfer of �[y♭] onto �[y♯]

moves �y♭i into �y♯i . In conclusion,Wp(�[y♭], �[y♯]) =
(

ln
∑n
i=1 |y

♭
i − y

♯
i |
p
)1∕p

as desired.

(ii) We divide the proof in three steps.

(ii.A) Let us first prove that LWR
p (�♭, �♯) is well defined. The existence of functions �♭, �♯ in (27) is assured by Theorem 1.

Being both solution to (3), they are in BV (ℝ; [0, 1])36, Theor. 6.2.6 (and then they are a.e. continuous). It remains to show that

∫
ℝ

�♭dx = ∫
ℝ

�♯dx =. (33)

By construction, we have that �♭n, �
♯
n are bounded by 1 for any x, t, n. Moreover,

spt(�♭n) ⊆ [y
♭
1(0), y

♭
n(0) + vmaxtf ] and spt(�♯n) ⊆ [y

♯
1(0), y

♯
n(0) + vmaxtf ]. (34)
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Therefore the dominated convergence theorem allows us to write

lim
n→+∞∫

ℝ

�♭ndx = ∫
ℝ

�♭dx, lim
n→+∞∫

ℝ

�♯ndx = ∫
ℝ

�♯dx, (35)

and then by (27) and (28) we easily get (33).

(ii.B) Applying again the property of monotone rearrangement to �[�♭] and �[�♯] we get that there exists a map T ∗ ∶ ℝ → ℝ
such that

x

∫
−∞

�♭(z)dz =

T ∗(x)

∫
−∞

�♯(z)dz, x ∈ ℝ. (36)

As in (30), this is the optimal transport map which allows to compute the distance between the two density functions, i.e.

LWR
p (�♭, �♯) =

⎛

⎜

⎜

⎝

∫
ℝ

|T ∗(x) − x|p�♭(x)dx
⎞

⎟

⎟

⎠

1∕p

. (37)

Note that the functions �♭, �♯, being solutions to (3) with initial data satisfying (26), remain strictly positive at any time t < tf
in the interval of interest, i.e.

�♭(x) > 0 for a.e. x ∈ [inf spt(�♭), sup spt(�♭)], t < tf ,

�♯(x) > 0 for a.e. x ∈ [inf spt(�♯), sup spt(�♯)], t < tf .
(38)

Indeed, at the leftmost boundary of the support the solution is that of a Riemann problem with left state � = 0 and right state
� ∈ [�min, 1], which produces a shock with positive or null velocity. As a consequence, the leftmost boundary of the support
remains fixed or moves to the right. At the rightmost boundary of the support the solution is that of a Riemann problem with
left state � ∈ [�min, 1] and right state � = 0, which produces a rarefaction fan. Again, the rightmost limit of the support is simply
moved to the right (with velocity d

d�
(�v(�))|�=0 = v(0) = vmax) and the solution remains strictly positive inside the rarefaction

fan. Sufficiently far from the extremes of the support, i.e. where the two Riemann problems described above do not influence
the solution, the result follows by the basic monotonicity property of the solution to conservation laws,36, Theor. 6.2.3 which states
that the solution remains bounded at any time by the same values which bound the initial datum.
An important consequence of (38) is that, as we did in (31), we can make the function x → T ∗(x) a.e. uniquely determined

in ℝ setting

T ∗(x) = inf spt(�♯) for x ≤ inf spt(�♭) and T ∗(x) = sup spt(�♯) for x ≥ sup spt(�♭). (39)

Now we want to prove that limn→+∞ T ∗n = T ∗ for a.e. x ∈ spt(�♭). Let us first prove that {T ∗n }n is a Cauchy sequence, then
the limit exists. After that, we will prove that the limit is indeed a function which satisfies (36).
Using (29), we have

T ∗m(x)

∫
T ∗n (x)

�♯dz =

T ∗m(x)

∫
−∞

�♯dz −

T ∗m(x)

∫
−∞

�♯mdz +

T ∗m(x)

∫
−∞

�♯mdz −

T ∗n (x)

∫
−∞

�♯ndz +

T ∗n (x)

∫
−∞

�♯ndz −

T ∗n (x)

∫
−∞

�♯dz =

T ∗m(x)

∫
−∞

(

�♯ − �♯m
)

dz +

x

∫
−∞

�♭mdz −

x

∫
−∞

�♭ndz +

T ∗n (x)

∫
−∞

(

�♯n − �
♯)dz =

T ∗m(x)

∫
−∞

(

�♯ − �♯m
)

dz +

x

∫
−∞

(

�♭m − �
♭
n

)

dz +

T ∗n (x)

∫
−∞

(

�♯n − �
♯)dz.

Choosing two real values � and � such that the interval [�, �] contains the supports of the functions �♭, �♭n, �
♯, �♯n for any n and

t < tf , we get
|

|

|

|

|

|

|

T ∗m(x)

∫
T ∗n (x)

�♯dz

|

|

|

|

|

|

|

≤

�

∫
�

|�♯ − �♯m|dz +

�

∫
�

|�♭m − �
♭
n|dz +

�

∫
�

|�♯n − �
♯
|dz. (40)
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Using the convergence result of Theorem 1 we get that ||
|

∫ T ∗m(x)
T ∗n (x)

�♯dz||
|

→ 0 for n, m → +∞. We also get the set-theoretic
convergence of the support spt(�♯n) → spt(�♯) for n → +∞. Since, by (32), we have T ∗n ∈ spt(�♯n), T ∗m ∈ spt(�♯m), in the limit
both T ∗n and T ∗m have to enter the interval [inf spt(�♯), sup spt(�♯)], where �♯ is a.e. strictly positive (see (38)). This allows to
conclude that |T ∗n − T

∗
m| → 0 for n, m→ +∞, otherwise the first integral in (40) cannot tend to 0.

We have proved that T ∗n → S for some function S. Finally, using again Theorem 1 and the compactness of the supports of
the density functions, we have

x

∫
−∞

�♭dz = lim
n→+∞

x

∫
−∞

�♭ndz
(29)
= lim

n→+∞

T ∗n (x)

∫
−∞

�♯ndz =

S(x)

∫
−∞

�♯dz

and then we get that the function S is indeed the optimal map defined by (36).

(ii.C) Let us now define the auxiliary positive function 'n ∶ ℝ → ℝ by

'n(x) ∶=
n−1
∑

i=1
|T ∗n (y

♭
i ) − y

♭
i |
p ln
y♭i+1 − y

♭
i

�[y♭i ,y♭i+1)(x) + |T ∗n (y
♭
n) − y

♭
n|
p�[

y♭n,y♭n+ln
)(x). (41)

Note that 'n(x) = 0 if x ∈ ℝ∖
[

y♭1, y
♭
n + ln

)

. We also have

⎛

⎜

⎜

⎝

∫
ℝ

'n(x)dx
⎞

⎟

⎟

⎠

1∕p

=

( n
∑

i=1
|T ∗n (y

♭
i ) − y

♭
i |
pln

)1∕p

=

( n
∑

i=1
|y♯i − y

♭
i |
pln

)1∕p

= F tL
p (y♭, y♯),

where the second equality follows from the part (i) of the proof. Then it remains to prove that

lim
n→+∞∫

ℝ

'n(x)dx =
(

LWR
p (�♭, �♯)

)p
. (42)

Let us first show that there exists ' ∶ ℝ → ℝ such that

' = lim
n→+∞

'n, spt(') = spt(�♭), '(x) = |T ∗(x) − x|p�♭(x) for a.e. x ∈ ℝ. (43)

To this end, choose any x̄ ∈ ℝ and n > 1. We have four cases:
1. if x̄ < y♭1 then 'n(x̄) = 0;
2. if y♭1 ≤ x̄ < y♭n then 'n(x̄) = |T ∗n (y

♭
k̄
) − y♭

k̄
|

p ln
y♭
k̄+1
−y♭

k̄

for some k̄ = k̄(x̄) ∈ {1,… , n} s.t. y♭
k̄
≤ x̄ < y♭

k̄+1
;

3. if y♭n ≤ x̄ < y♭n + ln then 'n(x̄) = |T ∗n (y
♭
n) − y

♭
n|
p;

4. if x̄ ≥ y♭n + ln then 'n(x̄) = 0.

Noting that cases 1 and 4 are trivial, case 3 disappears for n → +∞, and, in case 2, T ∗n → T ∗ and y♭
k̄
→ x̄ for n → +∞, we

can apply same results as in Theorem 1 (which makes it rigorous the fundamental limit relation ln
y♭
k̄+1
−y♭

k̄

→ �♭(x̄)) and we easily
get (43).
Let us now prove that 'n ≤ g for some g ∈ L1(ℝ) for all n. This comes from the fact that ln

y♭i+1−y
♭
i
≤ 1 (see Remark 2) and the

fact that
|T ∗n (x) − x| ≤ sup

t<tf
spt(�♯n) − inft<tf

spt(�♭n)

(since the mass transfer only happens where there is some mass to transfer from/into) and, in turn, �♭n, �
♯
n have compact support

(see (34)). Finally, the dominated convergence theorem allows us to write

lim
n→+∞∫

ℝ

'n(x)dx = ∫
ℝ

'(x)dx = ∫
ℝ

|T ∗(x) − x|p�♭(x)dx =
(

LWR
p

)p
.

4.2 Numerical results
In this section we aim at confirming the theoretical results presented above from the numerical point of view. In particular, we
run micro- and macro-simulations (24)-(25) with either different initial conditions or velocity functions, and then we plot the



CRISTIANI ET AL 13

function
n → Ξp(n) ∶=

|

|

|

F tL
p (y♭(tf ), y♯(tf ); n) −LWR

p (�♭(tf , ⋅), �♯(tf , ⋅)
|

|

|

, (44)

where we have explicitly stressed the dependence of F tL
p on n via the operator En.

Test 1
We consider a road segment [0, 100] and two shifted initial conditions

�̄♭(x) = 1
2
�[5,20](x), �̄♯(x) = 1

2
�[10,25](x), x ∈ [0, 100].

We set vmax = 1, tf = 20, and we employ Dirichlet zero boundary conditions. Micro-simulations are run starting from the initial
conditions corresponding to the density functions defined above. In Fig. 5 we plot the functions Ξ1 and Ξ2. As it can be seen,

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FIGURE 5 Test 1: function Ξ1 (left) and Ξ2 (right).

the convergence to 0 is monotone and fast in both cases.

Test 2
In this test the two scenarios differ for the velocity functions rather than the initial conditions. We consider a road segment
[0, 100] and the initial condition

�̄(x) = 1
2
�[10,25](x), x ∈ [0, 100].

We set v♭max = 1, v
♯
max = 2, tf = 14, and we employ Dirichlet zero boundary conditions. Micro-simulations are run starting from

the initial condition corresponding to the density function defined above. In Fig. 6 we plot the functions Ξ1 and Ξ2. Again, the
convergence to 0 is monotone and fast in both cases.

5 COMPARING COMPARISONS ON A ROAD NETWORK

5.1 Analytical results
The case of a road network is subtler and more difficult to categorize. The crucial difference is that, on some networks, vehicles
loose their initial order (see Section 2.2.1), and, in parallel, the Wasserstein distance does not enjoy the property of monotone
rearrangement. Therefore, analytical results described in the previous section are not expected to hold, at least for a general road
network.

Example 1. (soft counterexample). Let us consider the case of a merge, i.e. a simple network with one junction, two incoming
roads and one outgoing road. Assume that vehicles are initially located on the two incoming roads only, as shown in Fig. 7 ,
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FIGURE 6 Test 2: function Ξ1 (left) and Ξ2 (right).

and that, at final time, all vehicles reach the outgoing road, merging one after the other, as shown in Fig. 9 (top). Swapping the
two initial conditions on the incoming roads, see Fig. 8 , we get the solution shown in Fig. 9 (bottom). It is clear that, in this
case, we haveF tL > 0 since vehicles do not occupy the same positions in the two scenarios. At the same time, we haveW = 0
since, on the whole, vehicles do occupy the same positions.

�1,♭

�2,♭
First scenario

incoming road #1

y♭1,1 y♭2,1 y♭3,1

incoming road #2

y♭1,2 y♭2,2 y♭3,2

FIGURE 7 Example 1: Vehicles at initial time in the first scenario (♭).

�1,♯

�2,♯
Second scenario

incoming road #1

y♯1,1 y♯2,1 y♯3,1

incoming road #2

y♯1,2 y♯2,2 y♯3,2

FIGURE 8 Example 1: Vehicles at initial time in the second scenario (♯).
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outgoing road (first scenario)

y♭3,1y♭3,2y♭2,1y♭2,2y♭1,1y♭1,2

outgoing road (second scenario)

y♯3,2y♯3,1y♯2,2y♯2,1y♯1,2y♯1,1

T ∗

FIGURE 9 Example 1: Vehicles at final time, both scenarios.

Remark 4. The case described above represents only a ’soft’ counterexample to Theorem 3. In fact, we still get the convergence
F tL → W for n→∞. This can be easily seen in Fig. 9 , observing that, on a road with finite length filled with n vehicles, the
distance between one vehicle and the following one is O(1∕n). As a consequence, moving n vehicles of mass ln for a distance
O(1∕n) costs in total

F tL = nlnO(1∕n) = O(1∕n)→ 0.

Example 2. (hard counterexample). Let us consider again the case described in Example 1. Assume that in the first scenario
vehicles are initially located as shown in Fig. 7 , while, in the second scenario, vehicles on the first incoming road are moved
to the left so much to be, at final time, all behind the last vehicle coming from the second incoming road, see Fig. 10 .
In this case the difference between F tL andW is kept also in the limit for n → ∞ since the distance |y♭3,1 − y

♯
3,1| does not

shrink to 0 in the limit (it must be larger than spt(�2,♯)).

outgoing road (first scenario)

y♭1,2 y♭1,1 y♭2,2 y♭2,1 y♭3,2 y♭3,1

outgoing road (second scenario)

y♯1,1 y♯2,1 y♯3,1 y♯1,2 y♯2,2 y♯3,2

T ∗

FIGURE 10 Example 2: Vehicles at final time, both scenarios.

5.2 Numerical results
In this section we aim at confirming the theoretical results presented above from the numerical point of view. As we did in
Section 4.2, we run micro- and macro-simulations with different initial conditions and then we plot the function Ξ.

Test 3 (soft counterexample)
We consider the network of Example 1 where each road has length 20. On such a network, path 1 (resp., 2) joins the first (resp.,
second) incoming road with the outgoing road. The two slightly shifted initial conditions are

{

�1,♭(x) = �[0,5]+ ln
2
(x),

�2,♭(x) = �[0,5](x),
,

⎧

⎪

⎨

⎪

⎩

�1,♯(x) = �[0,5](x),

�2,♯(x) = �[0,5]+ ln
2
(x),

, x ∈ [0, 20].

Note that vehicles are bumper-to-bumper. We also set vmax = 1, tf = 50, and we employ Dirichlet zero boundary conditions.
Micro-simulations are run starting from the initial conditions corresponding to the density functions defined above. In Fig. 11
we plot the function Ξ1 at final time t = tf . As expected, the convergence is achieved also in this case.
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FIGURE 11 Test 3: function Ξ1.

Test 4 (hard counterexample)
We consider again the network of Example 1 where each road has length 30. The two shifted initial conditions are

{

�1,♭(x) = �[20,25](x),

�2,♭(x) = �[0,5](x),
,

{

�1,♯(x) = �[0,5](x),

�2,♯(x) = �[20,25](x),
, x ∈ [0, 30].

We also set vmax = 1, tf = 55, and we employ Dirichlet zero boundary conditions. Micro-simulations are run starting from the
initial conditions corresponding to the density functions defined above. In Fig. 12 we plot the function Ξ1 at final time t = tf .
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FIGURE 12 Test 4: function Ξ1.

As expected, the convergence is not achieved in this case.
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6 CONCLUSIONS

In this paper we have investigated the problem of comparing traffic states in a multiscale framework. The notion of Wasserstein
distance appears totally adequate in the case of single road simulations since it matches human intuition and it is totally inde-
pendent of the scale of observation. In the case of a road network, instead, the microscopic Wasserstein distance is not the right
notion of distance unless we stop distinguishing single vehicles, which is exactly what happens in the many-particle limit.

ACKNOWLEDGMENTS

Authors want to thank Benedetto Piccoli for the useful discussions about the properties of the Wasserstein distance, and Andrea
Tosin for the useful suggestions. Authors also thank the anonymous referees for their suggestions on the proof of Theorem 3.
E. Cristiani is a member of the INdAM Research group GNCS.

Author contributions
Both authors contributed equally to this work.

References

1. Aw A., Klar A., Rascle M., Materne T.. Derivation of continuum flow traffic models from microscopic follow-the-leader
models. SIAM J. Appl. Math.. 2002;63:259-278.

2. Greenberg J. M.. Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J. Appl. Math.. 2001;62:729-745.

3. Di Francesco M., Fagioli S., Rosini M. D.. Many particle approximation of the Aw-Rascle-Zhang second order model for
vehicular traffic. Math. Biosci. Eng.. 2017;14(1):127-141.

4. Aw A., Rascle M.. Resurrection of “second order” models of traffic flow?. SIAM J. Appl. Math.. 2000;60:916-938.

5. Zhang H. M.. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Res. Part B. 2002;36:275-290.

6. Helbing D.. Traffic and related self-driven many-particle systems. Rev. Mod. Phys.. 2001;73:1067-1141.

7. Pipes L. A.. An operational analysis of traffic dynamics. J. Appl. Phys.. 1953;24:274-281.

8. Colombo R. M., Rossi E.. On the micro-macro limit in traffic flow. Rend. Sem. Mat. Univ. Padova. 2014;131:217-235.

9. Rossi E.. A justification of a LWR model based on a follow the leader description. Discrete Contin. Dyn. Syst. Ser. S.
2014;7:579-591.

10. Di Francesco M., Rosini M. D.. Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type
models via many particle limit. Arch. Rational Mech. Anal.. 2015;217:831-871.

11. Di Francesco M., Fagioli S., Rosini M. D.. Deterministic particle approximation of scalar conservation laws. Boll. Unione
Mat. Ital.. 2017;10:487-501.

12. Lighthill M. J., Whitham G. B.. On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond.
Ser. A. 1955;229:317-345.

13. Richards P. I.. Shock waves on the highway. Oper. Res.. 1956;4:42-51.

14. Forcadel N., SalazarW., ZaydanM.. Homogenization of second order discrete model with local perturbation and application
to traffic. Discrete Contin. Dyn. Syst. Ser. A. 2017;37(3):1437-1487.



18 CRISTIANI ET AL

15. Forcadel N., SalazarW.. Homogenization of second order discrete model and application to traffic flow.Differential Integral
Equations. 2015;28(11-12):1039-1068.

16. Cristiani E., Sahu S.. On the micro-to-macro limit for first-order traffic flow models on networks. Netw. Heterog. Media.
2016;11:395-413.

17. Hilliges M., Weidlich W.. A phenomenological model for dynamic traffic flow in networks. Transportation Res. Part B.
1995;29:407-431.

18. Briani M., Cristiani E.. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Netw. Heterog.
Media. 2014;9:519-552.

19. Bretti G., Briani M., Cristiani E.. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments.
Discrete Contin. Dyn. Syst. Ser. S. 2014;7:379-394.

20. Cristiani E., Piccoli B., Tosin A.. Multiscale Modeling of Pedestrian Dynamics. Modeling, Simulation & Application-
sSpringer; 2014.

21. Briani M., Cristiani E., Iacomini E.. Sensitivity analysis of the LWR model for traffic forecast on large networks using
Wasserstein distance. Commun. Math. Sci.. 2018;16:123-144.

22. Bretti G., Natalini R., Piccoli B.. A fluid-dynamic traffic model on road networks. Arch. Comput. Methods Eng..
2007;14:139-172.

23. Garavello M., Piccoli B.. Traffic Flow on Networks. AIMS Series on Applied Mathematics; 2006.

24. Coclite G. M., Garavello M., Piccoli B.. Traffic flow on a road network. SIAM J. Math. Anal.. 2005;36:1862-1886.

25. Garavello M., Piccoli B.. Source-destination flow on a road network. Comm. Math. Sci.. 2005;3:261-283.

26. Garavello M., Goatin P.. The Cauchy problem at a node with buffer. Discrete Contin. Dyn. Syst. Ser. A. 2012;32(6):1915-
1938.

27. Garavello M., Piccoli B.. Advances in Dynamic NetworkModeling in Complex Transportation Systems Complex Networks
and Dynamic Systems, vol. 2: ch. A multibuffer model for LWR road networks, :143-161. Springer 2013.

28. Herty M., Lebacque J.-P., Moutari S.. A novel model for intersections of vehicular traffic flow. Netw. Heterog. Media.
2009;4:813-826.

29. Villani C.. Optimal Transport: Old and New Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 338: . Berlin: Springer-Verlag; 2009.

30. Villani C.. Topics in Optimal Transportation Graduate Studies in Mathematics Series, vol. 58: . American Mathematical
Society; 2003.

31. Santambrogio F..Optimal Transport for AppliedMathematicians. Calculus of Variations, PDEs, andModeling. Birkhäuser;
2015.

32. Sinha S. M.. Mathematical Programming: Theory and Methods. Elsevier Science & Technology Books; 2006.

33. Benamou J.-D., Brenier Y.. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik. 2000;84(3):375-393.

34. Mazón J. M., Rossi J. D., Toledo J.. Optimal mass transport on metric graphs. SIAM J. Optim.. 2015;25:1609-1632.

35. Dijkstra E. W.. A note on two problems in connexion with graphs. Numerische Mathematik. 1959;1:269-271.

36. Dafermos C. M.. Hyperbolic conservation laws in continuum physics Grundlehren der mathematischen Wissenschaften,
vol. 325: . Springer-Verlag Berlin Heidelberg; iv ed.2016.


	 Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models 
	Abstract
	1 Introduction
	2 Ingredients
	2.1 Many-particle limit on a single road
	2.1.1 FtL model
	2.1.2 LWR model
	2.1.3 Relation between scales

	2.2 Many-particle limit on networks
	2.2.1 FtL model
	2.2.2 LWR model
	2.2.3 Relation between scales

	2.3 Wasserstein distance

	3 Comparing traffic states in macroscopic and microscopic models
	3.1 Comparing vehicle positions
	3.2 Comparing traffic densities

	4 Comparing comparisons on a single road
	4.1 Analytical results
	4.2 Numerical results

	5 Comparing comparisons on a road network
	5.1 Analytical results
	5.2 Numerical results

	6 Conclusions
	Acknowledgments
	References


