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Abstract

For a pure bounded rationally cyclic subnormal operator S on a separable complex Hilbert
space H, Conway and Elias (1993) shows that clos(σ(S) \ σe(S)) = clos(Int(σ(S))). This
paper examines the property for rationally multicyclic (N-cyclic) subnormal operators. We
show: (1) There exists a 2-cyclic irreducible subnormal operator S with clos(σ(S) \ σe(S)) 6=
clos(Int(σ(S))). (2) For a pure rationally N−cyclic subnormal operator S on H with the min-
imal normal extension M on K ⊃ H, let Km = clos(span{(M∗)kx : x ∈ H, 0 ≤ k ≤ m}.
Suppose M |KN−1

is pure, then clos(σ(S) \ σe(S)) = clos(Int(σ(S))).

1 Introduction

Let H be a separable complex Hilbert space and let L(H) be the space of bounded linear
operators on H. An operator S ∈ L(H) is subnormal if there exist a separable complex Hilbert
space K containing H and a normal operator Mz ∈ L(K) such that MzH ⊂ H and S = Mz|H.
By the spectral theorem of normal operators, we assume that

K = ⊕mi=1L
2(µi) (1-1)

where µ1 >> µ2 >> ... >> µm (m may be ∞) are compactly supported finite positive measures
on the complex plane C, and Mz is multiplication by z on K. For H = (h1, ..., hm) ∈ K and
G = (g1, ..., gm) ∈ K, we define

〈H(z),G(z)〉 =
m
∑

i=1

hi(z)gi(z)
dµi
dµ1

, |H(z)|2 = 〈H(z),H(z)〉 . (1-2)

The inner product of H and G in K is defined by

(H,G) =

∫

〈H(z),G(z)〉 dµ1(z). (1-3)

Mz is the minimal normal extension if

K = clos
(

span(M∗k
z x : x ∈ H, k ≥ 0)

)

. (1-4)

We will always assume that Mz is the minimal normal extension of S and K satisfies (1-1) to (1-
4). For details about the functional model above and basic knowledge of subnormal operators,
the reader shall consult Chapter II of the book Conway (1991).

For T ∈ L(H), we denote by σ(T ) the spectrum of T, σe(T ) the essential spectrum of T, T ∗

its adjoint, ker(T ) its kernel, and Ran(T ) its range. For a subset A ⊂ C, we set Int(A) for its
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interior, clos(A) for its closure, Ac for its complement, and Ā = {z̄ : z ∈ A}. For λ ∈ C and
δ > 0, we set B(λ, δ) = {z : |z − λ| < δ} and D = B(0, 1). Let P denote the set of polynomials
in the complex variable z. For a compact subset K ⊂ C, let Rat(K) be the set of all rational
functions with poles off K and let R(K) be the uniform closure of Rat(K).

A subnormal operator S onH is pure if for every non-zero invariant subspace I of S (SI ⊂ I),
the operator S|I is not normal. For F1, F2, ..., FN ∈ H, let

R2(S|F1, F2, ..., FN ) = clos{r1(S)F1 + r2(S)F2 + ...+ rN(S)FN}

in H, where r1, r2, ..., rN ∈ Rat(σ(S)) and let

P 2(S|F1, F2, ..., FN ) = clos{p1(S)F1 + p2(S)F2 + ...+ pN(S)FN}

in H, where p1, p2, ..., pN ∈ P . A subnormal operator S on H is rationally multicyclic (N−cyclic)
if there are N vectors F1, F2, ..., FN ∈ H such that

H = R2(S|F1, F2, ..., FN )

and for any G1, ..., GN−1 ∈ H,

H 6= R2(S|G1, G2, ..., GN−1).

We call N is the rationally cyclic multiple of S. S is multicyclic (N−cyclic) if

H = P 2(S|F1, F2, ..., FN)

and for any G1, ..., GN−1 ∈ H,

H 6= P 2(S|G1, G2, ..., GN−1).

We call N is the cyclic multiple of S. In this case, m ≤ N where m is as in (1-1).
Let µ be a compactly supported finite positive measure on the complex plane C and let

spt(µ) denote the support of µ. For a compact subset K with spt(µ) ⊂ K, let R2(K,µ) be the
closure of Rat(K) in L2(µ). Let P 2(µ) denote the closure of P in L2(µ).

If S is rationally cyclic, then S is unitarily equivalent to multiplication by z on R2(σ(S), µ1),
where m = 1 and F1 = 1. We may write R2(S|F1) = R2(σ(S), µ1). If S is cyclic, then S is
unitarily equivalent to multiplication by z on P 2(µ1). We may write P 2(S|F1) = P 2(µ1).

For a rationally N−cyclic subnormal operator S with cyclic vectors F1, F2, ..., FN and λ ∈
σ(S), we denote the map

E(λ) :

N
∑

i=1

ri(S)Fi →









r1(λ)
r2(λ)
...

rN (λ)









, (1-5)

where r1, r2, ..., rN ∈ Rat(σ(S)). If E(λ) is bounded from K to (CN , ‖.‖1,N ), where ‖x‖1,N =
∑N
i=1 |xi| for x ∈ C

N , then every component in the right hand side extends to a bounded
linear functional on H and we will call λ a bounded point evaluation for S. We use bpe(S)
to denote the set of bounded point evaluations for S. The set bpe(S) does not depend on the
choices of cyclic vectors F1, F2, ..., FN (see Corollary 1.1 in Mbekhta et al. (2016)). A point
λ0 ∈ int(bpe(S)) is called an analytic bounded point evaluation for S if there is a neighborhood
B(λ0, δ) ⊂ bpe(S) of λ0 such that E(λ) is analytic as a function of λ on B(λ0, δ) (equivalently
(1-5) is uniformly bounded for λ ∈ B(λ0, δ)). We use abpe(S) to denote the set of analytic
bounded point evaluations for S. The set abpe(S) does not depend on the choices of cyclic
vectors F1, F2, ..., FN (also see Remark 3.1 in Mbekhta et al. (2016)). Similarly, for an N−cyclic
subnormal operator S, we can define bpe(S) and abpe(S) if we replace r1, r2, ..., rN ∈ Rat(σ(S))
in (1-5) by p1, p2, ..., pN ∈ P .

For N = 1, Thomson (1991) proves a remarkable structural theorem for P 2(µ).
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Thomson’s Theorem. There is a Borel partition {∆i}∞i=0 of sptµ such that the space P 2(µ|∆i)
contains no nontrivial characteristic functions and

P 2(µ) = L2(µ|∆0
)⊕

{

⊕∞
i=1P

2(µ|∆i)
}

.

Furthermore, if Ui is the open set of analytic bounded point evaluations for P 2(µ|∆i) for i ≥ 1,
then Ui is a simply connected region and the closure of Ui contains ∆i.

Conway and Elias (1993) extends some results of Thomson’s Theorem to the space R2(K,µ),
while Brennan (2008) expresses R2(K,µ) as a direct sum that includes both Thomson’s theorem
and results of Conway and Elias (1993). For a compactly supported complex Borel measure
ν of C, by estimating analytic capacity of the set {λ : |Cν(λ)| ≥ c}, where Cν is the Cauchy
transform of ν (see Section 3 for definition), Brennan (2006. English), Aleman et al. (2009), and
Aleman et al. (2010) provide interesting alternative proofs of Thomson’s theorem. Both their
proofs rely on X. Tolsa’s deep results on analytic capacity. There are other related research
papers for N = 1 in the history. For example, Brennan (1979), Hruscev (1979. Russian),
Brennan and Militzer (2011), and Yang (2016), etc.

Thomson’s Theorem shows in Theorem 4.11 of Thomson (1991) that abpe(S) = bpe(S) for a
cyclic subnormal operator S (See also Chap VIII Theorem 4.4 in Conway (1991)). Corollary 5.2
in Conway and Elias (1993) proves that the result holds for rationally cyclic subnormal opera-
tors. For N > 1, Yang (2018) extends the result to rationally N−cyclic subnormal operators.

It is shown in Theorem 2.1 of Conway and Elias (1993) that if S is a pure rationally cyclic
subnormal operator, then

clos(σ(S) \ σe(S)) = clos(Int(σ(S))). (1-6)

This leads us to examine if (1-6) holds for a rationally N−cyclic subnormal operator.
A Gleason part of R(K) is a maximal set Ω in C such that for x, y ∈ Ω, if ex and ey denote

the functionals evaluation at x and y respectively, then ‖ex − ey‖R(K)∗ < 2. Olin and Thomson
(1980) shows that a compact set K can be the spectrum of an irreducible subnormal operator
if and only if R(K) has only one non-trivial Gleason part Ω and K = clos(Ω). McGuire (1988)
and Feldman and McGuire (2003) construct irreducible subnormal operators with a prescribed
spectrum, approximate point spectrum, essential spectrum, and the (semi) Fredholm index.
Our first result is to construct a (rationally) 2-cyclic irreducible subnormal operator for a pre-
scribed spectrum and essential spectrum. Consequently we show that (1-6) may not hold for a
(rationally) N−cyclic irreducible subnormal operator with cyclic multiple N > 1.

Theorem 1. Let K and Ke be two compact subsets of C such that R(K) has only one nontrival
Gleason part Ω, K = clos(Ω), and ∂K ⊂ Ke ⊂ K. Then there exists a rationally 2-cyclic
irreducible subnormal operator S such that σ(S) = K, σe(S) = Ke, and ind(S − λ) = −1 for
λ ∈ K \ Ke. If, in particular, C \ K has only one component, then S can be constructed as a
2-cyclic irreducible subnormal operator.

Let K = clos(D) and Ke = ∂D ∪ clos( 1
2
D). We see that

clos(K \Ke) = {z :
1

2
≤ |z| ≤ 1} 6= clos(Int(K)) = clos(D).

From Theorem 1, we get the following result.

Corollary 1. There exists a 2-cyclic irreducible subnormal operator S such that (1-6) does not
hold.

In the second part of this paper, we will investigate certain classes of rationally N−cyclic
subnormal operators that have the property (1-6). Let S be a rationally N−cyclic subnormal
operator on H = R2(S|F1, F2, ..., FN ). Let ψ be a smooth function with compact support. Define

Kψn = clos {ψmx : x ∈ H, 0 ≤ m ≤ n} ,

then
H ⊂ Kψ1 ⊂ ... ⊂ Kψn ⊂ ... ⊂ K

and Mz|Kψn is a subnormal operator.
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Definition 1. A subnormal operator satisfies the property (N,ψ) if the following conditions are
met:
(1) S is a pure (rationally) N−cyclic subnormal operator on H = R2(S|F1, F2, ..., FN ).
(2) ψ a smooth function with compact support and Area(σ(S) ∩ {∂̄ψ = 0}) = 0. Let Mz on K
be the minimal normal extension of S satisfying (1-1) to (1-4), then Mz|Kψ

N−1

is also a pure

subnormal operator.

Theorem 2. Let N > 1 and let S be a pure subnormal operator on H satisfying the property
(N,ψ), then there exist bounded open subsets Ui for 1 ≤ i ≤ N such that

σe(S) =

N
⋃

i=1

∂Ui, σ(S) =

N
⋃

i=1

clos(Ui),

and
ind(S − λ) = −i

for λ ∈ Ui and i = 1, 2, ...N. Consequently,

σ(S) = clos(σ(S) \ σe(S)) = clos(Int(σ(S))).

An important special case is that ψ = z̄. In section 3, we will provide several examples of
subnormal operators that satisfy the property (N,ψ). We prove Theorem 1 in section 2 and
Theorem 2 in section 3.

2 Spectral Pictures for Irreducible Rationally 2-Cyclic

Subnormal Operators

In this section, we assume that K is a compact subset of C, Int(K) 6= ∅, and R(K) has
only one nontrival Gleason part Ω with K = clos(Ω). Theorem 5 and Corollary 6 in McGuire
(1988) constructs a representing measure ν of R(K) at z0 ∈ Int(K) with support on ∂K such
that Sν on R2(K, ν) is irreducible, σ(Sν) = K, σe(Sν) = ∂K, and ind(Sν − λ) = −1 for
λ ∈ Int(K) = σ(Sν) \ σe(Sν). From Theorem 6.2 in Gamelin (1969), we get

L2(ν) = R2(K, ν)⊕N2 ⊕R2
0(K, ν) (2-1)

where R2
0(K, ν) = {r̄ : r(z0) = 0 and r ∈ R2(K, ν)}. The operator Mz, multiplication by z on

L2(ν), can be written as the following matrix with respect to (2-1):

Mz =





Sν , A, B
0, C, D
0, 0, T ∗

ν





where Tν , multiplication by z̄ on R2
0(K, ν), is an irreducible rationally cyclic subnormal operator

with σ(Tν) = K̄, σe(Tν) = ∂K̄, and ind(Tν − λ) = −1 for λ ∈ Int(K̄). Let

S =

[

Sν , A
0, C

]

,

then S is the dual of Tν . From the properties of dual subnormal operators (see, for example, The-
orem 2.4 in Feldman and McGuire (2003)), we see that S is an irreducible subnormal operator
with σ(S) = K, σe(S) = ∂K, and ind(S − λ) = −1 for λ ∈ Int(K).

The following lemma, due to Cowen and Douglas (1978) on page 194, allows us to choose
eigenvectors for S∗ in a co-analytic manner whenever the Fredholm index function for S is −1.

Lemma 1. If X ∈ L(H) and ind(X−λ) = −1 for all λ ∈ G := σ(X) \σe(X), then there exists
a co-analytic function h : G → H that is not identically zero on any component of G such that
h(λ) ∈ ker(X − λ)∗. In particular, for every x ∈ H, the function λ → (x, h(λ)) is analytic on
G.
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Using Lemma 1, we conclude that there exists a co-analytic function kλ ∈ H := R2(K, ν)⊕N2

such that (S − λ)∗kλ = 0 on Int(K). Let δλ be the point mass measure at λ. Let Ke ⊂ K be
a compact subset of C such that ∂K ⊂ Ke. Let {λn} ⊂ Ke ∩ Int(K) with Ke ∩ Int(K) ⊂
clos({λn}). Define

µ = ν +
∞
∑

n=1

cnδλn , (2-2)

where cn > 0 and
∑∞
n=1 cn‖kλn‖2 = 1. Let M1

z be the multiplication by z operator on L2(µ).

Lemma 2. Define an operator T from H to L2(µ) by

Tf(z) =

{

f(z), z ∈ ∂K

(f, kλn), z = λn.
(2-3)

Then T is a bounded linear one to one operator with closed range. Set H1 = Ran(T ), then T is
invertible from H to H1, M

1
zH1 ⊂ H1, S1 = M1

z |H1
is an irreducible subnormal operator such

that S1 = TST−1, and M1
z is the minimal normal extension of S1.

Proof: By definition, we get

‖f‖2L2(ν) ≤ ‖Tf‖2L2(µ) = ‖f‖2L2(ν) +
∞
∑

n=1

cn|(f, kλn)|2 ≤ 2‖f‖2L2(ν).

Therefore, T is a bounded linear operator and invertible from H to H1. Since (zf, kλn) =
λn(f, kλn), we see that M1

zH1 ⊂ H1 and S1 = TST−1. Since (Tkλn)(λn) = ‖kλn‖2 > 0, clearly,
we have

L2(µ) = clos (span{z̄mx : x ∈ H1, m ≥ 0}) .
Therefore, M1

z is the minimal normal extension of S1.
It remains to prove that S1 is irreducible. Let N1 and N2 be two reducing subspaces of S1

such that H1 = N1 ⊕N2. Then for f1 ∈ N1 and f2 ∈ N2, we have

(znf1, z
mf2) =

∫

znz̄mf1f̄2dµ = 0

for n,m = 0, 1, 2, .... This implies f1(z)f̄2(z) = 0 a.e. µ. By the definition of T, we see that
(T−1f1)(z)(T−1f2)(z) = 0 a.e. ν. Hence, H = T−1N1⊕T−1N2. T

−1N1 and T−1N2 are reducing
subspaces of S. By the construction, Tν is irreducible (Corollary 6 in McGuire (1988)), so S,
as the dual Tν , is irreducible (see, for example, Theorem 2.4 in Feldman and McGuire (2003)).
This means that N1 = 0 or N2 = 0. The lemma is proved.

We write the operator M1
z as the following:

M1
z =

[

S1, A1

0, T ∗
1

]

(2-4)

Then T1, as a dual of S1, is irreducible.

Lemma 3. Let µ be as in(2-2) and let H1 be as in Lemma 2. Define

F (z) =

{

z̄ − z̄0, z ∈ ∂K,

0, z ∈ Int(K).
(2-5)

and

Gn(z) =











kλn(z), z ∈ ∂K,

−1/cn, z = λn,

0, z = λm, m 6= n.

(2-6)

Then
H⊥

1 = clos (span{r(z̄)F,Gj , 1 ≤ j <∞, r ∈ Rat(K)}) .

5



Proof: It is straightforward to check, from (2-1), (2-2), and (2-3), that F,Gj ∈ H⊥
1 . Now

let H(z) ⊥ clos (span{r(z̄)F,Gj , 1 ≤ j <∞, r ∈ Rat(K)}) , then
∫

H(z)r(z)F̄ (z)dµ =

∫

H(z)r(z)(z − z0)dν = 0

for r ∈ Rat(K). From (2-1), we see that the functionH |∂K ∈ H. It follows from
∫

H(z)Ḡj(z)dµ =
0 that H(λj) = (H |∂K , kλj ). Thus, H(z) ∈ H1. The lemma is proved.

Lemma 4. Let µ, T1, F, and Gn be as in (2-2), (2-4), (2-5) and (2-6), respectively. Then there
exists a sequence of positive numbers {an} satisfying

∞
∑

n=1

an‖Gn‖ <∞, G =
∞
∑

n=1

anGn,

and
H⊥

1 = clos (span{r(z̄)F (z) + p(z̄)G(z) : r ∈ Rat(K), p ∈ P}) .
Therefore, T1 is a rationally 2-cyclic irreducible subnormal operator with

σ(T1) = K̄, σe(T1) = K̄e, and ind(T1 − λ) = −1, λ ∈ K̄ \ K̄e. (2-7)

Proof: Notice that
∫

f(z)(z − λn)k̄λn(z)dν = 0

for f ∈ H. We conclude, from (2-1), that (z̄ − λ̄n)kλn(z) ∈ R2
0(K, ν). Hence, there are {rn} ⊂

R2(K, ν) such that

kλn(z) =
rn(z̄)

z̄ − λ̄n
(z̄ − z̄0).

We will recursively choose {an}. First choose a1 = 1. Then we assume that a1, a2, ..., an have
been chosen. Now we will choose an+1. Let

pk(z) =
Πj 6=k,1≤j≤n(z − λ̄j)

akΠj 6=k,1≤j≤n(λ̄k − λ̄j)
,

for k = 1, 2, ..., n. Denote

q1k(z) = pk(z)
∑

j 6=k,1≤j≤n

aj

z − λ̄j
rj(z)

and

q2k(z) =
ak(pk(z)− pk(λ̄k))

z − λ̄k
rk(z).

So pk ∈ P and q1k, q2k ∈ R2(K, ν) for k = 1, 2, ..., n. Clearly,

pk(z̄)

n
∑

j=1

ajGj(z)− (q1k(z̄) + q2k(z̄))(z̄ − z̄0) =
rk(z̄)(z̄ − z̄0)

z̄ − λ̄k
, z ∈ ∂K.

Hence,

pk(z̄)

n
∑

j=1

ajGj(z)− (q1k(z̄) + q2k(z̄))F (z) = Gk(z), a.e. µ.

We have the following calculation:

∫

∣

∣

∣

∣

∣

pk(z̄)

n+1
∑

j=1

ajGj(z)− (q1k(z̄) + q2k(z̄))F (z)−Gk(z)

∣

∣

∣

∣

∣

2

dµ

=

∫

|pk(z̄)an+1Gn+1(z)|2 dµ

≤
(

an+1

ak

)2
(4D2)n−1

Πj 6=k,1≤j≤n|λk − λj |2
‖Gn+1‖2

6



where D = max{|z| : z ∈ K}. Now set

an+1 = min

(

1

2n+1
, min
1≤k≤n

akΠj 6=k,1≤j≤nmin(1, |λk − λj |)
4nmax(1, D)n−1

)

/max(1, ‖Gn+1‖). (2-8)

So we have chosen all {an}. From (2-8), we have the following calculation.

∥

∥

∥

∥

∥

pk

∞
∑

i=n+2

ajGj

∥

∥

∥

∥

∥

≤ (2D)n−1

akΠj 6=k,1≤j≤n|λk − λj |
∞
∑

i=n+2

akΠj 6=k,1≤j≤i−1 min(1, |λk − λj |)
4i−1 max(1, D)i−2

≤ 1

2n+2
.

Therefore,

‖pk(z̄)G− (q1k(z̄) + q2k(z̄))F −Gk(z)‖

≤
∥

∥

∥

∥

∥

pk(z̄)
n+1
∑

j=1

ajGj − (q1k(z̄) + q2k(z̄))F −Gk(z)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

pk(z̄)
∞
∑

j=n+2

ajGj

∥

∥

∥

∥

∥

≤ 1

2n
.

Hence,

Gk ∈ clos (span{r(z̄)F (z) + p(z̄)G(z) : r ∈ Rat(K), p ∈ P}) , k = 1, 2, ....

Since T1 is the dual of S1, we see that σ(M1
z ) ⊂ σe(S1) ∪ σe(T1) (see, for example, Theorem

2.4 in Feldman and McGuire (2003)), σe(S1) = ∂K, and σe(T1) ⊃ ∂K̄. So (2-7) follows. This
completes the proof.

Proof of Theorem 1: It follows from Lemma 4.

3 Spectral Picture of a Class of Rationally Multicyclic

Subnormal Operators

In this section, we will prove Theorem 2. First we provide some examples of subnormal operators
that have the property (N,ψ) in Definition 1.

Example 1. Every pure subnormal operator S on H with finite rank self-commutator has the
property (N,ψ). Notice that the structure of such subnormal operators has been established based
on Xia’s model (see Xia (1996) and Yakubovich (1998)).

Proof: Assume that Mz on K is the minimal normal extension satisfying (1-1) to (1-4).
Define the self-commutator as the following

D = [S∗, S] = S∗S − SS∗.

The element x ∈ ker(D) if and only if z̄x ∈ H. This implies Sker(D) ⊂ ker(D). Therefore,

S∗Ran(D) ⊂ Ran(D). (3-1)

Let
H0 = clos (span(Snf : f ∈ Ran(D), n ≥ 0)) ,

then S|H0
is N-cyclic subnormal where N = dim(Ran(D)).

On the other hand,
S∗SnD = SS∗Sn−1D +DSn−1D,

7



hence, we can recursively show that S∗SnRan(D) ⊂ H0 since (3-1). So S∗H0 ⊂ H0. This
implies that

S(H⊖H0) ⊂ H⊖H0

and S|H⊖H0
is normal. Since S is pure, we conclude that H = H0 and S is N-cyclic. From

(3-1), we see that there is a polynomial p such that

p̄(S∗|Ran(D)) = 0.

Therefore,
p(S) : H → ker(D).

Hence,
‖M∗

z p(S)f‖ = ‖Mzp(S)f‖ = ‖Sp(S)f‖ = ‖S∗p(S)f‖
for f ∈ H. This implies z̄pH ⊂ H. Let ψ = z̄p, then Area{∂̄ψ = 0} = Area{z : p(z) = 0} = 0,
KψN−1 = H, and S satisfies the property (N,ψ) in Definition 1.

Example 2. In Lemma 4, if K = clos(D) and Ke = (∂D) ∪ ( 1
2
∂D), then the operator T1 is a

2-cyclic irreducible subnormal operator satisfying the property (2, ψ) where ψ = |z|4 − 5
4
|z|2.

Proof: For f ∈ H1, we get

ψf = (|z|2 − 1)(|z|2 − 1

4
)f +

1

4
f =

1

4
f

since spt(µ) ⊂ Ke. Hence, Kψ1 = H1. On the other hand,

Area{∂̄ψ = 0} ≤ Area

(

{0} ∪ {|z| = 5

8
}
)

= 0.

Therefore, the operator T1 satisfies the property (2, ψ).
In the remaining section, we assume that N > 1 and S is a pure rationally N−cyclic

subnormal operator on H = R2(S|F1, F2, ..., FN ) and Mz on K, which satisfies (1-1) to (1-4), is
the minimal normal extension of S. Moreover, S satisfies the property (N,ψ) in Definition 1.
Let Uk be the set of λ ∈ Int(σ(S)) such that Ran(S − λ) is closed and dim (ker(S − λ)∗) = k,
where k = 1, 2, ..., N.

Lemma 5. If 1 ≤ k ≤ N, δ > 0, B(λ0, 2δ) ⊂ Int(σ(S)), I is an index subset of {1, 2, ..., N}
with size N − k, F =

∑N
i=1 riFi where ri ∈ Rat(σ(S)), and {als(λ)}1≤l≤N−k,1≤s≤k are analytic

on B(λ0, 2δ) such that

sup
1≤s≤k,λ∈B(λ0,δ)

|rjs (λ) +
N−k
∑

l=1

als(λ)ril(λ)| ≤M‖F‖ (3-2)

and

Fil (z) =
k
∑

s=1

als(z)Fjs (z), a.e µ1|B(λ0,δ), (3-3)

where il ∈ I and js /∈ I. Then λ0 ∈ ⋃Ni=k Uk.
Proof: From (3-3), we get

∫

B(λ0,δ)

|F |2dµ1 =

∫

B(λ0,δ)

∣

∣

∣

∣

∣

k
∑

s=1

(

rjs(z) +

N−k
∑

l=1

als(z)ril(z)

)

Fjs (z)

∣

∣

∣

∣

∣

2

dµ1.

Using (3-2) and the maximal modulus principle,

sup
1≤s≤k,λ∈B(λ0,δ)

∣

∣

∣

∣

∣

rjs(λ) +

N−k
∑

l=1

als(λ)ril(λ)

∣

∣

∣

∣

∣

≤ M

δ
‖(S − λ0)F‖.
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Hence,

∫

|F |2dµ1 ≤
∫

B(λ0,δ)c
|F |2dµ1 + (

∑

j /∈I
‖Fj‖)2 sup

1≤s≤k,λ∈B(λ0,δ)

∣

∣

∣

∣

∣

rjs(λ) +

N−k
∑

l=1

als(λ)ril(λ)

∣

∣

∣

∣

∣

2

.

Therefore,
‖F‖ ≤M1‖(S − λ0)F‖,

where

M2
1 =



1 + (
∑

j /∈I
‖Fj‖)2



 (
M

δ
)2.

So Ran(S−λ0) is closed. On the other hand, there are k linearly independent kjλ ∈ H such that

rjs (λ) +
N−k
∑

l=1

als(λ)ril(λ) =

∫

〈

F (z), kjλ(z)
〉

dµ1(z)

where js /∈ I and λ ∈ B(λ0, δ). This implies

dim(Ker(S − λ0)
∗) ≥ k.

Therefore, λ0 ∈ ∪Ni=kUi.
Let ν be a compactly supported finite measure on C. The transform

Ciψν(z) =
∫

(ψ(w)− ψ(z))i

w − z
dν(w)

is continuous at each point z with |ν|({z}) = 0 and i > 0. For i = 0, the transformation

C0
ψ(ν) = C(ν) =

∫

1

w − z
dν(w)

is the Cauchy transform of ν. Let MG(z) be the following N by N matrix,

MG(z) =
[

Ci−1
ψ (〈Fj , G〉µ1)

]

N×N

where we assume that G ⊥ KψN−1 or equivalently G satisfies the following conditions

ψ̄nG ⊥ H, n = 0, 1, 2, ..., N − 1. (3-4)

The set WG ⊂ C is defined by:

WG = {λ :

∫

1

|z − λ| |〈Fi(z),G(z)〉|dµ1(z) <∞, 1 ≤ i ≤ N}.

Let
ΩG = Int(σ(S))∩WG ∩ {λ : |det(MG(λ)| > 0}. (3-5)

Then for λ ∈ ΩG, the matrix
[

C(〈Fjψi−1, G〉µ1)
]

N×N
(3-6)

is invertible. By Construction, we see that

det(MG(z)) = 0 a.e. Area|(clos(ΩG))c .

Lemma 6. Using above notations, we conclude that

ΩG ⊂ abpe(S).

Hence, by Lemma 5, we get ΩG ⊂ UN .
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Proof: Using (3-4), (3-5), and (3-6), we see that the lemma is a direct application of
Theorem 2 in Yang (2018).

Let A = {λn : µ1({λn}) > 0} be the set of atoms for µ1. Now let us define the matrix
MG
j (z) to be a submatrix of MG(z) by eliminating the first row and j column. Let BGj (z) be

the j column of the matrix MG(z) by eliminating the first row. Define

ΩGj =
(

Int(σ(S)) ∩Ac ∩ {z : |det(MG
j (z))| > 0}

)

\ clos(ΩG). (3-7)

Notice that MG
j (λ) is continuous at each λ ∈ ΩGj . On ΩGj , we can define the following function

vector
aj(z) = [aij(z)](N−1)×1 = (MG

j (z))−1BGj (z). (3-8)

Lemma 7. Let G, ΩG, ΩGj , and aj(z) be as in (3-4), (3-5), (3-7), and (3-8), respectively.
Then for λ0 ∈ ΩGj , there exists δ > 0 such that aj(z) equals an analytic function on B(λ0, δ) ⊂
Int(σ(S) almost everywhere with respect to the area measure. Moreover,

C(〈Fj , G〉µ)(z) =
j−1
∑

k=1

akj(z)C(〈Fk, G〉µ)(z) +
N
∑

k=j+1

ak−1,j(z)C(〈Fk, G〉µ)(z), a.e. Area|B(λ0,δ),

(3-9)
and

〈Fj , G〉 =
j−1
∑

k=1

akj(z)〈Fk, G〉+
N
∑

k=j+1

ak−1,j(z)〈Fk, G〉, a.e.µ|B(λ0,δ). (3-10)

Proof: Without loss of generality, we assume that j = N. For z ∈ Int(σ(S) ∩WG ∩ ΩGN ,
write

MG(z) =

[

AGN(z) cGN (z)
MG
N (z) BgN (z)

]

where
AGN(z) = [C(〈F1, G〉µ1)(z),C(〈F2, G〉µ1)(z), ..., C(〈FN−1, G〉µ1)(z)]

and
cGN (z) = C(〈FN , G〉µ1)(z).

By construction of ΩGN , we conclude that

det(MG(z)) = (AGN(z)(MG
N (z))−1BGN (z)− cGN (z))det(MG

N (z)) = 0 a.e. Area|ΩG
N
.

Therefore,
cGN (z) = AGN(z)(MG

N (z))−1BGN (z) a.e. Area|ΩG
N
. (3-11)

Let νi = 〈Fi, G〉µ1 and Hi,m(z) = m2

π
νi(B(z, 1

m
)), then the functions Hi,m(z) are bounded

with compact supports. We have

C(Hi,mdA)(w) =

∫

|λ−w|≥ 1

m

1

λ− w
dνi(λ) +

∫

|λ−w|< 1

m

m2|λ −w|2
λ− w

dνi(λ).

Hence,

|C(Hi,mdA)(w)− Cνi(w)| ≤ 2

∫

|w−z|<1/m

1

|w − z|d|νi|(z) a.e. Area

and
lim
m→∞

C(Hi.mdA)(w) = Cνi(w), a.e. Area.
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Let C0 > 0 be a constant such that |ψ(z) − ψ(w)| ≤ C0|z − w|. We estimate C1
ψ(νi) as the

following,

|C1
ψ(Hi,mdA)(w)− C1

ψνi(w)|

=

∣

∣

∣

∣

∣

m2

π

∫ ∫

|z−λ|< 1

m

ψ(z)− ψ(w)

z − w
dA(z)dνi(λ)− C1

ψνi(w)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

m2

π

∫

|λ−w|≥ 1√
m

∫

|z−λ|< 1

m

ψ(z)− ψ(w)

z − w
dA(z)dνi(λ)−

∫

|λ−w|≥ 1√
m

ψ(λ)− ψ(w)

λ− w
dνi(λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

m2

π

∫

|λ−w|< 1√
m

∫

|z−λ|< 1

m

ψ(z)− ψ(w)

z − w
dA(z)dνi(λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|λ−w|< 1√
m

ψ(λ)− ψ(w)

λ−w
dνi(λ)

∣

∣

∣

∣

∣

Notice that

m2

π

∫

|λ−w|≥ 1√
m

∫

|z−λ|< 1

m

1

z − w
dA(z)dνi(λ) =

∫

|λ−w|≥ 1√
m

1

λ− w
dνi(λ).

We get

|C1
ψ(Hi,mdA)(w)− C1

ψνi(w)|

≤
∣

∣

∣

∣

∣

m2

π

∫

|λ−w|≥ 1√
m

∫

|z−λ|< 1

m

ψ(z)− ψ(λ)

z − w
dA(z)dνi(λ)

∣

∣

∣

∣

∣

+ 2C0|νi|(B(w,
1√
m

))

≤m
2

π

∫

|λ−w|≥ 1√
m

∫

|z−λ|< 1

m

C0|z − λ|
|w − λ| − |z − λ|dA(z)dνi(λ) + 2C0|νi|(B(w,

1√
m

))

≤C0

1
m

1√
m

− 1
m

|νi|(B(w,
1√
m

)c) + 2C0|νi|(B(w,
1√
m

))

≤ C0√
m− 1

‖νi‖+ 2C0|νi|(B(w,
1√
m

)).

Therefore,
lim
m→∞

C1
ψ(Hi,mdA)(w) = C1

ψνi(w)

for w /∈ A. For λ0 ∈ ΩGN and ǫ > 0, we can choose a δ > 0 and m0 such that

|C1
ψ(Hi,mdA)(w)− C1

ψνi(w)|

≤2C0|νi|(B(w,
1√
m

)) +
C0√
m− 1

‖νi‖

≤2C0|νi|(B(λ0, δ +
1√
m

)) +
C0√
m− 1

‖νi‖

<ǫ

where w ∈ B(λ0, δ) \ A and m ≥ m0. Since C1
ψνi(w) is continuous at λ0, δ can be chosen to

ensure
|C1
ψνi(w)− C1

ψνi(λ0)| < ǫ

where w ∈ B(λ0, δ) \ A. It is easy to verify that C1
ψ(Hi,mdA) is a smooth function. For k > 1,

clearly Ckψνi(w) is a smooth function. Define

MGm
N (z) =









C1
ψ(H1,mdA), C1

ψ(H2,mdA), ..., C1
ψ(HN−1,mdA)

C2
ψ(ν1), C2

ψ(ν2), ..., C2
ψ(νN−1)

..., ..., ..., ...

CN−1
ψ (ν1), CN−1

ψ (ν2), ..., CN−1
ψ (νN−1)









.

We can choose ǫ small enough so that

MGm
N (w), MG

N (w)
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are invertible for w ∈ B(λ0, δ) \A and m > m0. Define

BGmN (z) =









C1
ψ(HN,mdA)
C2
ψ(νN )
...

CN−1
ψ (νN)









,

AGmN (z) = [C(H1,mdA), C(H2,mdA), ..., C(HN−1,mdA)]

and
cGmN (z) = C(HN,mdA)(z).

For a smooth function φ with compact support in B(λ0, δ), using the definition (3-8) and
Lebesgue’s Dominated Convergence Theorem, we get the following calculation,

∫

∂̄φ(z)aN(z)dA(z)

= lim
m→∞

∫

∂̄φ(z)
(

(MGm
N (z))−1BGmN (z)

)

dA(z)

=− lim
m→∞

∫

φ(z)∂̄
(

(MGm
N (z))−1BGmN (z)

)

dA(z)

= lim
m→∞

∫

φ(z)(MGm
N (z))−1

(

(∂̄MGm
N (z))(MGm

N (z))−1BGmN (z)− ∂̄BGmN (z)
)

dA(z).

(3-12)

On the other hand,

∂̄MGm
N (z) = ∂̄ψ(z)









−C(H1,mdA), −C(H2,mdA), ..., −C(HN−1,mdA)
−2C1

ψ(ν1), −2C1
ψ(ν2), ..., −2C1

ψ(νN−1)
..., ..., ..., ...

−(N − 1)CN−2(ν1), −(N − 1)CN−2(ν2), ..., −(N − 1)CN−2(νN−1)









.

Therefore,

(∂̄MGm
N (z))(MGm

N (z))−1 = −∂̄ψ(z)









AGmN (z) (MGm
N (z))−1,

2, 0, ..., 0, 0
..., ..., ..., ..., ...
0, 0, ..., N − 1, 0









.

Hence,

(∂̄MGm
N (z))(MGm

N (z))−1BGmN (z)− ∂̄BGmN (z) = −∂̄ψ(z)









AGmN (z)(MGm
N (z))−1BGmN − cGmN

0
...
0









.

Using (3-11), we see that

lim
m→∞

(

AGmN (z)(MGm
N (z))−1BGmN − cGmN

)

= 0 a.e. Area|B(λ0,δ).

Since each component of the above vector function is less than

M

∫

1

|w − z|d|νi|(z) a.e. Area|B(λ0,δ),

applying Lebesgue’s Dominated Convergence Theorem to the last step of (3-12), we conclude
∫

∂̄φ(z)aN(z)dA(z) = 0.

By Weyl’s lemma, we see that aN (z) is analytic on B(λ0, δ). From equation (3-8), we get

C1
ψ〈FN , G〉µ1)(z) =

N−1
∑

k=1

akj(z)C1
ψ〈Fk, G〉µ1)(z), a.e. Area|B(λ0,δ).
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The above equation implies (3-9) since

∂̄C1
ψ(νi)(z) = −C(νi)(z) a.e. Area.

For equation (3-10), let φ be a smooth function with compact support in B(λ0, δ) and let ν be
a compactly supported finite measure, we get

∫

∂̄φ(z)Cν(z)dA(z) = π

∫

φ(z)dν(z).

Apply the above equation to the both sides of the equation (3-9) for j = N and using

∂̄φ(z)akj(z) = ∂̄(φ(z)akj(z)), z ∈ B(λ0, δ),

we conclude
∫

φ〈FN , G〉dµ1 =

∫

φ

N−1
∑

k=1

akj〈Fk, G〉dµ1.

Hence the equation (3-10) follows. This completes the proof of the lemma.

Corollary 2. Let G, ΩG, and ΩGi be as in Lemma 7. Suppose G ⊥ KψN−1 (satisfies (3-4)).

Then ΩGi ⊂ UN−1 ∪ UN .
Proof: Without loss of generality, we assume that j = N. From Lemma 7, for λ0 ∈ ΩGN ,

there exists δ > 0 such that B(λ0, δ) ⊂ Int(σ(S)) and the equations (3-9) and (3-10) hold,
which imply (3-3). For r1, r2, ..., rN ∈ Rat(σ(S)), let

F =

N
∑

i=1

riFi.

Notice that
ri(λ)Ckψ〈Fi, G〉µ1) = Ckψ〈riFi, G〉µ1)

since G ⊥ KψN−1. Then

N
∑

i=1

ri(λ)Ckψ(〈Fi, G〉µ1)(λ) = Ckψ(〈F,G〉µ1)(λ),

for k = 1, 2, ..., N − 1. Now using the equation (3-9) for λ ∈ B(λ0, δ) \ A, we get

N−1
∑

i=1

(ri(λ) + aNi(λ)rN(λ))Ckψ(〈Fi, G〉µ1)(λ) = Ckψ(〈F,G〉µ1)(λ),

equivalently,

MG
N (λ)









r1(λ) + aN1(λ)rN(λ)
r2(λ) + aN2(λ)rN(λ)

...,
rN−1(λ) + aN,N−1(λ)rN(λ)









=









C1
ψ(〈F,G〉µ1)(λ)

C2
ψ(〈F,G〉µ1)(λ)

...,

CN−1
ψ (〈F,G〉µ1)(λ)









.

where the inverse of MG
N (λ) is bounded on B(λ0, δ) \ A and aNi are analytic on B(λ0, δ).

Therefore, there exists a positive constant M such that

sup
1≤k≤N−1,λ∈B(λ0,

δ
2
)

|rk(λ) + aNk(λ)rN(λ)| ≤M‖F‖,

which implies (3-2). Hence, Lemma 3.1 implies ΩGN ⊂ UN−1 ∪ UN .
Now let us recursively construct other sets such as ΩGij for a given G ⊥ KψN−1. We will only

describe the algorithm for k = N − 2 and the other cases will follow recursively. Let EGN = ΩG
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and EGN−1 = ∪Ni=1Ω
G
i . Let M

G
ij be an N − 2 by N − 2 submatrix of MG by eliminating the first

two rows and the i and j columns. Define

ΩGij = (Int(σ(S)) ∩Ac ∩ {z : |det(MG
ij (z))| > 0}) \ clos(EGN ∪EGN−1).

Without loss of generality, let us assume that i = N − 1 and j = N. Similar to Lemma 7,
one can prove that for λ0 ∈ ΩGN−1,N , there exist δ > 0, analytic functions ai(z) and bi(z) on
B(λ0, δ) ⊂ Int(σ(S)) such that

FN−1 =

N−2
∑

i=1

ai(z)Fi(z), FN =

N−2
∑

i=1

bi(z)Fi(z), a.e.µ1|B(λ0,δ), (3-13)

and there exists a constant M > 0 such that

sup
1≤k≤N−2,λ∈B(λ0,

δ
2
)

|rk(λ) + ak(λ)rN−1(λ) + bk(λ)rN(λ)| ≤M‖F‖, (3-14)

where r1, r2, ..., rN ∈ Rat(σ(S)) and F =
∑N
i=1 riFi. (3-13) and (3-14) are the same as (3-2)

and (3-3) for the case k = N − 2. Let

EGN−2 = ∪Ni<jΩGij . (3-15)

Corollary 3. Let EGN−2 be as in (3-15). Suppose G ⊥ KψN−1 (satisfies (3-4)). Then

EGN−2 ⊂ UN−2 ∪ UN−1 ∪ UN .

The proof is the same as Corollary 2. Therefore we can recursively construct EGk for k =
1, 2, ..., N such that

EGk ⊂
N
⋃

i=k

Ui (3-16)

where the proof for k = N is from Lemma 6, k = N − 1 is from Corollary 2, and k = N − 2 is
from Corollary 3.

The following theorem proves, under the conditions S satisfies the property (N,ψ), the set
∪Nk=1E

G
k is big.

Theorem 3. Let EGi be constructed for i = 1, 2, ..., N as above. Suppose {Gj} ⊂ (KψN−1)
⊥ is a

dense subset, then

sptµ1 ⊂ clos

(

N
⋃

i=1

∞
⋃

j=1

E
Gj
i

)

.

Proof: First we prove

µ1

(

Int(σ(S)) \ clos
(

N
⋃

i=1

∞
⋃

j=1

E
Gj
i

))

= 0.

Suppose that B(λ0, δ) ⊂ Int(σ(S)) and B(λ0, δ)∩clos
(

⋃N
i=1

⋃∞
j=1E

Gj
i

)

= ∅, then by construc-

tion of E
Gj
i , we conclude that

CN−1
ψ (〈Fi, Gj〉µ1)(z) = 0

on B(λ0, δ), where i = 1, 2, ..., N. By taking ∂̄ in the sense of distribution, we see that

C(〈Fi, Gj〉µ1)(z) = 0

a.e. Area on B(λ0, δ) since Area({∂̄ψ = 0} ∩ σ(S)) = 0, where i = 1, 2, ..., N. For a smooth
function φ with compact support in B(λ0, δ),

∫

φ(z)〈Fi, Gj〉dµ1 =
1

π

∫

∂̄φ(z)C(〈Fi, Gj〉µ1)(z)dA(z) = 0.
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Therefore,
〈Fi(z), Gj(z)〉 = 0. a.e. µ1|B(λ0,δ) (3-17)

where i = 1, 2, ..., N. From (1-4), we see that for P ∈ ⊕mk=1L
2(µk|B(λ0,δ)), (3-17) implies

(P,Gj) = 0. Therefore,
⊕mk=1L

2(µk|B(λ0,δ)) ⊂ KψN−1.

Hence, µ1|B(λ0,δ) = 0 since Mz|Kψ
N−1

is pure.

Now assume B(λ0, δ)∩ clos(Int(σ(S))) = ∅. For N > 1, the function CN−1
ψ (〈Fi, Gj〉µ1)(z) is

continuous on C \A and is zero on C \ σ(S). Hence,

CN−1
ψ (〈Fi, Gj〉µ1)(z) = 0

on B(λ0, δ) \A, where i = 1, 2, ..., N. Using the same proof as above, we see that µ1|B(λ0,δ) = 0.
This implies sptµ1 ⊂ clos(Int(σ(S))). The theorem is proved.

Proof of Theorem 2: From (3-16) and Theorem 3, we get

N
⋃

i=1

∂Ui ⊂ σe(S) ⊂ spt(µ1) ⊂ clos

(

N
⋃

i=1

Ui

)

.

This implies

σe(S) =

N
⋃

i=1

∂Ui

since σe(S) ∩ Ui = ∅. This completes the proof.
For a positive finite measure µ with compact support on C, definite

P 2(µ|1, z̄, ..., z̄N−1) = clos{p1(z) + p2(z)z̄ + ...+ pN (z)z̄N−1 : p1, p2, ..., pN ∈ P}

and SN,µ as the multiplication by z on P 2(µ|1, z̄, ..., z̄N−1). Then SN,µ is a multicyclic subnormal
operator with the minimal normal extension Mµ, the multiplication by z, on L2(µ).

Corollary 4. Suppose that S2,µ on P 2(µ|1, z̄, z̄2) is pure, then the operator S1,µ on P 2(µ|1, z̄)
satisfies

σ(S1,µ) = clos(σ(S1,µ) \ σe(S1,µ)).

Proof: Since

Kz̄1 = clos(span(z̄kP 2(µ|1, z̄) : 0 ≤ k ≤ 1)) = P 2(µ|1, z̄, z̄2)

and S2,µ on P 2(µ|1, z̄, z̄2) is pure. Therefore, the result follows from Theorem 2.
It seems strong to assume that S2,µ on P 2(µ|1, z̄, z̄2) is pure in the corollary. We believe

that the condition can be reduced to assume that S1,µ on P 2(µ|1, z̄) is pure. However, we are
not able to prove the result under the weaker conditions. We will leave it as an open problem
for further research.

Problem 1. Does Corollary 4 hold under the weaker assumption that S1,µ on P 2(µ|1, z̄) is
pure?

Corollary 5. Let S on H be a pure rationally N−cyclic subnormal operator with H = R2(S|F1, F2, ..., FN )
and let Mz be its minimal normal extension on K satisfying (1-1) to (1-4). Suppose that there
exists a smooth function ψ on C such that Area({∂̄ψ = 0}∩σ(S)) = 0 and ψ(Mz)H ⊂ H. Then
there exist bounded open subsets Ui for 1 ≤ i ≤ N such that

σe(S) =

N
⋃

i=1

∂Ui, σ(S) \ σe(S) =
N
⋃

i=1

Ui,

and
dimker(S − λ)∗ = i.

for λ ∈ Ui.
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Notice that Example 1 and 2 are special cases of Corollary 5. It seems that further results
could be obtained for the special cases where S satisfies the conditions of Corollary 5. Moreover,
we might be able to combine the methodology in McCarthy and Yang (1997) to obtain the
structural models for the class of subnormal operators, which might extend Xia’s model for
subnormal operators with finite rank self-commutators.

Problem 2. Can the structure of subnormal operators in Corollary 5 be characterized?
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