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Abstract

For a pure bounded rationally cyclic subnormal operator S on a separable complex Hilbert
space H, [Conway and Eliad (1993) shows that clos(o(S) \ 0c(S)) = clos(Int(o(S))). This
paper examines the property for rationally multicyclic (N-cyclic) subnormal operators. We
show: (1) There exists a 2-cyclic irreducible subnormal operator S with clos(o(S) \ oe(S)) #
clos(Int(c(S))). (2) For a pure rationally N—cyclic subnormal operator S on H with the min-
imal normal extension M on K D H, let Kn = clos(span{(M*)*z : = € H, 0 < k < m}.
Suppose M|k, _, is pure, then clos(c(S) \ 0e(S)) = clos(Int(o(S))).

1 Introduction

Let H be a separable complex Hilbert space and let £(H) be the space of bounded linear
operators on H. An operator S € L(H) is subnormal if there exist a separable complex Hilbert
space K containing H and a normal operator M. € L£(K) such that M.H C H and S = M. |x.
By the spectral theorem of normal operators, we assume that

K=& L (1) (1-1)

where p1 >> p2 >> ... >> um (m may be co) are compactly supported finite positive measures
on the complex plane C, and M., is multiplication by z on K. For H = (hq, ..., hm) € K and
G = (g1, .., gm) € K, we define

(2.6 = S mEE gl I = (1(:), (). (1-2)
The inner product of H and G in K is defined by
(1.6) = [ (H().6() dun (). (1-3)
M. is the minimal normal extension if
K = clos (span(Mz*kac crEH, k> 0)) . (1-4)

We will always assume that M. is the minimal normal extension of S and K satisfies (1-1) to (1-
4). For details about the functional model above and basic knowledge of subnormal operators,
the reader shall consult Chapter II of the book [Conway (M)

For T' € L(H), we denote by o(T') the spectrum of T, o.(T") the essential spectrum of T, T"*
its adjoint, ker(T) its kernel, and Ran(T) its range. For a subset A C C, we set Int(A) for its
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interior, clos(A) for its closure, A for its complement, and A = {Z: z € A}. For A € C and
0 >0, we set B(A\,6) ={z:]z— A <} and D = B(0,1). Let P denote the set of polynomials
in the complex variable z. For a compact subset K C C, let Rat(K) be the set of all rational
functions with poles off K and let R(K) be the uniform closure of Rat(K).

A subnormal operator S on H is pure if for every non-zero invariant subspace I of S (ST C I),
the operator S|; is not normal. For Fi, Fs, ..., Fxy € H, let

R*(S|Fy, Fs, ..., Fx) = clos{ri(S)Fi +r2(S)Fs + ... + rn(S)Fx'}
in #H, where r1,72,...,7n € Rat(o(S)) and let
P*(S|F1, Fy, ..., Fx) = clos{p1(S)F1 + p2(S)Fa + ... + pn(S)Fn'}

in H, where p1, p2, ..., pn € P. A subnormal operator S on H is rationally multicyclic (N —cyclic)
if there are N vectors Fi, Fb, ..., Fiv € H such that

H = R*(S|Fy, Fa, ..., Fy)
and for any G1,...,GnN_1 € H,
H # R*(S|G1,Ga, ..., Gn_1).
We call N is the rationally cyclic multiple of S. S is multicyclic (N—cyclic) if
H = P*(S|Fi, Fb, ..., Fx)
and for any G1,...,Gn-1 € H,
H # P*(S|G1,Ga,...,Gn_1).

We call N is the cyclic multiple of S. In this case, m < N where m is as in (1-1).

Let p be a compactly supported finite positive measure on the complex plane C and let
spt(p) denote the support of p. For a compact subset K with spt(u) C K, let R*(K, i) be the
closure of Rat(K) in L?(u). Let P?(u) denote the closure of P in L?(p).

If S is rationally cyclic, then S is unitarily equivalent to multiplication by z on R?(c(S), ut1),
where m = 1 and Fi = 1. We may write R*(S|F1) = R*(c(S),p1). If S is cyclic, then S is
unitarily equivalent to multiplication by z on P?(u1). We may write P2(S|F1) = P?(u1).

For a rationally N—cyclic subnormal operator S with cyclic vectors Fi, Fa,..., Fn and X\ €
o(S), we denote the map

N T1 ()\)
E(\): Zri(S)Fi N Tzﬁ’\) , (1-5)
=1 N ()\)

where 71,72,...,7x € Rat(a(S)). If E()\) is bounded from K to (CV,|.|[1,n), where ||z|i,n =
Zf\r:l |z;] for z € CV, then every component in the right hand side extends to a bounded
linear functional on H and we will call A a bounded point evaluation for S. We use bpe(S)
to denote the set of bounded point evaluations for S. The set bpe(S) does not depend on the
choices of cyclic vectors Fi, Fa, ..., Fn (see Corollary 1.1 in [Mbekhta et al! (2016)). A point
Ao € int(bpe(S)) is called an analytic bounded point evaluation for S if there is a neighborhood
B(Xo,9) C bpe(S) of Ao such that E()) is analytic as a function of A on B(X\o,d) (equivalently
(1-5) is uniformly bounded for A € B(Xo,d)). We use abpe(S) to denote the set of analytic
bounded point evaluations for S. The set abpe(S) does not depend on the choices of cyclic
vectors F1, Fy, ..., Fi (also see Remark 3.1 in Mbekhta et all (2016)). Similarly, for an N—cyclic
subnormal operator S, we can define bpe(S) and abpe(S) if we replace r1,72,...,rn € Rat(o(S))
in (1-5) by p1,p2,...,pn € P.
For N = 1, [Thomson (1991) proves a remarkable structural theorem for P?(p).




Thomson’s Theorem. There is a Borel partition {A;}2 of sptu such that the space P*(u|a,)
contains no nontrivial characteristic functions and

PZ(M) = L2(M|AU) &) {@f’i1p2(ﬂ|Ai)} .

Furthermore, if U; is the open set of analytic bounded point evaluations for P? (1la,) fori>1,
then U; is a simply connected region and the closure of U; contains A;.

(1993) extends some results of Thomson’s Theorem to the space R?(K, 1),
Whlle (- ) expresses R? (K, p) as a direct sum that includes both Thomson’s theorem

and results of |(Conway and Elias (1 (L%H . For a compactly supported complex Borel measure
v of C, by estimating analytic capacity of the set {\ : |Cv(\)| > ¢}, where Cv is the Cauchy

transform of v (see Section 3 for definition), Brennan (2006. English), Aleman et al! (2009), and
Aleman et all 12!!1!]) provide interesting alternative proofs of Thomson’s theorem. Both their
proofs rely on X. Tolsa’s deep results on analytic capacity. There are other related research

papers for N = 1 in the history. For example, [Brennan (1979), Hruscey (1979. Russian),
Brennan and Mlhtzgﬂ dm andm (Im etc.

Thomson’s Theorem shows in Theorem 4.11 of [Thomson (m that abpe S’ = bpe(S) for a
cyclic subnormal operator S (See also Chap VIII Theorem 4.4 in ). Corollary 5.2

in |Conway and Ehad M) proves that the result holds for rationally cyclic subnormal opera-

tors. For N > 1, lXTng_ ) extends the result to rationally N—cyclic subnormal operators.

It is shown in Theorem 2.1 of |(Conway and Eliad M) that if S is a pure rationally cyclic
subnormal operator, then

clos(a(S) \ 0.(9)) = clos(Int(c(S))). (1-6)

This leads us to examine if (1-6) holds for a rationally N—cyclic subnormal operator.

A Gleason part of R(K) is a maximal set 2 in C such that for =,y € ©, if e, and e, denote
the functionals evaluation at = and y respectively, then |le; — ey||r(x)* < 2.|0lin and Thomson
M) shows that a compact set K can be the spectrum of an irreducible subnormal operator
if and only if R(K) has only one non-trivial Gleason part 2 and K = clos(€2). McGuire (1989)
and [Feldman and McGuird (2003) construct irreducible subnormal operators with a prescribed
spectrum, approximate point spectrum, essential spectrum, and the (semi) Fredholm index.
Our first result is to construct a (rationally) 2-cyclic irreducible subnormal operator for a pre-
scribed spectrum and essential spectrum. Consequently we show that (1-6) may not hold for a
(rationally) N —cyclic irreducible subnormal operator with cyclic multiple N > 1.

Theorem 1. Let K and K. be two compact subsets of C such that R(K) has only one nontrival
Gleason part Q, K = clos(?), and 0K C K. C K. Then there exists a rationally 2-cyclic
irreducible subnormal operator S such that o(S) = K, 0.(S) = Ke, and ind(S — X\) = —1 for
A € K\ Ke. If, in particular, C\ K has only one component, then S can be constructed as a
2-cyclic irreducible subnormal operator.

Let K = clos(D) and K. = 0D U clos(3D). We see that

—_

clos(K\ Ke) ={z: = < |z| <1} # clos(Int(K)) = clos(D).

From Theorem [I] we get the following result.

Corollary 1. There exists a 2-cyclic irreducible subnormal operator S such that (1-6) does not
hold.

In the second part of this paper, we will investigate certain classes of rationally N—cyclic
subnormal operators that have the property (1-6). Let S be a rationally N—cyclic subnormal
operator on H = R*(S|Fy, F», ..., Fn). Let ¥ be a smooth function with compact support. Define

KY =clos{y"x: z€H, 0<m<n},

then
HcKVc..cKilc..cKk

and MZ'}C” is a subnormal operator.
ko



Definition 1. A subnormal operator satisfies the property (N, ) if the following conditions are

met:

(1) S is a pure (rationally) N—cyclic subnormal operator on H = {?2(S'|JF’17F27 ey FIN).

(2) ¥ a smooth function with compact support and Area(c(S)N {0y = 0}) = 0. Let M. on K

be the minimal normal extension of S satisfying (1-1) to (1-4), then M|,y  is also a pure
N—-1

subnormal operator.

Theorem 2. Let N > 1 and let S be a pure subnormal operator on H satisfying the property
(N, ), then there exist bounded open subsets U; for 1 < i < N such that

N N
oe(S) = U U, o(S) = | clos(Us),

i=1

and
ind(S — ) =—i
forxe U; andi=1,2,...N. Consequently,

o(S) = clos(c(S) \ 0e(S)) = clos(Int(c(S))).

An important special case is that ¥ = Z. In section 3, we will provide several examples of
subnormal operators that satisfy the property (N,v). We prove Theorem [I] in section 2 and
Theorem 2] in section 3.

2 Spectral Pictures for Irreducible Rationally 2-Cyclic
Subnormal Operators

In this section, we assume that K is a compact subset of C, Int(K) # 0, and R(K) has
only one nontrival Gleason part 2 with K = clos(2). Theorem 5 and Corollary 6 in McGuire
(1988) constructs a representing measure v of R(K) at zo € Int(K) with support on K such
that S, on R?*(K,v) is irreducible, o(S,) = K, 0.(S.) = 0K, and ind(S, — \) = —1 for
A€ Int(K) =0(Sy) \ 0e(Sy). From Theorem 6.2 in |Gamelin (1969), we get

L*(v) = R*(K,v) ® N> ® R2(K,v) (2-1)

where RZ(K,v) = {F : r(z0) = 0 and r € R*(K,v)}. The operator M., multiplication by z on
L?(v), can be written as the following matrix with respect to (2-1):

S,, A, B
M.=|0, C, D
0, 0, Tr

where T,,, multiplication by z on R2(K,v), is an irreducible rationally cyclic subnormal operator
with o(T),) = K, 0.(T,) = 0K, and ind(T, — X\) = —1 for A € Int(K). Let

S, A
=l

then S is the dual of T,,. From the properties of dual subnormal operators (see, for example, The-
orem 2.4 in |Feldman and McGuird (2003)), we see that S is an irreducible subnormal operator
with 0(S) = K, 0.(S) = 0K, and ind(S — A\) = —1 for X € Int(K).

The following lemma, due to [Cowen and Douglas (1978) on page 194, allows us to choose
eigenvectors for S* in a co-analytic manner whenever the Fredholm index function for S is —1.

Lemma 1. If X € L(H) and ind(X —A) = —1 for all A € G := 0(X) \ 0c(X), then there exists
a co-analytic function h : G — H that is not identically zero on any component of G such that
h(X) € ker(X — X)*. In particular, for every x € H, the function X — (x,h())) is analytic on
G.



Using Lemmal[I], we conclude that there exists a co-analytic function ky € H := R*(K,v)®N?
such that (S — A)*kx = 0 on Int(K). Let d5 be the point mass measure at X. Let K. C K be
a compact subset of C such that 0K C K.. Let {An} C K. N Int(K) with K. N Int(K) C
clos({\n}). Define

u=v-+ Z cnlx,, (2-2)

n=1
where ¢, > 0 and Y 0% | cn|lka, ||* = 1. Let M} be the multiplication by z operator on L*(p).
Lemma 2. Define an operator T from H to L*(u) by

f(2),  z€OK

(f7 kkn)7 zZ = An. (2-3)

Then T is a bounded linear one to one operator with closed range. Set H1 = Ran(T), then T is
invertible from H to Hi, le’}-h C Hi, S1 = le|q.¢1 is an irreducible subnormal operator such
that S1 = TSTfl, and le is the minimal normal extension of Si.

Proof: By definition, we get

IF1Z2 ) S ITFIZ2 00 = 1220y + D enl(fikx)I* < 201F 1122

n=1

Therefore, T' is a bounded linear operator and invertible from #H to Hi. Since (zf, kx,) =
An(f, kx, ), we see that M2H1 C Hy and S1 = T'ST ™ . Since (Tkx, )(An) = |[ka,, ||* > 0, clearly,
we have

L*(u) = clos (span{z™z : = € H1, m > 0}).

Therefore, M} is the minimal normal extension of Si.
It remains to prove that S; is irreducible. Let N1 and N2 be two reducing subspaces of S1
such that H1 = N1 @ Na. Then for fi € N1 and f2 € N2, we have

(Z7Lf17sz2) — /Z7L27nf1f2dﬂ — 0

for n,m = 0,1,2,.... This implies fi(2)f2(z) = 0 a.e. p. By the definition of T, we see that
(T ) (2)(T-1f2)(2) = 0 ae. v. Hence, H = T N1 @T " *No. T™' Ny and T~ N; are reducing
subspaces of S. By the construction, 7}, is irreducible (Corollary 6 in IMcGuire (1988)), so S,
as the dual T}, is irreducible (see, for example, Theorem 2.4 in [Feldman and McGuire (2003)).
This means that N1 = 0 or No = 0. The lemma is proved.

We write the operator M} as the following:

1 _ Sly Al
M} = [07 o (2-4)
Then T1, as a dual of Si, is irreducible.
Lemma 3. Let p be as in(2-2) and let H1 be as in Lemmal[d Define
Z — Zo, € 0K,
F(z)=477" 7 (2-5)
0, z € Int(K).
and
kx,(2), z€ 0K,
Gn(z) =% —1/cn, 2= An, (2-6)
0, Z = Am, M #n.
Then

Hi = clos (span{r(2)F,G;j, 1 < j < oo, 7 € Rat(K)}).



Proof: It is straightforward to check, from (2-1), (2-2), and (2-3), that F,G; € Hi . Now
let H(z) L clos (span{r(2)F,G;, 1 < j < oo, r € Rat(K)}), then

/H(z)r(z)F‘(z)du = /H(z)r(z) (z—z0)dv =0

for r € Rat(K). From (2-1), we see that the function H|ox € H. It follows from [ H(2)G;(z)dpu =
0 that H(A;) = (Hlax,k»;). Thus, H(z) € H1. The lemma is proved.

Lemma 4. Let u, Th, F, and G be as in (2-2), (2-4), (2-5) and (2-6), respectively. Then there
exists a sequence of positive numbers {an} satisfying

ianHGnH < oo, G= ianGn,

n=1 n=1

and
Hi = clos (span{r(2)F(z) + p(2)G(z) : r € Rat(K), p € P}).

Therefore, T1 is a rationally 2-cyclic irreducible subnormal operator with
o(T) =K, 0.(Th) = Ke, and ind(Th — ) = -1, A€ K\ K. (2-7)

Proof: Notice that

F(2)(2 = A, (2)dv = 0

for f € H. We conclude, from (2-1), that (2 — M)k, (2) € R2(K,v). Hence, there are {r,} C
R*(K,v) such that
b, (2) = 22 (2 5.
Z—n
We will recursively choose {an}. First choose a1 = 1. Then we assume that a1, az, ..., an have
been chosen. Now we will choose an+1. Let

Wk 1<i<n(z = X))

z) = _ .
P(2) arlljzr1<j<n (A — Aj)

for k =1,2,...,n. Denote

(@) =p(z) Y —Hr(2)

4
J#k1<j<n

and _
ar(Pr(2) — pe(Ak))
z — S\k

qar(2) = ri(2).

So pr. € P and qi, gar. € R*(K,v) for k =1,2,...,n. Clearly,
NN . e oy TR(2)(E — F)
P(9) D 0iG5(2) — e (2) + ()2 - 20) = EEZH) e o
j=1

Hence,
Pr(2) ZajGj(Z) —(q1k(2) + @26(2))F(2) = Gi(2), a.e. p.

We have the following calculation:

/

:/|pk(5)an+1Gn+1(z)|2 du

2 2\n—1

a 4D

< (== 4 NG|
ak Mok, 1<i<nl A — Al

n+1 2

Pi(2) Z a;Gj(2) = (q1k(2) + q2x (2)) F(2) = Gi(2)| dp




where D = max{|z|: z € K}. Now set

min Geizka<i<n min(L, [Ax = Aj)
2nH1 7 1 <k<n 4™ max(1, D)»—1

) / max(L, [ G ). (2:8)

Ap+1 = Min (

So we have chosen all {a,}. From (2-8), we have the following calculation.

pr Y a;G;
i=n+2
(2D)"! o~ arlljzr<y<im min(L [Ax — A)
T arlljzr1<j<n| Ak — Aj] P 41~ max(1, D)*~2
1
S 27L+2 :
Therefore,
P (2)G = (q1r(2) + g2k (2)) F — Gr(2) ||
n+1 oo
< lpr(2) Y aiGy — (quk(2) + g2k (2)F = Gi(2) || + ||pe(2) D ;G
i=1 j=nt2
<L
— 27L
Hence,

Gy € clos (span{r(2)F(2) + p(2)G(2) : r € Rat(K), pe P}), k=1,2,....

Since T} is the dual of Si, we see that o(M}) C 0.(S1) U oe(T1) (see, for example, Theorem
2.4 in [Feldman and McGuire (2003)), 0c(S1) = 9K, and 0.(T1) D OK. So (2-7) follows. This
completes the proof.

Proof of Theorem [Ik It follows from Lemma [4]

3 Spectral Picture of a Class of Rationally Multicyclic
Subnormal Operators

In this section, we will prove Theorem[2l First we provide some examples of subnormal operators
that have the property (IV, ) in Definition [

Example 1. Every pure subnormal operator S on H with finite rank self-commutator has the
property (N,). Notice that the structure of such subnormal operators has been established based
on Xia’s model (see|Xia (1996) and|Yakubovich (1998)).

Proof: Assume that M. on K is the minimal normal extension satisfying (1-1) to (1-4).
Define the self-commutator as the following

D=[58",5]=58"5—-585".
The element = € ker(D) if and only if zZx € H. This implies Sker(D) C ker(D). Therefore,
S*Ran(D) C Ran(D). (3-1)

Let
Ho = clos (span(S™ f : f € Ran(D), n > 0)),

then S|, is N-cyclic subnormal where N = dim(Ran(D)).
On the other hand,
S*S"D = 858*S""'D + DS"'D,



hence, we can recursively show that S*S™Ran(D) C Ho since (3-1). So S*Ho C Ho. This
implies that
S(HeHo) CHeHo

and S|uon, is normal. Since S is pure, we conclude that H = Ho and S is N-cyclic. From
(3-1), we see that there is a polynomial p such that

ﬁ(S*lRan(D)) =0.
Therefore,
p(S) : H — ker(D).
Hence,
IMZp(S)fll = [IM=p(S)fIl = [ISp(S)fIl = IS™p(S) £l
for f € H. This implies ZpH C H. Let 1 = Zp, then Area{0y = 0} = Area{z: p(z) = 0} =0,
IC}L\Ll = H, and S satisfies the property (N, ) in Definition [

Example 2. In Lemmal[d} if K = clos(D) and K. = (9D) U (30D), then the operator T1 is a
2-cyclic irreducible subnormal operator satisfying the property (2,1) where 1 = |z|* — %|z|2.

Proof: For f € Hi, we get
e , 1 1, 1
Wf = (P )P~ D+ r =1

since spt(u) C K.. Hence, K¥ = Hi. On the other hand,

Area{0y = 0} < Area ({O} U{lz| = g}> =

Therefore, the operator T satisfies the property (2,).

In the remaining section, we assume that N > 1 and S is a pure rationally N—cyclic
subnormal operator on H = R%(S|F1, Fb, ..., Fx) and M, on K, which satisfies (1-1) to (1-4), is
the minimal normal extension of S. Moreover, S satisfies the property (IV,) in Definition [l
Let Uy be the set of A € Int(c(S)) such that Ran(S — ) is closed and dim (ker(S — \)*) =k,
where k =1,2,..., N.

Lemma 5. If 1 < k < N, § > 0, B(Xo,20) C Int(c(S)), I is an index subset of {1,2,..., N}
with size N — k, F = Zfil riFs where r; € Rat(o(S)), and {ais(A\) h<i<v—k,1<s<k are analytic
on B(Xo,26) such that

N—k
sup 3. (A + D ais(Nri, V)| < M| F| (3-2)
=1

1<s<k,A€B(X\g,9)

and

Fi (2 Z‘lls 2)Fj (2), a.e p1lB(xg.s)s (3-3)

where iy € I and js ¢ I. Then Ao € Ui:k Us.
Proof: From (3-3), we get

k N—k
Fldp = ais(2)ri (2) | Fj, (2
/B(AO,5)| [ /B(Ao 8 Z:( )+ Z (2)ra( )) (2)

Using (3-2) and the maximal modulus principle,

N—-k
+ E als Tzl
=1

sup
1§s§k,>\eB(A0,6)




Hence,

N—k 2

/IFIde S/B(A ) PP+ QY I1E51)? sup (N + > as(Ari (V)
0.6)¢

PPY 1<s<k,A\€B(Xg,d) =1
Therefore,
[F|l < Mil|(S = Xo)F|,

where
M
ME =1+ IED* ) (5%
i¢l
So Ran(S — Xo) is closed. On the other hand, there are k linearly independent ki € H such that

N—k

re )+ 3 a M) = [ (FELHE))din )

1=1
where js ¢ I and X\ € B(Xo, d). This implies
dim(Ker(S — X)) > k.

Therefore, Ao € UZN:kUi.
Let v be a compactly supported finite measure on C. The transform

Cfpu(z):/7(w(w;:qﬁ(z))ldu(w)

is continuous at each point z with |v|({z}) = 0 and ¢ > 0. For ¢ = 0, the transformation

1

w—z

Co(v) = C(v) = / d(w)

is the Cauchy transform of v. Let M%(z) be the following N by N matrix,

M (z) = (e (B, G) )|

NXN
where we assume that G L IC%71 or equivalently G satisfies the following conditions
P"G LH, n=0,1,2,...,N — 1. (3-4)

The set WE C C is defined by:
W ={\: /ﬁl)\l|<Fz(z)7G(z)>|du1(z) <00, 1<i< N}

Let
QF = Int(0(8)) N W N {\: |det(M(N)| > 0}. (3-5)
Then for A € QF, the matrix

cumeom)] (3-6)

is invertible. By Construction, we see that
det(M®(2)) = 0 a.e. Areal(cios(0G))e-
Lemma 6. Using above notations, we conclude that
QF C abpe(S).

Hence, by Lemmald, we get QF C Un.



Proof: Using (3-4), (3-5), and (3-6), we see that the lemma is a direct application of
Theorem 2 in [Yang (2018).

Let A = {An : pi({An}) > 0} be the set of atoms for 1. Now let us define the matrix
MF (2) to be a submatrix of M“(z) by eliminating the first row and j column. Let BF(2) be

(
the j column of the matrix MG(z) by eliminating the first row. Define

0f = (Int(a(S)) NA°N{z: |det(ME (2))| > o}) \ clos(Q9). (3-7)

Notice that MJ-G()\) is continuous at each A € QG On Q , we can define the following function
vector

a;(2) = [ai; (2)l(v-1yx1 = (M (2) 7' B (2). (3-8)
Lemma 7. Let G, Q°, QF, and a;(z) be as in (3-4), (3-5), (3-7), and (3-8), respectively.
Then for Ao € QJ-G7 there exists 6 > 0 such that a;(z) equals an analytic function on B(Xo,d) C
Int(o(S) almost everywhere with respect to the area measure. Moreover,

C((F;,G Zakj ((F, G )+ Z ar—1,5(2)C((Fr, G)p)(2), a.e. Arealp(xrg,s),
k=j+1
(3-9)
and
FJ7 Zak] Fk7 + Z Ap— 17] Fk7G>7 a.e.u|3(,\0,5). (3—10)
k=j+1

Proof: Without loss of generality, we assume that j = N. For z € Int(c(S) N WY N Q%

write
G _ AJ%(Z) Czc\;r(z)
vee = | R0 e ]
where
AR (2) = [C((F1, G)pa) (2), C({F2, GYpua) (2), +or C((Fn—1, G ) (2)]
and

e (z) = C((Fw, G)m) (2).

By construction of Q§, we conclude that
det(M® (2)) = (AS(2)(MS () ' BS (=) — e (2))det(M§(2)) = 0 a.e. Arealyg.

Therefore,
K (2) = AR (2)(MS (2)) 'BS(2) a.e. Arealgg . (3-11)

Let v; = (F;,G)p1 and H; m(2) = mTZVi(B(Z7 L)), then the functions H; m(z) are bounded
with compact supports. We have

1 m2|\ — w|?
s /‘HKL aow

(s mdA)w) = [

A—w|>

1
™
Hence,

IC(Himd A)(w) — Cri(w)| < 2/ L dui|(2) ave. Area
lw—z|<1/m |w - |
and

lim C(H;jmdA)(w) = Cri(w), a.e. Area.

m—» 00
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Let Co > 0 be a constant such that [(2) — ¥(w)| < Colz — w|. We estimate C,,(v;) as the
following,

Cas (Himd A) (w) — Ciw(w)l

_ m® P(2) — Y(w) 1
=/ = CLZ R
<= /wﬁ L e /sz;m PN =) g,
+ T /\A w\<\/% ‘27A‘<# zZ—w (Z) Vz( ) + /‘A w‘<\/% N—w Vz( )
Notice that
m? 1 1
— dA(2)dv;(\) = dvi(\
™ p\iw‘zﬁ ‘Z7A‘<% zZ—Ww (Z) V( ) /)\wz;m N\ — V( )
We get
ICL(Himd A) (w) — Chva(w)|
m* U2 =N g4 s (Blw, -
<|Z / oo sy ST A+ 20l (. )
m? Colz — A 1
— — —dA(2)dv; (A Colvs|(B(w, ——
< /MZV% s TS G + 20 (B )
1
S%ﬁiuﬁw(w, ﬁﬂ + 2Co || (B(w, ﬁ))
<l + 2ol (B, =)
Therefore,

Tim_Ch(HymdA)(w) = Chviw)
for w ¢ A. For )\ € QIC\'} and € > 0, we can choose a § > 0 and mo such that
ICop (Himd A) (w ) — Cyvi(w )|
—=))+

<2Co|vi|(B(w, 7l

\/_
§200|Vi|(B()\07 1 +

\/_

) + o

\/E ”Vl”

\/ﬁ
<e

where w € B(Xo,6) \ A and m > mo. Since C,,vi(w) is continuous at Ao, § can be chosen to
ensure

|Ci,1/1(w) — Cil/l()\()” < €
where w € B(Xo,0) \ A. It is easy to verify that Cllp (H;i,mdA) is a smooth function. For k > 1,
clearly Clivi(w) is a smooth function. Define

Cy(HimdA), Cy(HamdA), .., Cy(Hn-1mdA)
2 2 2
O A
Cgil(uﬂ, 611;7—1(”2)7 ey CN 1(VN 1)

We can choose € small enough so that

ME™ (w), MK (w)
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are invertible for w € B(Xo,d) \ A and m > myg. Define

Cy(Hn,mdA)
2
BR™(2) = Co .(7N) ;
c) tww)

AS™(2) = [C(H1,mdA),C(Ha,mdA), ...,C(Hx—1,mdA)]

and
™ (2) = C(Hn mdA)(2).

For a smooth function ¢ with compact support in B(\o, d), using the definition (3-8) and
Lebesgue’s Dominated Convergence Theorem, we get the following calculation,

/5¢(z)aN(z)dA(z)
= lim [ 9a(z) (M§" () BE™ (2)) dA(2)
(3-12)
== lim [ 6(=)8 ((ME™(2))" BR™(2)) dA(2)
= 1im_ [ o(x)(MF" ()" (OMF™ () (ME™(2) " BR" (=) — OBK™ (=) ) dA(2).
On the other hand,
—C(Hy mdA), —C(HamdA), .., —C(Hn_1,mdA)
5Mﬁm(z) _ 51/}(2) —2C2/,(7/1)7 —2Ci,(l/2)7 ceey —QCi/,(VNfl)
(N = 1CY2(), —(N = DCV2(s), i —(N =1V 2(wy_1)
Therefore,
A7 (2) (MF™ (=),
@M O () = by | 2 ol
0, 0, , N-1, 0
Hence,
AGm( )(M m(z)) 1BGm CGm
(OME™ (2))(ME™ (2)) " BS™ (2) ~ OBS™ () = () N
0

Using (3-11), we see that

lim (A%m(z)(Mﬁm(z))leffm - c%m) =0 a.e. Area|p(rg,s)-

m— oo

Since each component of the above vector function is less than

d|1/1 z) a.e. Area|p(xy,s),

applying Lebesgue’s Dominated Convergence Theorem to the last step of (3-12), we conclude

/ Bé(2)an (2)dA(z) =

By Weyl’s lemma, we see that ax(z) is analytic on B(Ag,d). From equation (3-8), we get

Cy(Fn,G Z arj(2)Cy(Fi, G)p1)(2), a.e. Arealpirg.s)-
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The above equation implies (3-9) since
acy(vi)(2) = —C(v)(2) a.e. Area.

For equation (3-10), let ¢ be a smooth function with compact support in B(XAo,d) and let v be
a compactly supported finite measure, we get

/ D(2)Cu(2)dA(z) = = / $(2)dv(2).

Apply the above equation to the both sides of the equation (3-9) for j = N and using

0¢(z)arj(z) = 5(¢(z)akj (2)), z € B(Xo,9),
we conclude

N-1
[ otEn G = [65 ans(Fi G,
k=1

Hence the equation (3-10) follows. This completes the proof of the lemma.

Corollary 2. Let G, Q¢ and QF be as in Lemma [} Suppose G L IC%71 (satisfies (3-4)).
Then QZG CUNn-1UUpn.

Proof: Without loss of generality, we assume that j = N. From Lemma [T for Ao € Q%,
there exists § > 0 such that B(Xo,d) C Int(o(S)) and the equations (3-9) and (3-10) hold,
which imply (3-3). For ri,72,...,7n € Rat(o(95)), let

N
F = Z TiFl'.
i=1
Notice that
ri(NCy(Fi, Gypa) = Ci(riFi, G)pa)
since G L IC}Z\’,fl. Then

N
Zn(A)Ci«Fu G)pn)(N) = Ci({F, G)pua)(N),

for k =1,2,..., N — 1. Now using the equation (3-9) for A € B()o,d) \ A4, we get

_ S (riA) + ani(\)rn (A)Ci ((Fr, Gyun) (A) = CL((F, G ) (N),
equivalently,
r1(A) + ani(A)rn () C%((ﬂ G)pa)(A)
Mgy | PO FaRGIn®) || R Gm)R)
rN-1(A) + an,n—1(A)rn(N) Cl T (P, GYym)(N)

where the inverse of M§()\) is bounded on B(\o,d) \ A and an; are analytic on B()o,d).
Therefore, there exists a positive constant M such that

sup 7 (A) + ank (N rv(N)] < M| F|,

1<k<SN-1,A€B(X,%)

which implies (3-2). Hence, Lemma 3.1 implies Q§ C Uy _1 U Ux.
Now let us recursively construct other sets such as Qg for a given G L IC}L\’,fl. We will only
describe the algorithm for & = N — 2 and the other cases will follow recursively. Let EG = Q€
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and E$_; = UY,QF . Let Mg be an N — 2 by N — 2 submatrix of M by eliminating the first
two rows and the ¢ and j columns. Define

Q5 = (Int(o(S)) N A° N {z : |det(MS (2))| > 0}) \ clos(EJ U ES_,).

Without loss of generality, let us assume that s = N — 1 and 5 = N. Similar to Lemma [T,
one can prove that for A\g € 9%71,1\77 there exist 6 > 0, analytic functions a;(z) and b;(z) on
B(Xo,8) C Int(c(S)) such that

N-2 N—-2
Fyo1=Y_ ai2)Fi(z), Fx = Y _ bi(2)Fi(2), a.e.ulpng.s), (3-13)
i=1 i=1

and there exists a constant M > 0 such that

sup Ire(A) + ar(A)rv-1(A) + be(N)rv ()| < M| Fl, (3-14)

1<k<N—2,A€B(Ao,3)

where 71,72, ...,rny € Rat(o(S)) and F = Zf\r:l riFy. (3-13) and (3-14) are the same as (3-2)
and (3-3) for the case k = N — 2. Let

ES_, = U8, (3-15)
Corollary 3. Let ES_, be as in (3-15). Suppose G L IC}L\LI (satisfies (3-4)). Then
E]C\;f,g CUn—2UUNn-1UUn.

The proof is the same as Corollary Therefore we can recursively construct ES for k =
., N such that

N
EZ c U (3-16)
i=k
where the proof for k = N is from Lemmalgl ¥ = N — 1 is from Corollary 2] and k = N — 2 is
from Corollary [l
The following theorem proves, under the conditions S satisfies the property (N, 1)), the set
Up—1 B} is big.
Theorem 3. Let ES be constructed fori=1,2,....N as above. Suppose {G;} C (K% No)tisa

dense subset, then
N oo
sptua C clos <U U EZGJ> .

i=1j=1

1 (Int(a(S))\clos <LNJ GEZGJ>> =0

Suppose that B(Ao,d) C Int(c(S)) and B(Xo, ) Nclos (Uf\rzl U5, EZGJ) = (), then by construc-

Proof: First we prove

tion of EiGj, we conclude that

Co T (Fiy Gi)m)(2) = 0
on B(M\o,d), where i = 1,2,..., N. By taking 0 in the sense of distribution, we see that

C((Fs,Gj)pm)(2) =0

a.e. Area on B(\o,d) since Area({0y = 0} No(S)) = 0, where i = 1,2,..., N. For a smooth
function ¢ with compact support in B(\o, ),

/ () (Fs, Gy)dps = / 86:(=)C((F:, Gy (2)dA(z) =

14



Therefore,

(Fi(2),Gj(2)) = 0. a.e. p1|p(rg,o) (3-17)
where i = 1,2,...,N. From (1-4), we see that for P € @y, L (ttk|p(rng,s))s (3-17) implies
(P,G;) = 0. Therefore,

O L? (k] B(30.5) € Kiv_1-
Hence, pi1]5(x,,5) = 0 since MZ|,C%71 is pure.
Now assume B(Xo, ) Nclos(Int(c(S))) = 0. For N > 1, the function C$71(<Fi, Gj)u1)(z) is
continuous on C\ A and is zero on C\ ¢(5). Hence,

C) T (FL G)m)(2) = 0

on B(Xo,d) \ A, where i = 1,2, ..., N. Using the same proof as above, we see that p1|p(r,,s) = 0.
This implies sptp1 C clos(Int(o(S))). The theorem is proved.
Proof of Theorem [2k From (3-16) and Theorem [3] we get

U OU; C 0e(S) C spt(p1) C clos <U Ul-) .

=1 =1

This implies
oe(S) = | Jous

since 0.(S) NU; = (. This completes the proof.
For a positive finite measure p with compact support on C, definite

P2(u|1727 - ENfl) = clos{pi(z) + p2(2)z + ... +pN(Z)2N71 : p1,p2, ..., pN € P}

and Sy, as the multiplication by z on P?(u|1, 2, ..., ¥ ~!). Then Sy, is a multicyclic subnormal

operator with the minimal normal extension M,,, the multiplication by z, on L?(u).

Corollary 4. Suppose that Sz, on P?(u|l,%,2%) is pure, then the operator S1,, on P?(ull,2)
satisfies
o (S1,u) = clos(o(S1,u) \ oe(S1,u))-

Proof: Since
Ki = clos(span(zFP*(u|1,2) : 0 < k < 1)) = P?(u|1, 2, 2°)

and Sa2,,, on P?(u|1, z,2?) is pure. Therefore, the result follows from Theorem Bl

It seems strong to assume that Sz, on P?(ull,Z,2?) is pure in the corollary. We believe
that the condition can be reduced to assume that Si, on P?(u|l,Z) is pure. However, we are
not able to prove the result under the weaker conditions. We will leave it as an open problem
for further research.

Problem 1. Does Corollary [J hold under the weaker assumption that Si, on P*(u|l,%) is
pure?

Corollary 5. Let S onH be a pure rationally N — cyclic subnormal operator with H = R*(S|F1, Fa, ...

and let M. be its minimal normal eztension on K satisfying (1-1) to (1-4). Suppose that there
exists a smooth function ¢ on C such that Area({0y = 0}No(S)) =0 and Y(M.)H C H. Then
there exist bounded open subsets U; for 1 <1i < N such that

N N
oeo(S) = |JoUi, () \oe(5) = | J U,
i=1 i=1
and
dimker(S — \)* =i.
for A e U;.
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Notice that Example [Tl and [2] are special cases of Corollary It seems that further results
could be obtained for the special cases where S satisfies the conditions of Corollary Bl Moreover,
we might be able to combine the methodology in [McCarthy and Yang (1997) to obtain the
structural models for the class of subnormal operators, which might extend Xia’s model for
subnormal operators with finite rank self-commutators.

Problem 2. Can the structure of subnormal operators in Corollary[3 be characterized?

References

A. Aleman, S. Richter, and C. Sundberg. Nontangential limits in P(u)-spaces and the index
of invariant subspaces. Ann. of Math., 169(2):449-490, 20009.

A. Aleman, S. Richter, and C. Sundberg. A quantitative estimate for bounded point evaluations
in Pt(u)-spaces. Topics in operator theory. Operators, matrices and analytic functions, Oper.
Theory Adv. Appl., 202, Birkhuser Verlag, Basel, 1:1-10, 2010.

J. E. Brennan. Point evaluations, invariant subspaces and approximation in the mean of poly-
nomials. J. Funct. Anal., 34:407-420, 1979.

J. E. Brennan. Thomson’s theorem on mean-square polynomial approximation, algebra i analiz
17 no.2 (2005), 1-32. Russian. St. Petersburg Math. J., 17(2):217-238, 2006. English.

J. E. Brennan. The structure of certain spaces of analytic functions. Comput. Methods Funct.
theory, 8(2):625-640, 2008.

J. E. Brennan and E. R. Militzer. LP-bounded point evaluations for polynomials and uniform
rational approximation. St. Petersburg Math. J., 22(1):41-53, 2011.

J. B. Conway. The theory of subnormal operators. Mathematical Survey and Monographs 36,
1991.

J. B. Conway and N. Elias. Analytic bounded point evaluations for spaces of rational functions.
J. Functional Analysis, 117:1-24, 1993.

M.J. Cowen and R.G. Douglas. Complex geometry and operator theory. Acta. Math., 141:
187-261, 1978.

N. Feldman and P. McGuire. On the spectral picture of an irreducible subnormal operator II.
Proc. Amer. Math. Soc., 131(6):1793-1801, 2003.

T. W. Gamelin. Uniform algebras. American Mathematical Society, Rhode Island, 1969.

S. Hruscev. The Brennan alternative for measures with finite entropy. Izv. Akad. Nauk Armjan.
SSR Ser. Math., 14(3):184-191, 1979. Russian.

M. Mbekhta, N. Ourchane, and E. H. Zerouali. The interior of bounded point evaluations for
rationally cyclic operators. Mediterr. J. Math., 13:1981-1996, 2016.

J. McCarthy and L. Yang. Subnormal operators and quadrature domains. Adv. Math., 127:
52-72, 1997.

P. McGuire. On the spectral picture of an irreducible subnormal operator. Proc. Amer. Math.
Soc., 104(3):801-808, 1988.

R. F. Olin and J. E. Thomson. Irreducible operators whose spectra are spectral sets. Pacific J.
Math., 91:431-434, 1980.

J. E. Thomson. Approximation in the mean by polynomials. Ann. of Math., 133(3):477-507,
1991.

16



D. Xia. On pure subnormal operators with finite rank self-commutators and related operator
tuples. Integral Eqs. Operator Theory, 24:106-125, 1996.

D. Yakubovich. Subnormal operators of finite type ii. structure theorems. Revista Matematica
Iberoamericana, 14(3):623-681, 1998.

L. Yang. A note oo LP-bounded point evaluations for polynomials. Proc. Amer. Math. Soc.,
144(11):4943-4948, 2016.

L. Yang. Bounded point evaluations for rationally multicyclic subnormal operators. Journal of
Mathematical Analysis and Applications, 458:1059-1072, 2018.

17



	1 Introduction
	2 Spectral Pictures for Irreducible Rationally 2-Cyclic Subnormal Operators
	3 Spectral Picture of a Class of Rationally Multicyclic Subnormal Operators

