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Abstract. Frames in a separable quaternionic Hilbert space were introduced and studied in
[17] to have more applications. In this paper, we extend the study of frames in quaternionic
Hilbert spaces and introduce different types of duals of a frame in separable quaternionic Hilbert
spaces. As an application, we give the orthogonal projection of ℓ2(Q) onto the range of analysis
operator of the given frame, in terms of elements of canonical dual frame and elements of the
frame in quaternionic Hilbert space. Finally, we give an expression for the orthogonal projection
in terms of operators related to the frame and its canonical dual frame in quaternionic Hilbert
space.

1. Introduction

Formally, frames for Hilbert spaces (in particular for L2[a, b]) were introduced way back in

1952 by Duffin and Schaeffer [11] as a tool to study of non-harmonic Fourier series. They defined

the following

“A sequence {xn}n∈N in a Hilbert space H is said to be a frame for H if there exist constants

A and B with 0 < A ≤ B < ∞ such that

A‖x‖2≤
∞∑

n=1

|〈x, xn〉|2≤ B‖x‖2, for all x ∈ H.” (1.1)

Moreover, the positive constants A and B , respectively, are called lower and upper frame

bounds for the frame {xn}n∈N . The inequality (1.1) is called the frame inequality for the

frame {xn}n∈N . A sequence {xn}n∈N ⊂ H is called a Bessel sequence if it satisfies upper frame

inequality in (1.1). A frame {xn}n∈N in H is said to be

• tight if it is possible to choose A, B satisfying inequality (1.1) with A = B .

• Parseval if it is possible to choose A, B satisfying inequality (1.1) with A = B = 1.

• exact if removal of any xn renders the collection {xi}i 6=n no longer a frame for H .

Later, frames were further reintroduced, in 1986 by, Daubechies, Grossmann and Meyer

[10], they observed that frames can be used to approximate functions in L2(R). One can also

considered frames as one of the generalizations of orthonormal bases in Hilbert spaces and

being redundant frames expansions are more useful and advantageous over basis expansions in

a variety of practical applications. Now a days, frames are regarded as one of an important

tool to study various areas like representation of signals, characterization of function spaces
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and other fields of applications such as: signal and image processing [4], filter bank theory [3],

wireless communications [14] and sigma-delta quantization [2]. For more literature on frame

theory, one may refer to [5, 9].

In recent years, many generalizations of frames have been introduced and studied. In

2004, Casazza and Kutyniok [6] defined frames of subspaces (frames of subspaces has many

applications in sensor networks and packet encoding), Li and Ogawa [15] introduced the notion

of pseudo-frames in Hilbert spaces using two Bessel sequences, Fornasier [12] introduced the

notion of bounded quasi-projectors, Christensen and Eldar [8] gave oblique frames. In 2006,

Sun [19] introduced generalized frames or g -frames for Hilbert spaces and proved that frames

of subspaces (fusion frames), pseudo frames, bounded quasi-projectors and oblique frames are

special cases of g− frames.

Recently, Khokulan, Thirulogasanthar and Srisatkunarajah [16] introduced and studied

frames for finite dimensional quaternionic Hilbert spaces. Sharma and Virender [18] study

some different types of dual frames of a given frame in a finite dimensional quaternionic Hilbert

space and gave various types of reconstructions with the help of dual frame. Very recently,

Sharma and Goel [17] introduced and studied frames for seperable quaternionic Hilbert spaces

and Chen, Dang and Qian [7] had studied frames for Hardy spaces in the contexts of the

quaternionic space and the Euclidean space in the Clifford algebra.

In this paper, we extend the study of frames in quaternionic Hilbert spaces and introduce

different types of duals of a frame in separable quaternionic Hilbert spaces. As an application,

we give the orthogonal projection of ℓ2(Q) onto the range of analysis operator of the given

frame, in terms of elements of canonical dual frame and elements of the frame in quaternionic

Hilbert spaces. Finally, we give an expression for the orthogonal projection in terms of operators

related to the frame and its canonical dual frame in quaternionic Hilbert spaces.

2. Quaternionic Hilbert space

As the quaternions are non-commutative in nature therefore there are two different types

of quaternionic Hilbert spaces, the left quaternionic Hilbert space and the right quaternionic

Hilbert space depending on positions of quaternions. In this section, we will study some basic

notations about the algebra of quaternions, right quaternionic Hilbert spaces and operators on

right quaternionic Hilbert spaces.

Throughout this paper, we will denote Q to be a non-commutative field of quaternions, I be

a non empty countable set of indicies, VR(Q) be a separable right quaternionic Hilbert space, by
the term “right linear operator”, we mean a “right Q-linear operator” and B(VR(Q)) denotes

the set of all bounded (right Q-linear) operators of VR(Q) :

B(VR(Q)) := {T : VR(Q) → VR(Q) : ‖T‖< ∞}.
The non-commutative field of quaternions Q is a four dimensional real algebra with unity.

In Q , 0 denotes the null element and 1 denotes the identity with respect to multiplication. It

also includes three so-called imaginary units, denoted by i, j, k . i.e.,

Q = {x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R}
where i2 = j2 = k2 = −1; ij = −ji = k; jk = −kj = i and ki = −ik = j . For each

quaternion q = x0 + x1i+ x2j + x3k ∈ Q , the conjugate of q is denoted by q and is defined

as

q = x0 − x1i− x2j − x3k ∈ Q.

If q = x0+x1i+x2j+x3k is a quaternion, then x0 is called the real part of q and x1i+x2j+x3k

is called the imaginary part of q . The modulus of a quaternion q = x0 + x1i + x2j + x3k is
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defined as

|q|= (qq)1/2 = (qq)1/2 =
√
x2
0 + x2

1 + x2
2 + x2

3.

For every non-zero quaternion q = x0 + x1i + x2j + x3k ∈ Q , there exists a unique inverse

q−1 in Q as

q−1 =
q

|q|2 =
x0 − x1i− x2j − x3k

x2
0 + x2

1 + x2
2 + x2

3

.

Definition 2.1. A right quaternionic vector space VR(Q) is a vector space under right
scalar multiplication over the field of quaternionic Q, i.e.,

VR(Q)×Q → VR(Q)

(u, q) → uq (2.1)

and for each u, v ∈ VR(Q) and p, q ∈ Q, the right scalar multiplication (2.1) satisfying
the following properties:

(u+ v)q = uq + vq

u(p+ q) = up+ uq

v(pq) = (vp)q.

Definition 2.2. A right quaternionic pre-Hilbert space or right quaternionic inner product
space VR(Q) is a right quaternionic vector space together with the binary mapping
〈.|.〉 : VR(Q) × VR(Q) → Q (called the Hermitian quaternionic inner product) which
satisfies following properties:

(a) 〈v1|v2〉 = 〈v2|v1〉 for all v1, v2 ∈ VR(Q).
(b) 〈v|v〉 > 0 for all 0 6= v ∈ VR(Q).
(c) 〈v|v1 + v2〉 = 〈v|v1〉+ 〈v|v2〉 for all v, v1, v2 ∈ VR(Q).
(d) 〈v|uq〉 = 〈v|u〉q for all v, u ∈ VR(Q) and q ∈ Q.

Let VR(Q) be right quaternionic inner product space with the Hermitian inner product

〈.|.〉 . Define the quaternionic norm ‖.‖: VR(Q) → R
+ on VR(Q) by

‖u‖=
√

〈u|u〉, u ∈ VR(Q). (2.2)

Definition 2.3. The right quaternionic pre-Hilbert space is called a right quaternionic
Hilbert space, if it is complete with respect to the norm (2.2) and is denoted by VR(Q).

Theorem 2.4 (The Cauchy-Schwarz Inequality). [13] If VR(Q) is a right quaternionic
Hilbert space then

|〈u|v〉|2≤ 〈u|u〉〈v|v〉, for all u, v ∈ VR(Q).

Moreover, a norm as defined in (2.2) satisfies the following properties:

(a) ‖uq‖= ‖u‖|q|, for all u ∈ VR(Q) and q ∈ Q.
(b) ‖u+ v‖≤ ‖u‖+‖v‖, for all u, v ∈ VR(Q).
(c) ‖u‖= 0 for some u ∈ VR(Q), then u = 0.

For the non-commutative field of quaternions Q , define the quaternionic Hilbert space ℓ2(Q)
by

ℓ2(Q) =

{
{qi}i∈N ⊂ Q :

∑

i∈N

|qi|2< +∞
}
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under right multiplication by quaternionic scalars together with the quaternionic inner product

on ℓ2(Q) defined as

〈p|q〉 =
∑

i∈N

piqi, p = {pi}i∈N and q = {qi}i∈N ∈ ℓ2(Q). (2.3)

It is easy to observe that ℓ2(Q) is a right quaternionic Hilbert space with respect to quaternionic

inner product (2.3).

Definition 2.5 ([13]). Let VR(Q) be a right quaternionic Hilbert Space and S be a
subset of VR(Q). Then, define the set:

• S⊥ = {v ∈ VR(Q) : 〈v|u〉 = 0 ∀ u ∈ S}.
• 〈S〉 be the right Q-linear subspace of VR(Q) consisting of all finite right Q-linear
combinations of elements of S .

Theorem 2.6 ([13]). Let VR(Q) be a quaternionic Hilbert space and let N be a subset
of VR(Q) such that, for z, z′ ∈ N such that 〈z|z′〉 = 0 if z 6= z′ and 〈z|z〉 = 1. Then
the following conditions are equivalent:

(a) For every u, v ∈ VR(Q), the series
∑

z∈N〈u|z〉〈z|v〉 converges absolutely and

〈u|v〉 =
∑

z∈N

〈u|z〉〈z|v〉.

(b) For every u ∈ VR(Q), ‖u‖2=
∑
z∈N

|〈z|u〉|2 .

(c) N⊥ = 0.
(d) 〈N〉 is dense in H .

Definition 2.7 ([13]). Every quaternionic Hilbert space VR(Q) admits a subset N , called
Hilbert basis or orthonormal basis of VR(Q), such that, for z, z′ ∈ N , 〈z|z′〉 = 0 if z 6= z′

and 〈z|z〉 = 1 and satisfies all the conditions of Theorem 2.6.

Further, if there are two such sets, then they have the same cardinality. Furthermore, if N

is a Hilbert basis of VR(Q) , then for every u ∈ VR(Q) can be uniquely expressed as

u =
∑

z∈N

z〈z|u〉

where the series
∑
z∈N

z〈z|u〉 converges absolutely in VR(Q) .

Definition 2.8 ([1]). Let VR(Q) be a right quaternionic Hilbert space and T be an
operator on VR(Q). Then T is said to be

• right Q-linear if T (v1α+v2β) = T (v1)α+T (v2)β, for all v1, v2 ∈ VR(Q) and α, β ∈ Q.

• bounded if there exist K ≥ 0 such that ‖T (v)‖≤ K‖v‖, for all v ∈ VR(Q).

Definition 2.9 ([1]). Let VR(Q) be a right quaternionic Hilbert space and T be an
operator on VR(Q). Then the adjoint operator T ∗ of T is defined by

〈v|Tu〉 = 〈T ∗v|u〉, for all u, v ∈ VR(Q).

Further, T is said to be self-adjoint if T = T ∗ .

Theorem 2.10 ([1]). Let VR(Q) be a right quaternionic Hilbert space and S and T be
two bounded right Q-4linear operators on VR(Q). Then

(a) T + S and TS ∈ B(VR(Q)). Moreover:

‖T + S‖≤ ‖T‖+‖S‖ and ‖TS‖≤ ‖T‖‖S‖.
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(b) 〈Tv|u〉 = 〈v|T ∗u〉.
(c) (T + S)∗ = T ∗ + S∗ .
(d) (TS)∗ = S∗T ∗ .
(e) (T ∗)∗ = T.

(f) I∗ = I , where I is the identity operator on VR(Q).
(g) If T is an invertible operator then (T−1)∗ = (T ∗)−1 .

3. Frames in quaternionic Hilbert spaces

We begin this section with the following definition of frames in a separable right quaternionic

Hilbert space VR(Q) defined in [17]:

Definition 3.1. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a
sequence in VR(Q). Then {ui}i∈N is said to be a frame for VR(Q), if there exist two
finite constants with 0 < A ≤ B such that

A‖u‖2≤
∑

i∈N

|〈ui|u〉|2≤ B‖u‖2, for all u ∈ VR(Q). (3.4)

The positive constants A and B , respectively, are called lower and upper frame bounds
for the frame {ui}i∈N . The inequality (3.4) is called frame inequality for the frame
{ui}i∈I . A sequence {ui}i∈N is called a Bessel sequence for a right quaternionic Hilbert
space VR(Q) with bound B , if {ui}i∈N satisfies the right hand side of the inequality
(3.4). A frame {ui}i∈N for a right quaternionic Hilbert space VR(Q) is said to be

• tight, if it is possible to choose A and B satisfying inequality (3.1) with A = B .
• Parseval frame, if it is tight with A = B = 1.
• exact, if it ceases to be a frame whenever anyone of its element is removed.

If {ui}i∈N is a Bessel sequence for a right quaternionic Hilbert space VR(Q) . Then, the

(right) synthesis operator for {ui}i∈N is a right linear operator T : ℓ2(Q) → VR(Q) defined

by

T ({qi}i∈N) =
∑

i∈N

uiqi, {qi}i∈N ∈ ℓ2(Q).

The adjoint operator T ∗ of right synthesis operator T is called the (right) analysis operator.
Further, the analysis operator T ∗ : VR(Q) → ℓ2(Q) is given by

T ∗(u) = {〈ui|u〉}i∈N, u ∈ VR(Q).

Infact, for u ∈ VR(Q) and {qi}i∈N ∈ ℓ2(Q) , we have

〈T ∗(u)|{qi}i∈N〉 = 〈u|T ({qi}i∈N)〉

=

〈
u

∣∣∣∣
∑

i∈N

uiqi

〉

=
∑

i∈N

〈u|ui〉qi

=

〈
{〈ui|u〉}i∈N, {qi}i∈N

〉
.

Thus

T ∗(u) = {〈ui|u〉}i∈N, u ∈ VR(Q).
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Theorem 3.2 ([17]). Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a
sequence in VR(Q). Then, {ui}i∈N is a Bessel sequence for VR(Q) with bound B if and
only if the right linear operator T : ℓ2(Q) → VR(Q) defined by

T ({qi}i∈N) =
∑

i∈N

uiqi, {qi}i∈N ∈ ℓ2(Q)

is a well defined and bounded operator with ‖T‖≤
√
B .

Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame for VR(Q) . Then,
the (right) frame operator S : VR(Q) → VR(Q) for the frame {ui}i∈N is a right linear

operator given by

S(u) = TT ∗(u)

= T ({〈ui|u〉}i∈N)
=

∑

i∈N

ui〈ui|u〉, u ∈ VR(Q).

Theorem 3.3 ([17]). Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a
frame for VR(Q) with lower and upper frame bounds A and B , respectively and frame
operator S . Then S is positive, bounded, invertible and self adjoint right linear operator
on VR(Q).

Theorem 3.4 ([17]). Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a
frame for VR(Q) with lower and upper frame bounds A and B , respectively and frame
operator S . Then {S−1ui}i∈N is also a frame for VR(Q) with bounds B−1 and A−1 and
right frame operator S−1 .

Theorem 3.5 ([17]). Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a
sequence in VR(Q). Then {ui}i∈N is a frame for VR(Q) if and only if the right linear
operator T : ℓ2(Q) → VR(Q)

T ({qi}i∈N) =
∑

i∈N

uiqi, {qi}i∈N ∈ VR(Q)

is a well-defined and bounded mapping from ℓ2(Q) onto VR(Q).

4. Duals of a frame in quaternionic Hilbert spaces

In view of Theorem 3.4, we have the following definition

Definition 4.1. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame
for VR(Q) with frame operator S . Then

• {S−1(ui)}i∈N is called the canonical dual frame for the frame {ui}i∈N in VR(Q).
• a sequence {vi}i∈N ⊂ VR(Q) is called an alternate dual for the frame {ui}i∈N in
VR(Q) if it satisfies

u =

∞∑

i=1

vi〈ui|u〉, u ∈ VR(Q).

In view of above definition, one may observe that canonical dual frame for a right quaternionic

Hilbert space VR(Q) is also an alternate dual frame for VR(Q) and an alternate dual of a frame

may not be unique. In order to show their existence we give a following example
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Example 4.2. Let N = {zi}i∈N be a Hilbert basis for a right quaternionic Hilbert space
VR(Q). Then, for each zi, zk ∈ N , i, k ∈ N, we have

〈zi|zk〉 =
{
0, for i 6= k

1, for i = k.

Define a sequence {ui}i∈N ⊂ VR(Q) by

ui = zj, i ∈ {2j − 1, 2j}, j = 1, 2, · · · .
Then {ui}i∈N is frame for VR(Q). Moreover, the canonical dual {ũi}i∈N of {ui}i∈N is
given by

ũi =
zj

2
, i ∈ {2j − 1, 2j}, j = 1, 2, · · · .

Next, define sequences {vi}i∈N and {wi}i∈N in VR(Q) by

v2i−1 = zi and v2i = 0, i = 1, 2, · · · .
and

w2i−1 = 0 and w2i = zi, i = 1, 2, · · · .
Then {vi}i∈N and {wi}i∈N are alternate duals for the frame {ui}i∈N in VR(Q). �

In the following result we show that if a Bessel sequence is an alternate dual for a given frame

in quaternionic Hilbert space VR(Q) , then it becomes a frame for VR(Q) and the given frame

becomes its alternate dual.

Theorem 4.3. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame
for VR(Q) with lower and upper frame bounds A and B , respectively and {vi}i∈N be a
Bessel sequence for VR(Q). If {vi}i∈N is a alternate dual for {ui}i∈N in VR(Q), then
{vi}i∈N is also a frame for VR(Q). Further, {ui}i∈N is a alternate dual for {vi}i∈N in
VR(Q).

Proof. As {ui}i∈N is a frame for VR(Q), therefore {〈ui|u〉}i∈N ∈ ℓ2(Q), u ∈ VR(Q). Also,

{vi}i∈N is a Bessel sequence, so by Theorem 3.2,
∞∑
i=1

vi〈ui|u〉 exists. So, we have

〈u|v〉 =

〈
u

∣∣∣∣
∞∑

i=1

vi〈ui|v〉
〉

=
∞∑

i=1

〈u|vi〉〈ui|v〉

=

〈
∞∑

i=1

ui〈u|vi〉
∣∣∣∣v
〉

=

〈
∞∑

i=1

ui〈vi|u〉
∣∣∣∣v
〉
, v ∈ VR(Q).
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This gives u =
∞∑
i=1

ui〈vi|u〉, u ∈ VR(Q). Then we have

‖u‖2 = sup
‖v‖=1

|〈u|v〉|2

= sup
‖v‖=1

∣∣∣∣∣

〈
∞∑

i=1

ui〈vi|u〉
∣∣∣∣v
〉∣∣∣∣∣

2

≤ sup
‖v‖=1

∣∣∣∣∣

∞∑

i=1

〈u|vi〉〈ui|v〉
∣∣∣∣∣

2

≤ sup
‖v‖=1

( ∞∑

i=1

|〈u|vi〉|2
) (

B‖v‖2
)

= B

∞∑

i=1

|〈vi|u〉|2, u ∈ VR(Q).

Hence, {vi}i∈N is frame for VR(Q) with alternate dual frame {ui}i∈N in VR(Q). �

In the next result, we show that among all the representations of an element
u ∈ VR(Q) in terms of a frame {ui}i∈N for VR(Q) with coefficient sequence in ℓ2(Q), the
sequence {〈S−1(ui)|u〉}i∈N ∈ ℓ2(Q), has the minimum ℓ2(Q) - norm. Indeed we have the
following:

Theorem 4.4. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame for

VR(Q) with the frame operator S . Fix ũ ∈ VR(Q), if ũ =
∞∑
i=1

uiqi , for some quaternion

sequence {qi}i∈N ∈ ℓ2(Q) then

∞∑

i=1

|qi|2=
∞∑

i=1

|〈S−1ui|ũ〉|2+
∞∑

i=1

|〈S−1ui|ũ〉 − qi|2.

In particular, {〈S−1ui|ũ〉}i∈N has the minimal ℓ2(Q)-norm among all quaternion
sequences {qi}i∈N ∈ ℓ2(Q).

Proof. For each u ∈ VR(Q), we have

〈S−1u|u〉 =
〈
S−1u

∣∣∣∣
∞∑

i=1

ui〈S−1ui|u〉
〉

=
∞∑

i=1

〈S−1u|ui〉〈S−1ui|u〉

=
〈
{〈S−1ui|u〉}i∈N|{〈S−1ui|u〉}i∈N

〉
ℓ2(Q)

.
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Also

〈S−1ũ|ũ〉 =
〈
S−1ũ

∣∣∣∣
∞∑

i=1

uiqi

〉

=
∞∑

i=1

〈ũ|S−1ui〉qi

=
〈
{〈S−1ui|ũ〉}i∈N|{qi}i∈N

〉
ℓ2(Q)

.

So, {qi − 〈S−1ui|ũ〉}i∈N is orthogonal to {〈S−1ui|ũ〉}i∈N in ℓ2(Q). Therefore, we have

‖{qi}i∈N‖2ℓ2(Q) = ‖{qi − 〈S−1ui|ũ〉}+ {〈S−1ui|ũ〉}‖2ℓ2(Q)

= ‖{qi − 〈S−1ui|ũ〉}‖2ℓ2(Q)+‖{〈S−1ui|ũ〉}‖2ℓ2(Q).

Thus, we have

∞∑

i=1

|qi|2 =
∞∑

i=1

|〈S−1ui|ũ〉|2+
∞∑

i=1

|〈S−1ui|ũ〉 − qi|2. �

Next, we give equivalent conditions for two frames in a quaternionic Hilbert space,
where one becomes alternate dual of the other and vice versa, in terms of their
corresponding analysis and synthesis operators. More precisely we have :

Theorem 4.5. Let VR(Q) be a right quaternionic Hilbert space. Let {ui}i∈N and {vi}i∈N
be the frames for VR(Q) with synthesis operators T and U , respectively. Then the
following statements are equivalent

(a). {ui}i∈N is an alternate dual for {vi}i∈N in VR(Q).
(b). TU∗ = I .
(c). UT ∗ = I .
(d). (T ∗U)2 = T ∗U .

Proof. (a) ⇒ (b) For each u ∈ VR(Q), we have

u =
∞∑

i=1

vi〈ui|u〉

= UT ∗(u).

(b) ⇒ (c) Straight forward.
(c) ⇒ (d) We have,

(
T ∗U

)2

= T ∗(UT ∗)U

= T ∗IU
= T ∗U.

(d) ⇒ (a) For each {qi}i∈N ∈ ℓ2(Q), we have

T ∗U({qi}i∈N) =
{〈

ui

∣∣∣∣
∞∑

i=1

viqi

〉}

i∈N

. (4.1)



10 Sharma, Singh and Sahu

This gives

UT ∗U ({qi}i∈N) =
∞∑

i=1

vi

〈
ui

∣∣∣∣
∞∑

i=1

viqi

〉
.

Therefore, we have

(T ∗U)2({qi}i∈N) =
{〈

ui

∣∣∣∣
∞∑

i=1

vi

〈
ui

∣∣∣∣
∞∑

i=1

viqi

〉〉}

i∈N

. (4.2)

So (4.1) and (4.2) gives

∞∑

i=1

viqi =
∞∑

i=1

vi

〈
ui

∣∣∣∣
∞∑

i=1

viqi

〉
.

Again since {vi}i∈N is an frame for VR(Q), therefore U is onto. Thus we have

v =

∞∑

i=1

vi〈ui|v〉, v ∈ VR(Q).

Hence {vi}i∈N is an alternate dual frame for {ui}i∈N in VR(Q). �

Next, we give a result concerning a relationship between the analysis operator and the
canonical dual of a frame in a right quaternionic Hilbert space. Further, an expression
for the pseudo inverse of the synthesis operator of a frame in terms of its canonical dual
is given.

Theorem 4.6. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame
for VR(Q) with the frame operator S . Let T and T ∗ be the synthesis operator and the

analysis operator, respectively for {ui}i∈N and T̃ and T̃ ∗ be the synthesis operator and
the analysis operator, respectively for the canonical dual frame {S−1(ui)}i∈N . Then,

(a) range (T ∗) = range (T̃ ∗).

(b) the pseudo inverse (T )† of the synthesis operator T is T̃ ∗ , i.e.

(T )†u = {〈S−1(ui)|u〉}i∈N, u ∈ VR(Q).

Proof. (a) For each u ∈ VR(Q), we have

(T̃ ∗)u = {〈S−1(ui)|u〉}i∈N
= {〈 ui|S−1u〉}i∈N
= T ∗S−1u.

Since S is a topological isomorphism, it follows that range (T ∗) = range (T̃ ∗).
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(b) As ker(T )⊥ = range(T ∗) = range(T̃ ∗). Therefore, T |ker(T )⊥ : range(T
∗) → VR(Q) is

a topological isomorphism. Therefore the pseudo inverse (T )† is

(
T |ker(T )⊥

)−1

. Further,

(
T |ker(T )⊥

)
T̃ ∗u = T T̃ ∗u

=
∞∑

i=1

ui〈S−1ui|u〉

= u, u ∈ VR(Q).

Furthermore, for each q ∈ range (T ∗) = range (T̃ ∗), there exist u ∈ VR(Q) such that

q = T̃ ∗u . So, by Theorem 4.5, we have

T̃ ∗

(
T |ker(T )⊥

)
q = T̃ ∗T T̃ ∗u

= T̃ ∗u.

Hence T̃ ∗ =

(
T |ker(T )⊥

)−1

. �

Finally in this section, with a given frame and its canonical dual frame for a
quaternionic Hilbert space, we characterize frame and its canonical dual frame for a
given closed subspace of the quaternionic Hilbert space.

Theorem 4.7. Let VR(Q) be a quaternionic Hilbert space and {ui}i∈N be a frame for
VR(Q) with frame operators S . Let P be the orthogonal projection of VR(Q) onto a
closed subspace M of VR(Q). Then

(a) {Pui}i∈N is frame for M with the same frame bounds as {ui}i∈N and {PS−1(ui)}i∈N
is an alternative dual frame for {Pui}i∈N .

(b) {PS−1(ui)}i∈N is canonical dual frame for {Pui}i∈N if and only if PS = SP .

Proof. (a) For each u ∈ M , we have
∞∑

i=1

|〈Pui|u〉|2=
∞∑

i=1

|〈ui|u〉|2

Therefore, {Pui}i∈N is frame for M with same frame bounds as that of {ui}i∈N and by
the similar argument, {PS−1(ui)}i∈N is also a frame for M with frame bounds inverse
of {ui}i∈N . Further, for each u ∈ M

∞∑

i=1

Pui〈PS−1ui|u〉 = P
( ∞∑

i=1

ui〈S−1ui|Pu〉
)

= u.

Hence, the result follows.

(b) Let V be the frame operator for {Pui}i∈N as a frame for M . Then, we have

V −1P(ui) = PS−1(ui), i ∈ N.

This gives

V −1P(u) = PS−1(u), u ∈ VR(Q).
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Since S and V are topological isomorphisms on VR(Q) and M , respectively, therefore
we have

PS = V V −1PS

= V PS−1S

= V P.

Since P, S and V are self-adjoint, so we have SP = PV . Hence, we have SP = PS .

Conversely, we have

V Pu =

∞∑

i=1

Pui〈Pui|Pu〉

= P
( ∞∑

i=1

ui〈ui|P2u〉
)

= P
( ∞∑

i=1

ui〈ui|Pu〉
)

= PSPu

= SPu, u ∈ VR(Q).

Therefore, for each u ∈ M , we have

V u = V Pu

= SPu

= Su.

This gives V = S|M . Thus S maps M bijectively onto itself. Therefore we have

V −1P(ui) = (S|M)−1Pui

= S−1P(ui)

= PS−1(ui).

Hence the canonical dual frame for {Pui}i∈N is {PS−1(ui)}i∈N in VR(Q). �

5. Application

In this section, as an application of the canonical dual of a given frame, we give the
orthogonal projection of ℓ2(Q) onto the range of the analysis operator of the frame, in
terms of the elements of the frame and its canonical dual. Apart from this, we also give
an expression for the orthogonal projection in terms of operators related to the frame
and its canonical dual in a right quaternionic Hilbert space.

Theorem 5.1. Let VR(Q) be a right quaternionic Hilbert space and {ui}i∈N be a frame
for VR(Q) with the synthesis operator T and the frame operator S . Let T̃ and S̃ be
the synthesis operator and the frame operator for the canonical dual frame {S−1ui}i∈N of
{ui}i∈N . Then the orthogonal projection Q of ℓ2(Q) onto the range of T ∗ is given by

Q

(
{qi}i∈N

)
=

{〈
uj

∣∣∣∣
∞∑

i=1

S−1uiqi

〉}

j∈N

.
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Also,

Q = T ∗T̃ = T ∗S−1T.

Proof. For q = {qi}i∈N ∈ ℓ2(Q),

u = S−1Su

=

∞∑

i=1

S−1ui〈ui|u〉, u ∈ VR(Q).

Moreover, we have T (q) =
∞∑
i=1

uiqi and T ∗u = {〈ui|u〉}i∈N. It is sufficient to show that Q

is the identity on range T ∗ and is zero on (range T ∗)⊥=ker T . By definition

Q(T ∗u) = Q ({〈ui|u〉}i∈N)

=

{〈
uj

∣∣∣∣
∞∑

i=1

S−1ui〈ui|u〉
〉}

j∈N

= {〈uj|u〉}j∈N
= T ∗u, u ∈ VR(Q).

Again, for q = {qi}j∈N ∈ (range T ∗)⊥ = ker T

Q(q) = Q

(
{qi}i∈N

)

=

{〈
uj

∣∣∣∣
∞∑

i=1

S−1uiqi

〉}

j∈N

=

{〈
uj

∣∣∣∣S
−1

∞∑

i=1

uiqi

〉}

j∈N

=
{
〈uj|S−1T (q)〉

}
j∈N

= 0.

Thus, Q is the orthogonal projection of ℓ2(Q) onto the range of T ∗ . Further, we have

T ∗S−1T (q) = T ∗T̃ (q)

= T ∗

( ∞∑

i=1

S−1uiqi

)

=

{〈
uj

∣∣∣∣
∞∑

i=1

S−1uiqi

〉}

j∈N

= Q(q).

This completes the proof. �
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