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SOME RING-THEORETIC PROPERTIES OF THE RING OF RLτ

A. A. ESTAJI1∗ AND M. ABEDI2

Abstract. The aim of this article is to survey ring-theoretic properties of Kasch,

the regularity and the injectivity of the ring of real-continuous functions on a

topoframe Lτ, i.e., RLτ. In order to study these properties, the concept of P-

spaces and extremally disconnected spaces are extend to topoframes. For a P-

topoframe Lτ, the ring RLτ is ℵ0-Kasch ring. P- topoframes are characterized in

terms of ring-theoretic properties of the regularity and injectivity of the ring of

real-continuous functions on a topoframe. It follows from these characterizations

that the ring RLτ is regular if and only if it is ℵ0-selfinjective. For a completely

regular topoframe Lτ, we show thatRLτ is a Bear ring if and only if it is a CS -ring

if and only if Lτ is extremally disconnected and also prove that it is selfinjective

ring if and only if Lτ is an extremally disconnected P-topoframe.

1. Introduction

The principal tool to be used is modified pointfree topology, i.e., topoframe, first

introduced in [7] as follows.

A topoframe, denoted by Lτ, is a pair (L, τ) consisting of a frame L and a

subframe τ all of whose elements are complemented elements in L.

The elements of τ are called open elements in L and τ and the elements of τ′ = {t′ |

t ∈ τ} are called closed elements in L. Also in [7], authors introduced the concept

of a τ-real-continuous function on a frame L (or a real-continuous function on Lτ)

and showed the set of all real-continuous functions on Lτ, denoted by RLτ, is an

f -ring is actually a generalization of the ring C(X) of all real-valued continuous

functions on a completely regular Hausdorff space X.

Recall from [1] that the frame L(R) of reals is obtained by taking the ordered

pairs (p, q) of rational numbers as generators. Now, the real-valued continuous

functions on L are the homomorphisms L(R) → L. The ring RL of all frame

homomorphisms from L(R) to L, i.e., RL = Frm(L(R), L), is an f -ring (see [1].

For a topoframe Lτ, the ring RLτ is isomorphic to a sub- f -ring of Rτ (see [7] for

details).

Recall from [13] that a real-valued function on a frame L is a homomorphism

f : P(R) → L and let FPL be the ring of all real-valued functions on a frame L,
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2 A. A. ESTAJI1∗ AND M. ABEDI2

i.e., FPL = Frm(P(R), L). For a topoframe Lτ, it is proved in [7] that RLτ is a

sub- f -ring of FPL.

By a reduced ring we mean a ring without nonzero nilpotent elements. In [11,

12] for a reduced ring A, some internal conditions on A are equivalent to self-

injectivity (ℵ0-selfinjective) of A are provided. Since RLτ is always a reduced

ring, we can use these conditions to investigate the injectivity of the ring RLτ.

Using these conditions, authors in [5] shown that for a space X, the ring C(X) is

ℵ0-selfinjective if and only if X is a P-space. They proved also that C(X) is self-

injective if and only if X is an extremally disconnected P-space. We are going to

extend these results to the more general setting of modified pointfree topology.

This article is composed of three original parts which are partly discrete but for

introduction and preliminaries. In the following, these parts are clearly explained.

In Section 3, for a element a in τ with a′ ∈ τ′, we make a idempotent element

fa of RLτ such that z( fa) = a′ and calculate the multiplication f fa for a element

f ∈ RLτ in Proposition 1. This proposition enables us to prove that if f ∈ RLτ
and z( f ) ∈ τ, then f is a zerodivisor element and the principal ideal ( f ) of RLτ
is a nonessential ideal (see Proposition 2). Therefore, by this proposition, we can

conclude that RLτ has no proper regular ideal (Corollary 1). Finally, the concept

of P-spaces (or P-frames) is extend to topoframes and in Theorem 1, it is proved

that the ring RLτ is a ℵ0-Kasch ring whenever Lτ is a P-topoframe.

The regularity of the ring RLτ is examined in Section 4. We prove in alone

theorem of this section that RLτ is a regular ring if and only if Lτ is P-topoframe,

see Theorem 2.

Eventually, the injectivity of the ring RLτ is discussed in the last section. First,

in the Theorem 3, we show that the topoframe Lτ is a P-topoframe if and only if

the ring RLτ is ℵ0-selfinjective. Also it is proved that if L is an extremally dis-

connected frame and Lτ is a P-topoframe then RLτ is a selfinjective ring, but the

converse is not true, see Proposition 5. Afterwards, we define extremally discon-

nected topoframes and show for a topoframe Lτ, τ is a extremally disconnected

frame if and only if Lτ is extremally disconnected (Proposition 4). Also for a com-

pletely regular topoframe Lτ, in Proposition 5, it is proved that Lτ is extremally

disconnected if and only if RLτ is a Bear ring if and only if it is a CS -ring. Finally

we characterize extremally disconnected P-topoframes in terms of ring-theoretic

properties of the ring RLτ and show Lτ is an extremally disconnected P-topoframe

if and only if RLτ is a self injective ring if and only if RLτ is a Baer regular ring if

and only if RLτ is a continuous regular ring if and only if RLτ is a complete regular

ring, whenever Lτ is a completely regular topoframe, see Theorem 4.

2. Preliminaries

A good reference to the basic terms and notations in frames is [15]. For unde-

fined terms and notations see [1] on pointfree functions rings, and see [9] on C(X).

Also [7, 17] are valuable references on topoframes and the ring of real-continuous

functions on a topoframe. Here we recall a few facts about frames, topoframes and

their rings of real-continuous functions that will be linked for our discussion.
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A frame is a complete lattice L in which the distributive law

a ∧
∨

S =
∨

{a ∧ s : s ∈ S }

holds for all a ∈ L and S ⊆ L. The top element and the bottom element of L

are denoted by ⊤L and ⊥L respectively; omitting the subscripts if no bewilderment

may happen. Throughout this context L will denote a frame and topoframe (L, τ)

is denoted by Lτ. OX is the frame of open subsets of a topological space X.

A frame homomorphism (or frame map) is a map f : L → M between two

frames which preserves finite meets, including the top element, and arbitrary joins,

including the bottom element.

The pseudocomplement of an element x ∈ L is denoted by x∗. General properties

of pseudocomplement can be found in [15]. Here we emphasize some of them.

(1) a ≤ a∗∗ and if a ≤ b, then b∗ ≤ a∗.

(2) (
∨

i∈I ai)
∗
=
∧

i∈I a∗
i
, the first De Morgan law.

(3) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

An element x of L is complemented whenever x ∨ x∗ = ⊤ and in this case a′ = a∗.

The homomorphism η : L(R) → OR given by (p, q) 7→�p, q~ is an isomor-

phism, where �p, q~≔ {x ∈ R : p < x < q}. Now, a τ-real-continuous function on

L (or a real-continuous function on Lτ) is a frame-homomorphism f : P(R) → L

such that for all p, q ∈ Q, f (�p, q~) ∈ τ. The ring RLτ has as its elements real-

continuous functions on Lτ with operations determined by the operations of R

viewed as an f -ring as follows (see [13]).

For ⋄ ∈ {+, .,∧,∨} and f , g ∈ RLτ,

( f ⋄ g)(X) =
∨

{ f (Y) ∧ g(Z) | Y ⋄ Z ⊆ X},

where Y ⋄ Z = {y ⋄ z | y ∈ Y, z ∈ Z}.

For any f ∈ RLτ and X ⊆ R, (− f )(X) = f (−X) and for any r ∈ R, the constant

function r is the member of RLτ given by

r(X) =

{

⊤ if r ∈ X,

⊥ if r < X.

Also for any f , g ∈ RLτ, we have

(1) ( f ⋄ g)(X) =
∨

{ f ({y}) ∧ g({z}) | y ⋄ z ∈ X}, for every X ∈ P(R).

(2) f = g if and only if f ({r}) = g({r}) for every r ∈ R.

An important link between a topoframe Lτ and its ring of τ-real-continuous

function on Lτ given by the zero map z : RLτ → L taking every f ∈ RLτ to

z( f ) = f ({0}). The zero map has several important properties (see [18]) that we

emphasize some of them. For every f , g ∈ RLτ, we have.

(1) For every n ∈ N, z( f ) = z(− f ) = z(| f |) = z( f n),

(2) z( f g) = z( f ) ∨ z(g),

(3) z( f + g) ≥ z( f ) ∧ z(g),

(4) z( f + g) = z( f ) ∧ z(g), while f , g ≥ 0,

(5) z( f ) = ⊤ if and only if f = 0,

(6) z( f ) = ⊥ if and only if f is a unit element of RLτ.
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A zero element of Lτ is an element of the form z( f ) for some f ∈ RLτ. The zero

part of Lτ, denoted by Z(RLτ) or Z(Lτ), is the regular sub-co-σ-frame consisting

of all the zero elements of Lτ. Also a cozero-element of Lτ is defined by coz( f ) ≔

f (R\{0}) for some f ∈ RLτ. Obviously, z( f ) = (coz( f ))′ . Note that z( f ) and coz( f )

are a closed element and an open element in L, respectively. General properties of

zero elements and cozero-elements of topoframes can be found in [6]. Here we

highlight the following.

(1) If { fn}n∈N ⊆ RLτ, then there is a f ∈ RLτ such that
∨

n∈N coz( fn) = coz( f ) and
∧

n∈N z( fn) = z( f ).

(2) For every f ∈ RLτ, coz( f ) = coz( f |OR) ∈ τ.

3. Kasch of RLτ

An ideal I of a ring A, throughout, by the term ring we mean a commutative ring

with identity, is called essential in A if I ∩ J , (0) holds for every non-zero ideal J

of A.

Let α be a cardinal number. An ideal I in a ring A is called α-generated if it has

got a generating set G such that |G| ≤ α. The least element in the set of cardinal

numbers of all generating set of I is denoted by gen(I). A ring A is said to be an

α-Kasch ring if for any proper ideal I with gen(I) < α, then I is a non-essential

ideal (see [4]).

We need the following proposition which will play a central role in the develop-

ment of this article, but we omit its proof for it is similar to the proof of Proposition

3.1 in [8].

Proposition 1. Let Lτ be a topoframe and a be an element of τ such that a′ ∈ τ.

Then fa : P(R)→ L defined by

fa(X) =







































⊤ if 0, 1 ∈ X

a′ if 0 ∈ X and 1 < X

a if 0 < X and 1 ∈ X

⊥ if 0 < X and 1 < X,

is a real-continuous functions on Lτ and the following statements hold.

(1) f 2
a = fa, z( fa) = a′ and fa + fa′ = 1.

(2) For every f ∈ RLτ and X ∈ P(R),

f fa(X) =

{

a′ ∨ f (X) if 0 ∈ X,

a ∧ f (X) if 0 < X.

(3) For each pair of complemented elements a, b ∈ L such that a, a′, b, b′ ∈ τ,

fa fb = fa∧b.

Lemma 1. For { fλ}λ∈Λ ⊆ RLτ, the following statements hold.

(1) (
∨

λ∈Λ coz( fλ))
′
=
∧

λ∈Λ z( fλ).

(2) If a =
∨

λ∈Λ coz( fλ) and a′ ∈ τ, then fλ f n
a = fλ and fλ f n

a′
= 0.
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Proof. (1) By the first De Morgan law, we have.

(
∨

λ∈Λ

coz( fλ))
′
= (
∨

λ∈Λ

coz( fλ))
∗
=

∧

λ∈Λ

(coz( fλ)
∗
=

∧

λ∈Λ

(coz( fλ))
′
=

∧

λ∈Λ

z( fλ).

(2) Consider λ ∈ Λ and X ⊆ R. If 0 < X, then fλ(X) ≤ coz( fλ) ≤ a, we can

conclude that

fλ fa(X) = a ∧ fλ(X) = fλ(X)

and

fλ fa′(X) = a′ ∧ fλ(X) = ⊥.

Also if 0 ∈ X, then fλ(X) = fλ(X) ∨ a′, we conclude that

fλ fa(X) = a′ ∨ fλ(X) = fλ(X)

and

fλ fa′(X) = a ∨ fλ(X) = a ∨ ( fλ(X) ∨ a′) = ⊤.

Hence fλ fa = fλ and fλ fa′ = 0. �

Proposition 2. The following statements hold for every f ∈ RLτ.

(1) For every n ∈ N, if z( f ) ∈ τ, then f f n
coz( f )

= f and f f n
z( f )
= 0.

(2) If f is a nonunit element in RLτ and z( f ) ∈ τ, then f is a zerodivisor.

(3) If ( f ) is a proper ideal in RLτ and z( f ) ∈ τ, then ( f ) is a non-essential

ideal.

Proof. (1) By Lemma 1, it is trivial.

(2) Let 0 , f be a nonunit element in RLτ. Then coz( f ) , ⊥ and z( f ) , ⊤, we

conclude from the statement (1) that f fz( f ) = 0, where fz( f ) , 0.

(3) It is trivial by the statement (2). �

Corollary 1. If θ : RLτ −→ RLτ is a RLτ-monomorphism and z(θ(1)) ∈ τ, then θ

is an isomorphism.

Proof. Since θ(g) = gθ(1) for all g ∈ RLτ, we conclude that θ(1) is non-zero-

devisor. It follows, by Proposition 2(2), that θ(1) is a unit, i.e., there is a h ∈ RLτ
such that θ(h) = hθ(1) = 1. Thus θ( f h) = f , for every f ∈ RLτ. Consequently θ is

also an epimorphism and the proof is complete. �

Corollary 2. Every countably generated ideal I in RLτ with

⊥ , (
∨

f∈I

coz( f ))′ ∈ τ

is in a non-essential principal ideal.

Proof. Let I = ( f1, f2, . . .) be a countably generated ideal in RLτ such that
∨

n∈N

coz( fn) =
∨

f∈I

coz( f ) , ⊤.

Then, there is an element f ∈ RLτ such that
∨

n∈N coz( fn) = coz( f ), which follows

from Proposition 2 that ( fcoz( f )) is a non-essential ideal. For every n ∈ N, by

Lemma 1, fn = fn fcoz( f ) ∈ ( fcoz( f )). Hence I ⊆ ( fcoz( f )) and the proof is complete.

�
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Let A be a ring and x ∈ A. Then

(a) x is called a regular element in A if xy = 0 and y ∈ A implies x = 0, and

(b) an ideal I of A is called regular if it contains a regular element in A.

Corollary 3. RLτ has no proper non-zero regular ideal.

Proof. It is trivial from Proposition 2. �

Recall that a P- space (P-frame) is one in which every zero set (cozero ele-

ment) is open (complemented). Now, we are going to extend these concepts on

topoframes.

Definition 1. If Z(Lτ) ⊆ τ, then Lτ is called a P-topoframe.

Let A be a ring and S ⊆ A. We denote the annihilator of S by Ann(S ).

Theorem 1. inj17 If Lτ is a P-topoframe, then the ring RLτ is a ℵ0-Kasch ring.

Proof. Let I = ( f1, . . . , fn) be a proper finitely generated ideal in RLτ. Since
∑n

i=1 f 2
i
∈ I is not unit, we conclude from Proposition 2 that there exists 0 ,

g ∈ RLτ such that g
∑n

i=1 f 2
i
= 0, which follows that

⊤ = z(0) = z(g

n
∑

i=1

f 2
i ) =

n
∧

i=1

z(g fi).

Then g fi = 0, because z(g fi) = ⊤, for every 1 ≤ i ≤ n. Hence g ∈ Ann(I) , (0)

and we infer that I is a non-essential ideal in RLτ. Therefore RLτ is a ℵ0-Kasch

ring. �

4. regularity of RLτ

A ring A is said to be regular (in the sense of Von Neumann) if for every x ∈ A

there is y ∈ A with x = x2y. It is shown that for a completely regular frame L, RL is

a regular ring if and only if L is a P-frame (see [3, Proposition 3.9] ). The purpose

of this section is to extend this result to topoframes.

Remark 1. Let e be an idempotent element of RLτ. Then e({x}) = ⊥, for every

x ∈ R \ {0, 1}. Hence z(e) = e({x ∈ R : −1 < x < 1}) ∈ τ and e = fcoz(e).

Remark 2. Let a be an element of a regular ring of A. Then there is an element

x ∈ A such that a = xa2 and a = ba2, where b = ax2. If u := 1 + b − ab, then u is a

unit element of A and au is an idempotent element of A.

Theorem 2. For a topoframe Lτ, the following statements are equivalent.

(1) Lτ is a P-topoframe.

(2) RLτ is a regular ring.

Proof. (1) ⇒ (2). Consider f ∈ RLτ. We define g : P(R)→ L by

g(X) =















∨

0,x∈X f ({ 1
x
}) ∨ z( f ) if 0 ∈ X

∨

x∈X f ({ 1
x
}) if 0 < X
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for every X ⊆ R. Then g(∅) =
∨

x∈∅ f ({ 1
x
}) = ⊥ and g(R) =

∨

0,x∈R f ({ 1
x
}) ∨ z( f ) =

coz( f ) ∨ z( f ) = ⊤.

Consider X, Y ⊆ R. If 0 ∈ X ∩ Y , then

g(X) ∧ g(Y) = [
∨

0,x∈X f ({ 1
x
}) ∨ z( f )] ∧ [

∨

0,y∈Y f ({ 1
y
}) ∨ z( f )]

=
∨

0,x∈X,0,y∈Y f ({ 1
x
} ∩ { 1

y
}) ∨ z( f )

=
∨

0,x∈X∩Y f ({ 1
x
}) ∨ z( f )

= g(X ∩ Y).

If 0 ∈ X and 0 < Y , then

g(X) ∧ g(Y) = [
∨

0,x∈X f ({ 1
x
}) ∨ z( f )] ∧

∨

y∈Y f ({ 1
y
})

=
∨

0,x∈X,y∈Y f ({ 1
x
} ∩ { 1

y
}) ∨ [z( f ) ∧

∨

y∈Y f ({ 1
y
})]

=
∨

x∈X∩Y f ({ 1
x
}) ∨ ⊥

= g(X ∩ Y).

If 0 < X and 0 < Y , then

g(X) ∧ g(Y) =
∨

x∈X f ({ 1
x
}) ∧
∨

y∈Y f ({ 1
y
})

=
∨

x∈X∩Y f ({ 1
x
})

= g(X ∩ Y).

Hence g preserves all finite meets. Consider {Xi}i∈I ⊆ P(R). If 0 <
⋃

i∈I Xi, then
∨

i∈I g(Xi) =
∨

i∈I

∨

x∈Xi
f ({ 1

x
})

=
∨

x∈
⋃

i∈I Xi
f ({ 1

x
})

= g(
⋃

i∈I Xi).

If 0 ∈
⋃

i∈I Xi, then
∨

i∈I g(Xi) =
∨

i∈I,
0<Xi

∨

x∈Xi
f ({ 1

x
}) ∨ [z( f ) ∨

∨

i∈I,
0∈Xi

∨

0,x∈Xi
f ({ 1

x
})]

= z( f ) ∨
∨

0,x∈
⋃

i∈I Xi
f ({ 1

x
})

= g(
⋃

i∈I Xi).

Hence g preserves arbitrary joins. Consider p, q ∈ Q with p < q. If p < 0 < q, then

{ 1
x

: p < x < q, x , 0} = R \ {r ∈ R : 1
p
≤ r ≤ 1

q
} and since f ∈ RLτ, we conclude

from z( f ) ∈ τ that g(�p, q~) ∈ τ. If 0 <�p, q~, then g(�p, q~) = f (�1
q
, 1

p
~) ∈ τ.

Therefore, g ∈ RLτ. Since z( f ) = z(g), we conclude that z( f ) = z(g f 2). We claim

that f = g f 2. In order to prove our claim, we consider 0 , x ∈ R. Then we have

g f 2({x}) =
∨

{g({y}) ∧ f 2({ x
y
}) : 0 , y ∈ R}

=
∨

{ f ({ 1
y
}) ∧ f ({z}) ∧ f ({ x

zy
}) : y, z ∈ R \ {0}}

= f ({x}).
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Therefore, RLτ is a regular ring.

(2) ⇒ (1). Consider f ∈ RLτ. By Remark 2, there is a unit element of g

in RLτ such that f g is an idempotent element of RLτ. By Remark 1, we have

z( f ) = z( f g) ∈ τ. Therefore, Lτ is a P-topoframe. �

5. Injectivity of RLτ

A ring A is said to be self injective (ℵ0-selfinjective) if every A-homomorphism

from an ideal (a countably generated ideal) of A to A can be extended to an A-

homomorphism from A to A. The principal purposes in this section are to find the

properties of a topoframe Lτ which are equivalent to the ring-theoretic properties

of RLτ, in particular: ℵ0-selfinjectivity and selfinjectivity. First, we investigate

the ℵ0-selfinjectivity of RLτ. In order to survey this property we need some back-

ground.

A subset S of a ring A is said to be orthogonal provided xy = 0 for all x, y ∈ S

with x , y. If S ∩ T = ∅ and S ∪ T is an orthogonal set in A, then a ∈ A is said to

separate S from T if a ∈ Ann(T ) and s2a = s, for every s ∈ S (see [11]). In [12] it

is shown that there exists an element in A which separates S from T if and only if

there is an element b in A such that b ∈ Ann(T ) and s2
= sb, for every s ∈ S . For

the proof of the next lemma see [11, Theorem 2.2], and [12, Proposition 1.2].

Lemma 2. Let A be a reduced ring, then the following statements are equivalent.

(1) The ring A is selfinjective (ℵ0-selfinjective).

(2) The ring A is a regular ring and whenever S ∪ T is an orthogonal (count-

able) set with S ∩ T = ∅, then there exists an element in A which separates

S from T.

Lemma 3. Let S∪T ⊆ RLτ be an orthogonal set with S∩T = ∅. If s =
∨

f∈S coz( f )

and t =
∨

f∈T coz( f ), then

(1) s ∧ t′ = s.

(2) For every R ⊆ S ∪ T and every f ∈ (S ∪ T ) \ R,

z( f ) ∨
∨

g∈R z(g) = z( f ) and coz( f ) ∧
∧

g∈R z(g) = coz( f ).

Proof. (1) Consider ( f , g) ∈ S ×T . Since f g = 0, we infer that coz( f )∧coz(g) = ⊥,

which follows that coz( f ) ≤ z(g). Hence
∧

g∈T z(g) is an upper bounded {coz( f ) :

f ∈ S } and so s =
∨

f∈S coz( f ) ≤
∧

g∈T z(g) = t′.

(2) Similar to the proof of statement (1). �

The following theorem is a counterpart of Theorem 1 in [5] and we characterize

P-topoframes in the following theorem.

Theorem 3. The topoframe Lτ is a P-topoframe if and only if the ring RLτ is

ℵ0-selfinjective.

Proof. Necessity. Let S ∪ T ⊆ RLτ be an orthogonal countable set with S ∩ T = ∅

and s =
∨

f∈S coz( f ). We define h : P(R)→ L by

h(X) =

{ ∨

f∈S f (X \ {0}) ∨ s′ if 0 ∈ X
∨

f∈S f (X) if 0 < X
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for every X ⊆ R. First of all, we show that h ∈ RLτ. It is clear that h(∅) =
∨

f∈S f (∅) = ⊥ and h(R) =
∨

f∈S f (R \ {0}) ∨ s′ = s ∨ s′ = ⊤. Consider X, Y ⊆ R.

If 0 ∈ X ∩ Y , then

h(X) ∧ h(Y) = [
∨

f∈S f (X \ {0}) ∨ s′] ∧ [
∨

f∈S f (Y \ {0}) ∨ s′]

=
∨

f∈S f ((X ∩ Y) \ {0}) ∨ s′

= h(X ∩ Y).

If 0 ∈ X and 0 < Y , then

h(X) ∧ h(Y) = [
∨

f∈S f (X \ {0}) ∨ s′] ∧
∨

f∈S f (Y)

=
∨

f∈S f (X ∩ Y) ∨ [s′ ∧
∨

f∈S f (Y)]

=
∨

f∈S f (X ∩ Y) ∨ ⊥

= h(X ∩ Y).

If 0 < X and 0 < Y , then

h(X) ∧ h(Y) =
∨

f∈S

f (X) ∧
∨

f∈S

f (Y) =
∨

f∈S

f (X ∩ Y) = h(X ∩ Y).

Hence h preserves all finite meets. Consider {Xi}i∈I ⊆ P(R). If 0 <
⋃

i∈I Xi, then

∨

i∈I

h(Xi) =
∨

i∈I

∨

f∈S

f (Xi) =
∨

f∈S

f (
⋃

i∈I

Xi) = h(
⋃

i∈I

Xi).

If 0 ∈
⋃

i∈I Xi, then

∨

i∈I h(Xi) =
∨

i∈I,
0<Xi

∨

f∈S f (Xi) ∨ [s′ ∨
∨

i∈I,
0∈Xi

∨

f∈S f (Xi \ {0})]

= s′ ∨
∨

f∈S f (
⋃

i∈I Xi \ {0})

= h(
⋃

i∈I Xi).

Hence h preserves arbitrary joins. Therefore, h ∈ RLτ. Now, we show that h ∈

Ann(T ). Consider g ∈ T and t =
∨

f∈T coz( f ). Then, by Lemma 3, we have

z(hg) = z(h) ∨ z(g)

= s′ ∨ z(g)

≥ t ∨ z(g)

≥ coz(g) ∨ z(g)

= ⊤,

which follows that hg = 0. Therefore h ∈ Ann(T ). Since z(h) = s′, we conclude

from Lemma 3 that z( f h) = z( f ) ∨ s′ = z( f ) = z( f 2), for every f ∈ S . Consider
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0 , x ∈ R. Then

h f ({x}) =
∨

{h({y}) ∧ f ({ x
y
}) : 0 , y ∈ R}

=
∨

{ f ({y}) ∧ f ({ x
y
}) : y ∈ R \ {0}}

= f 2({x}).

Hence h f = f 2, which means that h separates S from T . Now, by Theorem 2 and

Lemma 2, we are through.

Sufficiency. Consider f ∈ RLτ and I is the generated ideal by f 2 in RLτ. Since

h : I → RLτ given by g f 2 7→ g f is a RLτ-homomorphism, we conclude from

statement (2) that there exists a RLτ-homomorphism h̄ : RLτ → RLτ such that

h̄|
I
= h. Hence

f = h( f 2) = h̄(1 f 2) = h̄(1) f 2

Then RLτ is a regular ring. Therefore, by Theorem 2, the topoframe Lτ is a P-

topoframe. �

As an immediate consequence, by this theorem and Theorem 2, we have.

Corollary 4. For a topoframe Lτ, the ring RLτ is regular if and only if it is ℵ0-

selfinjective

A frame L is called extremally disconnected if a∗∗ ∨ a∗ = ⊤ for all a ∈ L.

Also note that for every regular frame L, if f : L→ M and g : L → M are frame

maps with f ≤ g, then f = g (see [1]).

Proposition 3. If L is an extremally disconnected frame and Lτ is a P-topoframe,

then RLτ is a selfinjective ring. But the converse is not true

Proof. Let S ∪T ⊆ RLτ be an orthogonal set with S ∩T = ∅ and s =
∨

f∈S coz( f ).

We are to find an element in RLτ that separates S from T . We define h : P(R)→ L

by

h(X) =

{

(
∨

f∈S f (X \ {0}))∗∗ ∨ s∗ if 0 ∈ X

(
∨

f∈S f (X))∗∗ if 0 < X

for every X ⊆ R. First of all, we show that h ∈ RLτ. It is clear that

h(∅) =
∨

f∈S f (∅) = ⊥ and h(R) = (
∨

f∈S f (R \ {0}))∗∗ ∨ s∗ = s∗∗ ∨ s∗ = ⊤,

since L is an extremally disconnected frame. Consider X, Y ⊆ R. If 0 ∈ X ∩Y , then

h(X) ∧ h(Y) = [(
∨

f∈S f (X \ {0}))∗∗ ∨ s∗] ∧ [(
∨

f∈S f (Y \ {0}))∗∗ ∨ s∗]

= (
∨

f∈S f ((X ∩ Y) \ {0}))∗∗ ∨ s∗

= h(X ∩ Y).
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If 0 ∈ X and 0 < Y , then

h(X) ∧ h(Y) = [(
∨

f∈S f (X \ {0}))∗∗ ∨ s∗] ∧ (
∨

f∈S f (Y))∗∗

= (
∨

f∈S f (X ∩ Y))∗∗ ∨ [s∗ ∧ (
∨

f∈S f (Y))∗∗]

= (
∨

f∈S f (X ∩ Y))∗∗ ∨ ⊥

= h(X ∩ Y).

If 0 < X and 0 < Y , then

h(X) ∧ h(Y) = (
∨

f∈S

f (X))∗∗ ∧ (
∨

f∈S

f (Y))∗∗ = (
∨

f∈S

f (X ∩ Y))∗∗ = h(X ∩ Y).

Hence h preserves all finite meets. Consider {Xi}i∈I ⊆ P(R). If 0 <
⋃

i∈I Xi, then
∨

i∈I

h(Xi) = (
∨

i∈I

∨

f∈S

f (Xi))
∗∗
= (
∨

f∈S

f (
⋃

i∈I

Xi))
∗∗
= h(
⋃

i∈I

Xi).

If 0 ∈
⋃

i∈I Xi, then
∨

i∈I h(Xi) =
∨

i∈I,
0<Xi

(
∨

f∈S f (Xi))
∗∗ ∨ [s∗ ∨

∨

i∈I,
0∈Xi

(
∨

f∈S f (Xi \ {0}))
∗∗]

= s∗ ∨ (
∨

f∈S f (
⋃

i∈I Xi \ {0}))
∗∗

= h(
⋃

i∈I Xi).

Hence h preserves arbitrary joins. Therefore, h ∈ RLτ. Now, we show that h ∈

Ann(T ). Consider g ∈ T and t =
∨

f∈S coz( f ). Then, by Lemma 3, we have

z(hg) = z(h) ∨ z(g)

= s∗ ∨ z(g)

≥ t ∨ z(g)

≥ coz(g) ∨ z(g)

= ⊤,

which follows that hg = 0. Therefore, h ∈ Ann(T ). Since z(h) = s∗, we conclude

from Lemma 3 that z( f h) = z( f ) ∨ s∗ = z( f ) = z( f 2), for every f ∈ S . Consider

0 , x ∈ R. Then

h f ({x}) =
∨

{h({y}) ∧ f ({ x
y
}) : 0 , y ∈ R}

=
∨

{(
∨

f∈S f ({y}))∗∗ ∧ f ({ x
y
}) : 0 , y ∈ R}

≥
∨

{(
∨

f∈S f ({y})) ∧ f ({ x
y
}) : 0 , y ∈ R}

=
∨

{ f ({y}) ∧ f ({ x
y
}) : y ∈ R \ {0}}

= f 2({x}).

Hence h f (X) ≥ f 2(X), for every X ∈ P(R). Since P(R) is a regular frame and also

h f and f 2 are frame maps, we conclude that h f = f 2. Therefore, h separates S

from T . Now, by Theorem 2 and Lemma 2, RLτ is a selfinjective ring.
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Now, we show that the converse is not true. Let L be a connected frame, say

L = OR, then L has only two complemented elements, that is, ⊥ and ⊤ are only

two complemented elements of L. Consider 0 , f ∈ RLτ. Then coz( f ) = ⊤

which follows that there exists a 0 , r ∈ R such that f ({r}) , ⊥. We claim that

f = r. In order to prove our claim, we consider A ⊆ R such that r ∈ A. From

f (A) which is the complement of f (R \ A) in L and f (A) = ⊤, we conclude that

f (R \ A) = ⊥. Then f = r. Therefore, RLτ � R. Since R is a field, we infer that

RLτ is a selfinjective ring, but L is not an extremally disconnected frame. �

Recall from [17] that the semi-Heyting operation →τ on a topoframe Lτ is de-

fined by

a→τ b =
∨

{x ∈ τ | a ∧ x ≤ b},

where a, b ∈ L. We put a⊥ = a →τ ⊥, for every a ∈ L. Clearly if a ∈ τ, then

a⊥ = a∗, where the peudocomplement of a is formed in τ. It follows that for any

topoframe Lτ, τ is a extremally disconnected frame if and only if a⊥⊥ ∨a⊥ = ⊤ for

all a ∈ τ. Also, (
∨

i∈I ai)
⊥
=
∧

i∈I a⊥
i

where {ai}i∈I ⊆ τ.

The closure of p ∈ L in a topoframe (L, τ) is the element

p = ClLτ(p) =

τ′
∧

{x ∈ τ′ : p ≤ x}.

It is easy to see that for every a ∈ τ, (a)′ = a⊥ = a∗, where the peudocomplement

of a is formed in τ. Thus if a ∈ τ, then a ≤ a⊥⊥ = a∗∗, for more details see [17].

Definition 2. A topoframe Lτ is called extremally disconnected if a ∈ τ for all

a ∈ τ.

The interior of p ∈ L in a topoframe (L, τ) is the element

po
= IntLτ (p) =

∨

{x ∈ τ : x ≤ p}.

It is easy to see that (a)o
= a⊥⊥ = a∗∗ for every a ∈ τ, where the peudocomplement

of a is formed in τ and also p ∈ τ if and only if po
= p, for more details see [17].

Proposition 4. For any topoframe Lτ, τ is an extremally disconnected frame if and

only if Lτ is an extremally disconnected topoframe.

Proof. Necessity. We show that (a)o
= a for every a ∈ τ. Given a ∈ τ we have

a⊥∨a⊥⊥ = ⊤ and hence (a)′∨(a)o
= ⊤. On the other hand (a)′∧(a)o ≤ (a)′∧a = ⊥,

it follows that (a)′ ∧ (a)o
= ⊥. Consequently, (a)o

= ((a)′)′ = a.

Sufficiency. Suppose a ∈ τ hence a ∈ τ. It follows that

⊤ = (a)′ ∨ a = a⊥ ∨ a ≤ a⊥ ∨ a⊥⊥.

Consequently, a⊥ ∨ a⊥⊥ = ⊤. �

Before the following proposition is proposed, we first recall some definitions. If

I and J are ideals in a ring A we say I is essential in J if I ⊆ J and every nonzero

ideal inside J intersects I nontrivially, and recall that when we say I is essential, we

mean it is essential in A. An ideal I in a ring A is called closed ideal (complement)

if it is not essential in a larger ideal and a ring A is said to be CS -ring if every
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closed ideal is a direct summand, see [16]. A ring A is called a Baer ring if for any

subset S of A, we have AnnR(S ) = eA, where e2
= e.

A topoframe Lτ is said to be completely regular if for every a ∈ τ there exists

{ fλ}λ∈Λ ⊆ RLτ such that a =
∨

λ∈Λ coz( fλ). In [17] proved that for any topoframe

Lτ, there exists a completely regular topoframe Mw such that RLτ is isomorphic to

RMw.

Proposition 5. The following statements are equivalent for any completely regular

topoframe Lτ.

(1) Lτ is an extremally disconnected topoframe.

(2) RLτ is a Baer ring.

(3) Every nonzero ideal in RLτ is essential in a principal ideal generated by

an idempotent.

(4) RLτ is a CS -ring.

Proof. (1)⇒(2). Let S ⊆ RLτ, we are to show that AnnS = eRLτ, where e2
= e.

We put s =
∨

f∈S coz( f ). Since s ∈ τ and Lτ is extremally disconnected, we

infer that s⊥ ∨ s⊥⊥ = s∗ ∨ s∗∗ = ⊤, where the peudocomplement of s is formed

in τ, which follows that s⊥ and (s⊥)′ belong to τ. Consider g ∈ Ann(S ). Then

coz( f ) ∧ coz(g) = coz( f g) = coz(0) = ⊥, which follows that coz( f ) ≤ coz(g)⊥, for

every f ∈ S . Hence s ≤ coz(g)⊥ and so

coz(g) ≤ coz(g)⊥⊥ ≤ s⊥.

Consider X ⊆ R and f ∈ S . If 0 < X, then, by Proposition 1, g fs⊥ (X) = s⊥∧g(X) =

g(X), because g(X) ≤ coz(g) ≤ s⊥. If 0 ∈ X, then g fs⊥(X) = (s⊥)′ ∨ g(X) ≥ g(X),

by Proposition 1. Since g and fs⊥ are frame maps and P(R) is the regular frame,

we conclude that g fs⊥ = g which means that g ∈ fs⊥RLτ. Hence Ann(S ) ⊆ fs⊥RLτ.

Now, suppose that f ∈ S and hence coz( f ) ≤ s, consequently

coz( f fs⊥ ) = coz( f ) ∧ coz( fs⊥ ) ≤ coz( f )⊥⊥ ∧ s⊥ ≤ s⊥⊥ ∧ s⊥ = ⊥,

it follows that f fs⊥ = 0. Thus fs⊥ ∈ Ann(S ) and so Ann(S ) = fs⊥RLτ. Therefore

RLτ is a Baer ring.

(2)⇒(3). Let I be a nonzero ideal in RLτ, then there is an idempotent element

e in RLτ such that Ann(I) = eRLτ = Ann((1 − e)RLτ), which follows that f =

f (1 − e) ∈ (1 − e)RLτ ∩ I, for every f ∈ I. Hence I is essential in (1 − e)RLτ.

(3)⇒(4). Let I be a closed ideal in RLτ, then there is an idempotent element e

in RLτ such that I is essential in eRLτ.

(4)⇒(2). Consider S ⊆ RLτ and I = Ann(S ). We claim that the ideal Ann(S )

is a closed ideal in RLτ. Let Ann(S ) be essential in a larger ideal J, then S J , (0)

implies that S J ∩ Ann(S ) , (0), but (S J ∩ Ann(S ))2
= (0), which is impossible,

since RLτ is a reduced ring. This shows that Ann(S ) is a closed ideal and by (4), I

is generated by an idempotent.

(2)⇒(1). Consider a ∈ τ, then there is { ft}t∈T ⊆ RLτ such that a =
∨

t∈T coz( ft).

Since RLτ is a Baer ring, we conclude that there is an idempotent element e ∈ RLτ
such that Ann({ ft}t∈T ) = eRLτ, which follows that for every t ∈ T

coz(e) ∧ coz( ft) = coz(e ft) = coz(0) = ⊥ ⇒ coz(e) ≤ coz( ft)
⊥.
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Then coz(e) ≤
∧

t∈T coz( ft)
⊥
= a⊥. Since coz(e) ∨ coz(1 − e) = ⊤ and coz(e) ∧

coz(1 − e) = ⊥, we conclude that a⊥⊥ ≤ coz(e)⊥ = coz(1 − e). Suppose that

{gk}k∈K ⊆ RLτ such that a⊥ =
∨

k∈K coz(gk). For every (t, k) ∈ T × K, we have

coz( ftgk) = coz( ft) ∧ coz(gk) ≤ coz( ft)
⊥⊥ ∧ a⊥ ≤ a⊥⊥ ∧ a⊥ = ⊥,

and so ftgk = 0. Then gk ∈ Ann({ ft}t∈T ) = eRLτ, which follows that there is a hk ∈

RLτ such that gk = ehk, for every k ∈ K. Therefore, coz(gk) = coz(ehk) ≤ coz(e)

and so a⊥ =
∨

k∈K coz(gk) ≤ coz(e). Consequently, a⊥ = coz(e) and we immediate

have a⊥ ∨ a⊥⊥ = coz(e) ∨ coz(1 − e) = ⊤. �

In order to state the following theorem we need some background. A lattice A

is called upper continuous if A is complete and a ∧ (∨bi) = ∨(a ∧ bi) for all a ∈ A

and all linearly ordered subset {bi} ⊆ A. A regular ring R is called continuous if the

lattice of all principal ideals is upper continuous.

We recall from [10, Corollary 13.4] that a regular ring R is continuous if and only

if every ideal of R is essential in a principal right ideal of R. Also, we recall from

[10, Corollary 13.5] that every regular self injective ring is continuous. Also, every

reduced self injective ring is regular ring which is Baer ring, see [14, Proposition

1.7].

Proposition 6. [2] The following statements are equivalent.

(1) A is a Baer ring.

(2) A is a p.p. ring which is also the Boolean algebra B(A) of idempotents in

A is complete.

(3) A is a p.p. ring and every set of orthogonal idempotents in A has a supre-

mum.

Theorem 4. For any completely regular topoframe Lτ, the following statements

are equivalent.

(1) RLτ is a Baer regular ring.

(2) RLτ is a continuous regular ring.

(3) RLτ is a complete regular ring.

(4) Lτ is an extremally disconnected P-topoframe.

(5) RLτ is a self injective ring.

Proof. (1)⇒(2). It is clear by [10, Corollary 13.4] and Proposition 6.

(2)⇒(3). It is obvious.

(3)⇒(4). Since every regular ring is a p.p. ring, we conclude from Proposition

6 that RLτ is a Baer regular ring. Then, combining Theorem 2 and Proposition 5

imply that Lτ is an extremally disconnected P-topoframe.

(4)⇒(5). The proof is similar to Proposition 3.

(5)⇒(1). By [14, Proposition 1.7.], RLτ is a Baer regular ring. �
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