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Abstract. In this paper, we analyse a family of models for a qubit interacting
with a bosonic field. This family of models is very large and contains models
where higher order perturbations of field operators are added to the Hamilton-
ian. The Hamiltonian has a special symmetry, called spin-parity symmetry,
which plays a central role in our analysis. Using this symmetry, we find the
domain of selfadjointness and decompose the Hamiltonian into two fiber op-
erators each defined on Fock space. We then prove an HVZ theorem for the
fiber operators and single out a particular fiber operator which has a ground
state if and only if the full Hamiltonian has a ground state. From these results
we deduce a simple criterion for the existence of an exited state.
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1. Introduction

This paper is devoted to the analysis of so called spin-boson type models which
is a family of models describing a qubit interacting with a bosonic field. The
assumptions in our framework are very weak, which allows us to cover both the Rabi
model and the standard spin-boson model simultaneously. Furthermore, higher
order perturbations of field operators are also considered. QFT Models with higher
order perturbations have lately become relevant in physics. They appear in cavity
QED (see [11]) and in the theory of bose polarons (see [19]).

Models with higher order perturbations are treated in [9], [11], [13] and [21].
Spin-boson type models are treated in [11], [13] and [21], but the authors assume
either that the field is massive or that the coupling is weak. The results in [9] does
not assume weak coupling or a massive field, but the model treated in that paper
is not the spin-boson model and rather strong infrared conditions are assumed.
Furthermore, the author of [9] only proves selfadjointness of the Hamiltonian and
existence of ground states, while we treat several other questions as well.

The analysis in this paper relies on the fact that spin-boson type Hamiltonians
commute with the spin-parity operator. The spin-parity operator has two invariant
subspaces, which are both isomorphic to the Fock space. This fact was used in [3]
and [8] to prove that ground states exist in the massless spin-boson model. We use
this fact to decompose the Hamiltonian into two so called fiber operators. We shall
see, that the two fiber operators differ only by the value of a scalar parameter, but
they behave quite differently.
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We start by proving selfadjointness of all involved operators and move on to
prove an HVZ theorem for the fiber operators. The method we use is related to
the approach in [14], but is written up in a more general way, which allows one to
handle massless fields and abstract Hilbert spaces. The HVZ theorem for the fiber
operators also gives an HVZ theorem for the full Hamiltonian.

Using arguments similar to those presented in [8], we prove that if ground states
exists for the full Hamiltonian, then the bottom of the spectrum is a non degenerate
eigenvalue. Using this result, we single out a particular fiber which has a ground
state if and only if the full Hamiltonian has a ground state. Ground states for the
other fiber operator must therefore correspond to exited states. The HVZ theorem
then gives a simple criterion for the existence of an exited state.

The reader is then encouraged to have a look at Appendix D, where a new frame-
work for pointwise annihilation operators is developed. Most maps are continuous
in this framework, so calculations are reduced to simple algebraic manipulations.
This makes it very easy to rigorously prove higher order pull-through formulas. Us-
ing these pull-through formulas, we prove that ground states are in the domain of
the number operator raised to any positive power (if infrared regularity is assumed).

Lastly, we follow the general strategy outlined in [7] to prove the existence of
ground states in massless (but infrared regular) models. Our proofs are simpler
than the ones presented in [7] and we are able to work under weaker assumptions
on the bosonic dispersion relation. This is possible due to a novel approach to the
last step in [7].

2. Notation and definitions

We start by introducing the notation. If X is a topological space then we will
write B(X) for the Borel σ-algebra. Furthermore, if (M,F , µ) is a measure space,
X is a Banach space and 1 ≤ p ≤ ∞ then we will write Lp(M,F , µ,X) for the
vector valued Lp space. If X = C we will drop X from the notation.

Throughout this paper, H will always denote a separable Hilbert space. Write
H⊗n for the n-fold tensor product of H and let H⊗sn ⊂ H⊗n be the subspace of
symmetric tensors. The bosonic (or symmetric) Fock space is defined as

Fb(H) =

∞⊕
n=0

H⊗sn.

If H = L2(M,F , µ) where (M,F , µ) is σ-finite then we may give a concrete de-
scription of H⊗sn as L2

sym(Mn,F⊗n, µ⊗n). We will write an element ψ ∈ Fb(H)

in terms of its coordinates as ψ = (ψ(n)) and define the vacuum Ω = (1, 0, 0, . . . ).
The set of finite particle vectors is defined by

N = {(ψ(n)) ∈ Fb(H) | ∃K ∈ N s.t. ψ(n) = 0 for all n ≥ K}.
For g ∈ H one defines the annihilation operator a(g) and the creation operator
a†(g) on symmetric tensors in Fb(H) by a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑
i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that fi is omitted from the tensor product. One can show that
these operators extends to closed operators in Fb(H) and that (a(g))∗ = a†(g).
Furthermore, we have the canonical commutation relations which are:

[a(f), a(g)] = 0 = [a†(f), a†(g)] and [a(f), a†(g)] = 〈f, g〉.
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We also define the field operators

ϕ(g) = a(g) + a†(g).

They are selfadjont and

(2.1) [ϕ(f), ϕ(g)] = 2iIm(〈f, g〉).
Let A be a selfadjoint operator on H with domain D(A). Then we define the second
quantisation of A to be the selfadjoint operator

(2.2) dΓ(A) = 0⊕
∞⊕
n=1

n∑
k=1

(1⊗)k−1A(⊗1)n−k
∣∣∣∣
H⊗sn

.

The number operator is defined as N = dΓ(1). If K is another Hilbert space and
U : H → K is a bounded operator with ‖U‖≤ 1 then we define

Γ(U) = 1⊕
∞⊕
n=1

U⊗n |H⊗sn .

We will write dΓ(n)(A) = dΓ(A) |H⊗sn and Γ(n)(U) = Γ(U) |H⊗sn throughout the
text. If ω is a multiplication operator then dΓ(n)(ω) is the multiplication operator
defined by the map ωn(k1, . . . , kn) = ω(k1) + · · · + ω(kn). For any v ∈ D(A) one
has the commutation relation

(2.3) [dΓ(A), ϕ(v)] = −iϕ(iAv)

where N ∩ D(dΓ(A)) ⊂ D([dΓ(A), ϕ(v)]). We now introduce the Weyl representa-
tion. For any g ∈ H we define the corresponding exponential vector

(2.4) ε(g) =

∞∑
n=0

g⊗n√
n!
.

One may prove that if D ⊂ H is a dense subspace then {ε(f) | f ∈ D} is a linearly
independent and total subset of Fb(H). Write U(H) for the set of unitary maps
from H into H. Let U ∈ U(H) and h ∈ H. Then there is a unique unitary map
W (h, U) such that

W (h, U)ε(g) = e−‖h‖
2/2−〈h,Ug〉ε(h+ Ug) ∀g ∈ H.

One may easily check that (h, U) 7→W (h, U) is strongly continuous and that

W (h1, U1)W (h2, U2) = e−iIm(〈h1,U1h2〉)W ((h1, U1)(h2, U2)),

where (h1, U1)(h2, U2) = (h1 +U1h2, U1U2). If A is a selfadjoint operator on H and
f ∈ H we have

eitdΓ(A) = Γ(eitA) = W (0, eitA)

eitϕ(if) = W (tf, 1).

The following lemma is important and well known (see [4] or [12]):

Lemma 2.1. Let ω be a selfadjoint, nonnegative and injective operator on H and
let g1, g2, . . . , gn ∈ D(ω−

1
2 ). Then N ⊂ D(ϕ(g1) · · ·ϕ(gn)) and ϕ(g1) · · ·ϕ(gn) is

dΓ(ω)
n
2 bounded. We have the following bounds

‖ϕ(g1)ψ‖ ≤ 2‖(ω− 1
2 + 1)g1‖‖(dΓ(ω) + 1)

1
2ψ‖

‖ϕ(g1)ϕ(g2)ψ‖ ≤ 15‖(ω− 1
2 + 1)g1‖‖(ω−

1
2 + 1)g2‖‖(dΓ(ω) + 1)ψ‖

which holds on D(dΓ(ω)
1
2 ) and D(dΓ(ω)) respectively. In particular, ϕ(g1) is in-

finitesimally dΓ(ω) bounded. Furthermore, dΓ(ω) + ϕ(g1) ≥ −‖ω− 1
2 g1‖2.
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Lemma 2.2. Let U : H → K be unitary, A be a selfadjoint operator on H, V ∈
U(H) and f ∈ H. Then Γ(U) is unitary and

Γ(U)dΓ(A)Γ(U)∗ = dΓ(UAU∗).

Γ(U)W (f, V )Γ(U)∗ = W (Uf,UV U∗).

Γ(U)ϕ(f)Γ(U)∗ = ϕ(Uf).

Furthermore, Γ(U)(f1 ⊗s · · · ⊗s fn) = Uf1 ⊗s · · · ⊗s Ufn and Γ(U)Ω = Ω.

3. The spin-boson model

Let σx, σy, σz denote the Pauli matrices and define e1 = (1, 0) and e−1 = (0, 1).
Note that ej is an eigenvector of σz with eigenvalue j. We consider a qubit coupled
to a radiation field. The state space of the qubit is C2 and the energy of the qubit
can be represented by ησz. Let H be the state space of a single boson and ω be the
energy operator of a single boson. Then the state space of the field is Fb(H) and
the energy operator of the field is dΓ(ω). This leads to the state space C2 ⊗Fb(H)
for the total system and we have the Hamiltonian

Hη(α, f, ω) := ησz ⊗ 1 + 1⊗ dΓ(ω) +

2n∑
i=1

αi(σx ⊗ ϕ(fi))
i,

which is parametrised by α ∈ C2n, f ∈ H2n, η ∈ C and ω selfadjoint on H. We will
also need the fiber operators:

Fη(α, f, ω) = ηΓ(−1) + dΓ(ω) +

2n∑
i=1

αiϕ(fi)
i.

If the spectra are real we define

Eη(α, f, ω) := inf(σ(Hη(α, f, ω)))

Eη(α, f, ω) := inf(σ(Fη(α, f, ω))).

For an element f ∈ H2n we define the leading terms

L(f) = {i ∈ {2, 3, . . . , 2n} | fi 6= fj ∀j > i}.
The expression L(f)c is to be interpreted as the complement within {1, 2, . . . , 2n}
so 1 ∈ L(f)c for all f ∈ H2n. For a selfadjoint operator ω we define

m(ω) = inf{σ(ω)} and mess(ω) = inf{σess(ω)}.
The basic set of assumptions are:

Hypothesis 1. Let α ∈ C2n, f ∈ H2n and ω be a selfadjoint operator in H. We
say (α, f, ω) satisfies Hypothesis 1 if

(1) L(f) consists only of even numbers, αi > 0 for all i ∈ L(f)\{2} and α2 ≥ 0
if 2 ∈ L(f).

(2) ω is injective and nonnegative.
(3) fj ∈ D(ω−

1
2 ) ∩ D(ω

1
2 ) for all j ∈ {2, . . . , 2n} and f1 ∈ D(ω−

1
2 ).

Hypothesis 2. Let f ∈ H2n, ω be a selfadjoint operator on H and Mb(σ(ω),R)
be the set of bounded and measurable maps from σ(ω) to R. We say (f, ω) satisfies
Hypothesis 2 if 〈fi, g(ω)fj〉 ∈ R for all i, j ∈ {1, . . . , 2n} and g ∈Mb(σ(ω),R).

Hypothesis 3. Let f ∈ H2n and ω be a selfadjoint operator on H. We say (f, ω)
satisfies Hypothesis 3 if either n ≤ 2 or m(ω) > 0 and (f, ω) satisfies Hypothesis 2.

For n > 2 we need hypercontractive bounds to make our proofs work. This is the
only reason we assume m(ω) > 0 in Hypothesis 3.
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Hypothesis 4. Let f ∈ H2n and ω be a selfadjoint operator on H. We say Hy-
pothesis 4 is satisfied if either n ≤ 2 or the following conditions are satisfied:

(1) H = L2(M,F , µ) where (M,F , µ) satisfies the assumptions in Theorem
A.5 and ω is a multiplication operator on H.

(2) There is a measurable function h : M → C with |h|= 1 such that hf is
R2n valued almost everywhere. A function h with these properties is called
a phase function for f .

Hypothesis 5. Let f ∈ H2n and ω be a selfadjoint operator on H. We say (f, ω)
satisfies Hypothesis 5 if fj ∈ D(ω−1) for all j ∈ {1, . . . , 2n}.
Example 3.1. Let H = L2(Rν ,B(Rν), λ⊗ν) where λ⊗ν is the Lebesgue measure.
Define ω(k) =

√
|k|2+m2 and f1 = f2 = · · · = f2n = ω−a/21{|k|≤Λ} for somem ≥ 0,

a > 0 and Λ > 0. In this case m(ω) = m = mess(ω) and σ(ω) = [m,∞) = σess(ω).
We consider the m > 0 and the m = 0 cases separately.
m > 0 : If η ∈ R, Λ > 0, a > 0 and α ∈ R2n is chosen such that α2n > 0 then

Hypothesis 1, 2, 3, 4 and 5 are satisfied. Furthermore, if 0 < 2|η|< m
then the drawing in Figure 1 below depicts the spectra of F±|η|(α, f, ω)
and Hη(α, f, ω) (see Theorem 3.5 part (4) below).

m = 0 : If a < ν − 2, η ∈ R, n ≤ 2, Λ > 0 and α ∈ R2n is chosen such that α2n > 0
then Hypothesis 1, 2, 3, 4 and 5 are satisfied.

If a ∈ [ν − 2, ν − 1), η ∈ R, n ≤ 2, Λ > 0 and α ∈ R2n is chosen such
that α2n > 0 then Hypothesis 1, 2, 3 and 4 are satisfied but Hypothesis 5
is not satisfied. Hence we cannot apply Theorem 3.6 below.

We can now present our results

Proposition 3.2. Let η ∈ C, α ∈ C2n, f ∈ H2n and ω be a selfadjoint operator
on H. If (α, f, ω) satisfies Hypotheses 1 and 3 then the operators Fη(α, f, ω) and
Hη(α, f, ω) are closed on the domains

D(Fη(α, f, ω)) = D(dΓ(ω)) ∩
⋂

i∈L(f)\{2}
D(ϕ(fi)

i)

D(Hη(α, f, ω)) = D(1⊗ dΓ(ω)) ∩
⋂

i∈L(f)\{2}
D(1⊗ ϕ(fi)

i).

Let D be a core for ω and define

J (D) := {Ω} ∪
∞⋃
n=1

{g1 ⊗s · · · ⊗s gn | gj ∈ D}

J̃ (D) := {ej ⊗ v | j ∈ {−1, 1} and v ∈ J (D)}.
Then J (D) spans a core for Fη(α, f, ω) and J̃ (D) spans a core for Hη(α, f, ω).
Furthermore, both Fη(α, f, ω) and Hη(α, f, ω) are selfadjoint and semibounded if
(α, η) ∈ R2n+1 and they have compact resolvents if ω has compact resolvents.

Proposition 3.3. Let φ = (φ1, φ−1) = e1 ⊗ φ1 + e−1 ⊗ φ−1 be an element in
Fb(H)2 = Fb(H)⊕Fb(H) ≈ C2⊗Fb(H) and write φj = (φ

(k)
j ) for j ∈ {−1, 1}. Let

j ∈ {−1, 1} and define φ̃j = (φ̃
(k)
j ) where

φ̃
(k)
j =

{
φ

(k)
j if k is even.
φ

(k)
−j if k is odd.

Then φ̃j ∈ Fb(H) and the map U : φ 7→ (φ̃1, φ̃−1) is selfadjoint and unitary. Let
η ∈ C, α ∈ C2n, f ∈ H2n and ω be a selfadjoint operator on H. Then

UHη(α, f, ω)U∗ = Fη(α, f, ω)⊕ F−η(α, f, ω).
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σ(Hη)

σ(F−|η|)

σ(F|η|)

× ×

×

×

E−|η|

E|η| E−|η| +mess

E|η| +mess

E−|η| = Eη E|η| Eη +mess

E

Figure 1. The picture established by Theorems 3.4 and 3.5 in the
case 0 < 2|η|< mess, m = mess and [mess, 3mess] ⊂ σess(ω).

In the remaining part of this section we will suppress α, f and ω from the notation
as they are fixed in the initial part of each Theorem. The first result we present an
HVZ type theorem about the location of the essential spectrum.

Theorem 3.4 (HVZ). Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be a selfadjoint operator
on H. Assume (α, f, ω) satisfies Hypothesis 1, 3 and 4. Then the following holds

inf{σess(Fη)} ≥ min{E−η +mess, Eη +m+mess}
∞⋃
q=1

{E(−1)qη + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Fη)

inf(σess(Hη)) = Eη +mess
∞⋃
q=1

{Eη + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Hη).

In particular, Hη has a ground state of finite multiplicity if mess > 0. We also have:
(1) Assume m = mess, [mess, 3mess] ⊂ σess(ω) and mess is not isolated in

σess(ω). Then σess(Fη) = [E−η +mess,∞).
(2) Assume [mess, 2mess] ⊂ σess(ω) and mess is not isolated in σess(ω). Then

σess(Hη) = [Eη +mess,∞).
(3) Assume in addition that (f, ω) satisfies Hypothesis 2. Then E−|η| ≤ E|η|

and inf(σess(F|η|)) = E−|η| +mess. Furthermore, E−|η| = E|η| if and only if
η = 0 or m = 0.

In the following result we single out which fiber operator is associated with the
ground state and which fiber operator is associated with exited states.

Theorem 3.5. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be a selfadjoint operator on H.
Assume (α, f, ω) satisfies Hypothesis 1, 2 and 3. Let U be the map from Proposition
3.3. Then the following holds:

(1) If η 6= 0 and Eη is an eigenvalue of Hη then Eη is non degenerate. If ψ is
a ground state of Hη then Uψ = e−sign(η) ⊗ φ where φ is an eigenvector of
F−|η| corresponding to the energy Eη.

(2) If E−|η| is an eigenvalue of F−|η| then E−|η| is non degenerate. In particular,
if E0 is an eigenvalue of H0 then E0 will have multiplicity two. Further-
more, if ψ is a ground state of H0 then Uψ = e1 ⊗ φ1 + e−1 ⊗ φ−1 where
φi is either 0 or an eigenvector of F0 corresponding to the energy E0 = E0.

(3) Assume in addition that Hypothesis 4 is satisfied. Then E−|η| = Eη and Hη

has a ground state if and only if F−|η| has a ground state. Furthermore, if
m = 0 and η 6= 0 then F|η| has no ground state.
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(4) Assume in addition that Hypothesis 4 is satisfied and m, η 6= 0. Then
Hη will have an exited state in (Eη, Eη + mess] if F|η| has a ground state.
Furthermore, F|η| has a ground state if 2|η|< mess.

Assuming weak infrared regularity one can prove the following theorem. Note that
the assumptions imposed on ω are much weaker than in [7].

Theorem 3.6. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be a selfadjoint operator on H.
Assume (α, f, ω) satisfies Hypothesis 1, 2, 3, 4 and 5. Then the following holds:

(1) If F−|η| has a ground state ψ and Hη has a ground state φ then ψ ∈ D(Na)
and φ ∈ D(1⊗Na) for any a > 0.

(2) Assume in addition that H = L2(Rν ,B(Rν), λ⊗ν) and ω is a multiplication
operator on H. Then Eη is an eigenvalue for F−|η| and Hη.

4. Important estimates

In this section we prove series of estimates which will become useful later. We
start with the following lemma

Lemma 4.1. Let α ∈ R2n and define

K(α) = {f ∈ H2n | (α, f) satisfies part (1) of Hypothesis 1 }.
There is a constant C := C(α), such that for any collection {A(v)}v∈H of selfadjoint
operators and f ∈ K(α) we have

(4.1)
2n∑
j=2

αjA(fj)
j ≥ C.

Proof. Let K = {i ∈ {2, 4, . . . , 2n} | αi > 0} = {i1, . . . , ik}. For each b ≤ k we
consider polynomials of the form

αibX
ib +

ib−1∑
j=2

α̃jX
j ,

where α̃j is either 0 or αj . Since there are only finitely many choices of b and α̃j
we find a uniform lower bound C0 < 0 of all these polynomials. Using the spectral
theorem we find

(4.2) αibA
ib +

ib−1∑
j=2

α̃jA
j ≥ C0,

for all selfadjoint operators A, b ∈ {1, . . . , k} and choices of α̃j as either 0 or αj .
Let f ∈ K(α) and {A(v)}v∈H be a collection of selfadjoint operators. Define

B :=

2n∑
j=2

αjA(fj)
j =

∑
j∈L(f)

j∑
i=2

α̃i,jA(fj)
i

where α̃i,j = αi if fi = fj and 0 otherwise. Note that either L(f) ⊂ K or α2 = 0
and L(f)\{2} ⊂ K. In any case we see B is the sum of at most k ≤ n operators of
the form given in equation (4.2). Hence B ≥ nC0 finishing the proof. �

Lemma 4.2. Let ε > 0, r > 0 and ω be a selfadjoint, nonnegative and injective
operator on H. There is C := C(r, ε) such that for all v1, v2 ∈ D(ω−

1
2 ) and a, b ≥ 0

with max{‖(1 + ω−
1
2 )v1‖, ‖(1 + ω−

1
2 )v2‖, a, b} ≤ r we have

2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −ε‖dΓ(ω)ψ‖2−C‖ψ‖2

for all ψ ∈ N ∩ D(dΓ(ω)).
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Proof. Let ψ ∈ N ∩ D(dΓ(ω)). Using equation (2.1) we find

ϕ(v2)ϕ(v1)4ψ = ϕ(v1)4ϕ(v2)ψ + 4(2iIm(〈v2, v1〉))ϕ(v1)3ψ.

This implies

2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) = 2ab‖ϕ(v1)2ϕ(v2)ψ‖2

+ 16abIm(〈v2, v1〉)Im(〈ϕ(v1)3ψ,ϕ(v2)ψ〉).
Now

Im(〈ϕ(v1)3ψ,ϕ(v2)ψ〉) =
1

2i
〈[ϕ(v2), ϕ(v1)3]ψ,ψ〉 = −3Im(〈v2, v1〉)‖ϕ(v1)ψ‖2.

Hence we find

2Re(a〈ϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −48r6‖ϕ(v1)ψ‖2.
Using Cauchy-Schwarz inequality and Lemma 2.1 we find

‖ϕ(v1)ψ‖2≤ 4‖(ω− 1
2 + 1)v1‖2(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2) ≤ 4r2(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2),

so

2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −196r8‖ψ‖‖dΓ(ω)ψ‖−196r8‖ψ‖2

≥ −ε‖dΓ(ω)ψ‖2−196r8‖ψ‖2− (196r8)2

4ε
‖ψ‖2,

which finishes the proof. �

Lemma 4.3. Let ε > 0, r > 0, n ∈ N and ω be a selfadjoint, nonnegative and
injective operator on H. There is C := C(r, ε, n) such that for all v ∈ D(ω

1
2 ) and

a ≥ 0 with max{‖ω 1
2 v‖, a} ≤ r we have

2Re(〈aϕ(v)2nψ, dΓ(ω)ψ〉) ≥ −ε‖aϕ(v)2nψ‖2−C‖ψ‖2

for all ψ ∈ N ∩ D(dΓ(ω)).

Proof. Let ψ ∈ N ∩ D(dΓ(ω)) and Pω be the spectral measure of ω. Define the
bounded operator ωk =

∫
R max{k, λ}dPω(λ). Using equation (2.3) we find

ϕ(v)ndΓ(ωk)ψ = dΓ(ωk)ϕ(v)nψ + i

n−1∑
j=0

ϕ(v)n−j−1ϕ(iωkv)ϕ(v)jψ.

This yields

2Re(〈aϕ(v)2nψ, dΓ(ωk)ψ〉) = 2a‖dΓ(ωk)
1
2ϕ(v)nψ‖2

− 2a

n−1∑
j=0

Im(〈ϕ(v)nψ,ϕ(v)n−j−1ϕ(iωkv)ϕ(v)jψ〉).

For each j ∈ {0, . . . , n− 1} we have

Im(〈ϕ(v)nψ,ϕ(v)n−j−1ϕ(iωkv)ϕ(v)jψ〉) =
1

2i
〈[ϕ(v)n−j−1ϕ(iωkv)ϕ(v)j , ϕ(v)n]ψ,ψ〉.

Using equation (2.1) we may calculate

[ϕ(v)n−j−1ϕ(iωkv)ϕ(v)j , ϕ(v)n]ψ = ϕ(v)n−j−1[ϕ(iωkv), ϕ(v)n]ϕ(v)jψ

= n2iIm(−i〈ωkv, v〉)ϕ(v)2(n−1)ψ.

Using the above equalities we find

2Re(〈aϕ(v)2nψ, dΓ(ω)ψ〉) ≥ −2an2‖ω
1
2

k v‖2‖ϕ(v)n−1ψ‖2

= −2a1/nn2‖ω
1
2

k v‖2‖(a
1
2nϕ(v))n−1ψ‖2.
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For any ε′ > 0 there is a constant A depending only on ε′ and n such that x2(n−1) ≤
ε′x4n + A for all x ∈ R. Pick A corresponding to ε′ = 2−1n−2r−2−1/nε and note
that

2Re(〈aϕ(v)2nψ, dΓ(ωk)ψ〉) ≥ −ε‖aϕ(v)2nψ‖2−2n2Ar2+1/n‖ψ‖2

since ‖ω
1
2

k v‖2≤ ‖ω
1
2 v‖2≤ r2 for all k ∈ N. Taking k to ∞ finishes the proof. �

Lemma 4.4. Let r > 0, ε ∈ (0, 1), n ∈ N and ω be a selfadjoint, nonnegative and
injective operator on H. Define

K = {(α, v) ∈ [0,∞)× (D(ω1/2) ∩ D(ω1/2)) | max{α, ‖(1 + ω−
1
2 + ω

1
2 )v‖} < r}

A =

{
Hn n ≤ 2.

{v ∈ Hn | 〈vi, vj〉 ∈ R ∀ i, j ∈ {1, ..., n}} n > 2.

There is a constant C := C(ε, r, n) such that for all (α1, v1), . . . , (αn, vn) ∈ K with
v = (v1, . . . , vn) ∈ A we have

‖dΓ(ω)ψ‖2+
n∑
j=1

‖αjϕ(vj)
2jψ‖2≤ 1

1− ε

∥∥∥∥dΓ(ω)ψ +

n∑
j=1

αjϕ(vj)
2jψ

∥∥∥∥2

+C‖ψ‖2

for all ψ ∈ N ∩ D(dΓ(ω)).

Proof. Let ψ ∈ N ∩ D(dΓ(ω)). First we note that

‖dΓ(ω)ψ‖2+

n∑
j=1

‖αjϕ(vj)
2jψ‖2 =

∥∥∥∥dΓ(ω)ψ +

n∑
j=1

αjϕ(vj)
2jψ

∥∥∥∥2

−
n∑
j=1

2Re(〈αjϕ(vj)
2jψ, dΓ(ω)ψ〉)

−
n∑

j1=1

n∑
j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉.

For q ∈ N we let C̃(r, ε, q) be the constant from Lemma 4.3. Define C1 = C̃(r, ε, 1)+

· · ·+ C̃(r, ε, n) which depends only on n, r and ε. Then we find

−
n∑
j=1

2Re(〈αjϕ(vj)
2jψ, dΓ(ω)ψ〉) ≤

n∑
j=1

ε‖αjϕ(vj)
2jψ‖2+C1‖ψ‖2.

We now estimate the double sum. If n ≤ 2 we have at most one term which can be
estimated using Lemma 4.2. Therefore we find a constant C2 > 0 such that

−
n∑

j1=1

n∑
j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉) ≤ ε‖dΓ(ω)ψ‖2+C2‖ψ‖2.

If n > 2 then ϕ(vj) and ϕ(vi) commute on N for all i, j ∈ {1, . . . , n} so

−
n∑

j1=1

n∑
j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉)

= −
n∑

j1=1

n∑
j2=j1+1

2αj2αj1‖ϕ(vj1)j1ϕ(vj2)j2ψ‖2≤ 0 ≤ ε‖dΓ(ω)ψ‖2+C2‖ψ‖2.

Combining the above inequalities we find the desired result with C = C1+C2

1−ε . �
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Lemma 4.5. Let r > 0, ε ∈ (0, 1), n ∈ N and ω be a selfadjoint operator on H.
There is a constant C := C(r, ε, n) > 0 such that for all f ∈ H2n, α ∈ C2n and
η ∈ C such that (α, f, ω) satisfies Hypothesis 1, Hypothesis 3 and

max
j∈L(f)\{2}

{α−1
j }+ |η|+|α|+‖(ω− 1

2 + 1)f1‖+
2n∑
j=2

‖(ω− 1
2 + 1 + ω

1
2 )fj‖< r

we have

‖ηΓ(−1)ψ‖+
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖ ≤ ε

∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥+C‖ψ‖

max{‖αjϕ(fj)
jψ‖, ‖dΓ(ω)ψ‖} ≤ (1− ε)−2 ‖Fη(α, f, ω)ψ‖+ C‖ψ‖.

for all ψ ∈ N ∩ D(dΓ(ω)) and j ∈ L(f).

Proof. Let ψ ∈ N ∩D(dΓ(ω)). Pick C1 > 0 depending only on r, ε and n such that

r2
2`−1∑
j=1

x2j ≤ ε2

16n4r2
x4` + C1,

for all ` ∈ {1, . . . , n} and x ∈ R. For each j ∈ L(f)c\{1} we find q ∈ L(f)\{2} such
that fj = fq and j < q. Noting that α−1

q ≤ r and αq ≤ r we find

‖αjϕ(fj)
jψ‖≤ ε

4n2r
‖ϕ(fq)

qψ‖+
√
C1‖ψ‖≤

ε

4n2
‖αqϕ(fq)

qψ‖+
√
C1‖ψ‖.

We know from Lemma 2.1 that

‖α1ϕ(f1)ψ‖ ≤ 2r‖(ω− 1
2 + 1)f1‖(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2)

1
2

≤ ε

4n
‖dΓ(ω)ψ‖+2r2‖ψ‖+4r4n

ε
‖ψ‖.

Combining the two inequalities above, we find C2 > 0 depending only on r, ε and
n such that∑

j∈L(f)c

‖αjϕ(fj)
jψ‖ ≤ ε

4n

(
‖dΓ(ω)ψ‖+

∑
j∈L(f)

‖αjϕ(fj)
jψ‖

)
+C2‖ψ‖

≤ ε

2

(
‖dΓ(ω)ψ‖2+

∑
j∈L(f)

‖αjϕ(fj)
jψ‖2

)
+C2‖ψ‖.

Applying Lemma 4.4 (with ε = 1
2 ) there is a constant C3 (depending only on r, ε

and n) such that

(4.3)
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖≤ ε

∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥+C3‖ψ‖.

This proves the first inequality. To prove the next inequality we note that∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥≤ ‖Fη(α, f, ω)ψ‖+
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖+|η|‖ψ‖.

Using equation (4.3) we obtain∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥≤ 1

1− ε‖Fη(α, f, ω)ψ‖+C3 + r

1− ε ‖ψ‖.

Combining this and Lemma 4.4 we find a constant C4 such that

max{‖αqϕ(fq)
qψ‖, ‖dΓ(ω)ψ‖} ≤ (1− ε)−2‖Fη(α, f, ω)ψ‖+C4‖ψ‖

for all q ∈ L(f). Taking C = max{C3 + r, C4} finishes the proof. �
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5. Proof of Proposition 3.2 and Proposition 3.3

Lemma 5.1. The map U defined in Proposition 3.3 is unitary with inverse U∗ = U .
Furthermore, for any v ∈ H and selfadjoint operator A on H we have

U(σx ⊗ ϕ(v))U∗ = ϕ(v)⊕ ϕ(v) = 1⊗ ϕ(v)(5.1)
U(1⊗ dΓ(A))U∗ = dΓ(A)⊕ dΓ(A) = 1⊗ dΓ(A)(5.2)

U(σz ⊗ 1)U∗ = Γ(−1)⊕−Γ(−1) = σz ⊗ Γ(−1).(5.3)

Let α ∈ C2n, f ∈ H2n, η ∈ C and ω be a selfadjoint operator on H. Then

(5.4) UHη(α, f, ω)U∗ = Fη(α, f, ω)⊕ F−η(α, f, ω).

Proof. First we note that
∞∑
k=0

‖ψ̃(k)
1 ‖2+

∞∑
k=0

‖ψ̃(k)
−1‖2 =

∑
k even

‖ψ(k)
1 ‖2+

∑
k odd

‖ψ(k)
−1‖2+

∑
k even

‖ψ(k)
−1‖2+

∑
k odd

‖ψ(k)
1 ‖2

= ‖ψ1‖2+‖ψ−1‖2= ‖e1 ⊗ ψ1 + e−1 ⊗ ψ−1‖2

which shows that the ψ̃i are elements in Fock space and U gives rise to an isometric
map from Fb(H)2 to Fb(H)2. Let (ψ1, ψ−1) ∈ Fb(H)2 and write U2(ψ1, ψ−1) =

U(ψ̃1, ψ̃−1) = (φ1, φ−1). For j ∈ {1,−1} and k ∈ N0 we have

φ
(k)
j =

{
ψ̃

(k)
j k even
ψ̃

(k)
−j k odd

=

{
ψ

(k)
j k even

ψ
(k)
j k odd

= ψ
(k)
j .

So U is bijective with inverse U−1 = U . It is clear from the definition of ψ̃j that
the map (ψ1, ψ−1) 7→ ψ̃j is linear and hence U is also linear. We have thus proven
that U is unitary with U = U−1 = U∗.

It remains to prove equations (5.1), (5.2) (5.3) and (5.4). Equation (5.4) follows
from the others so we are left with proving equations (5.1), (5.2) and (5.3). Define
J̃ (D(A)) as in Proposition 3.2 with D(A) instead of D. Then J̃ (D(A)) spans a core
for the operators on the left hand side of equations (5.1), (5.2) and (5.3). Hence
it is enough to check equations (5.1), (5.2) and (5.3) hold on elements of the form
ej ⊗ Ω and ej ⊗ g1 ⊗s · · · ⊗s gk with j ∈ {±1} and g` ∈ D(A). Now

U∗(ej ⊗ Ω) = ej ⊗ Ω

U∗(ej ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk),

which is in the domain of σx ⊗ ϕ(v), 1⊗ dΓ(A) and σz ⊗ 1. Using σxej = e−j and
σzej = jej we find

σx ⊗ ϕ(v)(ej ⊗ Ω) = e−j ⊗ v = U∗(1⊗ ϕ(v))(ej ⊗ Ω)

σx ⊗ ϕ(v)(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)k+1j ⊗ a†(v)g1 ⊗s · · · ⊗s gk
+ e(−1)k−1j ⊗ a(v)g1 ⊗s · · · ⊗s gk

= U∗(1⊗ ϕ(v))(ej ⊗ (g1 ⊗s · · · ⊗s gk))

1⊗ dΓ(A)(ej ⊗ Ω) = 0 = U∗(1⊗ dΓ(A))(ej ⊗ Ω)

1⊗ dΓ(A)(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)kj ⊗ dΓ(A)g1 ⊗s · · · ⊗s gk
= U∗(1⊗ dΓ(A))(ej ⊗ (g1 ⊗s · · · ⊗s gk))

σz ⊗ 1(ej ⊗ Ω) = jej ⊗ Ω = U∗(σz ⊗ Γ(−1))(ej ⊗ Ω)

σz ⊗ 1(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = (−1)kje(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)

= je(−1)kj ⊗ Γ(−1)g1 ⊗s · · · ⊗s gk
= U∗(σz ⊗ Γ(−1))(ej ⊗ (g1 ⊗s · · · ⊗s gk)).
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This finishes the proof. �

Proposition 3.2 will follow as soon as we prove the statements for Fη(α, f, ω). We
start by proving the following lemma

Lemma 5.2. The conclusions of Proposition 3.2 hold under Hypothesis 1, Hypoth-
esis 3 and the assumption

L := dΓ(ω) +
∑

j∈L(f)

αjϕ(fj)
j

is essentially selfadjoint on N ∩D(dΓ(ω)).

Proof. Combining the assumptions with Lemma 4.4 we see that L is selfadjoint on

C = D(dΓ(ω)) ∩
⋂

j∈L(f)\{2}
D(ϕ(fj)

j).

Simple perturbation theory along with Lemma 4.5 now shows that Fη(α, f, ω) is
closed on C and any core for L is a core for Fη(α, f, ω). If α ∈ R2n and η ∈ R, the
Kato-Rellich Theorem shows that Fη(α, f, ω) is selfadjoint and bounded below.

We now prove that J (D) spans a core for L. Any element ψ ∈ N ∩ D(ω) can
be approximated in dΓ(ω)-norm by a sequence {ψj}∞j=1 ⊂ Span(J (D)). Pick c > 0
such that 1(−∞,c)(N)ψ = ψ and write P = 1(−∞,c)(N). Then {Pψj}∞j=1 converges
to ψ in D(dΓ(ω))-norm and in Nn norm. It follows from Lemma 2.1 that {Pψj}∞j=1

converges to ψ in L-norm. Using that N ∩D(dΓ(ω)) is a core for L by assumption,
we see J (D) spans a core for L.

If ω has compact resolvents then so does dΓ(ω) by Lemma B.4. That Fη(α, f, ω)
has compact resolvents will now follow from the equality

(Fη(α, f, ω) + i)−1 = (dΓ(ω) + i)−1

+ (dΓ(ω) + i)−1(Fη(α, f, ω)− dΓ(ω))(Fη(α, f, ω) + i)−1.

This finishes the proof. �

Proof of Proposition 3.2. It remains to prove that

L := dΓ(ω) +
∑

j∈L(f)

αjϕ(fj)
j

is essentially selfadjoint on N∩D(dΓ(ω)) under Hypothesis 1 and 3. The case n ≤ 2
is simply done by appealing to [1]. If n > 2 one appeals to the theory of hyper-
contractive semigroups and obtains L is essentially selfadjoint on ∩n∈ND(dΓ(ω)n)
(See Lemma E.1, Theorem E.2 and [17, Theorem X.58]).

Recall that a vector g ∈ H is said to be bounded for ω if g ∈ ∩k∈ND(ωk) and
there is C > 0 such that ‖ωkg‖≤ Ck‖g‖ for all k ∈ N. The set of vectors which are
bounded for ω is dense in H since

g = lim
`→∞

1[−`,`](ω)g

for any g ∈ H. Let g1, . . . , gq be bounded for ω and note that g1 ⊗s · · · ⊗s gq ∈
∩k∈ND(dΓ(ω)k) and

‖dΓ(ω)kg1 ⊗s · · · ⊗s gq‖ =

∥∥∥∥ ∑
α∈Nq0,|α|=k

(
k
α

)
ωα1g1 ⊗s · · · ⊗s ωαqgq

∥∥∥∥
≤

∑
α∈Nq0,|α|=k

(
k
α

)
Cα1

1 · · ·Cαnq ‖g1‖· · · ‖gq‖

≤ (C1 + · · ·+ Cq)
k‖g1‖· · · ‖gq‖.
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Hence g1 ⊗s · · · ⊗s gq is an analytic vector for dΓ(ω)n which implies

{Ω} ∪
∞⋃
q=1

{g1 ⊗s · · · ⊗s gq | gi is bounded for ω} ⊂ N ∩ D(dΓ(ω))

will span a core for dΓ(ω)n by Nelsons analytic vector theorem. Since L is dΓ(ω)n

bounded by Lemma 2.1, we find that elements from N ∩D(dΓ(ω)) can approximate
every element in D(dΓ(ω)n) with respect to the graph norm of L. This finishes the
proof because L is essentially selfadjoint on D(dΓ(ω)n). �

6. Lemmas for the HVZ theorem

In this chapter we discuss some of the technical machinery needed to prove the
HVZ theorem.

Lemma 6.1. Let f ∈ H2n, α ∈ R2n, η ∈ R and ω be a selfadjoint operator
on H. Assume (α, f, ω) satisfies Hypothesis 1 and 3. If there is a unitary map
V : H → H1⊕H2 such that V fi = (f̃i, 0) for all i ∈ {1, . . . , 2n} and V ωV ∗ = ω1⊕ω2

then (α, f̃ , ω1) satisfies Hypothesis 1 and 3. Furthermore, there is a unitary map

U : Fb(H)→ Fb(H1)⊕
∞⊕
k=1

(
Fb(H1)⊗H⊗sk2

)
such that

UFη(α, f, ω)U∗ = Fη(α, f̃ , ω1)⊕
∞⊕
k=1

(
F(−1)kη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(k)(ω2)

)
.

In fact, U = U2U1Γ(V ) where U1 is the unitary map from Theorem C.1 and U2 is
the unitary map from Theorem C.2.

Proof. It is easy to see that Hypothesis 1 and 3 are preserved under the isomor-
phism. Using Lemma 2.2 one calculates

Γ(V )Fη(α, f, ω)Γ(V )∗ = ηΓ(−1⊕−1) + dΓ(ω1 ⊕ ω2) +

2n∑
i=1

αiϕ((f̃i, 0))i.

Let U1 be the isomorphism from Theorem C.1. Using Theorem B.2 part (6) and
Theorem C.1 we see

U1Γ(V )Fη(α, f, ω)Γ(V )∗U∗1 = ηΓ(−1)⊗ Γ(−1) + F0(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(ω2).

Let U2 be the unitary transform from Theorem C.2. Defining U = U2U1Γ(V ) we
calculate

UFη(α, f, ω)U∗ = ηU2Γ(−1)⊗ Γ(−1)U∗2 + U2F0(α, f̃ , ω1)⊗ 1U∗2 + U21⊗ dΓ(ω2)U∗2

=
(
ηΓ(0)(−1)Γ(−1) + F0(α, f̃ , ω1)

)
⊕
∞⊕
k=1

(
ηΓ(−1)⊗ Γ(k)(−1) + F0(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(k)(ω2)

)
.

The fact that Γ(k)(−1) = (−1)k finishes the proof. �

Lemma 6.2. Let f ∈ H2n, α ∈ R2n, η ∈ R and ω be a selfadjoint operator on H.
Assume (α, f, ω) satisfies Hypotheses 1 and 3. Let H1,H2 ⊂ H be closed subspaces
such that H⊥1 = H2 and let Pi denote the orthogonal projection onto Hi. If f ∈ H2n

1
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and ω is reduced by H1, then we may take ωi = ω |Hi and V f = (P1f, P2f) in
Lemma 6.1. Let U be the corresponding map. For g1, . . . , gq ∈ H2 we define

B = {Ω} ∪
∞⋃
b=1

{h1 ⊗s · · · ⊗s hb | hi ∈ H1 ∩ D(ω)}

C = {g1 ⊗s · · · ⊗s gq} ∪
∞⋃
b=1

{h1 ⊗s · · · ⊗s hb ⊗s g1 ⊗s · · · ⊗s gq | hi ∈ H1 ∩ D(ω)}.

If ψ ∈ Span(B) then we may interpret ψ as an element in both Fb(H) and Fb(H1).
Using this identification for ψ we find that

U∗(ψ ⊗ (g1 ⊗s · · · ⊗s gq)) ∈ Span(C).(6.1)
U∗(ψ) = ψ.(6.2)

‖(Fη(α, f, ω)− λ)ψ‖ = ‖(Fη(α, f, ω1)− λ)ψ‖.(6.3)

for all λ ∈ C.

Proof. V is clearly unitary and satisfies the properties needed in Lemma 6.1. Let
j : H1 → H1 ⊕H2 be the embedding j(f) = (f, 0) and define Q = V ∗j. Then Q is
the inclusion map from H1 into H. Lemma C.3 immediately yields equation (6.1)
and

Γ(Q) = U∗ |Fb(H1) .

This map acts as the identity on the set spanning B proving equation (6.2). To
prove equation (6.3) we note ψ = UU∗ψ = Uψ and so

‖(Fη(α, f, ω)− λ)ψ‖= ‖U(Fη(α, f, ω)− λ)U∗Uψ‖= ‖(Fη(α, f, ω1)− λ)ψ‖.
This finishes the proof. �

Lemma 6.3. Let {fk}∞k=1 ⊂ H2n, α ∈ R2n, η ∈ R and ω be a selfadjoint operator
on H. Assume L(fk) = L(f1) for all k ∈ N and (α, fk, ω) satisfies Hypothesis 1
and 3. Assume furthermore that

C := sup
k∈N,q∈{2,...,2n}

{‖fkq ‖, ‖ω±
1
2 fkq ‖, ‖ω−

1
2 fk1 ‖, ‖fk1 ‖} <∞.

For each λ ∈ R there is K <∞ such that

max{‖ϕ(fkq )j(Fη(α, fk, ω) + λ± i)−1‖, ‖dΓ(ω)(Fη(α, fk, ω) + λ± i)−1‖} ≤ K
for all k ∈ N, q ∈ {1, . . . , 2n} and j ∈ {1, . . . , q}.
Proof. Define

r = 2n3C + |α|+|η|+
(

max
q∈L(f1)\{2}

α−1
q

)
+ 1

and ε = 1
2 . By Lemma 4.5 there is a k independent constant C̃ > 0 such that

max{‖αqϕ(fkq )qψ‖, ‖dΓ(ω)ψ‖} ≤ 4‖Fη(α, fk, ω)ψ‖+C̃‖ψ‖
for all ψ ∈ N ∩ D(dΓ(ω)), q ∈ L(f1)\{2} and k ∈ N. Now D(dΓ(ω)) ∩ N is a core
for Fη(α, fk, ω) and so the inequality extends to all ψ ∈ D(Fη(α, fk, ω)). Using

‖Fη(α, fk, ω)(Fη(α, fk, ω)± i+ λ)−1‖≤ 2 + |λ|
and α−1

q ≤ r for all q ∈ L(f1)\{2} we obtain the following bounds

‖ϕ(fkq )q(Fη(α, fk, ω)± i+ λ)−1ψ‖ ≤ r(8 + 4|λ|+C̃)‖ψ‖(6.4)

‖dΓ(ω)(Fη(α, fk, ω)± i+ λ)−1ψ‖ ≤ (8 + 4|λ|+C̃)‖ψ‖(6.5)
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for all ψ ∈ D(Fη(α, fk, ω)), q ∈ L(f1)\{2} and k ∈ N. Let q ∈ {1, . . . , 2n},
j ∈ {1, . . . , q} and k ∈ N. If j ≤ 2 and ψ ∈ D(Fη(α, fk, ω)) ⊂ D(dΓ(ω)) we apply
Lemma 2.1 and obtain

‖ϕ(fkq )jψ‖≤ 15(2r)j‖(dΓ(ω) + 1)j/2ψ‖≤ 60r2‖(dΓ(ω) + 1)ψ‖.
Equation (6.5) now gives ‖ϕ(fkq )j(Fη(α, fk, ω)± i+ λ)−1‖≤ 60r2(8 + 4|λ|+C̃ + 1)

which is a uniform upper bound. If j ≥ 3 we may find p ∈ L(f1)\{2} such that
j ≤ q ≤ p and fkp = fkq . For ψ ∈ D(Fη(α, fk, ω)) ⊂ D(ϕ(fkp )p) we have

‖ϕ(fkq )jψ‖≤ ‖ϕ(fkp )pψ‖+‖ψ‖.
Using equation (6.4) we find ‖ϕ(fkq )j(Fη(α, fk, ω)± i+ λ)−1‖≤ r(8 + 4|λ|+C̃) + 1
which is a uniform upper bound. �

Next is a crucial result regarding convergence of operators.

Lemma 6.4. Assume H = L2(M,F , µ) where (M,F , µ) is σ-finite. Let α ∈ R2n,
η ∈ R, ω, ω1, ω2, . . . be a collection of multiplication operators on L2(M,F , µ) and
f, f1, f2, . . . be a collection of elements from H2n such that L(f) = L(fk) for all
k ∈ N. Assume that (α, f, ω) and (α, fk, ωk) satisfies Hypothesis 1 and 3 for all
k ∈ N. Assume also

lim
k→∞

ωk
ω

= 1 = lim
k→∞

ω

ωk
in L∞(M,F , µ) and that

lim
k→∞

fk1 = f1 lim
k→∞

ω
− 1

2

k fk1 = ω−
1
2 f1(6.6)

lim
k→∞

fkj = fj lim
k→∞

ω
± 1

2

k fkj = ω±
1
2 fj(6.7)

in H for all j ∈ {2, 3, . . . , 2n}. If n > 2 we assume in addition that there is a
function h : M→ S1 ⊂ C such that hf and hfk are almost surely R2n-valued for
all k ∈ N. Then Fη(α, fk, ωk)− λk converges to Fη(α, f, ω)− λ in norm resolvent
sense whenever {λk}∞k=1 ⊂ R converges to λ.

Proof. For convenience we will sometimes write ω = ω∞ or f = f∞ throughout
this proof. We check convergence at the point i in the resolvent set. Since ωk/ω
and ω/ωk are essentially bounded functions we see (α, fk, ω) fulfils Hypothesis 1
and 3. Furthermore, the limits in equations (6.6) and (6.7) also exist if we write ω
instead of ωk since ωk/ω and ω/ωk converges to 1 in L∞(M,F , µ). We now prove

(6.8) (Fη(α, fk, ωk) + λk − i)−1 − (Fη(α, fk, ω) + λ− i)−1

converges to 0 as k tends to ∞ since this will reduce the problem to the case where
ωk = ω and λk = λ = 0 for all k ∈ N. For any ψ ∈ Fb(H) and k, k′ ∈ N∪{∞} have
∞∑
`=1

∫
M`

(ωk(k1) + · · ·+ ωk(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`)

≤
∥∥∥∥ ωkωk′

∥∥∥∥2

∞

∞∑
`=1

∫
M`

(ωk′(k1) + · · ·+ ωk′(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`).

so D(dΓ(ωk)) = D(dΓ(ω)) for all k ∈ N. On this set ‖(dΓ(ωk)− dΓ(ω))ψ‖2 is now
estimated by
∞∑
`=1

∫
M`

(ωk(k1)− ω(k1) + · · ·+ ωk(k`)− ω(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`)

≤
∥∥∥∥ωk − ωω

∥∥∥∥2

∞

∞∑
`=1

∫
M`

(ω(k1) + · · ·+ ω(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`).
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Defining Ck = ‖ωk−ωω ‖∞ we find

‖(Fη(α, fk, ωk) + λn − i)−1 − (Fη(α, fk, ω) + λ− i)−1‖
≤ |λk − λ|+Ck‖dΓ(ω)(Fη(α, fk, ω) + λ− i)−1‖.

‖dΓ(ω)(Fη(α, fk, ω) + λ − i)−1‖ is uniformly bounded by Lemma 6.3 and Ck con-
verges to 0. Thus the operator in equation (6.8) converges to 0 and so we have
reduced to the case where ωk = ω and λk = λ = 0 for all k ∈ N.

Assume n > 2 and let HR be the real Hilbert space from Lemma E.1 correspond-
ing to the elements fkj for k ∈ N ∪ {∞} and j ∈ {1, . . . , 2n}. Let L2(X,X ,Q) be a
Q-space corresponding to HR and V be the unitary map from Theorem E.2. Define

(6.9) I(fk) = α1ϕ(fk1 ) +

2n∑
j=2

αjϕ(fkj )

for all k ∈ N∪{∞}. By Theorem E.2 we know that V e−tdΓ(ω)V ∗ is hypercontractive
and the interaction terms V I(fk)V ∗ are a multiplication operators. Convergence
in norm resolvent sense now follows from Theorem E.2 and [17, Theorem X.60] if
η = 0. For η 6= 0 we apply Lemma E.3.

Assume now n ≤ 2 and define I(fk) as in equation (6.9) for all k ∈ N ∪ {∞}.
Write F (f) := Fη(α, f, ω) and F (fk) := Fη(α, fk, ω) for all k ∈ N. Define

Ck = max
b∈{0,1}

{‖ϕ(f − fk)ϕ(fk)b(dΓ(ω) + 1)−1‖, ‖ϕ(f − fk)ϕ(f)b(dΓ(ω) + 1)−1‖}

D = sup
a∈{0,...,3},k∈N∪{∞}

{‖ϕ(fk)a(F (fk)± i)−1‖, ‖(dΓ(ω) + 1)(F (fk)± i)−1‖} <∞

where D <∞ follows from Lemma 6.3. On N we may calculate

I(fk)− I(f) = α1ϕ(fk1 − f) + α2(ϕ(fk2 )ϕ(fk2 − f2) + ϕ(fk2 − f2)ϕ(f2))

+ α3(ϕ(fk3 )2ϕ(fk3 − f3) + ϕ(fk3 )ϕ(fk3 − f3)ϕ(f3) + ϕ(fk3 − f3)ϕ(f3)2)

+ α4ϕ(fk4 )3ϕ(fk4 − f4) + α4ϕ(fk4 )2ϕ(fk4 − f4)ϕ(f4)

+ α4ϕ(fk4 )ϕ(fk4 − f4)ϕ(f4)2 + α4ϕ(fk4 − f4)ϕ(f4)3.

Let k ∈ N and define A = (F (f)− i)(D(dΓ(ω)) ∩N ). Then A is a dense subspace
of Fb(H) since D(dΓ(ω)) ∩ N is a core for F (f). Let φ ∈ Fb(H) and ψ ∈ A. Then
(F (f)− i)−1ψ ∈ D(dΓ(ω)) ∩N ⊂ D(F (fk)) and so

〈φ, ((F (fk)− i)−1 − (F (f)− i)−1)ψ〉
= 〈(F (fk) + i)−1φ, (I(f)− I(fk))(F (f)− i)−1ψ〉.

This is a sum of 10 terms of the form

− αj〈ϕ(fkj )a(F (fk) + i)−1φ, ϕ(fkj − fj)ϕ(fj)
b(F (f)− i)−1ψ〉

− αj〈ϕ(fj − fkj )ϕ(fkj )b(F (fk) + i)−1φ, ϕ(fj)
a(F (f)− i)−1ψ〉.

with a ∈ {0, 1, 2, 3} and b ∈ {0, 1}. Hence we see that

|〈φ, ((F (fk)− i)−1 − (F (f)− i)−1)ψ〉|≤ 10 max{|α1|, |α2|, |α3|, |α4|}D2Ck‖ψ‖‖φ‖.
Using that A is dense we find

‖(F (fk)− i)−1 − (F (f)− i)−1‖≤ 10 max{|α1|, |α2|, |α3|, |α4|}D2Ck.

Ck converges to 0 by Lemma 2.1 which finishes the proof. �

Lemma 6.5. Let H = L2(M,F , µ) where (M,F , µ) is σ-finite, α ∈ R2n, η ∈ R,
f ∈ H2n and ω :M→ R be measurable. Assume (α, f, ω) satisfies Hypothesis 1, 3
and 4. Let {An}∞n=1 be an increasing sequence of sets covering M up to a zeroset
and define fk = 1Akf . Then (α, fk, ω) satisfies Hypothesis 1, 3 and 4 for all
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k ∈ N. Furthermore, Fη(α, fk, ω) is uniformly bounded from below and converges
to Fη(α, f, ω) in norm resolvent sense. In particular

lim
k→∞

Eη(α, fk, ω) = Eη(α, f, ω)

and if {λk}∞k=1 ⊂ R converges to λ where λk ∈ σess(Fη(α, fk, ω)) for all k ∈ N then
λ ∈ σess(Fη(α, f, ω)).

Proof. (α, fk, ω) satisfies Hypothesis 1 obviously. If n ≤ 2 then Hypothesis 3 and 4
are automatically fulfilled. If n > 2 the phase function for f is also a phase function
for fk. Since Hypothesis 4 parts (2) and (3) implies Hypothesis 2, we have proven
Hypothesis 3 holds as well. In conclusion, we have proven that (α, fk, ω) satisfies
Hypothesis 1, 3 and 4.

Norm resolvent convergence follows directly from Lemma 6.4. Write

Fη(α, fk, ω) = ηΓ(−1) + dΓ(ω) + α1ϕ(fk1 ) +

2n∑
j=2

αjϕ(fkj )j .

Using Lemmas 2.1 and 4.1 we find a uniform lower bound of Fη(α, fk, ω). The
remaining claims follows from standard spectral theory. �

7. The HVZ theorem

In this section we prove Theorem 3.4 except for part (3). Let η ∈ R, α ∈ R2n,
f ∈ H2n and ω be a selfadjoint operator on H. Assume (α, f, ω) satisfies Hypoth-
esis 1, 3 and 4. We introduce the notation F(−1)k := F(−1)kη(α, f, ω), E(−1)k :=
E(−1)kη(α, f, ω), m := m(ω) and mess := mess(ω).

Since spectral properties are conserved under unitary transformations we may
(using Lemmas 2.2 and A.7) assume that H = L2(M,F , µ) where (M,F , µ) satis-
fies the assumptions in Theorems A.5 and ω is a multiplication operator on H with
ω > 0 almost everywhere.

Lemma 7.1. {E(−1)q + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(F1) for all q ∈ N.

Proof. Let q ∈ N and λ1, . . . , λq ∈ σess(ω). By Theorem A.5 we may if each i ∈
{1, . . . , q} pick a collection of sets {Aik}∞k=1 such that 0 < µ(Aik) <∞, |ω − λi|≤ 1

k

on Aik, A
i
k ∩Aj` = ∅ if i 6= j or k 6= ` and

∞∑
k=1

µ(Aik) <∞.

Define for each and k ∈ N the set

Bk =

q⋃
i=1

∞⋃
j=k

Aij ⇒ µ(Bk) =

q∑
i=1

∞∑
j=k

µ(Aij) <∞,

and note that µ(Bk) ↓ 0. Since {Bk}∞k=1 is a decreasing collection of sets we find

B =

∞⋂
k=1

Bk

has measure 0. Define for each ` ∈ N the subspace

H` = {f ∈ H | 1Bc` f = f µ− a.e.} = 1Bc`H.
Assume first that f ∈ H2n

K for some K and hence that f ∈ H2n
` for all ` ≥ K.

Define the following subspaces for ` ≥ K

A` =
⋃̀
k=K

Hk ∩ D(ω) = H` ∩ D(ω) A∞ =

∞⋃
k=K

Hk ∩ D(ω)
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We now claim that A∞ is a core for ω. If φ ∈ D(ω) then φk = φ1Bck ∈ A∞ for all
k ≥ K and using dominated convergence we find

lim
k→∞

‖φ− φk‖2= 0 = lim
k→∞

‖ω(φ− φk)‖2

so A∞ is a core for ω. Defining

J (A∞) = {Ω} ∪
∞⋃
k=1

{g1 ⊗s · · · ⊗s gk | gi ∈ A∞}

J (A`) = {Ω} ∪
∞⋃
k=1

{g1 ⊗s · · · ⊗s gk | gi ∈ A`}

we find that J (A∞) spans a core for F±1 by Proposition 3.2.
Let g ∈ Span(J (A∞)). Then g = aΩ +

∑k
j=1 αjfj with fj ∈ J (A∞)\{Ω} for all

j ∈ {1, . . . , k}. Let j ∈ {1, . . . , k} and note that fj ∈ J (A`(j)) for some `(j) ∈ N by
definition of A∞. Defining u = maxj∈{1,...,k}{`(j)} we see that g ∈ Span(J (A`))
for any ` ≥ u. Hence we have now proven the following statements

• For any g ∈ Span(J (A∞)) there is u ∈ N with u ≥ K such that g ∈
Span(J (A`)) for any ` ≥ u.
• Span(J (A∞)) is a core for F±1.

For each p ∈ N we pick νp ∈ Span(J (A∞)) such that ‖(F(−1)q − E(−1)q )νp‖≤ 1
p

and ‖νp‖= 1. Pick u(p) ≥ K such that νp ∈ Span(J (A`)) for any ` ≥ u(p) and
u(p+ 1) > u(p) for all p ∈ N. For each p ∈ N and i ∈ {1, . . . , q} we define

gpi = µ(Aiu(p))
− 1

2 1Ai
u(p)

.

Note gpi ∈ D(ω) since ω is bounded by λi + 1
u(p) on Aiu(p). Note also, that gpi ∈

H⊥u(p) since Aiu(p) ⊂ Bu(p) so gpi and any element in Hu(p) have disjoint support.
Furthermore, the collection {gpi }p∈N,i∈{1,...,q} is orthogonal since the elements have
disjoint support. Let Up be the unitary map from Lemma 6.2 corresponding to
Hu(p) which exists since f ∈ H2n

K ⊂ H2n
u(p). Define

φp =
√
q!U∗p (νp ⊗ gp1 ⊗s · · · ⊗s gpq ).

We are done in the case f ∈ H2n
K for some K if we can prove that {φp}∞p=1 is a

Weyl sequence for F1 corresponding to the value E(−1)q + λ1 + · · ·+ λq. We check:

(1) φp ∈ D(F1).
(2) ‖φp‖= 1 for all p ∈ N.
(3) φp is orthogonal to φr for p 6= r.
(4) ‖(F(−1)q − (E(−1)q + λ1 + · · ·+ λq))φp‖ converges to 0.

(1): Lemma 6.2 shows φp ∈ N ∩ D(dΓ(ω)) ⊂ D(F1) for all p ∈ N.
(2): Note that {gpi }qi=1 is orthonormal for each p ∈ N. Let Sq be the permutations

of {1, . . . , q}. Then we find

‖gp1 ⊗s · · · ⊗s gpq‖2 =
1

q!

∑
σ∈Sq
〈gp1 ⊗ · · · ⊗ gpq , gpσ(1) ⊗ · · · ⊗ g

p
σ(q)〉

=
1

q!

∑
σ∈Sq
〈gp1 , gpσ(1)〉 · · · 〈gpq , g

p
σ(q)〉

=
1

q!
〈gp1 , gp1〉 · · · 〈gpq , gpq 〉 =

1

q!
.
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(3): Define for all p ∈ N the set

Cp = {gp1 ⊗s · · · ⊗s gpq} ∪
∞⋃
`=1

{h1 ⊗s · · · ⊗s h` ⊗s gp1 ⊗s · · · ⊗s gpq | hi ∈ Hu(p) ∩D(ω)}

and let r < p. Then φr ∈ Span(Cr) and φp ∈ Span(Cp) by Lemma 6.2, so we just
need to see that every element in Cp is orthogonal to every element in Cr. Let
ψ1 ∈ Cp and ψ2 ∈ Cr. Note ψ1 has a factor gp1 and that this factor is orthogonal
to gri for all i ∈ {1, . . . , q} by construction. Furthermore, for any h ∈ Hu(r) we see
that h is supported in Bcu(r) ⊂ Bcu(p) ⊂ (A1

u(p))
c so gp1 is orthogonal to all elements

in Hu(r) by construction. Hence ψ1 contains a factor which is orthogonal to all
factors in ψ2 so they are orthogonal. This proves (3).

(4): Using Lemma 6.2 we find

‖(F1 − E(−1)q − λ1 − · · · − λq)φp‖
=
√
q!‖Up(F1 − E(−1)q − λ1 − · · · − λq)U∗p νp ⊗ gp1 ⊗s · · · ⊗s gpq‖

≤
√
q!‖(F(−1)q (α, f, ω1)− E(−1)q )νp ⊗ gp1 ⊗s · · · ⊗s gpq‖

+
√
q!

q∑
i=1

‖νp ⊗ gp1 ⊗s · · · ⊗s (ω2g
p
i − λigpi )⊗s · · · ⊗s gpq‖

≤ ‖(F(−1)q − E(−1)q )νp‖+
√
q!

q∑
i=1

‖(ω − λi)gpi ‖

≤ 1

p
+
√
q!

q∑
i=1

1

u(p)

which converges to 0. This finishes the case where f ∈ H2n
K for some K. To prove

the general case let fk = 1Bckf and note that E(−1)qη(α, fk, ω) + λ1 + · · · + λq ∈
σess(Fη(α, fk, ω)) for all k ∈ N. Applying Lemma 6.5 finishes the proof. �

Lemma 7.2. Define m̃ = min{mess + E−1, E1 + mess + m}. Then (−∞, m̃) ∩
σess(F1) = ∅.
Proof. If m = 0 then mess = 0 by injectivity of ω so the statement is trivial since
(−∞, m̃) ∩ σ(F1) = ∅. Hence we may assume m > 0 so ω ≥ m > 0 almost
everywhere. If mess =∞ the conclusion will follow from Proposition 3.2. Hence we
may assume mess <∞. Define

ωk(x) =

∞∑
j=0

2−k(j + 1)1{ω∈(j2−k,(j+1)2−k]}(x)

From Lemma A.1 one obtains ω/ωk and ωk/ω converges to 1 in L∞(M,F , µ). This
implies (α, f, ωk) satisfies Hypothesis 1, 3 and 4. Furthermore,

lim
k→∞

f1 = f1 lim
k→∞

ω
− 1

2

k f1 = ω−
1
2 f1

lim
k→∞

fj = fj lim
k→∞

ω
± 1

2

k fj = ω±
1
2 fj

in H for j ∈ {2, . . . , 2n}. So defining

F±1,k = Fη(α, f, ωk)

we see that F±1,k converges to F±1 in norm resolvent sense as k tends to infinity
by Lemma 6.4. Applying the bounds in Lemmas 2.1 and 4.1 along with the bound
ηΓ(−1) ≥ −|η| we see

F±1,k ≥ −|η|−‖ω−
1
2

k f1‖2+C,
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which is uniformly bounded below in k. Hence E±1,k = inf(σ(F±1,k)) converges to
E±1. Defining the masses mk := m(ωk) and mess,k := mess(ωk) we see {mk}∞k=1

converges to m and {mess,k}∞k=1 converges to mess by Lemma A.1. Defining

m̃k = min{mess,k + E−1,k, E1,k +mess,k +mk}.
we see that {m̃k}∞k=1 converges to m̃. Assume we have proven that h(F1,k) is
compact for any h ∈ C∞c ((−∞, m̃k)). Let h ∈ C∞c ((−∞, m̃)) and note that h ∈
C∞c ((−∞, m̃k)) for k large enough. Norm resolvent convergence implies that

h(F1) = lim
k→∞

h(F1,k)

in norm so h(F1) is compact. This would finish the proof, so it only remains to
prove that h(F1,k) is compact for any h ∈ C∞c ((−∞, m̃k)).

Define the projection Pk,j = 1{ω∈(j2−k,(j+1)2−k]} for j ∈ N0 and k ∈ N. Then
Pk,j1Pk,j2 = 0 for j1 6= j2 so we may define

Hk,j = {Pk,jfi | i ∈ {1, . . . , 2n}}

Hk =
∞⊕
j=0

Hk,j =


∞∑
j=0

gj

∣∣∣∣ gj ∈ Hk,j and
∞∑
j=0

‖gj‖2<∞

 ⊂ H
For i ∈ {1, . . . , 2n} we note that

fi =

∞∑
j=0

Pk,jfi ∈ Hk

so f ∈ H2n
k . Fix ψ ∈ Hk and write

ψ =

∞∑
j=0

gj

with gj ∈ Hk,j . By definition we see gj ∈ D(ωk) and ωkgj = (j + 1)2−kgj for all
j ∈ N0 so

eitωkψ =

∞∑
j=0

eit(j+1)2−kgj ∈ Hk.

This implies Hk reduces ωk by [23, Theorem Theorem 7.39]. Let ωk,1 denote the
restriction of ωk to Hk. We claim ωk,1 has compact resolvents. Let Qk,j : Hk →
Hk,j be the projection. Then Qk,j has finite dimensional range and Qk,j1Qk,j2 = 0
if j1 6= j2. Let ξ ∈ C\R and K, q1, q2 ∈ N with K ≤ q1 < q2. Then∥∥∥∥∥∥

q2∑
j=q1

((j + 1)2−k + ξ)−1Qk,j

∥∥∥∥∥∥ = max
j∈{q1,q1+1,...,q2}

|((j + 1)2−k + ξ)−1|

≤ sup
j∈N, j≥K

|((j + 1)2−k + ξ)−1|

which goes to 0 as K tends to ∞. This shows

A = lim
K→∞

K∑
j=0

((j + 1)2−k + ξ)−1Qk,j =

∞∑
j=0

((j + 1)2−k + ξ)−1Qk,j .

exists since the partial sums are Cauchy. Note A is compact since the Qk,j are
compact and the sum converges in norm. We claim A is the inverse of ωk,1 + ξ. By
selfadjointness of ωk,1 we know ωk,1 + ξ is bijective from D(ωk,1) ∩ Hk into Hk so
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it is enough to see A maps Hk into D(ωk,1)∩Hk and (ωk,1 + ξ)A = 1. Let ψ ∈ Hk
and write

ψ =

∞∑
j=0

gj ⇒ Aψ =

∞∑
j=0

((j + 1)2−k + ξ)−1gj

ψK =

K∑
j=0

gj ⇒ AψK =

K∑
j=0

((j + 1)2−k + ξ)−1gj

where K ∈ N. Note AψK ∈ D(ωk,1) = Hk∩D(ω) and (ωk,1 +ξ)AψK = ψK . Taking
K to infinity we see Aψ ∈ D(ωk,1) and (ωk,1 + ξ)Aψ = ψ.

Let h ∈ C∞c ((−∞, m̃k)). As previously noted we have f ∈ H2n
k and ωk is reduced

by Hk. Define ωk,2 = ωk |H⊥k . Applying Lemma 6.1 we obtain a unitary map

Uk : Fb(H)→ Fb(Hk)⊕
∞⊕
j=1

(
Fb(Hk)⊗ (H⊥k )⊗sj

)
,

such that

UkF±1,kU
∗
k = F±η(α, f, ωk,1)⊕

∞⊕
j=1

(
F±(−1)jη(α, f, ωk,1)⊗ 1 + 1⊗ dΓ(j)(ωk,2)

)
.

Thus we find E±η(α, f, ωk,1) ≥ E±1,k and

Ukh(F1,k)U∗k = h(Fη(α, f, ωk,1))⊕
∞⊕
j=1

h
(
F(−1)jη(α, f, ωk,1)⊗ 1 + 1⊗ dΓ(j)(ωk,2)

)
.

h(Fη(α, f, ωk,1)) is compact by Proposition 3.2 since ωk,1 has compact resolvent.
Write Cj = F(−1)jη(α, f, ωk,1)⊗ 1 + 1⊗ dΓ(j)(ωk,2) for j ∈ N. Using Theorem B.2,
Proposition 3.2 and Lemma B.4 we find for j ∈ N that

inf(σess(Cj)) ≥ E(−1)jη(α, f, ωk,1) + (j − 1) inf(σ(ωk,2)) + inf(σess(ωk,2))

≥ E(−1)j ,k + (j − 1)mk +mess,k ≥ m̃k

inf(σ(Cj)) ≥ E(−1)jη(α, f, ωk,1) + j inf(σ(ωk,2)) ≥ E(−1)j ,k + jmk.

This implies h(Cj) is compact for all j ∈ N and since mk > 0 we find h(Cj) = 0
for j large enough. Hence Ukh(F1,k)U∗k is a direct sum of compact operators where
only finitely many are nonzero. This shows Ukh(F1,k)U∗k is compact as desired. �

Combining Lemmas 7.1 and 7.2 with Proposition 3.3 proves the first part of Theo-
rem 3.4. Statements (1) and (2) will follow from the corollaries below.

Corollary 7.3. Assume m = mess, [m, 3m] ⊂ σess(ω) and m is not isolated in
σess(ω). Then σess(F1) = [E−1 +m,∞).

Proof. If m = mess then E1 ≤ E−1 + m by Lemma 7.1. Hence the minimum in
Lemma 7.2 is E−1 +mess = E−1 +m. If m 6= 0 then the result follows directly from
Lemma 7.1, so we may assume m = 0. Let ε > 0 and x ∈ [E−1 +m,∞). Since 0 is
not isolated in σess(ω) we find λ ∈ σess(ω) with λ ≤ ε. Note that x − E−1 ≥ 0 so
we may pick q ∈ N0 such that

|x− E(−1)2q+1 − (2q + 1)λ|≤ ε.

E(−1)2q+1 + (2q + 1)λ ∈ σess(F1) by Lemma 7.1 so x ∈ σess(F1) = σess(F1). �

Corollary 7.4. Assume [mess, 2mess] ⊂ σess(ω) and mess is not isolated in σess(ω).
Then σess(Hη(α, f, ω)) = [mess + Eη(α, f, ω),∞).



SPIN-BOSON TYPE MODELS ANALYSED USING SYMMETRIES 22

Proof. Combining Proposition 3.3 and Lemma 7.1 we see

{Eη(α, f, ω) + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Hη(α, f, ω))

for all q ∈ N. The proof is now the same as for Corollary 7.3. �

8. Proof of Theorem 3.5

In this section we prove Theorem 3.5. Let α ∈ R2n, f ∈ H2n and ω be a
selfadjoint operator on H. We assume (α, f, ω) satisfies Hypothesis 1, 2 and 3. For
η ∈ R we will throughout this section use the notation Fη := Fη(α, f, ω), Eη :=
Eη(α, f, ω), Hη := Hη(α, f, ω), mess = mess(ω), m = m(ω) and Eη := Eη(α, f, ω).
Let HR be the real Hilbert space from Lemma E.1 corresponding to {fi}2ni=1 and
L2(Q,G,P) be the corresponding Q-space.

Lemma 8.1. Define the unitary matrix

A =
1√
2

(
1 −1
1 1

)
.

Let V be the Q-space isomorphism and define U = A ⊗ V . Then U is a unitary
map from C2 ⊗Fb(H) to

C2 ⊗ L2(Q,G,P) = L2({±1} ×Q,B({±1})⊗ G, τ ⊗ P) := L2(X,X , ν),

where τ is the counting measure. Here we use the tensor product

((v1, v−1)⊗ f)(a, x) = δ1,av1f(x) + δ−1,av−1f(x),

where δi,j is the Kronecker delta. For v ∈ HR we have

Uσx ⊗ ϕ(v)U∗ = Φ(v)(8.1)
Uσz ⊗ 1U = −σx ⊗ 1(8.2)

U1⊗ dΓ(ω)U∗ = 1⊗ V dΓ(ω)V ∗,(8.3)

where Φ(v) is a multiplication operator. Furthermore, UHηU
∗ generates a positivity

improving semigroup if η < 0.

Proof. Recall that V ϕ(v)V ∗ := ϕ̃(v) is a multiplication operator for all v ∈ HR.
We now prove equations (8.1), (8.2) and (8.3). Equation (8.3) is trivial. To prove
the other two one calculates

AσzA
∗ = σx and AσxA

∗ = −σz
so Uσx ⊗ ϕ(v)U = −σz ⊗ ϕ̃(v) and Uσz ⊗ ϕ(v)U = σx ⊗ 1. Now −σz ⊗ ϕ̃(v)
obviously acts like multiplication by the map (Φ(v))(a, x) = −a(ϕ̃(v))(x) so we are
done proving equations (8.1) and (8.2).

Any element ψ ∈ L2(X,X , ν) is of the form

ψ = e1 ⊗ ψ1 + e−1 ⊗ ψ−1.

Hence ψ is (strictly) positive if and only if ψ1 and ψ−1 are (strictly) positive. Using
Theorem E.2 we find that 1⊗exp(−tV dΓ(ω)V ∗) is positivity preserving for all t ≥ 0.
Furthermore, the map σx⊗1 is positivity preserving since it maps e1⊗ψ1+e−1⊗ψ−1

to e−1 ⊗ ψ1 + e1 ⊗ ψ−1 and so exp(t1⊗ σx) is positivity preserving for all t ≥ 0. It
follows that

exp(−tUHη(0, 0, ω)U∗) = exp(−tη1⊗ σx)(1⊗ exp(−tV dΓ(ω)V ∗))

is positivity preserving for all η < 0 and t ≥ 0. We will need the following observa-
tion:

(8.4) U(e1 ⊗ Ω) = Ae1 ⊗ V Ω =
1√
2

(e1 ⊗ 1 + e−1 ⊗ 1) =
1√
2
.
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Let η < 0 and note that e1 ⊗ Ω spans the ground state eigenspace of Hη(0, 0, ω) =
ησz ⊗ 1 + 1 ⊗ dΓ(ω) by Theorem B.2, so equation (8.4) shows that 1√

2
spans the

ground state eigenspace of UHη(0, 0, ω)U∗. Hence UHη(0, 0, ω)U∗ generates a posi-
tivity preserving semi group and the ground state eigenspace is spanned by a strictly
positive vector. This implies that the semi group generated by UHη(0, 0, ω)U∗ is
ergodic by [18, Theorem XIII.43]. Write

UHηU
∗ = UHη(0, 0, ω)U∗ +

2n∑
j=1

αjΦ(fj)
j := UHη(0, 0, ω)U∗ +B

and define

Bk =

2n∑
j=1

αjΦ(fj)
j1{|Φ(fj)|≤k},

which is a bounded multiplication operator. Assume now that we have proven the
following statements

(1) If u, v ≥ 0 and 〈u, exp(−tBk)v〉 = 0 then 〈u, v〉 = 0
(2) UHη(0, 0, ω)U∗ + Bk and UHηU

∗ − Bk are uniformly bounded below in
k and converge in strong resolvent sense to UHηU

∗ and UHη(0, 0, ω)U∗

respectively.
Then we may appeal to the proof of [6, Theorem 3] to see that UHη(α, f, ω)U∗

generates an ergodic semigroup, which by [18, Theorem XIII.44] will be positivity
improving.

Statement (1) is trivial since Bk is a multiplication operator and |Bk|<∞ almost
everywhere. To prove statement (2) we let ψ ∈ Span(J̃ (D(ω))) and note that Uψ ∈
D(Φ(fj)

j) for all j ∈ {1, . . . , 2n} by Proposition 3.2, so dominated convergence
implies

lim
k→∞

BkUψ = BUψ.

Since U J̃ (D(ω)) spans a core for UHη(0, 0, ω)U∗ and UHηU
∗ by Proposition 3.2

we find that UHη(0, 0, ω)U∗ + Bk and UHηU
∗ − Bk converges to UHηU

∗ and
UHη(0, 0, ω)U∗ respectively in strong resolvent sense (see [16, Theorem VIII.25]).

It remains only to find a uniform lower bound. We calculate

UHηU
∗ −Bk =− ησx ⊗ 1 + 1⊗ V dΓ(ω)V ∗ + α1Φ(f1)1{|Φ(f1)|>k}

+

2n∑
j=2

αjΦ(fj)
j1{|Φ(fj)|>k}.

UHη(0, 0, ω)U∗ +Bk =− ησx ⊗ 1 + 1⊗ V dΓ(ω)V ∗ + α1Φ(f1)1{|Φ(f1)|≤k}

+

2n∑
j=2

αjΦ(fj)
j1{|Φ(fj)|≤k}.

In both expressions, the first term on the right hand side is bounded below by
−|η| and the sum is bounded below uniformly in k by Lemma 4.1. Now α1Φ(f1)
is infinitesimally 1⊗ V dΓ(ω)V ∗ bounded by Lemmas 2.1 and B.3. Hence there are
a ∈ (0, 1) and b ≥ 1 such that

‖α1Φ(f1)ψ‖≤ a‖(1⊗ V dΓ(ω)V ∗)ψ‖+b‖ψ‖
for all ψ ∈ D(1⊗ V dΓ(ω)V ∗). 1Cα1Φ(f1) will satisfies the same inequality for any
C ∈ X so [23, Theorem 9.1] provides a lower bound of 1Cα1Φ(f1) + 1⊗ V dΓ(ω)V ∗

independent of C. This finishes the proof. �
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Lemma 8.2. If η 6= 0 and Eη is an eigenvalue of Hη then Eη is non degenerate.
If ψ is any ground state of Hη then Uψ = e−sign(η) ⊗ ψ where ψ is an eigenvector
of F−|η| corresponding to the energy Eη. In particular, we can conclude that Eη is
not an eigenvalue of F|η|.

Proof. Let η 6= 0 and assume Eη is an eigenvalue ofHη with corresponding eigenvec-
tor ψ. If η < 0 then non degeneracy Eη follows from Lemma 8.1 and [18, Theorem
XIII.43]. Furthermore, 〈ψ, e1⊗Ω〉 6= 0 since e1⊗Ω is mapped the positive element
1√
2
under the map from Lemma 8.1 (see equation (8.4)). If η > 0 then σx ⊗ 1

transforms Hη into H−η showing that non degeneracy of Eη holds in this case as
well, but now ψ will have nonzero inner product with σx ⊗ 1(e1 ⊗ Ω) = e−1 ⊗ Ω.
So all in all we can conclude that Eη is a non degenerate eigenvalue of Hη and
0 6= 〈ψ, e−sign(η) ⊗ Ω〉.

Let U be the unitary map from Proposition 3.3. Then Uψ = (ψ1, ψ−1) =
e1 ⊗ψ1 + e−1 ⊗ψ−1 is a ground state of Fη ⊕ F−η corresponding to the eigenvalue
Eη. We see

0 6= 〈ψ, e−sign(η) ⊗ Ω〉 = 〈(ψ1, ψ−1), Ue−sign(η) ⊗ Ω〉
= 〈(ψ1, ψ−1), e−sign(η) ⊗ Ω〉 = 〈ψ−sign(η),Ω〉.

This implies ψ−sign(η) 6= 0. Hence ψ−sign(η) is an eigenvector of F−|η| corresponding
to the eigenvalue Eη. If Eη was an eigenvalue of F|η| then it would be an eigenvalue
of Hη and F−|η| as well. In particular, Eη would be an eigenvalue of Hη and the
multiplicity would be 2 or more which is a contradiction. �

Lemma 8.3. If E−|η| is an eigenvalue of F−|η| then E−|η| is non degenerate and
every eigenvector will have nonzero inner product with Ω.

Proof. We start with the case η = 0. Let V be the Q-space isomorphism from
Theorem E.2. From Theorem E.2 we know that V dΓ(ω)V ∗ generates a positivity
improving semigroup and V Ω = 1. We now prove that the semigroup of V F0V

∗ is
positivity improving. Note

V F0V
∗ = V F0(0, 0, ω)V ∗ +

2n∑
j=1

αjϕ̃(vj)
j := V Hη(0, 0, ω)V ∗ +A,

and define

Ak =

2n∑
j=1

αjϕ̃(vj)
j1{|ϕ̃(vj)|≤k},

which is now a bounded multiplication operator. With the exact same proof as in
Lemma 8.1 we check

(1) If u, v ≥ 0 and 〈u, exp(−tAk)v〉 = 0 then 〈u, v〉 = 0.
(2) V F0(0, 0, ω)V ∗ + Ak and V F0V

∗ − Ak are uniformly bounded below in
k and converge in strong resolvent sense to V F0V

∗ and V F0(0, 0, ω)V ∗

respectively.
An appeal to the proof of [6, Theorem 3] along with [16, Theorem XIII.43] finishes
the proof when η = 0. For η 6= 0 one may combine Theorem E.2 part (1) with [6,
Theorem 2] to obtain the conclusion. �

We can now prove some spectral properties of the fiber operators. In the remaining
part of this section we will also assume Hypothesis 4 is satisfied so we may use
Theorem 3.4 except for part (3). However part (3) of Theorem 3.4 is proven in the
next lemma

Lemma 8.4. E−|η| = Eη and E−|η| ≤ E|η|. Furthermore, E−|η| < E|η| if and only if
m > 0 and η 6= 0. In particular, if η 6= 0 and m = 0 then F|η| has no ground state.
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Proof. If η = 0 then E|η| = E−|η| is trivial. If m = 0 then mess = 0 by injectivity
of ω. Using Theorem 3.4 we obtain E±|η| ≤ E∓|η| since E∓|η| ∈ σess(F±|η|) so
E−|η| = E|η|. The statement regarding absence of ground states for F|η| now follows
from E−|η| = E|η| and Lemma 8.2.

Assume m > 0 and η 6= 0. m > 0 implies that Eη is an eigenvalue of Hη by
Theorem 3.4 and so Eη = E−|η| is an eigenvalue of F−|η| by Lemma 8.2. Since
E−|η| = Eη ≤ E|η| we just have to prove that E−|η| = E|η| is impossible. Assume
E−|η| = E|η|. Then Theorem 3.4 implies that

inf(σess(F|η|)) = E−|η| +mess > E|η|,
and so E−|η| = E|η| = Eη would be an eigenvalue of F|η|. However, this gives a
contradiction with Lemma 8.2. �

Regarding exited states we deduce the following

Lemma 8.5. If η 6= 0 and E|η| is an eigenvalue of F|η| then it is an eigenvalue of
Hη contained in (E,E+mess]. Furthermore, if 2|η|< mess then E|η| is an eigenvalue
of F|η|.

Proof. Assume E|η| is an eigenvalue of F|η|. Then mess ≥ m > 0 by Lemma 8.4.
Using Theorem 3.4 and Lemma 8.4 we calculate

Eη = E−|η| < E|η| ≤ E−|η| +mess = Eη +mess.

Assume now 2|η|< mess. By Theorem 3.4 it is enough to prove the inequality
E|η| < E−|η| +mess. For any ε > 0 we may pick normalised ψ ∈ D(F|η|) = D(F−|η|)
such that

ε+ E|η| − E−|η| ≤ 〈ψ, (F|η| − F−|η|)ψ〉 = 2|η|〈ψ,Γ(−1)ψ〉 ≤ 2|η|.
This proves the desired inequality. �

Theorem 3.5 is now a combination of all lemmas in this section.

9. Proof of Theorem 3.6 part (2)

In this chapter we prove the last half of Theorem 3.6. A proof of the first half
can be found in Appendix D. First we shall need the following lemma.

Lemma 9.1. Assume H = L2(M,F , µ) with (M,F , µ) σ-finite. Let η ≤ 0, α ∈
R2n, f ∈ H2n and ω be a selfadjoint multiplication operator on H. Assume (α, f, ω)
satisfies Hypothesis 1, 2, 3 and 4. Let A =

⋃
i≤2n{fi 6= 0}, H1 = L2(X,F , 1Aµ),

H2 = L2(X,F , 1Acµ), ωi be multiplication with ω on the space Hi and define f̃i ∈
H1 by f̃i = fi 1Aµ-almost everywhere. Then (α, f̃ , ω1) satisfies Hypothesis 1, 2, 3
and 4. We also have

(1) Eη(α, f, ω) = Eη(α, f̃ , ω1) and Eη(α, f, ω) is an eigenvalue of Fη(α, f, ω)

if and only if Eη(α, f, ω) is an eigenvalue of Fη(α, f̃ , ω1). In particular,
if infk∈A ω(k) > 0 then Eη(α, f, ω) is an eigenvalue of Fη(α, f̃ , ω1) and
Fη(α, f, ω).

(2) If ψ = (ψ(k)) is a ground state of Fη(α, f, ω1) then ψ = (1Akψ
(k)) is a

ground state of Fη(α, f, ω).

Proof. Define Pi : H → Hi by P1(f) = f (1Aµ)-almost everywhere and P2(f) = f
1Acµ-almost everywhere. Let V : H → H1 ⊕ H2 be V (f) = (P1(f), P2(f)). Then
we see V is unitary with V ∗(f, g) = 1Af + 1Acg µ-almost everywhere. Clearly we
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have V fi = (f̃i, 0) along with V ωV ∗ = (ω1, ω2). The properties in Hypothesis 1, 2,
3 and 4 are easily checked. Using Lemma 6.1 we find a unitary map

U : Fb(H)→ Fb(H1)⊕
∞⊕
j=1

(
Fb(H1)⊗H⊗sj2

)
such that

UFη(α, f, ω)U∗ = Fη(α, f̃ , ω1)⊕
∞⊕
j=1

(
F(−1)jη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(j)(ω2)

)
.

Define Cj = F(−1)jη(α, f̃ , ω1) ⊗ 1 + 1 ⊗ dΓ(j)(ω2) for j ∈ N. Using Theorem B.2
and Lemma B.4 we find inf(σ(Cj)) = E(−1)jη(α, f̃ , ω1) + j inf(σ(ω2)). Theorem 3.4
implies Eη(α, f̃ , ω1) ≤ E−η(α, f̃ , ω1) so

Eη(α, f, ω) = min

{
Eη(α, f̃ , ω1), inf

j∈N
σ(Cj)

}
= Eη(α, f̃ , ω1).

Assume Eη(α, f, ω) is an eigenvalue of Fη(α, f̃ , ω1). Then Eη(α, f, ω) is obviously
an eigenvalue of Fη(α, f, ω). Assume now Eη(α, f, ω) is an eigenvalue of Fη(α, f, ω)

and that Eη(α, f, ω) is not an eigenvalue of Fη(α, f̃ , ω1). Then there is j ∈ N such
that Eη(α, f, ω) is an eigenvalue of Cj . This implies

Eη(α, f̃ , ω1) = Eη(α, f, ω) ≥ inf(σ(Cj)) = E(−1)jη(α, f̃ , ω1) + j inf(σ(ω2))

Using Eη(α, f̃ , ω1) ≤ E(−1)jη(α, f̃ , ω1) we find inf(σ(ω2)) = 0 and E(−1)jη(α, f̃ , ω1) =
Eη(α, f, ω). Injectivity of ω2 and Lemma B.4 shows 0 is not an eigenvalue of
dΓ(j)(ω2). By Theorem B.2 we find that Eη(α, f, ω) = E(−1)jη(α, f̃ , ω1) + 0 is not
an eigenvalue of Cj = F(−1)jη(α, f, ω1)⊗ 1 + 1⊗ dΓ(j)(ω2) which is a contradiction.
Hence Eη(α, f, ω) is an eigenvalue of Fη(α, f̃ , ω1). The last part of statement (1)
follows from m(ω1) > 0 and Theorem 3.4.

To prove statement (2) we let j : H1 → H1⊕H2 be the embedding j(f) = (f, 0)
and define Q = V ∗j. Now U∗ψ = Γ(Q)ψ by Lemma C.3 and U∗ψ is the desired
eigenvector of Fη(α, f, ω). Noting Q(f) := V ∗j(f) = 1Af we see U∗ψ = Γ(Q)ψ =

(1Akψ
(k)) as desired. �

We now prove part (2) of Theorem 3.6. Let η ∈ R, α ∈ R2n, f ∈ H2n and ω be a
selfadjoint operator on H. Assume H = L2(Rν ,B(Rν), λ⊗ν), ω is a multiplication
operator on H and (α, f, ω) satisfies Hypothesis 1, 2, 3, 4 and 5.

Define B` = {ω ≥ `−1} and f ` = 1B`f . Then F±1,` := F±|η|(α, f `, ω) con-
verges in norm resolvent sense to F±1 := F±|η|(α, f, ω) by Lemma 6.5 and E` =

E−|η|(α, f `, ω) converges to E := E−|η|(α, f, ω). Furthermore, F−1,` has a nor-
malised ground state ψ` for all ` ∈ N by Lemma 9.1. After taking a subsequence
we may assume that ψ` converges weakly to a vector ψ. The last half of Theorem
3.6 will be proven by [2, Lemma 4.9] if we can prove that ‖ψ‖= 1. First a few
observations which we will summarise in Lemma 9.2 below. In order to formulate
Lemma 9.2 we need to use pointwise annihilation operators which are defined in
the discussion after Lemma D.9.

Lemma 9.2. The following holds:
(1) Let A1 be the pointwise annihilation operator of order 1. We have

(A1ψ`)(k) = −
2n∑
j=1

f `j (k)(F1,` − E` + ω(k))−1jαjϕ(f `j )j−1ψ`.

(2) There is a constant C independent of ` and j such that ‖αjϕ(f `j )j−1ψ`‖≤ C
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(3) ψ` ∈ D(N) and 〈ψ`, Nψ`〉 is uniformly bounded in `. Hence A1ψ` ∈
L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) for all ` ∈ N and the sequence {A1ψ`}∞`=1 is
bounded in this space.

(4) We have

(9.1) A1ψ` +

2n∑
j=1

fj(k)(F1 − E + ω(k))−1jαjϕ(f `j )j−1ψ`

converges to 0 in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)).

Proof. Statement (1) follows directly from Theorem D.16. To prove statement
(2), we note that jαjϕ(f `j )j−1(F−1,` − i)−1 is uniformly bounded for ` ∈ N and
j ∈ {1, . . . , 2n} by Lemma 6.3. Let C̃ be the bounding constant. Then

‖jαjϕ(f `j )j−1ψ`‖≤ C̃‖(E` − i)ψ`‖.
This proves statement (2) since {E`}∞`=1 is convergent and ‖ψ`‖= 1 for all ` ∈ N.

To prove statement (3) we note that ψ` ∈ D(N) by part (1) of Theorem 3.6.
Using (1), (2) and E` ≤ E|η|(α, f `, ω) by Theorem 3.4 we estimate

(9.2) ‖(A1ψ`)(k)‖2≤ C2

 2n∑
j=1

|f `j (k)|
ω(k)

2

≤ 2nC2
2n∑
j=1

|fj(k)|2
ω(k)2

.

Integrating and appealing to Theorem D.15 yields the result.
To prove statement (4), note that (F1,` − E` + ω(k))−1 − (F1 − E + ω(k))−1

converges to 0 in norm by Lemma 6.4. Since jαjϕ(f `j )j−1ψ` is uniformly bounded,
we see that the function in equation (9.1) converges to 0 pointwise. The conclusion
now follows by dominated convergence and estimates similar to those in equation
(9.2). �

In the proof of the next lemma, we will write B(Fb(H)) for the set bounded
linear maps from Fb(H) into Fb(H).

Lemma 9.3. Let G ∈ C∞0 (Rν) such that G(0) = 1 and 0 ≤ G ≤ 1. Define
GR = G(x/R) and let A be either x = −i∇k or k. For any ε > 0 there is `′ ∈ N and
R′ > 0 such that ‖(1−Γ(GR(A)))ψ`‖≤ ε for all R > R′, ` > `′ and A ∈ {−i∇k, k}.
Proof. Note that

(1− Γ(GR(A)))2 = 1− Γ(GR(A)) + Γ(GR(A))(Γ(GR(A))− 1).

On j particle vectors we see that Γ(GR(A))(Γ(GR(A)) − 1) acts like a negative
multiplication operator in position/momentum space depending on the choice of
A. Hence

(1− Γ(GR(A)))2 ≤ 1− Γ(GR(A)).

On j particle vectors in position/momentum space (depending on A) we find that
1− Γ(GR(A)) acts like multiplication by

1−GR(k1)GR(k2) · · ·GR(kj) =

j∑
i=1

(1−GR(ki))GR(ki+1) · · ·GR(kj) ≤
j∑
i=1

(1−GR(ki)).

Hence 1− Γ(GR(A)) ≤ dΓ(1−GR(A)) so it is enough to prove that

〈ψ`, dΓ(1−GR(A))ψ`〉
goes to 0 for R and ` tending to ∞. Note that ψ` ∈ D(N) ⊂ D(dΓ(1−GR(A))) by
Lemma 9.2 so 〈ψ`, dΓ(1 − GR(A))ψ`〉 is well defined. Using Theorem D.15 we see
that

〈ψ`, dΓ(1−GR(A))ψ`〉 = 〈A1ψ`, ((1−GR(A))⊗ 1)A1ψ`〉.
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Define

q`(k) = −
2n∑
j=1

fj(k)(F1(f)− E + ω(k))−1jαjϕ(f `j )j−1ψ`.

By Lemma 9.2 we know A1ψ` − q` converges to 0 in L2(Rν ,B(Rν), λ⊗ν ,Fb(H))
and {A1ψ`}∞`=1 is bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)). This implies {q`}∞`=1 is
bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)). Combing this observation with the fact
that ‖(1 − GR(A)) ⊗ 1‖= 1 for all R > 0 and A1ψ` − q` converges to 0 in
L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) we find `′ ∈ N such that

〈A1ψ`, (1−GR(A))⊗ 1A1ψ`〉 ≤
ε

3
+ 〈q`, ((1−GR(A))⊗ 1)q`〉

for all R > 0 and ` > `′. Write

q̃j(t) = −fj(k)(F1 − E + ω(k))−1

and note that q̃j ∈ L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))). Hence there is a sequence
{q̃j,p}∞p=1 of elements in L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))) such that {q̃j,p}∞p=1 con-
verges to q̃j in L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))) and each q̃j,p is a linear combination
of functions of the form k 7→ g(k)C where C ∈ B(Fb(H)) and g ∈ H. Define

q`,p :=

2n∑
j=1

q̃j,pjαjϕ(f `j )j−1ψ`.

Since jαjϕ(f `j )j−1ψ` is uniformly bounded in ` we see that

lim
p→∞

sup
`∈N
‖q` − q`,p‖= 0.

In particular, {q`,p}∞`,p=1 is bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) since {q`}∞`=1

is bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)). Picking p large enough we may thus
estimate

〈A1ψ`, (1−GR(A))⊗ 1A1ψ`〉 ≤
2ε

3
+ 〈q`,p, (1−GR(A))⊗ 1q`,p〉

for all ` > `′ and R > 0. Now each of the terms in q`,p is of the form g⊗v` where v`
is uniformly bounded in ` and g is independent of `. Furthermore, the number of
terms in q`,p is also independent of ` (it depends only on p by construction). Since
1−GR(A) converges to 1 strongly by the functional calculus, we find that

lim
R→∞

sup
`∈N
‖((1−GR(A))⊗ 1)q`,p‖= 0.

Picking R larger than some R′ and ` > `′ we find that

〈A1ψ`, ((1−GR(A))⊗ 1)A1ψ`〉 ≤ ε.
This finishes the proof. �

The following lemma finishes the proof of Theorem 3.6.

Lemma 9.4. ‖ψ‖= 1.

Proof. Let ε > 0. Pick R′ > 0 and `′ ∈ N such that ‖(1− Γ(GR(A)))ψ`‖≤ ε
3 when

R > R′, ` > `′ and A ∈ {−i∇k, k}. Using Lemma 9.2 we see 〈ψ`, Nψ`〉 is uniformly
bounded by a constant C and so we find

‖(1− 1[0,p](N))ψ`‖= ‖1(p,∞)(N)ψ`‖≤
1√
p
‖1(p,∞)(N)N

1
2ψ`‖≤

√
C√
p
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Hence we may pick p so large that ‖(1− 1[0,p](N))ψ`‖≤ ε
3 uniformly in `. We now

find

1 =‖ψ`‖
≤‖(1− Γ(GR(k)))ψ`‖+‖Γ(GR(k))(1− Γ(GR(−i∇k)))ψ`‖

+ ‖Γ(GR(k))Γ(GR(−i∇k))(1− 1[0,p](N))ψ`‖
+ ‖Γ(GR(k))Γ(GR(−i∇k))1[0,p](N)ψ`‖
≤ε+ ‖Γ(GR(k))Γ(GR(−i∇k))1[0,p](N)ψ`‖.

Since Γ(GR(k))Γ(GR(−i∇k))1{[0,p]}(N) is compact, we may take ` to ∞ and find

1− ε ≤ ‖Γ(GR(k))Γ(GR(−i∇k))1{[0,p]}(N)ψ‖≤ ‖ψ‖≤ lim inf
`→∞

‖ψ`‖= 1.

This finishes the proof. �

Appendix A. Measure Theory.

In this section, we introduce the necessary measure theoretic tools to prove
the HVZ theorem. Throughout this section, we will consider a σ-finite measure
space (M,F , µ). If f : M→ R is a measurable map and Mf is the corresponding
multiplication operator then it is easy to see that

σ(Mf ) = {λ ∈ R | µ((λ− ε, λ+ ε)) > 0 for all ε > 0} := essran(f, µ)

σess(Mf ) = {λ ∈ R | Dim(1{λ−ε<ω<λ+ε}L
2(M,F , µ)) =∞ for all ε > 0}.

Here essran(f, µ) is called the essential range of f under µ.

Lemma A.1. Let f : M → R be measurable and assume f ≥ m > 0 almost
everywhere. Define

fn =

∞∑
k=0

k + 1

2n
1{f∈[ k2n , k+1

2n )}.

Then fn/f and f/fn converges to 1 in L∞(M,F , µ) and

lim
n→∞

inf(σ(Mfn)) = inf(σ(Mf )).

Furthermore, σess(Mfn) 6= ∅ for all n ∈ N if σess(Mf ) 6= ∅ and in this case

lim
n→∞

inf(σess(Mfn)) = inf(σess(Mf )).

Proof. The sum defining fn is pointwise finite, so it defines a measurable and non-
negative function. Note that

(A.1) |f(x)− fn(x)|≤ 1

2n
,

almost everywhere and that fn ≥ f almost everywhere. Hence the following calcu-
lation is true almost everywhere∣∣∣∣ ffn − 1

∣∣∣∣ =

∣∣∣∣f − fnfn

∣∣∣∣ ≤ 1

2nm
.

This implies f/fn−1 ∈ L∞(M,F , µ) and converges to 0 in this topology. A similar
argument works for fn/f − 1.

Equation (A.1) shows D(Mf ) = D(Mfn) for all n and on this set we have the
inequality ‖(Mf −Mfn)ψ‖≤ 2−n‖ψ‖ which shows Mfn converges to Mf in norm
resolvent sense (see [16, Theorem VIII.25]). Since the operators Mfn are uniformly
bounded below by 0, we conclude

lim
n→∞

inf(σ(Mfn)) = inf(σ(Mf )).
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Assume λ = inf(σess(Mf )) is finite. Then 1{f∈(λ−q−1,λ+q−1)} is an infinite dimen-
sional projection for every q ∈ N. Fix n ∈ N and pick k ∈ N0 such that

λ ∈ [2−nk, 2−n(k + 1)).

Note that either 2−n(k+ 1) or 2−nk belongs to the essential spectrum of Mfn since
it is an eigenvalue of infinite dimension. In particular, σess(Mfn) contains a point
λn such that |λ− λn|≤ 2−n.

Hence we have now proven, that for each n ∈ N there is a λn ∈ σess(Mfn) such
that {λn}∞n=1 converges to λ. In particular, µn = inf(σess(Mfn)) is finite. Note
that {µn}∞n=1 is bounded since µn ≤ λn for all n ∈ N and {λn}∞n=1 is convergent.

Let µ be any limit point of {µn}∞n=1. Then µ ∈ σess(Mf ) by elementary properties
of norm resolvent convergence so λ ≤ µ. On the other hand we have µn ≤ λn for
all n ∈ N so µ ≤ λ. This implies µ = λ, and so λ is the only accumulation point of
the bounded sequence {µn}∞n=1. This implies {µn}∞n=1 converges to λ. �

We have the following definition:

Definition A.2. Write R+ = [0,∞). A continuous resolution for the measure
space (M,F , µ) is a collection (Ax)x∈R+ ⊂ F such that µ(A0) = 0, Ax ⊂ Ay when
x ≤ y, µ(Ax) <∞ for all x ∈ R+, 1Ax → 1Ay µ-a.e for x→ y and⋃

x≥0

Ax =M.

Lemma A.3. Assume (M,F , µ) allows a continuous resolution (Ax)x∈R+ and let
A ∈ F with 0 < µ(A). For every λ ∈ (0, µ(A)) there is B ⊂ A with B ∈ F and
µ(B) = λ. Furthermore, there is a partition of A into disjoint measurable sets
{Bn}∞n=1 such that 0 < µ(Bn) <∞ for all n ∈ N.

Proof. Define f : [0,∞)→ [0,∞) by

f(x) =

∫
M

1A(y)1Ax(y)dµ(y).

Then f is increasing and continuous by the dominated convergence theorem. Fur-
thermore, f(0) = 0 and by monotone convergence we find

µ(A) = lim
x→∞

f(x).

Let λ ∈ (0, µ(A)). The intermediate value theorem now gives x0 ∈ [0,∞) such that
λ = f(x0) implying B = Ax0 ∩A has the properties claimed in the lemma. We now
prove that the subdivision of A exists. For each n ∈ N pick xn ∈ [0,∞) such that

f(xn) =

{
(1− 2−n)µ(A) µ(A) <∞
n µ(A) =∞

Since f is increasing and f(xn) < f(xn+1) we find that xn < xn+1. Define now
En = A ∩Axn , B̃1 = E1 and B̃n = En\En−1 for n ≥ 2. Then

µ(B̃1) = µ(E1) = f(x1)

so 0 < µ(B̃1) <∞. For n ≥ 2 we see

µ(B̃n) = µ(En\En−1) = f(xn)− f(xn−1),

so 0 < µ(B̃n) <∞. Furthermore, B̃n ∩ B̃m = ∅ for n 6= m by construction. Define

x = lim
n→∞

xn.

If x =∞ then ∞⋃
n=1

Bn =

∞⋃
n=1

En = A ∩
∞⋃
n=1

Axn = A,
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so we may pick Bn = B̃n in this case. If x <∞ we note that

∞ >

∫
M

1A(y)1Ax(y)dµ(y) = f(x) = lim
n→∞

f(xn) = µ(A),

so µ(A) <∞ and f(x) = µ(A). Furthermore,

µ

( ∞⋃
n=1

B̃n

)
= µ

( ∞⋃
n=1

En

)
= lim
n→∞

µ(En) = µ(A).

Let B = A\⋃∞n=1 B̃n and note that µ(B) = 0. Define B1 = B̃1 ∪ B and Bn = B̃n
for n ≥ 2. Then µ(Bn) = µ(B̃n) ∈ (0,∞) for all n ∈ N and Bn∩Bm = ∅ for n 6= m.
Furthermore,

∞⋃
n=1

Bn =

∞⋃
n=1

B̃n ∪
(
A\

∞⋃
n=1

B̃n

)
= A

which finishes the proof. �

Using Lemma A.3 we prove

Lemma A.4. Assume (M,F , µ) allows a continuous resolution and f : M → R
is measurable. For every z ∈ σ(Mf ) there is a collection of sets {An}∞n=1 ⊂ F such
that |f(x)− z|≤ 1

n on An, An ∩Am = ∅ if m 6= n, µ(An) > 0 and

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) <∞.

Proof. Let z ∈ σ(Mf ) and define

Bn = {f ∈ (z − n−1, z + n−1)}.
There are now several cases. Assume first that µ(Bn) =∞ for all n ∈ N. Then we
define An recursively as follows: By Lemma A.3 we may pick A1 ⊂ B1 such that
µ(A1) = 1. Assume now we have constructed disjoint sets A1, . . . , An−1 such that
Aj ⊂ Bj for all j ∈ {1, . . . , n− 1} and µ(Aj) = 1

j2 . Then

∞ = µ(Bn) ≤ µ(Bn\(A1 ∪ · · · ∪An−1)) +

n−1∑
j=1

1

j2
.

so µ(Bn\(A1∪· · ·∪An−1)) =∞. By Lemma A.3 there is An ⊂ Bn\(A1∪· · ·∪An−1)
such that µ(An) = 1

n2 for all n ∈ N. Hence we have now constructed a sequence of
disjoint sets {An}∞n=1 ⊂ F such that An ⊂ Bn and µ(An) = 1

n2 for all n ∈ N. Since

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An) =

∞∑
n=1

1

n2
<∞

we are done. Assume now that there is an N ∈ N such that µ(BN ) <∞. Define

Cn = BN+n.

Since the Bn are decreasing we find that Cn ⊂ Bn and

lim
n→∞

µ(Cn) = µ({f = z}) <∞.

If µ({f = z}) > 0 we apply Lemma A.3 and obtain a disjoint subdivision {An}∞n=1

of {f = z}. Since An ⊂ {f = z} for all n and

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) = µ({f = z}) <∞,

we are finished.
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What remains is the case µ({f = z}) = 0. We know that µ(Cn) > 0 for all n since
z ∈ essran(f, µ). We now claim that there are natural numbers n1 < n2 < n3 < . . .
such that µ(Cnk\Cnk+1

) > 0. Define n1 = 1 and assume that n1 < n2 < · · · < nk
has been constructed. Define

A = {n ∈ N | µ(Cnk\Cn) > 0 and n > nk}.
Then A 6= ∅ because if A = ∅ then

µ(Cnk) = µ(Cn)

for all n > nk implying that µ({f = z}) = µ(Cnk) > 0 which is a contradiction.
Since A ⊂ N we can now define nk+1 = min(A). Let

Ak = Cnk\Cnk+1
.

Then Ak ⊂ Cnk ⊂ Ck ⊂ Bk so |f(x) − z|≤ 1
k holds on Ak. Furthermore, 0 <

µ(Ak) ≤ µ(Cnk) <∞ for all k and {Ak}∞k=1 is disjoint by construction. Note also
∞∑
k=1

µ(Ak) = µ

( ∞⋃
k=1

Ak

)
≤ µ(C1) <∞.

This finishes the proof. �

This leads to the following theorem which we shall need. The reader is reminded
that singletons are sets of the form {x} for some x ∈M.

Theorem A.5. Assume (M,F , µ) is σ-finite and that all singletons are measur-
able. Then A = {x ∈ M | µ({x}) > 0} is countable and therefore measurable. Let
µAc denote the measure µAc(B) = µ(Ac ∩ B) and assume that (M,F , µAc) has
a continuous resolution. Let f : M → R be measurable, B = essran(f, µAc) and
define

C = {λ ∈ R | ∃{λn}∞n=1 ⊂ A, λn 6= λm ∀n 6= m and |f(λn)− λ|≤ n−1}.
Then

σess(Mf ) = B ∪ C.
Assume in addition that µ(A) < ∞. If z1, . . . , zk ∈ σess(Mf ) then there are k
collections of sets {A1

n}∞n=1, . . . , {Akn}∞n=1 ⊂ F such that |f(x) − zi|≤ 1
n on Ain,

Ain ∩Ajm = ∅ if i 6= j or m 6= n, µ(Ain) > 0 and

µ

( ∞⋃
n=1

Ain

)
=

∞∑
n=1

µ(Ain) <∞.

Proof. By σ-finiteness of (M,F , µ) we knowM can be divided into countably many
disjoint subsets of finite measure. Each of these sets can only contain countably
many elements from A and these elements must all have finite measure. Hence A
must be countable and all singletons must have finite measure.

Let λ ∈ B ∪ C. If λ ∈ B then Lemma A.4 gives a sequence of disjoint elements
{En}∞n=1 ⊂ F such that 0 < µAc(En) < ∞ and |f − λ|≤ 1

n on En for all n ∈ N.
Let An = En\A and note {µ(An)−

1
2 1An}∞n=1 will be a Weyl sequence for λ, so

λ ∈ σess(Mf ). If λ ∈ C and {λn}∞n=1 ⊂ A is the corresponding sequence then
{µ({λn})−

1
2 1{λn}}∞n=1 will be a Weyl sequence for λ, so λ ∈ σess(Mf ).

Let λ ∈ (B∪C)c. If µ({|f−λ|< n−1}∩Ac) > 0 or A∩{0 < |f−λ|< n−1} 6= ∅ for
all n ∈ N then λ ∈ B∪C which would be a contradiction. Hence there is an N ∈ N
such that Ac∩{|f−λ|< N−1} is a null set and {|f−λ|< N−1}∩A = {|f−λ|= 0}∩A.
In particular, the spectral projection of f onto (λ − N−1, λ + N−1) is given by
1{|f−λ|=0}∩A. We note that {|f − λ|= 0} ∩ A is finite as we would otherwise have
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λ ∈ C. Hence 1{|f−λ|=0}∩A has finite-dimensional range and so λ ∈ σess(Mf )c.
Hence we have now established

σess(Mf ) = B ∪ C.
It only remains to prove the last part of the theorem so we assume µ(A) < ∞.
Let z1, . . . , zk ∈ σess(Mf ). We start by dealing with the special case where zi 6= zj
when i 6= j.

For each i ∈ {1, . . . , k} we either have zi ∈ B or zi ∈ C. If zi ∈ B then Lemma
A.4 gives a sequence of disjoint elements {Ãin}∞n=1 ⊂ F such that |f − zi|≤ 1

n on
Ãin for all n ∈ N, 0 < µAc(Ã

i
n) ≤ µ(Ãin) for all n ∈ N and

µ

( ∞⋃
n=1

Ãin

)
=

∞∑
n=1

µ(Ãin) ≤
∞∑
n=1

µAc(Ã
i
n) + µ(A) <∞

If zi ∈ C and {λin}∞n=1 is the corresponding sequence then we define Ãin = {λin}.
Note that {Ãin}∞n=1 ⊂ F is disjoint and |f−λ|≤ 1

n on Ãin for all n ∈ N. Furthermore,
0 < µ(Ãin) for all n ∈ N and

µ

( ∞⋃
n=1

Ãin

)
=

∞∑
n=1

µ(Ãin) ≤ µ(A) <∞

by assumption. PickN so large that 2N−1 < maxi6=j |zi−zj | and define Ain = ÃiN+n

for all n ∈ N and i ∈ {1, . . . , k}. Then

Ain ⊂
{
|f − zi|<

1

N + n

}
⊂
{
|f − zi|<

1

n

}
µ

( ∞⋃
n=1

Ain

)
=

∞∑
n=1

µ(Ain) ≤
∞∑
n=1

µ(Ãin) <∞

and 0 < µ(Ain) for all i ∈ {1, . . . , k} and n ∈ N. If x ∈ Ain ∩Ajm for i 6= j we would
have |zi−zj |≤ |zi−f(x)|+|f(x)−zj |< 2

N which is a contradiction. So Ain∩Ajm = ∅
if i 6= j. If i = j and n 6= m we find Ain ∩Ajm = ÃiN+n ∩ ÃiN+m = ∅. Hence we are
now finished in the case where z1, . . . , zk are different.

Assume now z1, . . . , zk are not all different and let λ1, . . . , λ` be the different
elements in {z1, . . . , zk}. For each i ∈ {1, . . . , k} there is h(i) ∈ {1, . . . , `} such that
zi = λh(i). Pick sequences {Ã1

n}∞n=1, . . . , {Ã`n}∞n=1 ⊂ F as in the theorem for the
collection λ1, . . . , λ` ∈ σess(Mf ) and define Ain = Ã

h(i)
i+kn. Observe that

Ain ⊂
{
|f − λh(i)|<

1

i+ kn

}
⊂
{
|f − zi|<

1

n

}
µ

( ∞⋃
n=1

Ain

)
=

∞∑
n=1

µ(Ain) ≤
∞∑
n=1

µ(Ãh(i)
n ) <∞

and 0 < µ(Ain) for all i ∈ {1, . . . , k} and n ∈ N. If i 6= j or n 6= m then j + mk 6=
i+ nk since 1 ≤ i, j ≤ k and so

Ain ∩Ajm = Ã
h(i)
i+kn ∩ Ã

h(j)
j+km = ∅.

This finishes the proof. �

The following two lemmas show that Theorem A.5 can be applied to a wide range
of L2-spaces.
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Lemma A.6. Let A ⊂ Z and let µ be some measure on (A×Rν ,B(A×Rν)) which
is finite on compact sets. Then the assumptions of Theorem A.5 are satisfied if
µ(B) < ∞ where B = {x ∈ A × Rν | µ({x}) > 0} and µBc is zero on sets of the
form {i} × C with C = {x ∈ Rν | |x|= c}.
Proof. A×Rν is a metric space that can be covered by countably many compact sets
so (A× Rν ,B(A× Rν), µ) is σ-finite and singletons are measurable. In particular,
B is countable and therefore measurable.

Define Ux = {y ∈ Rν+1 | |y|≤ x}∩(A×Rν). Then 1Ux converges to 1Uy pointwise
for x → y except at points in ∂Uy. Note that ∂Uy is a finite union of sets of the
form {i} × {x ∈ Rν | |x|= c} with c ≥ 0 and i ∈ Z. Hence ∂Uy is a µBc null set
proving that {Ux}x∈[0,∞) defines a continuous resolution for µBc . �

The following lemma is central to the spectral analysis.

Lemma A.7. Let H be a separable Hilbert space and A be a selfadjoint operator on
H. Then there is a measure space (M,F , µ) that fulfil the conditions in Theorem
A.5 and a unitary map U : H → L2(M,F , µ) such that UAU∗ is a multiplication
operator on L2(M,F , µ).

Proof. We follow the construction found in [22]. Let PA be the spectral measure of
A and {ψn}n∈B (where B ⊂ N) be a complete collection of normed cyclic vectors.
Define the measure µn by the expression µn(C) = 〈ψn, PA(C)ψn〉. By [22] we find
a unitary map

U1 : H → K1 =
⊕
n∈B

L2(R,B(R), µn),

such that U1AU
∗
1 acts like multiplication by the identity map f(x) = x on each of

the component spaces. By standard measure theory of kernels, there is measure µ̃
on B(B × R) defined by∫

B×R
f(n, k)dµ̃(n, k) =

∑
n∈B

∫
f(n, x)dµn(x)

for any non negative and measurable map f : B×R→ R. Hence we find a unitary
map

U2 : K1 → K2 = L2 (B × R,B(B × R), µ̃)

such that U2U1AU
∗
1U
∗
2 acts like multiplication by the map ω(n, x) = f(x) = x.

Note that each {n} × R has measure 1 for all n ∈ N, so (B × R,B(B × R), µ̃)
is σ-finite. Hence there is a strictly positive measurable map f on B × R which
integrates to 1. Define µ = fµ̃ and note that µ is a probability measure. Let

U3 : K2 → K3 = L2(B × R,B(B × R), µ)

be multiplication by f−
1
2 . Then U3 is unitary map and U3U2U1AU

∗
1U
∗
2U
∗
3 acts

like multiplication by ω on K3. Furthermore, it is clear that (B × R,B(B × R), µ)
satisfies the conditions in Lemma A.6 since µ(B × R) = 1 and sets of the form
{i}×{x ∈ R | |x|= c} only contain finitely many points. This finishes the proof. �

Appendix B. Spectral Theory of tensor products

In this section we list a few results regarding the tensor product of operators. A
good reference for these results are [20]. Throughout this section, H1, . . . ,Hn will
denote be a finite collection of Hilbert spaces. For Vj ⊂ Hj subspaces, we define
the algebraic tensor product

V1⊗̂ · · · ⊗̂Vn = Span{x1 ⊗ · · · ⊗ xn | xj ∈ Vj}.
Most of the content in the following theorem can be found in [20]. The remaining
items can easily be deduced.
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Theorem B.1. Let Tj be an operator on Hj for all j ∈ {1, . . . , n}. Then there is
a unique linear map T = T1⊗̂ · · · ⊗̂Tn defined on D(T1)⊗̂ · · · ⊗̂D(Tn) such that

T1⊗̂ · · · ⊗̂Tn(x1 ⊗ · · · ⊗ xn) = T1x1 ⊗ · · · ⊗ Tnxn,
when xj ∈ D(Tj) for all j ∈ {1, . . . , n}. We also have the following:

(1) If Tj is densely defined for all j ∈ {1, . . . , n} then T is densely defined and
T ∗1 ⊗̂ · · · ⊗̂T ∗n ⊂ T ∗.

(2) If Tj is closable for all j ∈ {1, . . . , n} then T is closable. We will then write
T = T1 ⊗ · · · ⊗ Tn. Furthermore, the following identities hold

T1 ⊗ · · · ⊗ Tn = T 1 ⊗ · · · ⊗ Tn
T ∗1 ⊗ · · · ⊗ T ∗n = (T1 ⊗ · · · ⊗ Tn)∗.

(3) If Tj is symmetric (selfadjoint, unitary, a projection) for all j ∈ {1, . . . , n}
then T is symmetric (selfadjoint, unitary, a projection).

(4) If Tj ≥ 0 for all j ∈ {1, . . . , n} then T ≥ 0.
(5) If Tj is bounded for all j ∈ {1, . . . , n} then T is bounded and

‖T‖= ‖T1‖· · · ‖Tn‖= ‖T1 ⊗ · · · ⊗ Tn‖.

The following result is important.

Theorem B.2. Let Tj be a selfadjoint operator on Hj for all j ∈ {1, . . . , n} and
define

Hj = 1⊗ · · · ⊗ Tj ⊗ · · · ⊗ 1,

H = H1 +H2 + · · ·+Hn.

Then
(1) (H1, . . . ,Hn) is a tuple of strongly commuting selfadjoint operators with

σ(Hj) = σ(Tj). The joint spectrum is σ(T1)×· · ·×σ(Tn) and if f : R→ C
is Borel measurable then f(Hj) = 1⊗ · · · ⊗ f(Tj)⊗ · · · ⊗ 1.

(2) H is essentially selfadjoint with

eitH = eitT1 ⊗ · · · ⊗ eitTn t ∈ R.

(3) If Vj is a core for Tj then V1⊗̂ · · · ⊗̂Vn is a core for H.
(4) Assume Tj is semibounded for all j ∈ {1, . . . , n} and define λj = inf(σ(Tj)).

Then H is selfadjoint and semibounded with inf(σ(H)) = λ := λ1+· · ·+λn.
Let PB denote the spectral measure for an operator B ∈ {H,T1, . . . , Tn}.
Then

e−tH = e−tT1 ⊗ · · · ⊗ e−tTn t ≥ 0

PH({λ}) = PT1
({λ1})⊗ · · · ⊗ PTn({λn}).

In particular, Dim(PH({λ})) = Dim(PT1({λ1})) · · ·Dim(PTn({λn})). De-
fine µj = inf(σess(Tj)) which may be ∞. Then

inf(σess(H)) ≥ min
j

µj +
∑
` 6=i

λ`

 := m.

(5) Assume Bj is selfadjoint on Hj. If D(Tj) ⊂ D(Bj) for some j ∈ {1, . . . , n}
then D(Hj) ⊂ D(1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1).

(6) Assume Bj is selfadjoint on Hj and Tj +Bj is selfadjoint. Then

Hj + 1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1 = 1⊗ · · · ⊗ (Tj +Bj)⊗ · · · ⊗ 1 := Sj .
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Proof. Statements (1)-(3) can more or less be found in either [20] or [23]. It is
proven in [20] that f(Hj) = 1 ⊗ · · · ⊗ f(Tj) ⊗ · · · ⊗ 1 holds for f(x) = (x ± i)−1.
From there one may simply use standard approximation arguments. We now prove
part (4). Let P be the joint spectral measure of (H1, . . . ,Hn). The joint spectrum
is σ(T1)× · · · × σ(Tn) and

H =

∫
σ(T1)×···×σ(Tn)

(x1 + · · ·+ xn)dP (x1, . . . , xn)

so we see H is selfadjoint and λ = inf(σ(H)). The formula for e−tH is immediate
from the spectral theorem. We also find

PH(λ) = P ({x1 + · · ·+ xn = λ} ∩ σ(T1)× · · · × σ(Tn))

= P ({x1 = λ1} × · · · × {xn = λn})
= PT1

({λ1})⊗ · · · ⊗ PTn({λn}).
To finish the proof of part (4) we must prove that f(H) is compact for any f ∈
C∞c ((−∞,m)). Let f ∈ C∞c ((−∞,m)) and note that

f(H) =

∫
σ(T1)×···×σ(Tn)

f(x1 + · · ·+ xn)dP (x1, . . . , xn).

Define

A = {(x1, . . . , xn) ∈ σ(T1)× · · · × σ(Tn) | f(x1 + · · ·+ xn) 6= 0}
Let (x1, . . . , xn) ∈ A. There is ε > 0 such that f is supported in (−∞,m− ε) and
hence xj < µj − ε for all j ∈ {1, . . . , n}. Therefore

A ⊂ (σ(T1) ∩ (−∞, µ1 − ε))× · · · × (σ(Tn) ∩ (−∞, µn − ε)).
Let j ∈ {1, . . . , n} and note σ(Tj) ∩ (−∞, µj − ε) is either empty or contains only
finitely many eigenvalues of finite multiplicity. This implies f(H) is a finite linear
combination of operators of the form

PT1({x1})⊗ · · · ⊗ PTn({xn})
with xj in the discrete spectrum of Tj . The above projection has finite rank and is
therefore compact so f(H) is compact.

To prove part (5) we note Bj(Tj + i)−1 is bounded and

(1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1)(Hj + i)−1 = 1⊗ · · · ⊗Bj(Tj + i)−1 ⊗ · · · ⊗ 1

holds on the span of simple tensors. Thus (1⊗· · ·⊗Bj⊗· · ·⊗1)(Hj + i)−1 extends
to a bounded operator implying the claim.

To prove part (6), note that the equality holds onH1⊗̂ · · · ⊗̂D(Tj+Bj)⊗̂ · · · ⊗̂Hn
which is a core for Sj . Therefore

(B.1) Sj = Hj + 1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1.

By part (5) we note D(Sj) ⊂ D(Hj) ∩ D(1 ⊗ · · · ⊗ Bj ⊗ · · · ⊗ 1) so the closure on
the right side of (B.1) is not necessary. �

Lemma B.3. Let A and B be selfadjoint on H2. If B is A-bounded with bound a,
and C ∈ B(H1) then C ⊗B is 1⊗A bounded with relative bound a‖C‖.
Proof. On simple tensors we see that

C ⊗B(1⊗A− iλ)−1 = C ⊗B(A− iλ)−1

which is bounded. Hence D(C ⊗B) ⊂ D(1⊗A) and the above identity extends to
the full tensor product. Calculating norms and taking λ to∞ gives the 1⊗A-bound
by [22, Lemma 6.3]. �
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We now wish to consider second quantised observables. Let ω be selfadjoint on the
Hilbert space H. By standard theory of reducing subspaces we have

σp(dΓ(n)(ω)) ⊂σp
(

n∑
k=1

(1⊗)k−1ω(⊗1)n−k
)

(B.2)

σess(dΓ(n)(ω)) ⊂σess

(
n∑
k=1

(1⊗)k−1ω(⊗1)n−k
)
.(B.3)

Lemma B.4. Let ω be a selfadjoint and nonnegative operator on the Hilbert space
H. Write m = inf(σ(ω)) and mess = inf(σess(ω)). For n ≥ 1 we have

σ(dΓ(n)(ω)) = {λ1 + · · ·+ λn | λj ∈ σ(ω)}
inf(σ(dΓ(n)(ω))) = nm.

Assume in addition that ω is injective. Then
(1) 0 is an eigenvalue for dΓ(ω) with multiplicity 1. The eigenspace is spanned

by Ω.
(2) inf(σess(dΓ(n)(ω))) ≥ mess + (n− 1)m.
(3) dΓ(ω) has compact resolvents if and only if this is the case for ω.

Proof. The statements regarding the spectrum is easy and can be found in e.g, [12].
We prove the statements (1), (2) and (3).

To prove statement (1), we note that Ω is an eigenvector as desired. Assume
that there exists an eigenvector ψ orthogonal to Ω. We may then assume that there
is n ∈ N such that ψ ∈ H⊗sn and ψ is an eigenvector for dΓ(n)(ω) with eigenvalue
0. Since dΓ(n)(ω) ≥ nm we find m = 0 and thus 0 ∈ σ(ω) but is not an eigenvalue.
By Theorem B.2 and equation (B.2) we find 0 is not an eigenvalue for dΓ(n)(ω),
reaching a contradiction.

Statement (2) follows from Theorem B.2 and equation (B.3).
If dΓ(ω) has compact resolvents then projection onto the one particle subspace

shows that ω has compact resolvents. If ω has compact resolvents, then mess =∞
and so m > 0 by injectivity of ω. Statement (2) now gives that dΓ(n)(ω) has
compact resolvents for all n ∈ N. Observe ‖(dΓ(n)(ω)+ i)−1‖≤ 1

nm which converges
to 0 as n tends to ∞. Hence we find

(dΓ(ω) + i)−1 =

∞⊕
n=0

(dΓ(n)(ω) + i)−1

is compact. �

Appendix C. Isomorphism theorems

Let H1 and H2 be Hilbert spaces. Then

Fb(H1 ⊕H2) ≈ Fb(H1)⊗Fb(H2) ≈
∞⊕
n=0

(
Fb(H1)⊗H⊗sn2

)
.

In this chapter we investigate these isomorphisms. See also [5] and [15].

Theorem C.1. There is a unique isomorphism U : Fb(H1 ⊕ H2) → Fb(H1) ⊗
Fb(H2) such that U(ε(f ⊕ g)) = ε(f)⊗ ε(g). If f1, . . . , fj ∈ H1 and g1, . . . , g` ∈ H2

then

U((f1, 0)⊗s · · · ⊗s (fj , 0)⊗s(0, g1)⊗s · · · ⊗s (0, g`))

=

(
j!`!

(j + `)!

)1/2

(f1 ⊗s · · · ⊗s fj)⊗ (g1 ⊗s · · · ⊗s g`)
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Furthermore, if Ai is selfadjoint on Hi, Vi is unitary on Hi, f ∈ H1 and g ∈ H2

then

UW (f ⊕ g, V1 ⊕ V2)U∗ = W (f, V1)⊗W (g, V2)(C.1)

UdΓ(A1 ⊕A2)U∗ = dΓ(A1)⊗ 1 + 1⊗ dΓ(A2)(C.2)

Uϕ(f, g)U∗ = ϕ(f)⊗ 1 + 1⊗ ϕ(g)(C.3)

Ua(f, g)U∗ = a(f)⊗̂1 + 1⊗̂a(g)(C.4)

Ua†(f, g)U∗ = a†(f)⊗̂1 + 1⊗̂a†(g).(C.5)

Proof. The set of exponential vectors is total. This implies, that at most one
linear and bounded map can satisfy U(ε(f ⊕ g)) = ε(f) ⊗ ε(g) for all f ∈ H1

and g ∈ H2. By the linear independence of exponential vectors we may define
U(ε(f ⊕ g)) = ε(f) ⊗ ε(g) and extend by linearity. Note that the image of U is
dense and U conserves the inner product since

〈ε(h1 ⊕ h2), ε(f1 ⊕ f2)〉 = e〈h1⊕h2,f1⊕f2〉 = 〈ε(h1)⊗ ε(h2), ε(f1)⊗ ε(f2)〉.
Hence it extends by continuity to a unitary map. To prove equation (C.1) it is
enough to check the set of exponential vectors. We calculate

UW (f ⊕ g, V1 ⊕ V2)U∗ε(h1)⊗ ε(h2) = Uε(V1h1 ⊕ V2h2 + f ⊕ g)

= ε(V1h1 + f)⊗ ε(V2h2 + g)

= W (f, V1)⊗W (g, V2)(ε(h1)⊗ ε(h2)).

This also proves equations (C.2) and (C.3) since both sides generate the same
unitary group. To prove equations (C.4) and (C.5) we define

C = {ε(f1)⊗ ε(f2) | fi ∈ Hi} = U({ε(f1 ⊕ f2) | fi ∈ Hi}).
For ψ = ε(f1)⊗ ε(f2) ∈ C we have

Ua(f ⊕ g)U∗ε(f1)⊗ ε(f2) = Ua(f ⊕ g)ε(f1 ⊕ f2)

= 〈f ⊕ g, f1 ⊕ f2〉ε(f1)⊗ ε(f2)

= (a(f)⊗̂1 + 1⊗̂a(g))ε(f1)⊗ ε(f2)

showing equation (C.4) is true on C. For φ = ε(g1)⊗ ε(g2) ∈ C we find

〈φ,Ua†(f ⊕ g)U∗ψ〉 = 〈Ua(f ⊕ g)U∗φ, ψ〉 = 〈φ, (a†(f)⊗̂1 + 1⊗̂a†(g))ψ〉.
C is total in Fb(H1) ⊗ Fb(H2) so (a†(f)⊗̂1 + 1⊗̂a†(g))ψ = Ua†(f ⊕ g)U∗ψ. This
proves equation (C.5) is true on C. We can now conclude that equations (C.4) and
(C.5) hold on C. Let ] denote either † or nothing. Exponential vectors span a core
for both creation and annihilation operators (see [12]) so

Ua](f ⊕ g)U∗ = a](f)⊗̂1 + 1⊗̂a](g) |Span(C)

It is not hard to see that a](f)⊗̂1 + 1⊗̂a](g) |Span(C) is extends a](f)⊗̂1 + 1⊗̂a](g)

so a](f)⊗̂1 + 1⊗̂a](g) |Span(C) = a](f)⊗̂1 + 1⊗̂a](g) proving equations (C.4) and
(C.5). We now calculate

U(f1, 0)⊗s · · · ⊗s (fj , 0)⊗s (0, g1)⊗s · · · ⊗s (0, g`)

=

(
1

(j + `)!

)1/2

Ua†(f1, 0) · · · a†(fj , 0)a†(0, g1) · · · a†(0, g`)Ω

=

(
`!j!

(j + `)!

)1/2

(f1 ⊗s · · · ⊗s fj)⊗ (g1 ⊗s · · · ⊗s g`)

finishing the proof. �
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The following result is obvious.

Theorem C.2. There is a unique isomorphism

U : Fb(H1)⊗Fb(H2)→ Fb(H1)⊕
∞⊕
n=1

Fb(H1)⊗H⊗sn2

such that

U(w ⊗ {ψ(n)
2 }∞n=0) = ψ(0)w ⊕

∞⊕
n=1

w ⊗ ψ(n)
2 .

Let A be a selfadjoint operator on Fb(H1) and B be a selfadjoint operator on Fb(H2)
such that B is reduced by all of the subspaces H⊗sn2 . Write B(n) = B |H⊗sn2

. Then

U(A⊗ 1 + 1⊗B)U∗ = A+B(0) ⊕
∞⊕
n=1

(A⊗ 1 + 1⊗B(n))

U(A⊗B)U∗ = B(0)A⊕
∞⊕
n=1

(A⊗B(n)).

Lemma C.3. Let H be a Hilbert space and assume there is a unitary map V : H →
H1 ⊕H2. Let U1 be the map from Theorem C.1, U2 be the map from Theorem C.2
and ji : Hi → H1⊕H2 be the embedding defined by j1(f) = (f, 0) or j2(g) = (0, g).
Define the maps U = U2U1Γ(V ) and Qi = V ∗ji. Then

(C.6) Γ(Q1) = U∗ |Fb(H1) .

Let K ⊂ H1 be a subspace and g1, . . . , gq ∈ H2. Define

B ={Ω} ∪
∞⋃
b=1

{h1 ⊗s · · · ⊗s hb | hi ∈ K}

C ={Q2g1 ⊗s · · · ⊗s Q2gq}

∪
∞⋃
b=1

{Q1h1 ⊗s · · · ⊗s Q1hb ⊗s Q2g1 ⊗s · · · ⊗s Q2gq | hi ∈ K}.

Let ψ ∈ Span(B). Then

(C.7) U∗(ψ ⊗ g1 ⊗s · · · ⊗s gq) ∈ Span(C).

Proof. It is enough to prove equation (C.6) on elements of the form ε(f) for f ∈ H1.
We calculate using Theorems C.1 and C.2:

U∗ε(f) = Γ(V )∗U∗1 ε(f)⊗ Ω = Γ(V )∗ε(f, 0) = ε(V ∗j1f) = ε(Q1f) = Γ(Q1)ε(f).

By linearity it is enough to prove equation (C.7) when ψ ∈ B. Using Theorems C.1
and C.2 along with Lemma 2.2 we find

U∗(Ω⊗ (g1 ⊗s · · · ⊗s gq)) = Γ(V )∗U∗1 (Ω⊗ (g1 ⊗s · · · ⊗s gq))
= Γ(V )∗(g1 ⊗s · · · ⊗s gq)
= Q2g1 ⊗s · · · ⊗s Q2gq ∈ C

and

U∗((h1⊗s · · · ⊗s hb)⊗ (g1 ⊗s · · · ⊗s gq))
=Γ(V )∗U∗1 ((h1 ⊗s · · · ⊗s hb)⊗ (g1 ⊗s · · · ⊗s gq))

=

(
(b+ q)!

q!b!

)1/2

Γ(V )∗((h1, 0)⊗s · · · ⊗s (hb, 0)⊗s (0, g1)⊗s · · · ⊗s (0, gq))

=

(
(b+ q)!

q!b!

)1/2

Q1h1 ⊗s · · · ⊗s Q1hb ⊗s Q2g1 ⊗s · · · ⊗s Q2gq ∈ Span(C).
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This finishes the proof. �

Appendix D. Pointwise annihilation operators

In this appendix we define pointwise annihilation operators and show associated
pull through formulas. Furthermore, we will prove part (1) of Theorem 3.6. Let
H = L2(M, E , µ), where (M, E , µ) is assumed to be σ-finite. We define the extended
symmetric Fock space to be the product

F+(H) =
∞×
n=0

H⊗sn

with coordinate projections Pn : F+(H) → H⊗sn. For elements (ψ(n)), (φ(n)) ∈
F+(H) we define

d((ψ(n)), (φ(n))) =

∞∑
n=0

1

2n
‖ψ(n) − φ(n)‖

1 + ‖ψ(n) − φ(n)‖

where ‖·‖ is the Fock space norm. This makes sense since Pn(F+(H)) ⊂ Fb(H).
Standard theorems from measure theory and topology now gives the following
lemma.

Lemma D.1. The map d defines a metric on F+(H) and turns this space into a
complete separable metric space and a topological vector space. Both the topology
and the Borel σ-algebra are generated by the projections {Pn}∞n=0. If a sequence
{ψn}∞n=1 ⊂ Fb(H) is convergent/Cauchy then it is also convergent/Cauchy with
respect to d so any total/dense set in Fb(H) will be total/dense in F+(H).

Define

(D.1) A = {Ω} ∪
∞⋃
n=1

{g⊗n | g ∈ H}.

Then A is total in Fb(H) since the span of A can approximate any exponential
vector. By Lemma D.1 we find A is total in F+(H) as well. For each a ∈ R we
define

‖·‖a,+= lim
n→∞

(
n∑
k=0

(k + 1)2a‖Pk(·)‖2
) 1

2

.

which is measurable from F+(H) into [0,∞]. Let

Fa,+(H) = {ψ ∈ F+(H) | ‖ψ‖a,+<∞}.
Note Fa,+(H) is a Hilbert space and Fa,+(H) = D((N + 1)a) for a ≥ 0. We
summarise:

Lemma D.2. ‖·‖a,+ defines measurable map from F+(H) to [0,∞] and restricts to
a norm on Fa,+(H). Furthermore, Fa,+(H) is a Hilbert space and the set A from
equation (D.1) is total in F+(H).

The point of defining a metric on F+(H) and finding a total subset is that most of
the operators we will encounter in this chapter are continuous on F+(H). Therefore
many operator identities can be proven by simply checking the identity holds on
A. Let v ∈ H and define the following maps on F+(H)

a+(v)(ψ(n)) = (an(v)ψ(n+1))

a†+(v)(ψ(n)) = (0, a†0(v)ψ(0), a†1(v)ψ(1), . . . )

ϕ+(v) = a+(v) + a†+(v)
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where an(v) is the annihilation operator from H⊗s(n+1) to H⊗sn and a†n(f) is the
creation operator from H⊗sn to H⊗(n+1) which are both continuous. The following
lemma is almost automatic.

Lemma D.3. The maps a+(v), a†+(v) and ϕ+(v) are continuous. For B ∈ {a, a†, ϕ}
we have

(D.2) B+(v)ψ = B(v)ψ ∀ψ ∈ D(B(v)).

Proof. The topology on F+(H) is generated by the projections Pn so continuity of
a+(v), a†+(v) and ϕ+(v) follows from continuity of

Pna+(v) = an(v)Pn+1

Pna
†
+(v) = a†n−1(v)Pn−1 n ≥ 1

P0a
†
+(v) = 0.

Equation (D.2) holds for B ∈ {a, a†} simply by definition. We now prove equation
(D.2) for B = ϕ. The relation

ϕ(v)ψ = ϕ+(v)ψ

is easily seen to hold on the span of A where A is the set from equation (D.1).
For ψ ∈ D(ϕ(v)) we may pick as sequence {ψn}∞n=1 ⊂ Span(A) that converges to
ψ in ϕ(f) norm (use e.g. [15, Corollary 20.5]). Continuity of ϕ+(v) together with
Lemma D.1 now yields the desired result. �

Let U be unitary on H and ω = (ω1, . . . , ωp) be a tuple of strongly commuting
selfadjoint operators on H. We then define

dΓ(ω) = (dΓ(ω1), . . . , dΓ(ωp))

dΓ(n)(ω) = (dΓ(n)(ω1), . . . , dΓ(n)(ωp))

which are tuples of strongly commuting selfadjoint operators (it is easily checked
that the unitary groups commute). Let f : Rp → C be a measurable map and
define

f(dΓ+(ω)) =
∞×
n=0

f(dΓ(n)(ω)) D(f(dΓ+(ω))) =
∞×
n=0

D(f(dΓ(n)(ω)))

Γ+(U) =
∞×
n=0

Γ(n)(U).

If ω : M → Rp is measurable then we may identify ω as a tuple of strongly
commuting selfadjoint operators. In this case, f(dΓ(n)(ω)) is multiplication by the
map f(ω(k1) + · · ·+ ω(kn)). The following lemma is obvious.

Lemma D.4. The map Γ+(U) is an isometry on F+(H). Furthermore,

f(dΓ+(ω))ψ = f(dΓ(ω))ψ ∀ψ ∈ D(f(dΓ(ω)))

Γ+(U)ψ = Γ(U)ψ ∀ψ ∈ Fb(H)

We will now consider a class of linear functionals on F+(H). For each n ∈ N we
let Qn : F+(H) → N be the linear projection which preserves the first n entries
of (ψ(k)) and projects the rest of them to 0. For ψ ∈ N there is K ∈ N such that
Qnψ = ψ for n ≥ K. For φ ∈ F+(H) we may thus define the pairing

(D.3) 〈ψ, φ〉+ := 〈ψ,Qnφ〉 =

K∑
k=0

〈ψ(k), φ(k)〉,

where n ≥ K.
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Lemma D.5. The map Qn is linear and continuous into Fb(H). The pairing
〈·, ·〉+ is sesquilinear and continuous in the second entry. If φ ∈ Fa,+(H) then
ψ 7→ 〈ψ, φ〉+ is continuous with respect to ‖·‖−a,+. Furthermore, the collection of
maps {〈ψ, ·〉+}ψ∈N will separate points of F+(H).

Proof. The pairing 〈·, ·〉+ is trivially sesquilinear. Let {ψj}∞j=1 converge to ψ in
F+(H). Then {ψ(k)

j }∞j=1 will converge to ψ(k) for all k ∈ N so

‖Qn(ψj − ψ)‖2=

n∑
k=0

‖ψ(k)
j − ψ(k)‖2

converges to 0. Hence Qn is continuous from F+(H) into Fb(H). This also shows
continuity in the second entry of 〈·, ·〉+. If φ ∈ Fa,+(H) and ψ ∈ N we find some
K ∈ N such that

|〈ψ, φ〉+|≤
K∑
k=0

(k + 1)a‖φ(k)‖(k + 1)−a‖ψ(k)‖≤ ‖φ‖a,+‖ψ‖−a,+

showing the desired continuity. Let φ = (φ(k)) ∈ F+(H) and assume that 〈ψ, φ〉+ =
0 for all ψ ∈ N . Then 〈ψ, φ(k)〉 = 0 for all ψ ∈ H⊗sk and k ∈ N0 showing φ = 0. �

Corollary D.6. Let a ≤ 0, φ ∈ Fa,+(H), D ⊂ N be dense in Fb(H) and assume
〈ψ, φ〉+ = 0 for all ψ ∈ D. Then φ = 0.

Proof. Note D consists of elements which are analytic for (N + 1)−a so D is a core
for (N + 1)−a. Let ψ in N and pick {ψn}∞n=1 ⊂ D converging to ψ in (N + 1)−a-
norm. Using Lemma D.5 we see 〈ψ, φ〉+ = limn→∞〈ψn, φ〉+ = 0 and thus φ = 0 by
Lemma D.5. �

Lemma D.7. Let ψ ∈ N , φ ∈ F+(H), v ∈ H and U be a unitary operator on H.
Then

〈a†(v)ψ, φ〉+ = 〈ψ, a+(v)φ〉+, 〈a(v)ψ, φ〉+ = 〈ψ, a†+(v)φ〉+,
〈ϕ(v)ψ, φ〉+ = 〈ψ,ϕ+(v)φ〉+, 〈Γ(U)ψ, φ〉+ = 〈ψ,Γ+(U∗)φ〉+.

Let ω = (ω1, . . . , ωp) be a tuple of commuting selfadjoint operators, f : Rp → C be
measurable, ψ ∈ N ∩ D(f(dΓ(ω))) and φ ∈ D(f(dΓ+(ω))). Then we have

〈f(dΓ(ω))ψ, φ〉+ = 〈ψ, f(dΓ+(ω))φ〉+.
Proof. Since ψ ∈ N we may pick K such that ψ(n) = 0 for all n ≥ K. We calculate

〈a†(v)ψ, φ〉+ = 〈ψ, a(v)QK+1φ〉 = 〈ψ,QKa+(v)φ〉 = 〈ψ, a+(v)φ〉+
〈a(v)ψ, φ〉+ = 〈ψ, a†(v)QK−1φ〉 = 〈ψ,QKa†+(v)φ〉 = 〈ψ, a†+(v)φ〉+
〈ϕ(v)ψ, φ〉+ = 〈ψ, a+(v)φ〉+ + 〈ψ, a†+(v)φ〉+ = 〈ψ,ϕ+(v)φ〉+
〈Γ(U)ψ, φ〉+ = 〈ψ,Γ(U∗)QKφ〉 = 〈ψ,QKΓ+(U∗)φ〉 = 〈ψ,Γ+(U∗)φ〉+

Assume now that ψ ∈ N ∩ D(f(dΓ(ω))) and φ ∈ D(f(dΓ+(ω))). Then QKφ ∈
D(f(dΓ(ω))) and

〈f(dΓ(ω))ψ, φ〉+ = 〈ψ, f(dΓ(ω))QKφ〉 = 〈ψ,QKf(dΓ+(ω))φ〉 = 〈ψ, f(dΓ+(ω))φ〉+.
This finishes the proof. �

We now consider functions with values in F+(H). Let (X,X , ν) be a σ-finite mea-
sure space. Define the quotient

M(X,X , ν) = {f : X → F+(H) | f is X − B(F+(H)) mesurable}/ ∼,
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where f ∼ g ⇐⇒ f = g almost everywhere. We are interested in the subspace

C(X,X , ν) = {f ∈M(X,X , ν) | x 7→ Pnf(x) ∈ L2(X,X , ν,H⊗sn) ∀n ∈ N0}.

Lemma D.2 shows that x 7→ ‖f(x)‖a,+ is measurable for all f ∈ C(X,X , ν) and so∫
X

‖f(x)‖2a,+dν(x)

always makes sense as an element in [0,∞]. If a = 0 then the integral is finite
if and only if f ∈ L2(X,X , ν,Fb(H)). We write f ∈ C(X,X , ν) as (f (n)) where
f (n) = x 7→ Pnf(x) is an element in the Hilbert space L2(X,X , ν,H⊗sn). For
f, g ∈ C(X,X , ν) we define

d(f, g) =

∞∑
n=0

1

2n
‖f (n) − g(n)‖

1 + ‖f (n) − g(n)‖ .

and Pnf = f (n) for n ∈ N0. The following result is obvious.

Lemma D.8. d is a complete metric on C(X,X , ν) such that C(X,X , ν) becomes
separable topological vector space and the topology is generated by {Pn}∞n=0. Fur-
thermore, L2(X,X , ν,Fb(H)) ⊂ C(X,X , ν) and convergence in L2(X,X , ν,Fb(H))
implies convergence in C(X,X , ν). Also, the map x 7→ ‖f(x)‖a,+ is measurable for
any f in C(X,X , ν) and a ∈ R.

In the last part of this section we will need some results from the theory of direct
integrals. Readers are assumed to have the basic knowledge found in [18, page 280-
286]. Let ` ∈ N, v ∈ H, U be unitary on H, ω = (ω1, . . . , ωp) a tuple of selfadjoint
multiplication operators on H, m : M` → Rp measurable and g : Rp → R a
measurable map. Then we wish to define operators on C(M`, E⊗`, µ⊗`) by

(a†⊕,`(v)f)(k) = a†+(v)f(k)

(a⊕,`(v)f)(k) = a+(v)f(k)

(ϕ⊕,`(v)f)(k) = ϕ+(v)f(k)

(Γ⊕,`(U)f)(k) = Γ+(U)f(k)

(g(dΓ⊕,`(ω) +m)f)(k) = g(dΓ+(ω) +m(k))f(k).

We further define C(M0, E⊗0, µ⊗0) = F+(H) along with a†⊕,0(v) = a†+(v), a⊕,0(v) =

a+(v), ϕ⊕,0(v) = ϕ+(v) and Γ⊕,0 = Γ+(U).

Lemma D.9. The following holds

(1) The operators a†⊕,`(v), a⊕,`(v), ϕ⊕,`(v) and Γ⊕,`(U) are well defined and
continuous for all ` ∈ N0.

(2) Let f ∈ C(M`, E⊗`, µ⊗`). If f(k) ∈ D(g(dΓ+(ω) + m(k))) for all k ∈ M`

then k 7→ g(dΓ+(ω) + m(k))f(k) is measurable. Therefore we may define
the domain of g(dΓ⊕,`(ω) +m) to be{

f ∈ C(M`, E⊗`, µ⊗`)
∣∣∣∣f(k) ∈ D(g(dΓ+(ω) +m(k))) for almost every k ∈M`,∫
M`

‖g(dΓ(n)(ω) +m(k))(Pnf)(k)‖2dµ⊗`(k) <∞ ∀n ∈ N0

}
.
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Proof. Let h ∈ C(M`, E⊗`, µ⊗`). Then

k 7→ Pna+(v)h(k) = k 7→
(∫ ⊕
M`

an(v)dµ⊗`Pn+1h

)
(k)

k 7→ Pna
†
+(v)h(k) = k 7→

(∫ ⊕
M`

a†n−1(v)dµ⊗`Pn−1h

)
(k) n ≥ 1

k 7→ P0a
†
+(v)h(k) = k 7→ 0

k 7→ PnΓ+(U)h(k) = k 7→
(∫ ⊕
M`

Γ(n)(U)dµ⊗`Pnh
)

(k).

Part (1) is now a consequence of Lemma D.8. For the next claim we note

k 7→ Png(dΓ+(ω) +m(k))f(k) = g(dΓ(n)(ω) +m(k))(Pnf)(k).

dΓ(n)(ωi) + mi(k) is strongly resolvent measurable for each i ∈ {1, . . . , p} which
implies g(dΓ(n)(ω)+m(k)) is strongly resolvent measurable so the conclusion follows
from standard theorems (See e.g [18, Theorem XIII.85]). �

We will now introduce the pointwise annihilation operators. Let ψ = (ψ(n)) ∈
F+(H). Note that ψ(n+`) is symmetric and square integrable for all n ∈ N0 and
` ∈ N, so we may pick a representative such that

g(k1, . . . , k`) = ψ(n+`)(k1, . . . , k`, ·, . . . , ·)
is symmetric in (k1, . . . , k`) and takes values in H⊗sn. It is easy to see, that
the choice of representative only changes g up to a µ⊗` zeroset and that g ∈
L2(M`, E⊗`, µ⊗`,H⊗sn). Therefore we may define A`ψ ∈ C(M`, E⊗`, µ⊗`) by the
formula

Pn(A`ψ) =
√

(n+ `) · · · (n+ 1)ψ(n+`)(k1, . . . , k`, ·, . . . , ·)
Note A` is a map from F+(H) to C(M`, E⊗`, µ⊗`) and

‖Pn(A`ψ)− Pn(A`φ)‖=
√

(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`) − φ(n+`)‖
for ψ, φ ∈ F+(H). So A` is continuous from F+(H) into C(M`, E⊗`, µ⊗`). One
observes that A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fa,+(H)) if and only if

∞ >

∫
M`

‖A`ψ(k1, . . . , k`)‖2a,+dµ⊗`(k1, . . . , k`)

=

∞∑
n=0

(n+ 1)2a(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`)‖2

⇐⇒
∞∑
n=0

(n+ `)2a+`‖ψ(n+`)‖2<∞,

which is equivalent to ψ ∈ D(N
`
2 +a) if `

2 + a ≥ 0. If ψ, φ ∈ D(N
`
2 ) we apply the

above calculations with a = 0 to obtain

‖A`ψ −A`φ‖2 =

∞∑
n=0

(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`) − φ(n+`)‖2(D.4)

≤ ‖N `
2 (ψ − φ)‖.

We summarise:

Lemma D.10. A` is a continuous linear map from F+(H) to C(M`, E⊗`, µ⊗`)
and A`ψ ∈ L2(M`, E⊗`, µ⊗`,F− `2 ,+(H)) if ψ ∈ Fb(H). Furthermore, A` maps

D(N
`
2 ) continuously into L2(M`, E⊗`, µ⊗`,Fb(H)) and ψ ∈ D(N `/2) if and only if

A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fb(H)).
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Fix v ∈ H and ` ∈ N0. Define z`(v) : C(M`, E⊗`, µ⊗`)→ C(M`+1, E⊗(`+1), µ⊗(`+1))
by

(z0(v)ψ)(x) = v(x)ψ and (z`(v)ψ)(x, k) = v(x)ψ(k)

when ` ≥ 1. Note that∫
M`+1

‖Pn(z`(v)ψ)(k)‖2dµ⊗(`+1)(k) = ‖v‖2‖Pnψ‖2

which implies z`(v) is well defined and continuous. A similar argument (which is
left to the reader) shows that z`(v) maps L2(M`, E⊗`, µ⊗`,Fb(H)) continuously
into L2(M`+1, E⊗(`+1), µ⊗(`+1),Fb(H)). We summarise:

Lemma D.11. The map z`(v) introduced above is linear and continuous. Both
as a map from C(M`, E⊗`, µ⊗`) into the space C(M`+1, E⊗(`+1), µ⊗(`+1)) and from
L2(M`, E⊗`, µ⊗`,Fb(H)) into L2(M`+1, E⊗(`+1), µ⊗(`+1),Fb(H)).

Let ` ∈ N and σ ∈ S` where S` is the set of permutations of {1, . . . , `}. Define
σ̃ : M` → M` by σ̃(k1, . . . , k`) = (kσ(1), . . . , kσ(`)) and observe that σ̃ is E⊗`-E⊗`
measurable. Define σ̂ : C(M`, E⊗`, µ⊗`)→ C(M`, E⊗`, µ⊗`) by

(σ̂f)(k1, . . . , k`) = f(kσ(1), . . . , kσ(`)) = (f ◦ σ̃)(k1, . . . , k`).

σ̂ is a well defined isometry on C(M`, E⊗`, µ⊗`) since σ̃ is measurable and µ⊗` =
µ⊗` ◦ σ̃−1 so∫

M`

‖f (n)(k1, . . . , k`)‖2dµ⊗`(k) =

∫
M`

‖f (n)(kσ(1), . . . , kσ(`))‖2dµ⊗`(k).

A similar calculation shows that σ̂ is isometric on L2(M`, E⊗`, µ⊗`,Fb(H)). For
π ∈ S` we have

σ̂π̂f = f ◦ π̃ ◦ σ̃ = f ◦ (̃σ ◦ π) = σ̂ ◦ πf

and hence the inverse map of σ̂ is σ̂−1. Define now

S` :=
1

(`− 1)!

∑
σ∈S`

σ̂.

For π ∈ S` we have

π̂S` =
1

(`− 1)!

∑
σ∈S`

π̂σ̂ =
1

(`− 1)!

∑
σ∈S`

π̂ ◦ σ = S`,

so S2
` = `S`. We summarise:

Lemma D.12. Let ` ∈ N. For σ ∈ S` the map σ̂ defines a linear bijective isom-
etry from C(M`, E⊗`, µ⊗`) to C(M`, E⊗`, µ⊗`) and from L2(M`, E⊗`, µ⊗`,Fb(H))
to L2(M`, E⊗`, µ⊗`,Fb(H)).
S` is continuous and linear from C(M`, E⊗`, µ⊗`) into C(M`, E⊗`, µ⊗`) and from

L2(M`, E⊗`, µ⊗`,Fb(H)) into L2(M`, E⊗`, µ⊗`,Fb(H)). Furthermore, S2
` = `S`.

We can now calculate commutators

Lemma D.13. Let ω : M → Rp be measurable, v, g ∈ H and f : Rp → R be
measurable. Define A0 as the identity map from F+(H) to F+(H) and z†`−1(v) =
S`z`−1(v) for ` ∈ N. Then:
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(1) We have the following operator identities for ` ∈ N, k ∈ N0 and B ∈
{ϕ, a†, a}

a⊕,`(g)A` = A`a+(g)(D.5)

A`a
†
+(g)− a†⊕,`(g)A` = z†`−1(g)A`−1(D.6)

B⊕,`(g)z`−1(v) = z`−1(v)B⊕,`−1(g)(D.7)
B⊕,`(g)S` = S`B⊕,`(g)(D.8)

A`ϕ+(g)k =

min{`,k}∑
q=0

(
k
q

)(q−1∏
c=0

z†`−c−1(g)

)
ϕ⊕,`−q(g)k−qA`−q(D.9)

Γ⊕,`(−1)A` = (−1)`A`Γ+(−1).(D.10)

(2) Let ` ∈ N and ω`(k1, . . . , k`) = ω(k1) + · · · + ω(k`). If ψ ∈ D(f(dΓ(ω)))
then A`ψ ∈ D(f(dΓ⊕(ω) + ω`)) and

f(dΓ⊕(ω) + ω`)A`ψ = A`f(dΓ+(ω))ψ.

Proof. We start by proving part (1). Note it is enough to prove the equations
(D.5)-(D.10) on the set A from equation (D.1) by continuity and linearity of all
involved operators.

Let h⊗n ∈ A (with h⊗0 = Ω). We start by proving (D.5). If n < ` + 1 then
a⊕,`(v)A`h

⊗n = 0 = A`a+(v)h⊗n. Otherwise we calculate

(a⊕,`(g)A`h
⊗n)(k1, . . . , k`) =

√
n(n− 1) . . . (n− `)h(k1) . . . h(k`)〈g, h〉h⊗n−`−1

= (A`a+(g)h⊗n)(k1, . . . , k`).

We now prove equation (D.6). If n < `− 1 we find

A`a
†
+(g)h⊗n = 0 = a†⊕,`(g)A`h

⊗n = 0 = z†`−1(g)A`−1h
⊗n

If n ≥ `− 1 we have (in the following calculation we define h⊗−1 = 0)

(A`a
†
+(g)h⊗n)(k1, . . . , k`) = A`

(
1√
n+ 1

n+1∑
a=1

h⊗a−1 ⊗ g ⊗ h⊗n−a+1

)
(k1, . . . , k`)

=
√
n(n− 1) . . . (n− `+ 2)

∑̀
a=1

h(k1) . . . g(ka) . . . h(k`)h
⊗n−`+1

+
√
n(n− 1) . . . (n− `+ 2)

n+1∑
a=`+1

h(k1) . . . h(k`)h
⊗a−1−` ⊗ g ⊗ h⊗n−a+1

=
∑̀
a=1

g(ka)(A`−1h
⊗n)(k1, . . . , k̂a, . . . , k`)

+
√
n(n− 1) . . . (n− `+ 1)h(k1) . . . h(k`)a

†
+(g)h⊗n−`

= (S`z`−1(g)A`−1h
⊗n)(k1, . . . , k`) + (a†⊕,`(g)A`h

⊗n)(k1, . . . , k`).

We now prove equation (D.10). If n < ` we have (−1)`Γ⊕,`(−1)A`h
⊗n = 0 =

A`Γ+(−1)h⊗n. Writing k = (k1, . . . , k`) we obtain for n ≥ `

(−1)`Γ⊕,`(−1)A`h
⊗n(k) = (−1)`

√
n(n− 1) . . . (n− `+ 1)h(k1) . . . h(k`)(−h)⊗n−`

= A`(−h)⊗n(k)

= A`Γ+(−1)h⊗n(k).
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We now prove equation (D.7) and (D.8). Let ψ ∈ C(M`, E⊗`, µ⊗`) and σ ∈ S`.
Then

(B⊕,`(g)σ̂ψ)(k) = B+(g)(ψ ◦ σ̃)(k) = (σ̂B⊕,`(g)ψ)(k)(D.11)
(B⊕,`+1(g)z`(v)ψ)(x, k) = B+(g)v(x)ψ(k) = (z`(v)B⊕,`(g)ψ)(x, k)(D.12)

Equation (D.11) shows equation (D.7) and equation (D.12) shows equation (D.8)
in the special case where ` ≥ 2. The ` = 1 case is similar and is left to the reader.

We will now prove equation (D.9). It clearly holds in the ` = 0 case. We proceed
by induction in `. Adding the two equations in (D.5) and (D.6) we find the k = 1
case. Using the k = 1 case, the induction hypothesis, equation (D.7) and equation
(D.8) we find

A`ϕ+(g)k+1 = ϕ⊕,`(g)k+1A` +

k∑
a=0

ϕ⊕,`(g)a(A`ϕ+(g)− ϕ⊕,`(g)A`)ϕ+(g)k−a

= ϕ⊕,`(g)k+1A` +

k∑
a=0

ϕ⊕,`(g)az†`−1(g)A`−1ϕ+(g)k−a

= ϕ⊕,`(g)k+1A` +

k∑
a=0

min{`−1,k−a}∑
q=0

(
k − a
q

)
ϕ⊕,`(g)k−q

(
q−1∏
c=−1

z†`−c−2(g)

)
A`−q−1

= ϕ⊕,`(g)k+1A` +

min{`,k+1}∑
q=1

k+1−q∑
a=0

(
k − a
q − 1

)
ϕ⊕,`(g)k+1−q

(
q−1∏
c=0

z†`−c−1(g)

)
A`−q

= ϕ⊕,`(g)k+1A` +

min{`,k+1}∑
q=1

(
k + 1
q

)(q−1∏
c=0

z†`−c−1(g)

)
ϕ⊕,`−q(g)k+1−qA`−q.

We now prove part (2). Let ψ ∈ D(f(dΓ+(ω))). Note that

(f(dΓ+(ω))ψ)(n+`)(k1, . . . , kn+`) = f(ω(k1) + · · ·+ ω(kn+`))ψ
(n+`)(k1, . . . , kn+`)

is in H⊗s(n+`) for all ` ∈ N and n ∈ N0. Standard integration theory yields
ψ(n+`)(k1, . . . , k`, ·, . . . , ·) ∈ D(f(dΓ(n)(ω) + ω`(k1, . . . , k`))) almost everywhere.
Since (PnA`ψ)(k1, . . . , k`) =

√
(n+ 1) · · · (n+ `)ψ(n+`)(k1, . . . , k`, ·, . . . , ·) we find

A`ψ(k) ∈ D(f(dΓ+(ω) + ω`(k))) for almost all k ∈M`. Furthermore,

f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ
(n+`)(k1, . . . , k`, ·, . . . , ·)

= (f(dΓ+(ω))ψ)(n+`)(k1, . . . , k`, ·, . . . , ·)∫
M`

‖f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ
(n+`)(k1, . . . , k`, ·, . . . , ·)‖2dµ⊗`(k1, . . . , k`)

= ‖Pn+`f(dΓ+(ω))ψ‖2<∞.
So A`ψ ∈ D(f(dΓ⊕,`(ω) + ω`)) by Lemma D.9 and

(Pnf(dΓ⊕,`(ω) + ω`)A`ψ)(k1, . . . , k`)

=
√

(n+ 1) · · · (n+ `)f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ
(n+`)(k1, . . . , k`, ·, . . . , ·)

=
√

(n+ 1) · · · (n+ `)(f(dΓ+(ω))ψ)(n+`)(k1, . . . , k`, ·, . . . , ·)
= (PnA`f(dΓ+(ω))ψ)(k1, . . . , k`).

This finishes the proof. �

Commutation relations with Weyl operators can also be calculated but only on
restricted domains. For future reference we prove
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Lemma D.14. Let ψ ∈ D(N
1
2 ) and g ∈ H. Then the following holds

(D.13) A1W (g, 1)ψ =

∫ ⊕
M
W (g, 1)dµ(k)A1ψ + z0(g)W (g, 1)ψ

Proof. We calculate on an exponential vector ε(v):

(A1W (g, 1)ε(v))(k) = e−‖g‖
2/2−Im(〈g,v〉)A1(ε(v + g))(k)

= (v(k) + g(k))W (g, 1)ε(v)

=

(∫ ⊕
M
W (g, 1)dµ(k)A1ε(v)

)
(k) + z0(g)W (g, 1)ε(v).

Hence the result holds on the span of exponential vectors. The collection of expo-
nential vectors span a core for the number operator N and thus for N

1
2 . Therefore,

a general element in ψ ∈ D(N
1
2 ) may be approximated in N

1
2 -norm by a sequence

{ψn}∞n=1 inside the span of exponential vectors. Lemmas D.10 and D.11 now imply

lim
n→∞

∫ ⊕
M
W (g, 1)dµ(k)A1ψn + z0(g)W (g, 1)ψn

=

∫ ⊕
M
W (g, 1)dµ(k)A1ψ + z0(g)W (g, 1)ψ

in L2(M, E , µ,Fb(H)) and therefore in C(M, E , µ) as well by Lemma D.8. Lemma
D.11 implies

lim
n→∞

A`W (g, 1)ψn = A`W (g, 1)ψn

in C(M, E , µ) which finishes the proof. �

The pointwise annihilation operators are useful for calculating expectation values.
We shall need that L2(M,F , µ,Fb(H)) is a tensor product H ⊗ Fb(H) under the
identification f ⊗ φ = k 7→ f(k)φ. If ω is a multiplication operator on H then

ω ⊗ 1 =

∫ ⊕
M
ω(k)dµ(k)

D(ω ⊗ 1) = {f ∈ L2(M,F , µ,Fb(H)) | k 7→ ω(k)f(k) ∈ L2(M,F , µ,Fb(H))}.
In particular, D(ω ⊗ 1) = D(|ω|⊗1). We now prove:

Theorem D.15. Let ψ, φ ∈ Fb(H) and B be a selfadjoint operator on H. Define
B+ = B1[0,∞)(B) and B− = B1(−∞,0)(B).

(1) We have

D(dΓ(B+)
1
2 ) ∩ D(dΓ(B−)

1
2 ) = D(dΓ(|B|) 1

2 )(D.14)
D(dΓ(|B|)) ⊂ D(dΓ(B+)),D(dΓ(B−)),D(dΓ(B))(D.15)

and dΓ(B+)− dΓ(B−) = dΓ(B) on D(dΓ(|B|)).
(2) Assume B is a multiplication operator. Then ψ ∈ D(dΓ(|B|) 1

2 ) ⇐⇒
|B| 12A1ψ ∈ L2(M, E , µ,Fb(H)). Furthermore, for φ, ψ ∈ D(dΓ(|B|) 1

2 ) we
have

(D.16)
∑
σ∈±

σ〈dΓ(Bσ)
1
2φ, dΓ(Bσ)

1
2ψ〉 =

∫
M
B(k)〈A1φ(k), A1ψ(k)〉dµ(k),

and A1ψ(k) ∈ Fb(H) almost everywhere on {|B(k)|> 0}.
(3) For ψ, φ ∈ D(dΓ(|B|) 1

2 ) ∩ D(N
1
2 ) we have A1ψ,A1φ ∈ D(|B| 12⊗1) and

(D.17) 〈dΓ(|B|) 1
2φ, dΓ(|B|) 1

2ψ〉 = 〈(|B| 12⊗1)A1φ, (|B|
1
2⊗1)A1ψ〉.



SPIN-BOSON TYPE MODELS ANALYSED USING SYMMETRIES 49

(4) For ψ ∈ D(dΓ(|B|))∩D(N
1
2 ) and φ ∈ D(N

1
2 ) we have A1ψ ∈ D(|B|⊗1) =

D(B ⊗ 1) and

(D.18) 〈φ, dΓ(B)ψ〉 = 〈A1φ, (B ⊗ 1)A1ψ〉.
(5) Let v ∈ H and ψ ∈ Fb(H). If x 7→ v(k)(A1ψ)(k) is Fock space valued and

integrable in the weak sense then ψ ∈ D(a(v)) and

(D.19) a(v)ψ =

∫
M
v(k)(A1ψ)(k)dµ(k).

Proof. We start by proving the first four statements of the theorem when B is a
multiplication operator. Let A ∈ {B,B+, B−} and note A ≤ |B| and |B|= B++B−.
We prove equations (D.14) and (D.15) as follows

D(dΓ(B+)
1
2 ) ∩ D(dΓ(B−)

1
2 )

=

{
(ψ(n)) ∈ Fb(H)

∣∣∣∣ ∞∑
n=1

∫
Mn

(B±(k1) + · · ·+B±(kn))|ψ(n)|2dµ⊗n <∞
}

=

{
(ψ(n)) ∈ Fb(H)

∣∣∣∣ ∞∑
n=1

∫
Mn

(|B(k1)|+ · · ·+ |B(kn)|)|ψ(n)|2dµ⊗n <∞
}

= D(dΓ(|B|) 1
2 )

D(dΓ(|B|))

=

{
(ψ(n)) ∈ Fb(H)

∣∣∣∣ ∞∑
n=1

∫
Mn

(|B(k1)|+ · · ·+ |B(kn)|)2|ψ(n)|2dµ⊗n <∞
}

⊂
{

(ψ(n)) ∈ Fb(H)

∣∣∣∣ ∞∑
n=1

∫
Mn

(A(k1) + · · ·+A(kn))2|ψ(n)|2dµ⊗n <∞
}

= D(dΓ(A)).

The identity dΓ(B+)− dΓ(B−) = dΓ(B) on D(dΓ(|B|)) is now a simple computa-
tion. We now prove statement (2). Let ψ ∈ Fb(H) and note that

∞∑
n=1

∫
Mn

(|B(k1)|+ · · ·+ |B(kn)|)|ψ(n)(k1, . . . , kn)|2dµ⊗n(k1, . . . , kn)

=

∫
M
|B(k1)|

∞∑
n=1

n

∫
Mn−1

|ψ(n)(k1, . . . , kn)|2dµ⊗n−1(k2, . . . , kn)dµ(k1)

=

∫
M
|B(k)|‖A1ψ(k)‖2dµ(k).

This shows statement (2) except equation (D.16). We have however proven equation
(D.16) in the case φ = ψ and B ≥ 0. Using linearity and equation (D.14), we find
equation (D.16) holds for φ = ψ. One may now apply the polarisation identity to
finish the proof of statement (2). Statement (3) follows trivially from statement (2)
when B is a multiplication operator.

We now prove statement (4). Let φ ∈ D(N1/2) and ψ ∈ D(N1/2) ∩ D(dΓ(|B|)).
First we note that

B(k1)2 + · · ·+B(kn)2 ≤ (|B(k1)|+ · · ·+ |B(kn)|)2

so D(dΓ(|B|)) ⊂ D(dΓ(B2)
1
2 ). This implies A1ψ ∈ D(|B|⊗1) = D(B ⊗ 1) by

statement (3). If φ ∈ D(N
1
2 ) ∩D(dΓ(|B|)) the formula in statement (4) will follow

from statements (1) and (2). To finish the proof, it is by Lemma D.10 enough to
find a sequence {φn}∞n=1 ⊂ D(N

1
2 ) ∩ D(dΓ(|B|)) that converges to φ in the graph

norm of N
1
2 .
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Let φ ∈ D(N
1
2 ) and let φn = 1[−n,n](dΓ(|B|))φ. Since dΓ(|B|) and N 1

2 commute
strongly we find φn ∈ D(N

1
2 ) ∩ D(dΓ(|B|)) and

‖N 1
2 (φn − φ)‖= ‖(1− 1[−n,n](dΓ(|B|)))N 1

2φ‖
which converges to 0. This finishes the proof of statements (1)-(4) when B is a
multiplication operator.

For general B we may pick an L2 space K and a unitary map U : H → K such
that UBU∗ = ω is a multiplication operator on K. Note that Γ(U) transforms
dΓ(f(B)) into dΓ(f(ω)) for any realvalued and measurable f . This implies that
statement (1) holds since it is true with Γ(U) applied on both sides of each equation.

Let Ñ be the number operator on Fb(K) and Ã1 denote the pointwise annihila-
tion operator on F+(K). First we prove that

(D.20) U∗ ⊗ Γ(U)∗Ã1Γ(U) = A1

as maps from D(N
1
2 ) to L2(M, E , µ,Fb(H)). Note Γ(U) maps D(N

1
2 ) continuously

into D(Ñ
1
2 ) with respect to the graph norms. Hence both sides of equation (D.20)

are continuous as maps from D(N
1
2 ) into L2(M, E , µ,Fb(H)) by Lemma D.10. The

set A from equation (D.1) spans a core for N1/2 so we just need to see equation
(D.1) holds on A. Let h⊗n ∈ A and calculate

U∗ ⊗ Γ(U)∗Ã1Γ(U)h⊗n(k) =
√
n(U∗ ⊗ Γ(U)∗)(Uh)(k)(Uh)⊗n−1

=
√
nh(k)h⊗n−1

= A1h
⊗n.

We now prove statement (3). Under the assumptions in statement (3) we have
Γ(U)ψ,Γ(U)φ ∈ D(dΓ(|ω|) 1

2 ) ∩ D(Ñ
1
2 ) so A1ψ,A1φ ∈ U∗ ⊗ Γ(U)∗D(|ω| 12⊗1) =

D(|B| 12⊗1). We may then calculate

〈dΓ(|B|) 1
2φ, dΓ(|B|) 1

2ψ〉 = 〈dΓ(|ω|) 1
2 Γ(U)φ, dΓ(|ω|) 1

2 Γ(U)ψ〉
= 〈(|ω| 12⊗1)Ã1Γ(U)φ, (|ω| 12⊗1)Ã1Γ(U)ψ〉
= 〈(|B| 12⊗1)A1φ, (|B|

1
2⊗1)A1ψ〉.

We now prove statement (4). Under the assumptions in statement (4) we have
Γ(U)ψ ∈ D(dΓ(|ω|)) ∩ D(Ñ

1
2 ) and so A1ψ ∈ U∗ ⊗ Γ(U)∗D(|ω|⊗1) = D(|B|⊗1).

Hence

〈φ, dΓ(B)ψ〉 = 〈Γ(U)φ, dΓ(ω)Γ(U)ψ〉
= 〈Ã1Γ(U)φ, (ω ⊗ 1)Ã1Γ(U)ψ〉
= 〈A1φ, (B ⊗ 1)A1ψ〉.

We now prove statement (5). Let φ ∈ H⊗sn and note that〈
φ, Pn

∫
M
v(k)(A1ψ)(k)dµ(k)

〉
=
√
n+ 1

∫
M

∫
Mn

v(k)φ(k1, . . . , kn)ψ(n+1)(k, k1, . . . , kn)dµ⊗n(k1, . . . , kn)dµ(k).

Using Fubinis Theorem we see

Pn

∫
M
v(k)(A1ψ)(k)dµ(k) = an(v)ψ(n+1).

Hence (an(v)ψ(n+1)) ∈ Fb(H) so ψ ∈ D(a(v)) and the desired equality holds. �

We can now prove the pull-trough formula.
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Theorem D.16. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be a selfadjoint multiplication
operator on H. Assume (α, f, ω) satisfies Hypothesis 1, 2, 3 and 4. Define E±1 =
E±η(α, f, ω), F±1 := F±η(α, f, ω) and ω`(k1, . . . , k`) = ω(k1) + · · · + ω(k`). Let
λ ≤ E(−1)` for all ` ∈ N0 and define R`(a) = (F(−1)` − λ + a)−1 for a > 0 and
` ∈ N0.

If ψ ∈ D(F−1) = D(F1) and Aq(F1 − λ)ψ is Fock space valued for all q ≤ ` then
(A`ψ)(k) ∈ D(F−1) = D(F1) for almost every k ∈M` and

A`ψ =−R`(ω`(·))
2n∑
i=1

αi

min{i,`}∑
q=1

(
i
q

)(q−1∏
c=0

S`−cz`−c−1(fi)

)
ϕ⊕,`−q(fi)

i−qA`−qψ

+R`(ω`(·))A`(F0 − λ)ψ.(D.21)

If we further assume that Hypothesis 5 holds, η ≤ 0 and ψ is a ground state for F1

then A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fb(H)) for all ` ∈ N.

Proof. F(−1)` − λ ≥ 0 for all ` ∈ N by definition, so R`(ω`(k)) exists almost every-
where since {ω ≤ 0} is a µ zero set. Define the operators

F+,` = (−1)`ηΓ+(−1) + dΓ+(ω) +

2n∑
i=1

αiϕ+(fi)
i

F⊕,` = (−1)`ηΓ⊕,`(−1) + dΓ⊕,`(ω) + ω` +

2n∑
i=1

αiϕ⊕,`(fi)
i

with domains D(F+) = D(dΓ+(ω)) and D(F⊕) = D(dΓ⊕,`(ω) + ω`). Let ψ ∈
D(F−1) = D(F1) and assume Aq(F1 − λ)ψ is Fock space valued for all q ≤ `. By
Lemma D.13 we have A`ψ ∈ D(F⊕) and using Lemmas D.3, D.4 and D.13 we
obtain

g` :=−
2n∑
i=1

αi

min{i,`}∑
q=1

(
i
q

)(q−1∏
c=0

S`−cz`−c−1(fi)

)
ϕ⊕,`−q(fi)

i−qA`−qψ

+A`(F0 − λ)ψ

=(F⊕,` − λ)A`ψ.

Assume that g` is almost everywhere Fock space valued. Let M be a zeroset such
that:

• A`ψ(k) ∈ F−`/2,+(H) for all k ∈M c (see Lemma D.10).
• g`(k) = (F+,` + ω`(k) + λ)(A`ψ)(k) and g`(k) ∈ Fb(H) for all k ∈M c.
• R`(ω`(k)) exists for all k ∈M c.

Let k ∈ M c and K = (F(−1)` − λ + ω`(k))N ∩ D(dΓ(ω)). Then K is dense by
Proposition 3.2, K ⊂ N and R`(ω`(k))K ⊂ N . Let φ ∈ K. Using Lemma D.7 we
find

〈φ,A`ψ(k)〉+ = 〈(F(−1)` + ω`(k)− λ)R`(ω`(k))φ,A`ψ(k)〉+
= 〈R`(ω`(k))φ, g`(k)〉 = 〈φ,R`(ω`(k))g`(k)〉+.

Corollary D.6 now shows that A`ψ(k) = R`(ω`(k))g`(k). We conclude that equation
(D.21) is true pointwise on M c finishing the proof. We now prove g` is almost
everywhere Fock space valued by induction in `.

If ` = 1 then g` is a linear combination of A1(F1 − λ)ψ and functions of the
form k 7→ fi(k)ϕ(fi)

i−1ψ which all takes values in Fock space. Hence g1 is almost
everywhere Fock space valued and so equation (D.21) will hold for A1. Assume
now that g1, . . . , g`−1 are almost everywhere Fock space valued. Then equation
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(D.21) holds for A1ψ, . . . , A`−1ψ and so Aiψ is almost everywhere D(F−1) = D(F1)-
valued for i ∈ {1, . . . , `− 1}. Using Proposition 3.2 and Lemma D.3 we find for all
q ∈ {0, . . . , i} that
ϕ⊕,`−q(fi)

i−qA`−qψ = k 7→ ϕ+(fi)
i−q(A`−qψ)(k) = k 7→ ϕ(fi)

i−q(A`−qψ)(k).

In particular, ϕ⊕(fi)
i−qA`−qψ is almost everywhere Fock space valued for q ∈

{0, . . . , i}. Since zq(fi) and Sq map Fock space valued maps into Fock space valued
maps, we see that g` is almost everywhere Fock space valued. This finishes the
proof of equation (D.21).

For the second part we note that (F1 − E1)ψ = 0 and E1 ≤ E(−1)` for all ` ∈ N0

by Theorem 3.4. Hence we may apply equation (D.21) with λ = E1. Using that
A`ψ is D(F−1) = D(F1) valued almost everywhere we see

k 7→ ϕ(fi)
q(A`ψ)(k) = ϕ⊕,`(fi)

q(A`ψ)(k)

will be Fb(H)-valued and measurable for all ` ∈ N, i ∈ {1, . . . , 2n} and q ∈
{1, . . . , i}. We will prove that ϕ⊕,`(fi)qA`ψ is square integrable for all ` ∈ N,
i ∈ {1, . . . , 2n} and q ∈ {1, . . . , i}. First we note that there is a constant Cq,i,` such
that

‖ϕ(fi)
qR`(ω`(k))‖2≤ Cq,i,`

(
1 +

1

ω`(k)

)2

.

Hence it is enough to prove that ω−2
` ‖g`‖2 and ‖g`‖2 are integrable for all ` ∈ N

which will now be done via induction in `. If ` = 1 then g` is a linear combination of
elements of the form k 7→ fc(k)ϕ(fc)

c−1ψ and since fc ∈ D(ω−1) the claim follows.
Inductively we now assume that ω−2

u ‖gu‖2 and ‖gu‖2 are integrable for all u ∈
{1, . . . , `−1}. Then k 7→ ϕ(fi)

q(Auψ)(k) is square integrable for all i ∈ {1, . . . , 2n},
q ∈ {1, . . . , i} and u ∈ {1, . . . , ` − 1}. Now g` is a linear combination of functions
of the form

(k1, . . . , k`) 7→ fc(kσ(1)) · · · fc(kσ(b))ϕ(fc)
c−b(A`−bψ)(kσ(b+1), . . . , kσ(`))

where b ∈ {1, . . . , `}, c ∈ {1, . . . , 2n} and σ ∈ S`. Combining the observations that
1

ω`(k) ≤ 1
ω(kσ(1))

, fc ∈ D(ω−1) and (ϕ(fc)
c−bA`−bψ)(kσ(b+1), . . . , kσ(`)) is square

integrable with respect to (kσ(b+1), . . . , kσ(`)) we find the desired result. �

Proof of Theorem 3.6 part (1). Lemma 5.1 and Theorem 3.5 shows it is enough to
prove the claim for the fiber operator. Lemmas 2.2 and A.7 show we may assume
H = L2(M,F , µ) with (M,F , µ) a σ-finite measure space. This case is dealt with
in Lemma D.10 and Theorem D.16. �

Appendix E. Q-spaces and functional analysis

Following the approach in [8] we have

Lemma E.1. Let {fα}α∈I ⊂ H and ω be a selfadjoint and nonnegative operator on
H. Write Mb(σ(ω),R) for the set of maps from σ(ω) to R which are bounded and
measurable. Assume that 〈fα, g(ω)fβ〉 ∈ R for all α, β ∈ I and g ∈ Mb(σ(ω),R).
Then there is a real Hilbert space HR such that H = HR + iHR, e−tω maps HR to
HR for all t ≥ 0 and fα ∈ HR for all α ∈ I.
Proof. Let

H′ = SpanR{g(ω)fα | g ∈Mb(σ(ω),R), α ∈ I}.
Note that H′ is a real Hilbert space. For every f ∈ (H′)⊥\{0} we define

H(f) = SpanR{g(ω)f | g ∈Mb(σ(ω),R)}.
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It is clear that e−tω maps H′ to H′ and H(f) to H(f). Define

A = {A ⊂ (H′)⊥\{0} | H(f) ⊥ H(g) ∀ f, g ∈ A with f 6= g}.
We partially order A by inclusion and take a maximal totally ordered subset B.
Let B be the union of all elements in B. If f, g ∈ B and f 6= g then there is an
element in B that contains both f and g (since B is totally ordered). This implies
H(f) ⊥ H(g) and so B ∈ A. Define

HR := H′ ⊕
⊕
a∈B
H(a) ⊂ H.

HR is clearly a real Hilbert space containing {fα}α∈I and it is left invariant by e−tω
since each component is. Assume towards contradiction that there is an element
f ∈ H⊥R \{0}. Then for every g1, g2 ∈Mb(σ(ω),R) and h ∈ B we would have

〈g2(ω)f, g1(ω)h〉 = 〈f, g2(ω)g1(ω)h〉 = 0

and so H(f) is orthogonal to H(h) for all h ∈ B. In particular, B ∪ {f} ∈ A so
B ∪ {B ∪ {f}} is larger than B and totally ordered which is not possible. Hence
H⊥R \{0} = ∅.

Let {en}Nn=1 be an orthonormal basis for HR (N ≤ ∞) which is also an orthonor-
mal basis for H. Hence we may write any element f ∈ H as

f =

N∑
j=1

Re(〈ej , f〉)ej + i

N∑
j=1

Im(〈ej , f〉)ej .

This finishes the proof. �

Theorem E.2. Let HR ⊂ H be a real Hilbert space such that H = HR + iHR. Then
there exists a probability space (X,X ,Q) such that Fb(H) is unitarily isomorphic
to L2(X,X ,Q) via a map V . Furthermore, the following properties hold:

(1) If U is a bounded operator on H such that UHR ⊂ HR and ‖U‖≤ 1 then
V Γ(U)V ∗ is positivity preserving.

(2) Assume ω is a selfadjoint, nonnegative and injective operator on H. If e−tω
maps HR into HR for all t ≥ 0 then V e−tdΓ(ω)V ∗ is positivity improving.
If inf(σ(ω)) > 0 then V e−tdΓ(ω)V ∗ is hypercontractive.

(3) If v ∈ HR then V ϕ(v)V ∗ acts like multiplication by a normally distributed
variable ϕ̃(v) with mean 0 and variance ‖v‖2. If v1, v2 ∈ HR and a, b ∈ R
then

aϕ̃(v1) + bϕ̃(v2) = ϕ̃(av1 + bv2)

almost everywhere.
(4) If {vn}∞n=1 ⊂ HR converges to v ∈ HR then ϕ̃(vn)` converges to ϕ̃(v)` in

Lq(X,X ,Q) for all ` ∈ N and q ≥ 1.
(5) Let α ∈ R2n, q > 0 and r > 0. Define

K = {f ∈ H2n | (α, f) satisfies part (1) of Hypothesis 1 and ‖f1‖< r}
There is a constant C := C(α, r, q) such that for all f ∈ K we have

‖eH̃I(α,f)‖q≤ C,
where H̃I(α, f) =

∑2n
j=1 αiϕ̃(fi).

Proof. Everything in parts (1)-(3) can be found in [4] and [17]. We now prove part
(4). For any N(0, σ2) distributed variable X we have

‖|X|a‖q= σaE[|X/σ|aq]1/q.
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Since X/σ is N(0, 1) distributed we find that E[|X/σ|qa]1/q depends only on q and
a. Write B(q, a) for this constant. Then we may calculate using Hölders inequality

‖ϕ̃(vn)` − ϕ̃(v)`‖q ≤
`−1∑
j=0

‖ϕ̃(vn)`−j−1ϕ̃(vn − v)ϕ̃(v)j‖q

≤
`−1∑
j=0

‖ϕ̃(vn)(`−j−1)‖3q‖ϕ̃(vn − v)‖3q‖ϕ̃(v)j‖3q

≤
`−1∑
j=0

B(3q, `− j − 1)B(3q, 1)B(3q, j)‖vn‖`−j−1‖vv − v‖‖v‖j

showing the desired result.
We now prove part (5). Let f ∈ K(α). Using Lemma 4.1 we find

∑2n
j=2 αiϕ̃(fi)

is uniformly bounded below by a constant C1 depending only on α. Therefore we
find

‖e−H̃I(α,f)‖q≤ e−C1E[e−qα1ϕ̃(f1)]1/q = e−C1(e−q
2α2

1‖f1‖2/2)1/q ≤ e−C1e−r
2α2

1q/2.

This finishes the proof. �

Lemma E.3. Let {An}∞n=1 be a sequence of selfadjoint operators on a Hilbert
space H converging to A in norm resolvent sense. If B is a bounded and selfadjoint
operator on H then {An +B}∞n=1 will converge in norm resolvent sense to A+B.

Proof. For λ > ‖B‖+1 we have max{‖B(A − iλ)−1‖, ‖B(An − iλ)−1‖} < ‖B‖
1+‖B‖

and so we may calculate

(A+B − iλ)−1−(An +B − iλ)−1

=

∞∑
k=0

(A− iλ)−1(B(A− iλ)−1)k − (An − iλ)−1(B(An − iλ)−1)k.

Each term in the series converge to 0 as n tends to ∞. Furthermore,

‖(A− iλ)−1(B(A− iλ)−1)k − (An − iλ)−1(B(An − iλ)−1)k‖≤ 2

λ

( ‖B‖
1 + ‖B‖

)k
which is summable. The conclusion now follows by dominated convergence. �
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