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Asymptotic theory for longitudinal data with missing

responses adjusted by inverse probability weights
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Abstract

In this article, we propose a new method for analyzing longitudinal data which
contain responses that are missing at random. This method consists in solving the
generalized estimating equation (GEE) of [6] in which the incomplete responses are
replaced by values adjusted using the inverse probability weights proposed in [13].
We show that the root estimator is consistent and asymptotically normal, essentially
under the some conditions on the marginal distribution and the surrogate correlation
matrix as those presented in [11] in the case of complete data, and under minimal
assumptions on the missingness probabilities. This method is applied to a real-
life dataset taken from [9], which examines the incidence of respiratory disease in
a sample of 250 pre-school age Indonesian children which were examined every 3
months for 18 months, using as covariates the age, gender, and vitamin A deficiency.

MSC 2010: Primary 62F12; Secondary 62J12
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1 Introduction

Longitudinal data sets are encountered frequently in biostatistics when repeated measure-
ments are made on the same individual. Due to their complexity, the analysis of such
data sets presents many challenges for statisticians. Often, one is interested to analyze
the relationship between a response variable (for instance the presence of lung cancer)
and several explanatory variables (for instance the age, smoking status or family income).
In this case, a commonly used method (introduced by Liang and Zeger in the seminal
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article [6]) is to assume that the marginal distribution of each response follows a gener-
alized linear model (GLM) with regression parameter β, while the correlation between
the responses is modeled by a surrogate correlation matrix which depends on another
parameter α. The goal of this method is to obtain a consistent estimator of β, defined
as the root of the generalized estimating equation (GEE). We refer the reader to [7] for a
comprehensive account on GLMs, and to [5] for more details about longitudinal data.

Building upon earlier work of [3] and [15] for estimating equations for classical datasets,
the article [11] contains a thorough analysis of the asymptotic properties of the GEE
estimator, including the case when the number of observations made on each individual
(called the cluster size) goes to infinity. Similar theoretical investigations were pursed
in [1] for fixed cluster size, for an estimator defined as the root of a pseudo-likelihood
equation, which contains an estimator of the correlation matrix based on the data.

In the presence of incomplete observations, the analysis of longitudinal data becomes
even more complex. Several methods for dealing with longitudinal data which contain
missing responses (or missing covariates, or both) have been proposed by various authors.
We refer the reader to [4, 10, 12, 13, 14] for a sample of relevant references.

The goal of the present article is to adapt the GEE method of [6, 11] to the case when
the responses are missing at random (a term whose meaning will be explained below).
For this, we will replace the incomplete responses by values adjusted using the inverse
probability weights proposed in [13]. Under minimal assumptions on the missingness
probabilities, we will show that the root estimator of β is consistent and asymptotically
normal, under essentially the some conditions on the marginal distribution and the sur-
rogate correlation matrix as in [11].

We say few words about the notation. We use the convention of omitting the true
parameter β0 when it is the argument as a function. For instance, we write εi instead of
εi(β0). For sequences (Xn)n≥1 and (Yn)n≥1 of random variables with Yn 6= 0 for all n ≥ 1,
we write Xn = Op(Yn) if the sequence (Xn/Yn)n≥1 is bounded in probability, i.e. for any
ε > 0 there exists Mε > 0 and an integer Nε ≥ 1 such that P (|Xn/Yn| ≤ Mε) > 1 − ε

for all n ≥ Nε. We write Xn = op(Yn) if Xn/Yn
p→ 0, where

p→ denotes convergence in

probability. We write Xn
d→ X if (Xn)n≥1 converges in distribution to X .

We conclude the introduction by recalling some basic facts about matrix analysis. We
refer the reader to [8] for more details. We denote by diag(v) the diagonal matrix with
entries given by v = (v1, . . . , vm). We denote by ‖x‖ the Euclidean norm of a vector x.
If A is a symmetric matrix, then all its eigenvalues are real. In this case, we write A ≥ 0
if xTAx ≥ 0 for any vector x, and A > 0 if xTAx > 0 for any vector x. For a symmetric
p× p matrix A, we use the following inequality: (see Theorem 3.15 of [8])

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx for any x ∈ R
p, (1)

where λmin(A) is the minimum eigenvalue of A and λmax(A) is the maximum eigenvalue of
A. In particular, A ≥ 0 if and only if λmin(A) ≥ 0, and A > 0 if and only if λmin(A) > 0.
If A ≥ 0, then λmax(A

2) = [λmax(A)]2. If A > 0, λmax(A
−1) = 1/λmin(A). The left

square-root of a matrix A > 0 is the matrix A1/2 such that A1/2(A1/2)T = A. We let

A−1/2 = (A1/2)−1. We let ‖A‖ = sup‖x‖=1 ‖Ax‖ =
(
λmax(A

TA)
)1/2

be the spectral
norm of a matrix A = (aij)i≤n,j≤m, which is equivalent to its Euclidean norm given by
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‖A‖E =
(∑n

i=1

∑m
j=1 a

2
ij

)1/2
. We denote by tr(A) the trace of matrix A and by det(A)

its determinant. Note that tr(A) is the sum of the eigenvalues of A and det(A) is the
product of the eigenvalues of A (see Theorem 3.5 of [8]).

This article is organized as follows. In Section 2 we introduce our framework, we
define the estimating equation and we discuss some of its properties. In Section 3, we
prove the consistency and asymptotic normality of the root estimator, under essentially
the same conditions as in [11] in the case of complete data. The most complicated of
these conditions involves the derivative of the estimating equation and is called condition
(CC). In Section 4, we give some sufficient conditions for (CC). In Section 5, we apply
our method to a real-life data set. Finally, Appendix A contains some auxiliary results
which are used in Section 4.

2 The estimating equation

In this section, we introduce our framework and we define a generalized estimating equa-
tion which can be used when some of the responses are missing at random.

We consider n individuals whose measurements are recorded on m occasions. For each
i = 1, . . . , n and j = 1, . . . , m, we denote by Yij the response of individual i at time j.
Some of these responses are missing. We let

Iij =

{
1, if Yij is observed

0, if Yij is missing

We let Yi = (Yi1, . . . , Yim)
T be the vector of responses of the ith individual and Ii =

(Ii1, . . . , Iim)
T be the vector of missingness indicators for this individual.

For each i = 1, . . . , n, and j = 1, . . . , m, we let Xij = (X
(1)
ij , . . . , X

(p)
ij )T be the p-

dimensional vector of covariates for individual i at time j. We assume that Xij is random.
The following m× p matrix contains the covariates of the ith individual:

Xi =



XT

i1
...

XT
im


 =



X

(1)
i1 . . . X

(p)
i1

...
. . .

...

X
(1)
im . . . X

(p)
im




We assume that {(Yi,Xi, Ii)}i≥1 are independent and identically distributed (i.i.d.),
and there exists a one-to-one differentiable function µ on R such that

µij(β) := E(Yij|Xi) = µ(XT
ijβ) and σ2

ij(β) := Var(Yij|Xi) = φµ′(XT
ijβ), (2)

for a p-dimensional parameter β and a nuisance parameter φ. In the present article, we
will assume that φ = 1. The inverse g of the function µ is called the link function. Let
µi(β) = (µi1(β), . . . , µim(β)

T . We denote by Di(β) the m× p matrix:

Di(β) =
∂µi(β)

∂βT
=




∂µi1

∂βT (β)
...

∂µim

∂βT (β)



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Note that
∂µij

∂βT (β) = XT
ijµ

′(XT
ijβ) and henceDi(β) = Ai(β)Xi, whereAi(β) is the diagonal

matrix with entries µ′(XT
i1β), . . . , µ

′(XT
imβ) for j = 1, . . . , m.

Example 2.1. (Normal Linear Regression for Quantitative Responses) When the re-
sponses Yij represent quantitative measurements, we may assume that Yij has an normal
distribution with mean µij(β) = XT

ijβ and known variance σ2
ij(β) = φ, for a nuissance

parameter φ which is estimated separately. In this case, µ(x) = x and µ′(x) = 1. The
link function is g(x) = x.

Example 2.2. (Log-linear Regression for Count-type Responses) When the responses Yij

represent count-type measurements, we may assume that Yij has a Poisson distribution
with mean µij(β) = exp(XT

ijβ). In this case, µ(x) = ex and µ′(x) = ex. The link function
is g(x) = log x for x > 0.

Example 2.3. (Logistic Regression for Binary Responses) When the responses Yij repre-
sent binary measurements, we may assume that Yij has a Bernoulli distribution with mean

µij(β) =
exp(XT

ijβ)

1+exp(XT
ijβ)

. In this case, µ(x) = ex

1+ex
and µ′(x) = ex

(1+ex)2
. The link function is

g(x) = log x
1−x

=: logit(x) for x ∈ (0, 1).

We consider the following marginal model:

Yij = µij(β) + εij(β) j = 1, . . . , m.

We let εi(β) = (εi1(β), . . . , εim(β))
T be the residuals, for i = 1, . . . , n. Let Σi(β) =

(σi,jk(β))1≤j,k≤m be the conditional covariance matrix ofYi givenXi, with entries σi,jk(β) =
E[εij(β)εik(β)|Xi]. In particular, σi,jj(β) = σ2

ij(β) = µ′(XT
ijβ). Note that

Σi(β) = Ai(β)
1/2RiAi(β)

1/2,

where Ri = (ri,jk)1≤j,k≤m is the conditional correlation matrix of Yi given Xi with entries:
ri,jk = σi,jk(β)/[σij(β)σik(β)].

The method proposed in [6] consists in replacing the unknown correlation matrix Ri

by a surrogate correlation matrix Ri(α) depending on a parameter α (to be estimated
separately), and solving the Generalized Estimated Equation (GEE):

n∑

i=1

DT
i (β)V

−1
i (β, α)(Yi − µi(β)) = 0, (3)

where Vi(β) = Ai(β)
1/2Ri(α)Ai(β)

1/2 is an approximation of the unknown covariance
matrix Σi(β). Equation (3) can be written equivalently as:

n∑

i=1

XT
i Ai(β)

1/2Ri(α)
−1Ai(β)

−1/2(Yi − µi(β)) = 0. (4)

Typical examples of matrices Ri(α) are:

a) Ri(α) =




1 α1 0 0 . . . 0 0
α1 1 α2 0 . . . 0 0
...

...
. . .

...
... 0 0

0 0 0 0 . . . 1 αm−1

0 0 0 0 . . . αm−1 1




or b) Ri(α) =




1 α . . . α
α 1 . . . α
...

...
. . .

...
α α . . . 1



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Case a) is called 1-dependent, whereas case b) is called exchangeable.
The case Ri(α) = I for all i = 1, . . . , n is called working independence. In this case,

equation (4) becomes
n∑

i=1

m∑

j=1

Xij(Yij − µ(XT
ijβ)) = 0. (5)

In 2003, Xie and Yang proved rigorously in [11] that equation (3) has a root β̂n which
is a consistent estimator of β, and derived the asymptotic normality of this estimator. In
this article, we develop a method similar to that of [11] which can be applied when some
of the responses are missing.

We assume that the the responses are missing at random (MAR), i.e.

Yi and Ii are conditionally independent given Xi, for any i = 1, . . . , n.

For any i = 1, . . . , n and j = 1, . . . , m, we let πij = P (Iij = 1|Xi,Yi) = P (Iij = 1|Xi).
Then E(Iij|Xi) = E(I2ij|Xi) = πij . We consider the inverse probability weighted response

Y ∗
ij =

YijIij
πij

. (6)

We let Y∗
i = (Y ∗

i1, . . . , Y
∗
im)

T be the vector of weighted responses for the ith individual
and ε∗i (β) = (ε∗i1(β), . . . , ε

∗
im(β))

T , where ε∗ij(β) = Y ∗
ij − µij(β), j = 1, . . . , m.

The next result shows that the weighted response Y ∗
ij has the same mean as the original

response Yij.

Lemma 2.4. For each i = 1, . . . , n and j = 1, . . . , m, E(Y ∗
ij |Xi) = µij(β). Therefore

E(ε∗i (β)|Xi) = 0 for all i ≥ 1.

Proof. Note that

Y ∗
ij − Yij =

( Iij
πij

− 1
)
Yij . (7)

Using (7) and double conditioning, we have:

E(Y ∗
ij |Xi) = E(Y ∗

ij − Yij|Xi) + E(Yij |Xi) = E
[( Iij

πij
− 1
)
Yij|Xi

]
+ µij(β)

= E
[
YijE

[ Iij
πij

− 1|Xi,Yi

]
|Xi

]
+ µij(β) = µij(β),

where for the last line, we used the fact that,

E
[ Iij
πij

− 1|Yi,Xi

]
= E

[ Iij
πij

− 1|Xi

]
=

1

πij
E(Iij |Xi)− 1 = 0. (8)

due to the (MAR) assumption.

For each i = 1, . . . , n and j, k = 1, . . . , m, we consider the probability that both
responses Yij and Yik are missing, given Xi:
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qi,jk = P (Iij = 1, Iik = 1|Xi).

In the next lemma, we compute the conditional covariance matrix of Y∗
i given Xi.

Note that the expected value of a matrix A = (Ajk)1≤j,k≤m whose elements are random
variables Ajk is, by definition, the matrix E(A) = {E(Ajk)}1≤j,k≤m.

Lemma 2.5. The conditional covariance matrix of Y∗
i given Xi is

Σ∗
i (β) := E[ε∗i (β)ε

∗
i (β)

T |Xi] = (σ∗
i,jk(β))1≤j,k≤m,

where

σ∗
i,jk(β) = σi,jk(β) +

(
qi,jk
πijπik

− 1

)(
σi,jk(β) + µij(β)µik(β)

)
. (9)

In particular, for any j = 1, . . . , m, the conditional marginal variance of Y ∗
ij given Xi is:

σ∗
i,jj(β) = σ2

ij(β) +

(
1

πij

− 1

)
(σ2

ij(β) + µ2
ij(β))

= µ′(XT
ijβ) +

(
1

πij
− 1

)
(µ′(XT

ijβ) + µ2(XT
ijβ)). (10)

Proof. For any j, k = 1, . . . , m fixed,

σ∗
i,jk(β) = E[(Y ∗

ij − µij(β))(Y
∗
ik − µik(β))|Xi]

= E[(Y ∗
ij − Yij)(Y

∗
ik − Yik)|Xi] + E[(Y ∗

ij − Yij)(Yik − µik(β))|Xi]

+ E[(Y ∗
ik − Yik)(Yij − µij(β))|Xi] + E[(Yij − µij(β))(Yik − µik(β))|Xi]. (11)

We treat separately the four terms. By (7), the second term is equal to

E[(Y ∗
ij − Yij)(Yik − µik(β))|Xi] = E

[
Yij(Yik − µij(β))E

[ Iij
πij

− 1|Xi,Yi

]
|Xi

]
= 0,

using (8) for the last equality. Similarly, the third term in (11) is also equal to 0. Note
that the fourth term in (11) is equal to σi,jk(β). Hence,

σ∗
i,jk(β) = E[(Y ∗

ij − Yij)(Y
∗
ik − Yik)|Xi] + σi,jk(β). (12)

By (7),

E[(Y ∗
ij − Yij)(Y

∗
ik − Yik)|Xi] = E

[
YijYikE

[( Iij
πij

− 1
)( Iik

πik
− 1
)
|Xi,Yi

]
|Xi

]
. (13)

We compute separately the inner conditional expectation. By the (MAR) assumption,

E
[( Iij

πij

− 1
)( Iik

πik

− 1
)
|Xi,Yi

]
=

1

πijπik

E(IijIjk|Xi)−
1

πij

E(Iij |Xi)−
1

πik

E(Iik|Xi) + 1

=
1

πijπik

qi,jk − 1.

6



Coming back to (13), we obtain

E[(Y ∗
ij − Yij)(Y

∗
ik − Yik)|Xi] =

( 1

πijπik
qi,jk − 1

)
E[YijYik|Xi]

=
( 1

πijπik
qi,jk − 1

)(
σi,jk + µij(β)µik(β)

)
. (14)

Relation (9) follows from relations (12) and (14). The last statement follows from (9) and
our model assumptions (2), using the fact that qi,jj = P (Iij = 1|Xi) = πij.

Let A∗
i (β) be the diagonal matrix with entries σ∗

i,jj(β), j = 1, . . . , m. Then

Σ∗
i (β) = A∗

i (β)
1/2R∗

iA
∗
i (β)

1/2, (15)

where R∗
i = (r∗i,jk)1≤j,k≤m is the conditional correlation matrix of Y∗

i given Xi:

r∗i,jk =
Cov(Y ∗

ij, Y
∗
ik|Xi)√

Var(Y ∗
ij|Xi) ·

√
Var(Y ∗

ik|Xi)
=

σ∗
i,jk(β)√

σ∗
i,jj(β) ·

√
σ∗
i,kk(β)

.

In practice, the matrix R∗
i is unknown. Following the same idea as in [6] in the case

of complete data, we replaced the matrix R∗
i by a surrogate matrix Ri(α) which depends

on an unknown parameter α (to be estimated separately). We define

V∗
i (β, α) = A∗

i (β)
1/2Ri(α)A

∗
i (β)

1/2. (16)

We are interested in solving the equation

gn(β) :=

n∑

i=1

DT
i (β)V

∗
i (β, α)

−1(Y∗
i − µi(β)) = 0. (17)

Note that equation (17) is the analogue of equation (3) for the case of missing responses
which are adjusted using the inverse probability weights. Note that

gn(β) =
n∑

i=1

XT
i Fi(β)Ri(α)

−1A∗
i (β)

−1/2ε∗i (β),

where Fi(β) = Ai(β)A
∗
i (β)

−1/2 is the diagonal matrix with entries fij(β), j = 1, . . . , m:

fij(β) =
σ2
ij(β)√
σ∗
i,jj(β)

=
µ′(XT

ijβ)√
µ′(XT

ijβ) +
(

1
πij

− 1
) (

µ′(XT
ijβ) + µ2(XT

ijβ)
) . (18)

The following result gives the mean and the covariance matrix of gn(β).
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Lemma 2.6. gn(β) is an unbiased estimating function, i.e. E[gn(β)] = 0 for all β. The
covariance matrix of gn(β) is

Mn(β) := E[gn(β)gn(β)
T ] = E[M∗

n(β)],

where

M∗
n(β) =

n∑

i=1

DT
i (β)V

∗
i (β, α)

−1Σ∗
i (β)V

∗
i (β, α)

−1Di(β).

Proof. The first statement follows by Lemma 2.4 since

E[gn(β)] =
n∑

i=1

E[DT
i (β)V

∗
i (β, α)

−1E[ε∗i (β)|Xi]] = 0.

We proceed now with the calculation of the covariance matrix of gn(β). Note that

gn(β)gn(β)
T =

n∑

i=1

n∑

l=1

DT
i (β)V

∗
i (β, α)

−1ε∗i (β)ε
∗
l (β)

TV∗
l (β, α)

−1Dl(β).

Since πij = P (Iij = 1|Xi) = hj(Xi) for a function hj,

ε∗ij(β) = Y ∗
ij − µ(XT

ijβ) =
YijIij
πij

− µ(XT
ijβ) = Φj(Yij,Xi, Iij, β)

for a certain function Φj . Since {(Yi,Xi, Ii)}i≥1 are independent, it follows that {ε∗i (β)}i≥1

are independent. The same argument shows that {DT
i (β)V

∗
i (β, α)

−1ε∗i (β)}i≥1 are inde-
pendent. Note that

E[DT
i (β)V

∗
i (β, α)

−1ε∗i (β)] = E[E[DT
i (β)V

∗
i (β, α)

−1ε∗i (β)|Xi]]

= E[DT
i (β)V

∗
i (β, α)

−1E[ε∗i (β)|Xi]]

= 0,

where for the last equality we used Lemma 2.4. Therefore if i 6= l,

E[DT
i (β)V

∗
i (β, α)

−1ε∗i (β)ε
∗
l (β)V

∗
l (β, α)

−1Dl(β)] = 0.

Coming back to the calculation of E[gn(β)gn(β)
T ], we obtain using conditioning again

E[gn(β)gn(β)
T ] =

n∑

i=1

E[E[DT
i (β)V

∗
i (β, α)

−1ε∗i (β)ε
∗
i (β)

TV∗
i (β, α)

−1Di(β)|Xi]]

=

n∑

i=1

E[DT
i (β)V

∗
i (β, α)

−1E[ε∗i (β)ε
∗
i (β)

T |Xi]V
∗
i (β, α)

−1Di(β)]

=
n∑

i=1

E[DT
i (β)V

∗
i (β, α)

−1Σ∗
i (β)V

∗
i (β, α)

−1Di(β)]

= E[M∗
n(β)].

This finishes the proof.
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Remark 2.7. Using the fact that Di(β) = Ai(β)Xi and relations (15) and (16), we
obtain the following alternative formula for M∗

n(β):

M∗
n(β) =

n∑

i=1

XT
i Fi(β)Ri(α)

−1R∗
iRi(α)

−1Fi(β)Xi.

We denote τn = max
i≤n

λmax(Ri(α)
−1/2R∗

iRi(α)
−1/2) = max

i≤n
λmax(R

−1
i (α)R∗

i ). By (1),

M∗
n(β) ≤ τnH

∗
n(β), where

H∗
n(β) =

n∑

i=1

XT
i Fi(β)Ri(α)

−1Fi(β)Xi =

n∑

i=1

Di(β)
TV∗

i (β, α)
−1Di(β). (19)

By taking the expectation on both sides of this inequality, we infer that

Mn(β) ≤ τnHn(β),

where Hn(β) = E[H∗
n(β)]. Note that τn ≤ mλ̃n, where λ̃n = maxi≤n λmax(Ri(α)

−1). The

advantage of working with λ̃n instead of τn is that λ̃n does not depend on the unknown
correlation matrix R∗

i .

3 Consistency and asymptotic normality

In this section, we show that under certain conditions, equation (17) has a solution β̂n

which is a consistent estimator of β. The proofs are similar to those presented in [11] in
the case of complete data.

We consider the negative derivative of our estimating function gn(β):

Dn(β) = − ∂
∂βT gn(β).

This derivative plays an important form in the present article. Its explicit formula is given
in Section 4 below. It is important to note that Dn(β) is non-symmetric. We consider

the ball B∗
n(r) = {β; ‖H1/2

n (β − β0)‖ ≤ τ
1/2
n r}, where β0 is the true value of β.

Similarly to [11], we consider the following conditions:

(I∗w) λmin(Hn)/τn → ∞ as n → ∞.
(L∗

w) There exists a constant c0 > 0 such that for any r > 0,

P (xTH−1/2
n Dn(β)H

−1/2
n x ≥ c0 for any β ∈ B∗

n(r) and x ∈ R
p with ‖x‖ = 1) → 1.

(D∗
w) For any r > 0, P (Dn(β) is non-singular for any β ∈ B∗

n(r)) → 1.

Under (I∗w), λmin(Hn) > 0 for n large enough. Hence, Hn > 0 for n large enough.

The following result shows that under these conditions, there exists an estimator β̂n

which is the root of the equation gn(β) = 0 and this estimator is consistent.
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Theorem 3.1. Under conditions (I∗w), (L
∗
w) and (D∗

w), we have:

a)P (there exist r > 0 and β̂n ∈ Bn(r) such that gn(β̂n) = 0) → 1

b) β̂n
P→ β0.

Proof. This use the same argument as in the proof of Theorem 2 of [11]. We give only
the sketch of this argument.

a) Let Ω∗
n(r) be the event where xTH

−1/2
n Dn(β)H

−1/2
n x ≥ c0 for any β ∈ B∗

n(r) and
for any x ∈ R

p with ‖x‖ = 1, and Dn(β) is non-singular for any β ∈ B∗
n(r). By conditions

(L∗
w) and (D∗

w), P (Ω∗
n(r)) → 1 for any r > 0.

On the event Ω∗
n(r), the function Tn(β) = H

−1/2
n gn(β) is one-to-one, since its deriva-

tive is non-singular. This function is also differentiable. Let E∗
n(r) be the event where

‖Tn(β0)‖ ≤ infβ∈∂B∗

n(r) ‖Tn(β)− Tn(β0)‖, where ∂B∗
n(r) = {β; ‖H1/2

n (β − β0)‖ = τ
1/2
n r}.

Let Ω̃n(r) be the event that there exists β̂n ∈ B∗
n(r) such that gn(β̂n) = 0. By Lemma A

of [3],

E∗
n(r) ∩ Ω∗

n(r) ⊂ Ω̃n(r). (20)

Therefore, it suffices to show that for any ε > 0, there exists r = rε > 0 and an integer
Nε ≥ 1 such that

P (E∗
n(r) ∩ Ω∗

n(r)) ≥ 1− ε for all n ≥ Nε. (21)

Let ε > 0 be arbitrary and r = 1
c0

√
2p
ε
. By applying Talyor’s formula to Tn(β), it

can be proved that on the event Ω∗
n(r), infβ∈∂B∗

n(r) ‖Tn(β) − Tn(β0)‖ ≥ c0τ
1/2
n r. Hence,

the event {‖Tn(β0)‖ ≤ c0τ
1/2
n r} ∩ Ω∗

n(r) is contained in E∗
n(r) ∩ Ω∗

n(r). By Chebushev’s
inequality and the choice of r, for any n ≥ 1, we have:

P (‖Tn(β0)‖ ≤ c0τ
1/2
n r) ≥ 1− 1

c20τnr
2
E[‖Tn(β0)‖2] = 1− ε

2
.

Since P (Ω∗
n(r)) → 1, there exists an integer Nε ≥ 1 such that P (Ω∗

n(r)) > 1− ε/2 for all
n ≥ Nε. Relation (21) follows by Bonferroni’s inequality.

b) Let δ > 0 and ε > 0 be arbitrary. Let r = rε and Nε as in part a). By condition (I∗w),

there exists N∗
δ ≥ 1 such that λmin(Hn)

τn
≥ δ2

r
for all n ≥ N∗

δ . On the event Ω∗
n(r) ∩ E∗

n(r),

‖β̂n − β0‖ ≤ ‖H−1/2
n ‖ · ‖H1/2

n (β̂n − β0)‖ ≤
[

1
λmin(Hn)

]1/2
τ
1/2
n r ≤ δ for all n ≥ N∗

δ . By (21),

P (‖β̂n − β0‖ ≤ δ) ≥ P (Ω∗
n(r) ∩ E∗

n(r)) ≥ 1− ε for all n ≥ Nε,δ = max(Nε, N
∗
δ ).

Remark 3.2. Since τn ≤ mλ̃n, Theorem 3.1 remains valid if we replace τn by mλ̃n in
conditions (I∗w) and (L∗

w).

For the asymptotically normality of β̂n, we consider the following condition:

(CC) For any r > 0 and δ > 0,

P ( sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n Dn(β)H

−1/2
n y − xTy| ≤ δ) → 1.

Lemma 3.3. Condition (CC) implies condition (L∗
w).
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Proof. We denote by Ωn(δ, r) the event in condition (CC). Choose δ ∈ (0, 1) arbitrary.
In particular, on the event Ωn(δ, r), for any β ∈ B∗

n(r) and for any x ∈ R
p with ‖x‖ = 1,

|xTH−1/2
n Dn(β)H

−1/2
n x− 1| ≤ δ,

and hence, xTH
−1/2
n Dn(β)H

−1/2
n x ≥ 1− δ =: c0. Therefore

Ωn(δ, r) ⊂ Ω∗
n(r), (22)

where Ω∗
n(r) is the same event as in the proof of Theorem 3.1. Since P (Ωn(δ, r)) → 1, it

follows that P (Ω∗
n(r)) → 1.

Let cn = λmax(M
−1
n Hn). We consider the following boundedness condition:

(B) There exists c > 0 such that τncn ≤ c for all n.

Theorem 3.4. Under conditions (I∗w), (D
∗
w), (CC) and (B),

M−1/2
n gn = M−1/2

n Hn(β̂n − β0) + op(1).

Proof. Let η > 0 and ε > 0 be arbitrary. We have to prove that there exists an integer
Nη,ε ≥ 1 such that for all n ≥ Nη,ε,

P (‖M−1/2
n gn −M−1/2

n Hn(β̂n − β0)‖ ≤ η) ≥ 1− ε.

Let c0 ∈ (0, 1) be a constant which will be specified later, δ = 1 − c0 and r = 1
c0

√
2p
ε
.

Let E∗
n(r), Ω

∗
n(r) and Ω̃n(r) be the same events as in the proof of Theorem 3.1. Let

Ωn(δ, r) be the event in condition (CC). By (20) and (22),

E∗
n(r) ∩ Ω∗

n(δ, r) ⊂ E∗
n(r) ∩ Ω∗

n(r) ⊂ Ω̃n(r).

Using Taylor’s formula and the fact that gn(β̂n) = 0, we infer that there exists βn ∈ B∗
n(r)

such that
gn = Dn(βn)(β̂n − β0).

Wemultiply this identity by the matrixM−1/2
n . We denoteUn(β) = H−1/2

n Dn(β)H
−1/2
n −I.

We obtain

M−1/2
n gn = M−1/2

n Dn(βn)(β̂n − β0)

= M−1/2
n H1/2

n Un(β)H
1/2
n (β̂n − β0) +M−1/2

n Hn(β̂n − β0).

Note that

‖M−1/2
n H1/2

n ‖2 = λmax(H
1/2
n M−1

n H1/2
n ) =

1

λmin(H
−1/2
n MnH

−1/2
n )

=
1

λmin(H
−1
n Mn)

= λmax(M
−1
n Hn) = cn.

11



On the event E∗
n(r) ∩ Ωn(δ, r), for all β ∈ B∗

n(r), ‖Un(β)‖ ≤ c1‖Un(β)‖E ≤ c1pδ (since
all the elements of Un(β) are bounded in modulus by δ), and so by condition (B)

‖M−1/2
n gn −M−1/2

n Hn(β̂n − β)‖ ≤ (cnτn)
1/2c1pδr ≤ c1/2c1pδr

= c1/2c1p
1− c0
c0

√
2p

ε
≤ η,

if we choose c0 ∈ (0, 1) (depending on η and ε) such that 1
c0

≤ 1+ η
c1/2c1p

√
ε
2p
. This means

that
E∗

n(r) ∩ Ωn(δ, r) ⊂ {‖M−1/2
n gn −M−1/2

n Hn(β̂n − β0)‖ ≤ η}.
Similarly to (21), it can be shown that there exists Nη,ε ≥ 1 such that

P (E∗
n(r) ∩ Ωn(δ, r)) ≥ 1− ε

for all n ≥ Nη,ε. The conclusion follows.

We define Ỹi = (A∗
i )

−1/2ε∗i and γ
(D)
n = max

i≤n
γ
(D)
n,i , where

γ
(D)
n,i = λmax(H

−1/2
n DT

i (V
∗
i )

−1DiH
−1/2
n ).

We consider the following condition:

(Nδ) There exist constants δ > 0 and K > 0 such that maxi≤n maxj≤mE(Ỹ
2+2/δ
ij |Xi) ≤ K,

and there exists a constant K
(D)
n > 0 such that γ

(D)
n ≤ K

(D)
n and (cnλ̃n)

1+δK
(D)
n → 0.

The following result is the analogue of Lemma 2 in [11] in our case.

Theorem 3.5. Under condition (Nδ), we have

M−1/2
n gn

d→ Np(0, I).

Proof. By the Cramer-Wold theorem, it suffices to show that for any λ ∈ R
p with ‖λ‖ = 1,

λTM−1/2
n gn → N(0, 1). (23)

Fix λ ∈ R
p with ‖λ‖ = 1. Then λTM−1/2

n gn =
n∑

i=1

Zn,i where Zn,i = λTM−1/2
n DT

i (V
∗
i )

−1ε∗i .

The variables (Zn,i)i≤n are independent. By Lemma 2.4,

E[Zn,i] = E[λTM−1/2
n DT

i (V
∗
i )

−1E(ε∗i |Xi)] = 0.

Let s2n = Var(λTM−1/2
n gn). By Lemma 2.6,

s2n =

n∑

i=1

E(Z2
n,i) =

n∑

i=1

E[λTM−1/2
n DT

i (V
∗
i )

−1E[ε∗i (ε
∗
i )

T |Xi](V
∗
i )

−1DiM
−1/2
n λ]

= E[λTM−1/2
n

( n∑

i=1

DT
i (V

∗
i )

−1Σ∗
i (V

∗
i )

−1Di

)
M−1/2

n λ] = E[λTM−1/2
n M∗

nM
−1/2
n λ]

= λTM−1/2
n E[M∗

n]M
−1/2
n λ = 1.

12



By the Central Limit Theorem for triangular arrays (see e.g. Theorem 27.2 of [2]), relation
(23) will follow, once we prove that the following Lindeberg condition holds: for any ε > 0,

lim
n→∞

n∑

i=1

E(Z2
n,iI {‖Zn,i‖ ≥ ε}) = 0. (24)

It remains to prove (24). Let ε > 0 be arbitrary. Using the Cauchy-Schwartz inequality
xTy ≤ ‖x‖ · ‖y‖ for any p-dimensional vectors x and y, we see that

Zn,i ≤ ‖λTM−1/2
n Di(V

∗
i )

−1/2‖2 · ‖(V∗
i )

−1/2ε∗i ‖2

= (λTM−1/2
n DT

i (V
∗
i )

−1DiM
−1/2
n λ) · ((ε∗i )T (V∗

i )
−1ε∗i )

= γn,i · (ε∗i )T (A∗
i )

−1/2R−1
i (α)(A∗

i )
−1/2ε∗i ,

where γn,i = λM−1/2
n DT

i (V
∗
i )

−1DiM
−1/2
n λ. Using inequality (1), it follows that

(ε∗i )
T (A∗

i )
−1/2R−1

i (α)(A∗
i )

−1/2ε∗i ≤ λmax(R
−1
i (α))‖Ỹi‖2 ≤ λ̃n‖Ỹi‖2.

We obtain that
Z2

n,i ≤ γn,iλ̃n‖Ỹi‖2, for any i ≤ n. (25)

We also need another upper bound for Z2
n,i, which is obtained as follows. By (1),

γn,i ≤ λmax(H
−1/2
n DT

i (V
∗
i )

−1DiH
−1/2
n ) · λTM−1/2

n HnM
−1/2
n λ

≤ γ
(D)
n,i λmax(M

−1/2
n HnM

−1/2
n ).

Recalling that cn = λmax(M
−1
n Hn) = λmax(M

−1/2
n HnM

−1/2
n ), we obtain that γn,i ≤ γ

(D)
n,i cn,

and hence
Z2

n,i ≤ cnλ̃nγ
(D)
n ‖Ỹi‖2, for any i ≤ n. (26)

Coming back to (24), and using (25) and (26), we obtain:

n∑

i=1

E[Z2
n,iI{Zn,i ≥ ε}] ≤ λ̃n

n∑

i=1

E
[
γn,i E

[
‖Ỹi‖2I

{
‖Ỹi‖2 ≥

ε2

cnλ̃nγ
(D)
n

}
|Xi

]]

≤ λ̃nm

n∑

i=1

E
[
γn,iE

[‖Ỹi‖2
m

(‖Ỹi‖2/m)1/δ

(ε2/(mcnλ̃nγ
(D)
n ))1/δ

I

{
‖Ỹi‖2 ≥

ε2

cnλ̃nγ
(D)
n

}
|Xi

]]

≤ λ̃nm
(mcnλ̃nK

(D)
n

ε2

)1/δ n∑

i=1

E
[
γn,iE

[(‖Ỹi‖2
m

)1+1/(δ)

|Xi

]]
.

Since the function φ(t) = t1+1/δ is convex,

( 1

m
‖Ỹi‖2

)1+1/δ

=
( 1

m

m∑

j=1

Ỹ 2
ij

)1+1/δ

≤ 1

m

m∑

j=1

Ỹ
2+2/δ
ij ,

13



and hence, by condition (Nδ),

E
[(‖Ỹi‖2

m

)1+1/δ

|Xi

]
≤ 1

m

m∑

j=1

E(Ỹ
2+2/δ
ij |Xi) ≤ K.

Therefore

n∑

i=1

E[Z2
n,iI{Zn,i ≥ ε}] ≤ λ̃nm

(mcnλ̃nK
(D)
n

ε2

)1/δ
KE
[ n∑

i=1

γn,i

]
. (27)

Note that, by the definition of γn,i,

n∑

i=1

γn,i = λTM−1/2
n

( n∑

i=1

DT
i (V

∗
i )

−1DT
i

)
M−1/2

n λ = λTM−1/2
n H∗

nM
−1/2
n λ.

Taking expectation on both sides of the previous equality, we obtain:

E
[ n∑

i=1

γn,i

]
= λTM−1/2

n E(H∗
n)M

−1/2
n λ = λTM−1/2

n HnM
−1/2
n λ ≤ cn.

Introducing this in (27), we obtain:

n∑

i=1

E[Z2
n,iIZn,i ≥ ε] ≤ λ̃nm

(mcnλ̃nK
(D)
n

ε2

)1/δ
Kcn = m

(m
ε2

)1/δ
(cnλ̃n)

1+1/δ(K(D)
n )1/δ.

The last term converges to 0 by condition (Nδ). This finishes the proof of (24).

the following result is an immediate consequence of Theorems 3.4 and 3.5.

Corollary 3.6. Under conditions (I∗w), (D
∗
w), (CC), (B) and (Nδ),

M−1/2
n Hn(β̂n − β) → Np(0, I).

Remark 3.7. In practice, we replace the matrices Mn and Hn by

M̂n =
n∑

i=1

Di(β̂n)
TV∗

i (β̂n, α)
−1Σ̂∗

i (β̂n)V
∗
i (β̂n, α)

−1Di(β̂n)

Ĥn =

n∑

i=1

Di(β̂n)
TV∗

i (β̂n, α)
−1Di(β̂n),

where Σ̂∗
i (β) = (Y∗

i −µi(β))(Y
∗
i−µi(β))

T . Note that the weighted response Y ∗
ij depends on

the missingness probability πij which is unknown (see definition (6) of Y ∗
ij). Moreover, the

matrix V∗
i (β̂n, α) depends on A∗

i (β̂n) (see (16)), which also depends on the probabilities
(πij)1≤j≤m (see (10) for the definition of components σ∗

i,jj(β), j = 1, . . . , m of the diagonal
matrix A∗

i (β)). To avoid this problem, we may use a logistic regression model to “posit
the missing data process”, as suggested on page 155 of [13]. This consists in fitting a
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logistic regression model to the complete data consisting of (Ii,Xi) for i = 1, . . . , n, with
a new regression parameter γ. As in Example 2.3 (applied to the case when Yij is replaced
by Iij), we assume that Iij is a Bernoulli random variable with mean

πij = πij(γ) =
exp(XT

ijγ)

1 + exp(XT
ijγ)

. (28)

To estimate γ, we solve the classical GEE with working independence matrices Ri(α) = I
for all i = 1, . . . , n: (see equation (5))

n∑

i=1

m∑

j=1

Xij

(
Iij −

exp(XT
ijγ)

1 + exp(XT
ijγ)

)
= 0. (29)

Let γ̂ be the solution of the equation (29). Then, in the calculation of Y ∗
ij and σ∗

i,jj(β̂n),
we replace πij by π̂ij = πij(γ̂).

4 Verification of condition (CC)

In this section, we give some sufficient conditions which ensure that condition (CC) holds.
Proceeding as in Remark 1 of [11] (see also Appendix A of [11]), we write the derivative
of gn(β) as the sum of three terms:

−Dn(β) =
∂

∂βT
gn(β) = −H∗

n(β) +Bn(β) + En(β),

where H∗
n(β) is given by (19), Bn(β) = B

(1)
n (β) +B

(2)
n (β), En(β) = E (1)

n (β) + E (2)
n (β) and

B(1)
n (β) =

n∑

i=1

XT
i diag

[
Ri(α)

−1A∗
i (β)

−1/2(µi − µi(β))
]
G

(1)
i (β)Xi

B(2)
n (β) =

n∑

i=1

XT
i Fi(β)Ri(α)

−1diag
[
µi − µi(β)

]
G

(2)
i (β)Xi

E (1)
n (β) =

n∑

i=1

XT
i diag

[
Ri(α)

−1A∗
i (β)

−1/2ε∗i
]
G

(1)
i (β)Xi

E (2)
n (β) =

n∑

i=1

XT
i Fi(β)Ri(α)

−1diag
[
ε∗i
]
G

(2)
i (β)Xi.

Here G
(k)
i (β) = diag

(
g
(k)
i1 (β), . . . , g

(k)
im (β)

)
for k = 1, 2, where

∂

∂βT
fij(β) = g

(1)
ij (β)XT

ij and
∂

∂βT
[σ∗

i,jj(β)]
−1/2 = g

(2)
ij (β)XT

ij,
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with functions g
(1)
ij (β) and g

(2)
ij (β) given by:

g
(1)
ij (β) =

µ′′(XT
ijβ)

[σ∗
i,jj(β)]

1/2
−

2
(

1
πij

− 1
)
µ(XT

ijβ)(µ
′(XT

ijβ))
2 + 1

πij
µ′(XT

ijβ)µ
′′(XT

ijβ)

2[σ∗
i,jj(β)]

3/2
(30)

g
(2)
ij (β) = −

2
(

1
πij

− 1
)
µ(XT

ijβ)µ
′(XT

ijβ) +
1
πij

µ′′(XT
ijβ)

2[σ∗
i,jj(β)]

3/2
(31)

We treat separately the three terms. For this, we introduce the same constants and
smoothness assumption as on pages 330-331 of [11]:

γ(0)
n = max

i≤n
max
j≤m

(XT
ijH

−1
n Xij), γ∗

n = τnγ
(0)
n , πn =

max1≤i≤n λmax(Ri(α)
−1)

min1≤i≤n λmin(Ri(α)−1)
.

Assumption (AH). k
(i)
n = Op(1) for i = 1, 2, 3 where

k(0)
n = sup

β∈B∗

n(r)

max
i,j

µ′(XT
ijβ)

µ(XT
ijβ)

k(1)
n = sup

β∈B∗

n(r)

max
i,j

µ′′(XT
ijβ)

µ′(XT
ijβ)

We impose the following assumption on the missingness probabilities:

Assumption (M). ρn = Op(1), where

ρn = max
i≤n

max
j≤m

1

πij

.

Assumption M says that for any ε > 0, there exists a constant Cε > 0 and an integer
Nε ≥ 1 such that for any n ≥ Nε, with probability greater than 1 − ε, πij ≥ Cε for all
i ≤ n and j ≤ m. Intuitively speaking, this means that the missingness probabilities πij

are bounded away from 0. Note that the case when all probabilities πij are equal to 0
corresponds to the case when all the data is missing.

The following three lemmas are the counterparts of Lemmas A.1.(ii), A.2.(ii) and
A.3.(ii) of [11], when the covariates are random and the responses are missing at random.

Lemma 4.1. Suppose Assumptions (AH) and (M) hold. If πnγ
∗
n

P→ 0 then

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n H∗

n(β)H
−1/2
n y − xTy| P→ 0.

Lemma 4.2. Suppose Assumptions (AH) and (M) hold. If π2
nγ

∗
n

P→ 0 then

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n Bn(β)H

−1/2
n y| P→ 0.

Lemma 4.3. Suppose Assumptions (AH) and (M) hold. If γ∗
n

P→ 0, nπ2
nγ

(0)
n = Op(1) and

nπ2
nγ

(0)
n E(τn)

P→ 0 then

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n En(β)H−1/2

n y| P→ 0.
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Proof of Lemma 4.1: Writing Fi(β) = Fi + (Fi(β)− Fi) in definition (19), we obtain
that

xTH−1/2
n H∗

n(β)H
−1/2
n y − xTy = T0(x,y) +

3∑

i=1

Ti(β,x,y),

where T0(x,y) = xTH
−1/2
n H∗

nH
−1/2
n y − xTy and

T1(β,x,y) =
n∑

i=1

xTH−1/2
n XT

i (Fi(β)− Fi)Ri(α)
−1(Fi(β)− Fi)XiH

−1/2
n y (32)

T2(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i (Fi(β)− Fi)Ri(α)
−1FiXiH

−1/2
n y

T3(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i FiRi(α)
−1(Fi(β)− Fi)XiH

−1/2
n y.

To treat T0(x,y), note that H∗
n =

∑n
i=1Ui, where Ui = DT

i (V
∗
i )

−1Di, i = 1, . . . , n
are i.i.d. random matrices. By the strong law of large numbers, 1

n
H∗

n → E(U1) a.s.
(component-wise), and hence ‖ 1

n
H∗

n − E(U1)‖ → 0 a.s. Since Hn = nE(U1), we obtain:

‖H−1/2
n H∗

nH
−1/2
n − I‖ → 0 a.s. (33)

Therefore, supx,y |T0(x,y)| → 0 a.s. Using inequality (1), we have:

sup
x,y,β

|T1(β,x,y)| ≤ πn sup
β

max
i≤n

λ2
max(F

−1
i Fi(β)− I) · sup

x,y
|xTH−1/2

n H∗
nH

−1/2
n y|

= πnOp(γ
∗
n)Op(1) = πnγ

∗
nOp(1) = op(1), (34)

where the first equality above is due to Lemma A.4 (Appendix A) and relation (33).
To treat T2(β,x,y), we use Cauchy-Schwatz inequality: for any p-dimensional vectors

(ai)i=1,...,n and (bi)i=1,...,n,

∣∣∣∣∣
n∑

i=1

aT
i bi

∣∣∣∣∣ ≤
( n∑

i=1

aT
i ai

)1/2( n∑

i=1

bT
i bi

)1/2
. (35)

Letting ai = xTH
−1/2
n XT

i FiRi(α)
−1/2 and bT

i = Ri(α)
1/2(F−1

i Fi(β)−I)Ri(α)
−1FiXiH

−1/2
n y,

we obtain |T2(β,x,y)| ≤ T ′
2(x)

1/2T ′′
2 (β,y)

1/2, with T ′
2(x) = xH

−1/2
n H∗

nH
−1/2
n x and

T ′′
2 (β,y) ≤ πn max

i≤n
λ2
max(F

−1
i Fi(β)− I)yH−1/2

n H∗
nH

−1/2
n y.

Arguing as above, we get supβ,x,y |T2(β,x,y)| = op(1). The term T3(β,x,y) is similar. �

Proof of Lemma 4.2: We begin by treating B
(1)
n (β). Note that for any p× p diagonal

matrix ∆ and for any p-dimensional vectors v and w,

diag(v)∆w = ∆diag(w)v. (36)
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We use this with v = Ri(α)
−1A∗

i (β)
−1/2(µi − µi(β)), ∆ = G

(1)
i (β) and w = XiH

−1/2
n y.

We obtain that xTH
−1/2
n B

(1)
n (β)H

−1/2
n y is equal to

n∑

i=1

xTH−1/2
n XT

i G
(1)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1A∗
i (β)

−1/2(µi − µi(β)).

Using Cauchy-Schwarz inequality (35), it follows that

|xTH−1/2
n B(1)

n (β)H−1/2
n y| ≤ S1(β,x,y)

1/2S2(β)
1/2, (37)

where

S1(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i G
(1)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1diag(XiH
−1/2
n y) (38)

G
(1)
i (β)XiH

−1/2
n x

S2(β) =
n∑

i=1

(µi − µi(β))
TA∗

i (β)
−1/2Ri(α)

−1A∗
i (β)

−1/2(µi − µi(β)). (39)

Using (1) and the fact that

λ2
max(diag(XiH

−1/2
n y)) ≤ γ(0)

n , (40)

it follows that

S1(β,x,y) ≤ λ̃nγ
(0)
n

n∑

i=1

xTH−1/2
n XT

i [G
(1)
i (β)]2XiH

−1/2
n x (41)

≤ λ̃nγ
(0)
n max

i≤n
λmax

(
Ri(α)

1/2F−1
i [G

(1)
i (β)]2F−1

i Ri(α)
1/2
)
· xTH−1/2

n H∗
nH

−1/2
n x

≤ πnγ
(0)
n max

i≤n
λ2
max

(
F−1

i G
(1)
i (β)

)
· xH−1/2

n H∗
nH

−1/2
n x.

By relations (59) and (60) (given in Appendix A), maxi≤n λ
2
max

(
F−1

i G
(1)
i (β)

)
= Op(1). By

Lemma 4.1, sup‖x‖=1

(
xH

−1/2
n H∗

nH
−1/2
n x

)
= Op(1). From this, we infer that

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

S1(β,x,y) ≤ πnγ
(0)
n Op(1). (42)

We now treat S2(β). By Taylor’s formula, for any β ∈ B∗
n(r), there exists βij ∈ B∗

n(r)

such that µij(β)−µij(β0) = µ′(XT
ijβij)X

T
ij(β−β0). Then µi(β)−µi = AiXi(β−β0), where

Ai is the diagonal matrix with entries µ′(XT
ijβij), j = 1, . . . , m. Note that AiA

∗
i (β)

−1/2 =
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A∗
i (β)

−1/2Ai since Ai and A∗
i (β)

−1/2 are diagonal matrices. Using inequality (1), we get:

S2(β) =

n∑

i=1

(β − β0)
TXT

i A
∗
i (β)

−1/2AiRi(α)
−1AiA

∗
i (β)

−1/2Xi(β − β0)

=
n∑

i=1

(β − β0)
TXT

i Fi(β)Ai(β)
−1AiRi(α)

−1AiAi(β)
−1Fi(β)Xi(β − β0)

≤ λ̃nmax
i≤n

λ2
max(AiAi(β)

−1)

n∑

i=1

(β − β0)
TXT

i [Fi(β)]
2Xi(β − β0)

≤ πn max
i≤n

λ2
max(AiAi(β)

−1) · (β − β0)
TH∗

n(β)(β − β0)

≤ πn max
i≤n

λ2
max(AiAi(β)

−1) · ‖H−1/2
n H∗

n(β)H
−1/2
n ‖ · ‖H−1/2

n (β − β0)‖2

≤ πn max
i≤n

λ2
max(AiAi(β)

−1) · ‖H−1/2
n H∗

n(β)H
−1/2
n ‖ · τnr2

By Lemma 4.1, supβ∈B∗

n(r)
‖H−1/2

n H∗
n(β)H

−1/2
n ‖ = Op(1). Note that AiAi(β)

−1 is a di-

agonal matrix with entries µ′(XT
ijβij)/µ

′(XT
ijβ), j = 1, . . . , m. By relation (59) (given in

Appendix A), it follows that supβ∈B∗

n(r)
maxi≤n λ

2
max(AiAi(β)

−1) = Op(1). Hence,

sup
β∈B∗

n(r)

S2(β) ≤ πnτnOp(1). (43)

Using relations (37), (42) and (43), we infer that

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n B(1)

n (β)H−1/2
n y| ≤ πn(γ

∗
n)

1/2Op(1) = op(1).

We continue with the treatment of B
(2)
n (β). Using relation (36), we see that

xTH−1/2
n B(2)

n (β)H−1/2
n y =

∑

i=1

xTH−1/2
n XT

i Fi(β)Ri(α)
−1diag(XiH

−1/2
n y)G

(2)
i (β)(µi−µi(β)).

We use Cauchy-Schwarz inequality (35) with aT
i = xTH

−1/2
n XT

i Fi(β)Ri(α)
−1diag(XiH

−1/2
n y)

G
(2)
i (β)A∗

i (β)
1/2Ri(α)

1/2 and bi = Ri(α)
−1/2A∗

i (β)
−1/2(µi − µi(β)). We obtain:

|xTH−1/2
n B(2)

n (β)H−1/2
n y| ≤ S3(β,x,y)

1/2S2(β)
1/2, (44)

where S2(β) is given by (39) and

S3(β,x,y) =
n∑

i=1

xTH−1/2
n XT

i Fi(β)Ri(α)
−1diag(XiH

−1/2
n y)G

(2)
i (β)A∗

i (β)
1/2Ri(α) (45)

A∗
i (β)

1/2G
(2)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1Fi(β)XiH
−1/2
n x.

Using inequalities (1) and (40), we obtain that:

S3(β,x,y) ≤ πnγ
(0)
n max

i≤n
λ2
max(A

∗
i (β)

1/2G
(2)
i (β)) · xTH−1/2

n H∗
n(β)H

−1/2
n x.
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Note thatA∗
i (β)

1/2G
(2)
i (β) is a diagonal matrix with elements

√
σ∗
i,jj(β)g

(2)
ij (β), j = 1, . . . , m.

By Lemma A.3 (Appendix A), supβ∈B∗

n(r)
maxi≤n λ

2
max(A

∗
i (β)

1/2G
(2)
i (β)) = Op(1). Using

Lemma 4.1, we obtain:

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

S3(β,x,y) ≤ πnγ
(0)
n Op(1). (46)

Using relations (44), (46) and (43), we infer that:

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|xTH−1/2
n B(2)

n (β)H−1/2
n y| ≤ πn(γ

∗
n)

1/2Op(1) = op(1).

�

Proof of Lemma 4.3: We first treat the term E (1)
n (β). Using relation (36), we see that

xTH−1/2
n E (1)

n (β)H−1/2
n y =

n∑

i=1

xTH−1/2
n XT

i G
(1)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1A∗
i (β)

−1/2ε∗i

= U1(x,y) + U3(β,x,y) + U5(β,x,y),

where

U1(x,y) =

n∑

i=1

xTH−1/2
n XT

i G
(1)
i diag(XiH

−1/2
n y)Ri(α)

−1(A∗
i )

−1/2ε∗i

U3(β,x,y) =
n∑

i=1

xTH−1/2
n XT

i G
(1)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1
(
A∗

i (β)
−1/2 − (A∗

i )
−1/2

)
ε∗i

U5(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i

(
G

(1)
i (β)−G

(1)
i

)
diag(XiH

−1/2
n y)Ri(α)

−1(A∗
i )

−1/2ε∗i .

We first treat U1(x,y). By the Cauchy-Schwarz inequality (35),

|U1(x,y)| ≤ S1(β0,x,y)
1/2U1/2, (47)

where S1(β,x,y) is given by (38) and U =
∑n

i=1Wi, with Wi = (ε∗i )
T (A∗

i )
−1/2Ri(α)

−1

(A∗
i )

−1/2ε∗i . Using the fact that xTx = tr(xxT ) for any p-dimensional vector x, we obtain:

E(Wi) = E[E[tr{Ri(α)
−1/2(A∗

i )
−1/2ε∗i (ε

∗
i )

T (A∗
i )

−1/2Ri(α)
−1/2}|Xi]

= E[tr{Ri(α)
−1/2(A∗

i )
−1/2E[ε∗i (ε

∗
i )

T |Xi](A
∗
i )

−1/2Ri(α)
−1/2}]

= E[tr{Ri(α)
−1/2R∗

iRi(α)
−1/2}] ≤ mE[λmax(Ri(α)

−1/2R∗
iRi(α)

−1/2)] ≤ mE(τn),

for any i = 1, . . . , n, using (15) for the last equality. Hence,
∑n

i=1E(Wi) ≤ mnE(τn).
Since {(Yi,Xi, Ii)}i=1,...,n are i.i.d., (Wi)i=1,...,n are independent. Therefore, by Cheby-
shev’s weak law of large numbers,

∑n
i=1(Wi −E(Wi)) = op(n). Hence,

U ≤ op(n) +mnE(τn). (48)
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Using (47), (42), (48) and the hypotheses of the lemma, it follows that

sup
‖x‖=1

sup
‖y‖=1

|U1(x,y)| ≤ {
(
πnγ

(0)
n op(n)

)1/2
+
(
πnγ

(0)
n nE(τn)

)1/2}Op(1) = op(1).

Next, we treat U3(β,x,y). By the Cauchy-Schwartz inequality (35), it follows that

|U3(β,x,y)| ≤ U ′
3(β,x,y)

1/2U1/2, (49)

where U is the same as above and

U ′
3(β,x,y) =

n∑

i=1

xTH−1/2
n G

(1)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1
(
A∗

i (β)
−1/2(A∗

i )
1/2 − I

)
Ri(α)

(
A∗

i (β)
−1/2(A∗

i )
1/2 − I

)
Ri(α)

−1diag(XiH
−1/2
n y)G

(1)
i (β)H−1/2

n x.

Using inequalities (1) and (40), we see that

U ′
3(β,x,y) ≤ πnλ̃nγ

(0)
n max

i≤n
λ2
max(A

∗
i (β)

−1/2(A∗
i )

1/2 − I)

n∑

i=1

xTH−1/2
n XT

i [G
(1)
i (β)]2XiH

−1/2
n x.

Proceeding as in (41) and using Lemma A.2 (Appendix A), we get:

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

U ′
3(β,x,y) ≤ π2

nγ
(0)
n Op(1). (50)

Using (49), (50) and (48), we obtain by the hypotheses of the lemma that

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|U3(β,x,y)| ≤ {
(
π2
nγ

(0)
n op(n)

)1/2
+
(
π2
nγ

(0)
n nE(τn)

)1/2}Op(1) = op(1).

We now treat U5(β,x,y). By the Cauchy-Schwartz inequality (35), it follows that

|U5(β,x,y)| ≤ U ′
5(β,x,y)

1/2U1/2, (51)

where U is the same as above and

U ′
5(β,x,y) =

n∑

i=1

xTH−1/2
n

(
G

(1)
i (β)−G

(1)
i

)
diag(XiH

−1/2
n y)Ri(α)

−1diag(XiH
−1/2
n y)

(
G

(1)
i (β)−G

(1)
i

)
XiH

−1/2
n x.

Using inequalities (1) and (40), it follows that

U ′
5(β,x,y) ≤ πnγ

(0)
n max

i≤n
λ2
max(F

−1
i (G

(1)
i (β)−G

(1)
i )) · xTH−1/2

n H∗
nH

−1/2
n x.

The matrix F−1
i (G

(1)
i (β)−G

(1)
i ) has j-th element given by

g
(1)
ij (β)− g

(1)
ij (β0)

fij(β0)
=

g
(1)
ij (β)

fij(β)
· fij(β)

fij(β0)
−

g
(1)
ij (β0)

fij(β0)
.
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By relation (60) (Appendix A), maxi≤n λ
2
max(F

−1
i (G

(1)
i (β) −G

(1)
i )) = Op(1). By Lemma

4.1,
sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

U ′
5(β,x,y) ≤ πnγ

(0)
n Op(1). (52)

Using (51), (52) and (48), we obtain by the hypotheses of the lemma that

sup
‖x‖=1

sup
‖y‖=1

sup
β∈B∗

n(r)

|U5(β,x,y)| ≤ {
(
πnγ

(0)
n op(n)

)1/2
+
(
πnγ

(0)
n nE(τn)

)1/2}Op(1) = op(1).

We now treat E (2)
n (β). Using (36), we see that

xTH−1/2
n E (2)

n (β)H−1/2
n y =

n∑

i=1

xTH−1/2
n XT

i Fi(β)Ri(α)
−1diag(XiH

−1/2
n y)G

(2)
i (β)ε∗i

= U2(x,y) + U4(β,x,y) + U6(β,x,y),

where

U2(x,y) =

n∑

i=1

xTH−1/2
n XT

i FiRi(α)
−1diag(XiH

−1/2
n y)G

(2)
i ε∗i

U4(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i (Fi(β)− Fi)Ri(α)
−1diag(XiH

−1/2
n y)G

(2)
i (β)ε∗i

U6(β,x,y) =
n∑

i=1

xTH−1/2
n XT

i FiRi(α)
−1diag(XiH

−1/2
n y)(G

(2)
i (β)−G

(2)
i )ε∗i .

By the Cauchy-Schwarz inequality (35), |U2(x,y)| ≤ S3(β0,x,y)
1/2U1/2, where S3(β,x,y)

is given by (45) and U is the same as above. Using (46) and (48), it follows that

sup
‖x‖=1

sup
‖y‖=1

|U2(x,y)| = op(1).

Similarly, |U4(β,x,y)| ≤ U ′
4(β0,x,y)

1/2U1/2, where

U ′
4(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i (Fi(β)− Fi)Ri(α)
−1diag(XiH

−1/2
n y)G

(2)
i (β)(A∗

i )
1/2Ri(α)

(A∗
i )

1/2G
(2)
i (β)diag(XiH

−1/2
n y)Ri(α)

−1(Fi(β)− Fi)XiH
−1/2
n x

Using inequalities (1) and (40), it follows that

U ′
4(β,x,y) ≤ πnγ

(0)
n max

i≤n
λ2
max(G

(2)
i (β)(A∗

i )
1/2)T1(β,x,x),

where T1(β,x,y) is given by (32). The matrix G
(2)
i (β)(A∗

i )
1/2 has j-th element given by:

√
σ∗
i,jj(β0) g

(2)
ij (β) =

σ∗
i,jj(β0)

σ∗
i,jj(β)

·
(√

σ∗
i,jj(β) g

(2)
ij (β)

)
.
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By Lemmas A.2 and A.3 (Appendix A),

sup
β∈B∗

n(r)

max
i≤n

λ2
max(G

(2)
i (β)(A∗

i )
1/2) = Op(1). (53)

Using (34) and the fact that γ∗
n = op(1), it follows that

sup
β∈B∗

n(r)

sup
‖x‖=1

sup
‖y‖=1

U ′
4(β,x,y) ≤ π2

nγ
(0)
n γ∗

nOp(1) = π2
nγ

(0)
n op(1).

Using (48) and the hypotheses of the lemma it follows that

sup
β∈B∗

n(r)

sup
‖x‖=1

sup
‖y‖=1

|U4(β,x,y)| = op(1).

It remains to treat U6(β,x,y). By Cauchy-Schwarz inequality (35),

|U6(β,x,y)| ≤ U ′
6(β,x,y)

1/2U1/2,

where U is the same as above and

U ′
6(β,x,y) =

n∑

i=1

xTH−1/2
n XT

i FiRi(α)
−1diag(XiH

−1/2
n y)(G

(2)
i (β)−G

(2)
i )(A∗

i )
1/2Ri(α)

(A∗
i )

1/2(G
(2)
i (β)−G

(2)
i )diag(XiH

−1/2
n y)Ri(α)

−1FiXiH
−1/2
n x.

Using inequalities (1) and (40), it follows that U ′
6(β,x,y) is less than or equal to

πnγ
(0)
n max

i≤n
λ2
max(G

(2)
i (A∗

i )
1/2)max

i≤n
λ2
max(G

(2)
i (β)(G

(2)
i )−1 − I) · xTH−1/2

n H∗
nH

−1/2
n x.

By (53), maxi≤n λ
2
max(G

(2)
i (A∗

i )
1/2) = Op(1). By Lemma 4.1, supx x

TH
−1/2
n H∗

nH
−1/2
n x =

Op(1). In can be shown that maxi≤n maxi≤n λ
2
max(G

(2)
i (β)(G

(2)
i )−1 − I) = Op(1). Arguing

as above, we infer that

sup
β∈B∗

n(r)

sup
‖x‖=1

sup
‖y‖=1

|U6(β,x,y)| = op(1).

�

5 Real-life example

In this section, we discuss an application of our method to a subset of the real-life dataset
taken from [9]. This subset consists of n = 250 preschool age rural Indonesian children
which were examined every 3 months for 18 months for the presence of a respiratory
disease. So each child was observed on m = 6 occasions. The response Y is a binary
variable which takes value 1 if the respiratory disease is present and value 0 if the disease is
absent. We consider a marginal logistic regression model (see Example 2.3) with intercept
parameter β0 and 3 covariates: X(1) is a binary variable with values 0 and 1 giving the
gender, X(2) is another binary variable with values 0 and 1 giving the vitamin A deficiency,
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and X(3) is the child’s age in years at the beginning of the study, with possible values
1, 2, . . . , 7. In this case, µ(x) = ex/(1 + ex). The model is

logit(Yij) = β0 + β1X
(1)
ij + β2X

(2)
ij + β3X

(3)
ij , i = 1, . . . , n, j = 1, . . . , m.

Here β = (β0, β1, β2, β3), so p = 4. We let Xij = (X
(0)
ij , X

(1)
ij , X

(2)
ij , X

(3)
ij ) where X

(0)
ij = 1.

Since this data does not contain missing values, we generated missingness indicator
variables Iij using a Bernoulli distribution with probability 0.95 of success. This gives
3.33% missing responses.

We fit a logistic regression model with parameter γ to the complete data set consisting
of (Ii,Xi) for i = 1, . . . , 250, and we solved equation (29). The root of this equation is
γ̂ = (3.514, 0.025, 0.391,−0.076). The estimates π̂ij for the missingness probabilities πij

are calcualted using the formula π̂ij = πij(γ̂), where πij(γ) is given by (28). We compute
the inverse probability weighted responses

Y ∗
ij =

YijIij
π̂ij

i = 1, . . . , n, j = 1, . . . , m

and we solve the working independence GEE with weighted responses, which in this case
is a system of 4 equations:

n∑

i=1

m∑

j=1

X
(l)
ij

(
Y ∗
ij −

exp(XT
ijβ)

1 + exp(XT
ijβ)

)
= 0, l = 0, 1, 2, 3

yielding the root β indep = (−0.444,−0.552, 0.258,−0.066).
We now apply our method to the dataset described above. We start by computing

the standardized values Ŷij = Ỹij(β
indep), where

Ỹij(β) =
Y ∗
ij − µij(β)√
σ∗
i,jj(β)

,

and σ∗
i,jj(β) was calculated using (10) with πij replaced by π̂ij .

Recall that the conditional correlation matrix R∗
i of Yi given Xi has elements:

r∗i,jk =
E[(Y ∗

ij − µij(β))(Y
∗
ik − µik(β))|Xi]√

σ∗
i,jj(β) ·

√
σ∗
i,kk(β)

= E[Ỹij(β)Ỹik(β)|Xi].

To estimate the matrix R∗
i , we use the same matrix Ri(α) = R̂ = (r̂jk)j,k=1,...,m for all i,

with r̂jj = 1 for all j = 1, . . . , m, and for j 6= k, r̂jk are as in Examples 2 and 3 of [6]:
Case 1: (1-dependent) r̂jk = 0 if |j − k| ≥ 2 and r̂j,j+1 = r̂j+1,j = α̂j where

α̂j =
1

n− p

n∑

i=1

ŶijŶi,j+1, j = 1, . . . , m− 1

This produces the values α̂1 = 0.534, α̂2 = 0.559, α̂3 = 0.562, α̂4 = 0.443, α̂5 = 0.521.
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1-dependent estimate s.e. p-value exchangeable estimate s.e. p-value
intercept -0.448 0.268 0.095 intercept -0.447 0.272 0.101
gender -0.487 0.219 0.026 gender -0.550 0.220 0.012

vitamin A 0.243 0.224 0.279 vitamin A 0.256 0.226 0.256
age -0.068 0.056 0.220 age -0.065 0.056 0.241

Table 1: Parameter estimates, standard errors (s.e.) and p-values for Case 1 (1-dependent)
and Case 2 (exchangeable) correlation matrices

Case 2: (exhangeable) r̂jk = α̂ for all j, k = 1, . . . , m with j 6= k, where

α̂ =
1

N − p

n∑

i=1

m∑

k=2

k−1∑

j=1

ŶijŶik with N = n
m(m− 1)

2

This produces the value α̂ = 0.492.
Using these two cases, we solve equation (17), taking into account that in the calcu-

lation of σ∗
i,jj(β), πij is replaced by π̂ij . This consists of a system of 4 equations:

n∑

i=1

m∑

j=1

X
(l)
ij

µ′(XT
ijβ)√

σ∗
i,jj(β)

wjk
Y ∗
ik − µ(XT

ikβ)√
σ∗
i,kk(β)

= 0, l = 0, 1, 2, 3,

where W = R̂−1 = (wjk)j,k=1,...,m. We obtained the following estimates:

β̂(1) = (−0.448,−0.487, 0.243,−0.068) for the 1-dependent case

β̂(2) = (−0.447,−0.550, 0.256,−0.065) for the exchangeable case.

To evaluate the precision of these estimates, we compute the standard error of these
estimates and the p-value of the two-sided test for β = 0, using the asymptotic normality
of β̂ given by Corollary 3.6:

B−1/2(β̂ − β) ≈ Np(0, I), (54)

where B = H−1
n MnH

−1
n . We estimate the matrix B by B̂ = Ĥ−1

n M̂nĤ
−1
n , with matrices

M̂n and Ĥn computed as in Remark 3.7. From (54), we deduce that β̂ − β has approx-

imately a p-variate normal distribution with mean vector 0 and covariance matrix B̂.
Hence, for l = 0, 1, 2, 3, β̂(l) − βl ≈ N(0, bl), where bl is the l-th element on the diagonal

of B̂. It follows that the standard error (s.e.) of β̂(l) is s{β̂(l)} =
√
bl and the p-value of

the test of H0 : βl = 0 versus H1 : βl 6= 0 is 2P (Z > |β̂(l)/
√
bl|). In Table 1, we report the

estimates, their standard errors and p-values for the two examples of correlation matrices
considered above (1-dependent and exchangeable).

We conclude that at a 5% significance level, we reject the hypothesis β1 = 0, but we do
not have enough evidence to reject the hypothesis β2 = 0 or the hypothesis β3 = 0. This
means that the gender seems to have a significant effect on the presence of respiratory
disease, but vitamin A deficiency and age do not influence the presence of this disease.
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A Some auxiliary results

In this appendix, we gather some auxiliary results which were used in the proofs of Lemmas
4.1, 4.2 and 4.3.

Lemma A.1. Suppose Assumption (AH) holds. If γ∗
n

P→ 0, then

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣∣
µ′(XT

ijβ)

µ′(XT
ijβ0)

− 1

∣∣∣∣∣ = Op((γ
∗
n)

1/2) (55)

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣∣
µ2(XT

ijβ)

µ2(XT
ijβ0)

− 1

∣∣∣∣∣ = Op((γ
∗
n)

1/2). (56)

Proof: This follows by Taylor’s formula, using the fact that k
(1)
n = Op(1), respectively

k
(0)
n = Op(1). See also Lemma B.1 of [11]. �

Lemma A.2. Suppose Assumption (AH) holds. If γ∗
n

P→ 0 then

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣
σ∗
i,jj(β)

σ∗
i,jj(β0)

− 1

∣∣∣∣ = Op((γ
∗
n)

1/2).

Proof: Note that
σ∗

i,jj(β)

σ∗

i,jj (β0)
− 1 is equal to

µ′(XT
ijβ)− µ′(XT

ijβ0) +
(

1
πij

− 1
) (

µ′(XT
ijβ)− µ′(XT

ijβ0) + µ2(XT
ijβ)− µ2(XT

ijβ0)
)

µ′(XT
ijβ0) +

(
1
πij

− 1
) (

µ′(XT
ijβ0) + µ2(XT

ijβ0)
) .

Since µ′ is non-negative and πij ≤ 1,

∣∣∣∣
σ∗
i,jj(β)

σ∗
i,jj(β0)

− 1

∣∣∣∣ ≤ 2

∣∣∣∣∣
µ′(XT

ijβ)− µ′(XT
ijβ0)

µ′(XT
ijβ0)

∣∣∣∣∣ +
∣∣∣∣∣
µ2(XT

ijβ)− µ2(XT
ijβ0)

µ2(XT
ijβ0)

∣∣∣∣∣ .

The conclusion follows by Lemma A.1. �

Lemma A.3. Suppose Assumptions (AH) and (M) hold. Then

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

(√
σ∗
i,jj(β) |g

(2)
ij (β)|

)
= Op(1).

Proof: Recalling definition (31) of g
(2)
ij (β), we see that:

√
σ∗
i,jj(β) g

(2)
ij (β) = −

2
(

1
πij

− 1
)
µ(XT

ijβ)µ
′(XT

ijβ) +
1
πij

µ′′(XT
ijβ)

2σ∗
i,jj(β)

, (57)
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and hence

√
σ∗
i,jj(β) |g

(2)
ij (β)| ≤

(
1

πij
− 1

) |µ(XT
ijβ)µ

′(XT
ijβ)|

σ∗
i,jj(β)

+
1

πij
·
|µ′′(XT

ijβ)|
2σ∗

i,jj(β)
.

In the first term on the right-hand side of this inequality, we use the fact that σ∗
i,jj(β) ≥(

1
πij

− 1
)
(µ′(XT

ijβ) + µ2(XT
ijβ)) ≥

(
1
πij

− 1
)
µ2(XT

ijβ), whereas for the second term we use

the fact that σ∗
i,jj(β) ≥ µ′(XT

ijβ). We obtain that

√
σ∗
i,jj(β) |g

(2)
ij (β)| ≤

∣∣∣∣∣
µ′(XT

ijβ)

µ(XT
ijβ)

∣∣∣∣∣+
1

2πij

∣∣∣∣∣
µ′′(XT

ijβ)

µ′(XT
ijβ)

∣∣∣∣∣ ≤ k(0)
n +

1

2
ρnk

(1)
n .

The conclusion follows by Assumptions (AH) and (M). �.

Lemma A.4. Suppose Assumptions (AH) and (M) hold. If γ∗
n

P→ 0 then

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣
fij(β)

fij(β0)
− 1

∣∣∣∣ = Op((γ
∗
n)

1/2).

Proof: Recall that ∂
∂βT fij(β) = g

(1)
ij (β)XT

ij. By Taylor’s formula, for any β ∈ B∗
n(r), there

exists βij ∈ B∗
n(r) such that fij(β)− fij(β0) = g

(1)
ij (βij)X

T
ij(β − β0). Since

‖XT
ij(β − β0)‖ ≤ ‖XT

ijH
−1/2
n ‖ · ‖H1/2

n (β − β0)‖ ≤ (γ(0)
n )1/2(τn)

1/2r = (γ∗
n)

1/2r,

it follows that ∣∣∣∣
fij(β)

fij(β0)
− 1

∣∣∣∣ ≤
∣∣∣∣∣
g
(1)
ij (βij)

fij(βij)

∣∣∣∣∣ ·
∣∣∣∣
fij(βij)

fij(β0)

∣∣∣∣ (γ∗
n)

1/2r. (58)

By definition (18) of fij(β), we have
fij(β)

fij(β0)
=

µ′(XT
ijβ)

µ′(XT
ijβ0)

·
√

σ∗

i,jj (β0)√
σ∗

i,jj(β)
. By Lemmas A.1 and

A.2,

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣
fij(β)

fij(β0)

∣∣∣∣ = Op(1). (59)

A direct calculation based on definition (30) of g
(1)
ij (β) and relation (57) shows that

g
(1)
ij (β)

fij(β)
=

µ′′(XT
ijβ)

µ′(XT
ijβ)

+
√

σ∗
i,jj(β) g

(2)
ij (β).

By Assumption (AH) and Lemma A.3, it follows that

sup
β∈B∗

n(r)

max
i≤n

max
j≤m

∣∣∣∣∣
g
(1)
ij (β)

fij(β)

∣∣∣∣∣ = Op(1). (60)

The conclusion follows from relations (58), (59) and (60). �
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