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Abstract

In this article, we prove that for a finite quiver Q the equivalence class of a potential up
to formal change of variables of the complete path algebra ĈQ, is determined by its Jacobi
algebra together with the class in its 0-th Hochschild homology represented by the potential
assuming the Jacobi algebra is finite dimensional. This is an noncommutative analogue of the
famous theorem of Mather and Yau on isolated hypersurface singularities. We also prove that
the right equivalence class of a potential is determined by its sufficiently high jet assuming the
Jacobi algebra is finite dimensional. These two theorems can be viewed as a first step towards
the singularity theory of noncommutative power series. As an application, we show that if the
Jacobi algebra is finite dimensional then the corresponding complete Ginzburg dg-algebra, and
the (topological) generalized cluster category thereof, are determined by the isomorphic type of
the Jacobi algebra together with the class in its 0-th Hochschild homology represented by the
potential.

1 Introduction

Let f ∈ OCn,0 be a germ of holomorphic function at 0 ∈ Cn. The Tyurina algebra Tf associate to

the function f is defined to be the quotient algebra OCn,0/(f,
∂f
∂x1

, . . . , ∂f
∂x1

). In the 80s, Mather and
Yau proved that if f has an isolated critical point then the isomorphism type of the hypersurface
singularity {f = 0} is determined by the isomorphism type of Tf (see Section 1 of [19]). The
Mather-Yau theorem is one of the most important results in singularity theory. In the past few
decades, various generalizations of it have been obtained. In [8], Gaffney and Hauser proved a
vast generalization of the Mather-Yau theorem, where in particular the isolatedness assumption is
removed. Recently, Greuel and Pham generalizes Mather-Yau theorem to the case of formal power
series [10]. They also prove a weaker version of the theorem for the positive characteristic case.

The main result of this paper is a Mather-Yau type theorem in noncommutative geometry. Before
stating the theorem, we recall some background of noncommutative geometry in the context of quiver

with potential. For a finite quiver Q, denote by ĈQ its complete path algebra (see definition in
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Section 2). A potential Φ is an element of ĈQ modulo cyclic permutation of paths, i.e. Φ ∈ ĈQcyc :=

ĈQ/[ĈQ, ĈQ]cl. The Jacobi algebra Λ̂(Q,Φ) associate to the pair (Q,Φ) is defined to be quotient

algebra of ĈQ modulo the closure of the two sided ideal generated by all the cyclic derivatives of

Φ (see Definition 2.4). The natural projection ĈQ → Λ̂(Q,Φ) induces a map ĈQcyc → Λ̂(Q,Φ)cyc,

which sends Φ to a class [Φ]. Note that Λ̂(Q,Φ)cyc is the 0-th Hochschild homology group of Λ̂(Q,Φ)
when it is finite dimensional. Two potentials Φ and Ψ are called right equivalent if they differ by a
formal change of variables (see Definition 3.1).

Theorem A. (Theorem 3.5) Fix a finite quiver Q. Let Φ,Ψ ∈ ĈQcyc be two potentials of order ≥ 3,

such that the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Then the following
two statements are equivalent:

(1) There is an CQ0-algebra isomorphism γ : Λ̂(Q,Φ) ∼= Λ̂(Q,Ψ) so that γ∗([Φ]) = [Ψ], where

γ∗ : Λ̂(Q,Φ)cyc → Λ̂(Q,Ψ)cyc is induced by γ.

(2) Φ and Ψ are right equivalent.

To make an analogue with the classical Mather-Yau theorem, Φ can be viewed as a formal
function on the noncommutative space associate to Q. The Jacobi algebra is the noncommutative
analogue of the Milnor algebra OCn,0/(

∂f
∂x1

, . . . , ∂f
∂x1

). The finite dimensional condition on Λ̂(Q,Φ)
can be interpreted as a noncommutative version of isolatedness of singularity. A basic example will
be the quiver with one node and n loops. In this case, the complete path algebra is simply the
complete free algebra of n generators and a potential is a formal series of necklaces.

In recent years, the study of singularity theory of noncommutative functions has attracted more
and more attention due to the motivations from algebraic geometry and representation theory. In his
milestone paper [9], Ginzburg defined the notion of Calabi-Yau algebra (see definitions in Section 4)
and provided a construction using quiver with potential. Ginzburg conjectured that all 3-dimensional
Calabi-Yau algebras should arise as Jacobi algebras. This conjecture has been confirmed by Van
den Bergh for all complete Calabi-Yau algebras [23], while the general case has been disproved by
Ben Davison [6].

In [9], Ginzburg only considered Calabi-Yau algebras that are homologically smooth, whereas
Jacobi algebras are not necessarily smooth. Indeed it is more natural to define Calabi-Yau algebras
under the framework of dg algebras. For every finite quiver Q and potential Φ, Ginzburg defined a
natural complete dg-algebra D̂(Q,Φ) associating to it, whereH0(D̂(Q,Φ)) ∼= Λ̂(Q,Φ) (see Definition

4.1). Keller proved that D̂(Q,Φ) always satisfies the (smooth) Calabi-Yau property, regardless of

whether Λ̂(Q,Φ) is smooth or not [14]. A geometric proof for this statement was given by Van den
Bergh in the Appendix of [14]. The result of Keller and Van den Bergh suggests that we should view

D̂(Q,Φ) as a “derived thickening” of the the Jacobi algebra Λ̂(Q,Φ). This point of view, already
contained in Ginzburg’s original paper, is motivated by Donaldson-Thomas theory. In Donaldson-
Thomas theory, the moduli space of stable sheaves on Calabi-Yau threefold is locally isomorphic to
a critical set of a function. Indeed, the moduli space admits an enhancement as a derived scheme
(stack) of virtual dimension zero in the sense of [4]. Although the moduli space itself is usually
highly singular, the derived moduli space is a better behaved object. It is well-known that the
derived structure is determined by the moduli space together with its obstruction theory.

If we make a heuristic comparison between the Jacobi algebra and the moduli space of stable
sheaves in Donaldson-Thomas theory, then it is natural to ask the following question: to what
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extent the complete Ginzburg dg-algebra is determined by the algebra structure on

the Jacobi algebra? In this paper, we give an answer to this question using Theorem A.

Theorem B. (Theorem 4.3) Fix a finite quiver Q. Let Φ,Ψ ∈ ĈQcyc be two potentials of order

≥ 3, such that the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Assume there

is an CQ0-algebra isomorphism γ : Λ̂(Q,Φ) → Λ̂(Q,Ψ) so that γ∗([Φ]) = [Ψ]. Then there exists a
dg-CQ0-algebra isomorphism

Γ : D̂(Q,Φ)
∼=

// D̂(Q,Ψ)

such that Γ(ti) = ti for all nodes i of Q.

As an immediate corollary, we show that the (topological) generalized cluster category is deter-
mined by the Jacobi algebra together with the class in its 0-th Hochschild homology represented by
the potential (Corollary 4.7). This result has some interesting application in algebraic geometry. In
[11], the first author and Keller use it to show that the singularity underlying a three dimensional
flopping contraction is determined by the noncommutative deformation of the exceptional curve.

Now we briefly summarize the ideas used in the proof of Theorem A. In a series of classical papers
[17][18], Mather studied various equivalence relations on germ of smooth and analytic functions. He
has observed that the tangent spaces of these equivalence classes can be interpreted as Jacobi ideal
and its variations. Moreover, Mather has found infinitesimal criteria of checking whether two germs
lie in the same equivalence class. The classical Mather-Yau theorem can be proved using it.

In noncommutative differential calculus, the notion of cyclic derivative was first defined by Rota,
Sagan and Stein [20]. It plays an essential role in the construction of Ginzburg dg algebra. The
main difficulty to implement Mather’s technique on noncommutative functions is that the tangent
space of a right equivalence class of functions, which is a subspace of the push forward of the
space of derivations, admits no module structure. So in noncommutative world, there is no a priori
relationship between the tangent space of right equivalence class and the Jacobi ideal. We overcome
this problem by observing that both space of derivations and space of cyclic derivations are quotients
of the space of double derivations, which does admit a bimodule structure. Moreover, the actions
of derivations and cyclic derivations on the space of potentials have the identical orbits. Another
difficulty lies in the fact that the group of formal automorphisms is infinite dimensional. To reduce it
to a finite dimensional problem, we establish a finite determinacy result for noncommutative formal
series, which is of independent interest.

Theorem C. (Theorem 3.16) Let Q be a finite quiver and Φ ∈ ĈQcyc. If the Jacobi algebra Λ̂(Q,Φ)
is finite dimensional then Φ is finitely determined (see definition in Section 3.4). More precisely, if

Ĵ(Q,Φ) ⊇ m̂r for some integer r ≥ 0 then Φ is (r+ 1)-determined. In particular, any potential with
finite dimensional Jacobi algebra is right equivalent to a potential in CQcyc.

The third difficulty is that in the formal world not all derivations come from tangents of auto-
morphisms. To be more precise, we are not allowed to take translation of origin as in the smooth
or analytic world. We resolve this problem by proving a bootstrapping lemma on Jacobi ideals (see
Proposition 3.13).

The paper is organized as follows. In Section 2, we collect basic notations and results on non-
commutative differential calculus. In particular, the definition of Jacobi algebra for path algebra
(resp. complete path algebra) are presented in Definition 2.2 (resp. in Definition 2.4). Section 3
is devoted to the proof of Theorem A. In Section 4, we recall the definitions of complete Ginzburg
dg-algebras and Calabi-Yau algebras, and prove Theorem B.
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2 Preliminaries

In this section, we collect basic notations and terminologies that are of concern. In particular,
we recall the definition of Jacobi algebras of path algebras and of complete path algebras of finte
quivers. In addition, for completeness and reader’s convenience, some relevant well-known facts on
complete path algebras are presented in full details in our own notations. Throughout, we fix a
base commutative ring k with unit and a finite dimensional separable k-algebra l. Unadorned tensor
products are over k.

2.1 Basic terminologies

A l-algebra A is a k-algebra A equipped with a k-algebra monomorphism η : l → A. Note that the
image of l is in general not central even when l is commutative. We are mainly interested in the
case when l = ke1 + . . .+ ken for central orthogonal idempotents ei.

Let A be an associative (l-)algebra. Set Aij := eiAej . The multiplication map µ : A⊗A → A is
equivalent with its restriction

µ : Aij⊗Ajk → Aik for all i, j, k = 1, . . . , n.

In other words, it factors through the map A⊗lA → A, which will be denoted by the same symbol
µ by an abuse of notations. The tensor product space A⊗A carries two commuting A-bimodule
structures, called the outer (resp. inner) bimodule structure, defined by

a(b′⊗b′′)c := ab′⊗b′′c ( resp. a ∗ (b′⊗b′′) ∗ c := b′c⊗ab′′ ).

We denote by A
out
⊗ A (resp A

in
⊗ A) the bimodule with respect to the outer (resp. inner) structure.

Because l is a sub algebra of A, they are in particular l-bimodules.

The flip map τ : A
out
⊗ A→ A

in
⊗ A, defined by a′⊗a′′ to a′′⊗a′, is an isomorphism of A-bimodules,

µ : A
out
⊗ A → A is a homomorphism of A-bimodules but in general µ : A

in
⊗ A → A is not. Unless

otherwise stated, we simply view A⊗A as the bimodule A
out
⊗ A. Also, the category of A-bimodules

is denoted by A−Bimod. The multiplication map µ is l-linear.
A (relative) l-derivation of A in an A-bimodule M is defined to be a l-linear map δ : A → M

satisfies the Leibniz rule, that is δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A. It follows that δ(l) = 0 and
δ(Aij) ⊂ Mij with Mij := eiMej . Denote by Derl(A,M) the set of all l-derivations of A in M ,
which naturally carries a k-module structure. The elements of

Derl(A) := Derl(A,A) ( resp. Derl(A) := Derl(A,A⊗A) )
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are called the l-derivations of A (resp. double l-derivations of A). For a general double derivation
δ ∈ DerlA and f ∈ A, we shall write in Sweedler’s notation that

δ(f) = δ(f)′⊗δ(f)′′. (2.1)

The inner bimodule structure of A⊗A naturally yields a bimodule structure on Derl(A). In contrast,
Derl(A) doesn’t have canonical left nor right A-module structures in general. The multiplication
map µ induces a k-linear map µ ◦ − : Derl(A) → Derl(A) given by δ 7→ µ ◦ δ. We refer to µ ◦ δ the
l-derivation corresponding to the double l-derivation δ.

Let us put on the space of k-module endomorphisms Homk(A,A) the A-bimodule structure
defined by

a1fa2 : b 7→ a1f(b)a2, f ∈ Homk(A,A), a1, a2, b ∈ A.

Though the map Derl(A)
µ◦−
−−−→ Homk(A,A) doesn’t preserves bimodule structures, the map

µ ◦ τ ◦ − : Derl(A) → Homk(A,A)

is clearly a homomorphism of A-bimodules. Denote by cDerl(A) the image of this map and call its
elements cyclic l-derivations of A. For a double l-derivation δ ∈ Derl(A), we shall refer to µ ◦ τ ◦ δ
the cyclic l-derivation corresponding to δ. Note that by definition cDerl(A) is an A-subbimodule of
Homk(A,A), and hence is itself an A-bimodule.

The A-bimodule ΩA|l, of noncommutative (relative) Kähler l-differentials of A, is defined to be
the kernel of the multiplication map µ : A⊗lA→ A. The exterior differentiation map

d : A→ ΩA|l, a 7→ da := 1⊗a− a⊗1

is then a l-derivation of A in the bimodule ΩA|l. There is a canonical isomorphism of k-modules

HomA−Bimod(ΩA|l,M)
∼=
−→ Derl(A,M), f 7→ f ◦ d.

In another word, the exterior map d : A→ ΩA|l is a universal l-derivation of A.
We collect some trivial properties on (cyclic) derivations in the following lemma.

Lemma 2.1. Let A be a l-algebra and fix an element Φ ∈ Acyc := A/[A,A]. Let π : A → Acyc be
the canonical projection and φ ∈ A a representative of Φ.

(1) ξ([A,A]) ⊆ [A,A] for every ξ ∈ Derl(A). Consequently, the assignment Derl(A) ∋ ξ 7→ π(ξ(φ))
only depends on Φ and defines a k-linear map Φ# : Derl(A) → Acyc.

(2) D([A,A]) = 0 for every D ∈ cDerl(A). Consequently, the assignment cDerl(A) ∋ D 7→ D(φ)
only depends on Φ and defines an A-bimodule morphism Φ∗ : cDerl(A) → A.

(3) We have the following commutative diagram:

Derl(A)
µ◦τ◦−

// //

µ◦−

��

cDerl(A)
Φ∗

// A

π

��

Derl(A)
Φ#

// Acyc.

(2.2)

Consequently, if Derl(A)
µ◦−
−−−→ Derl(A) is surjective then im(Φ#) = im(π ◦ Φ∗).

5



Proof. Note that Acyc admits only a k-module structure, but not a l-module structure. Part (1) of
the lemma and the second statement of part (2) are clear. To see the first statement of part (2), let
δ ∈ Derl(A) be a double l-derivation and f, g ∈ A. Then

(µ ◦ τ ◦ δ)([f, g]) = δ(f)′′gδ(f)′ + δ(g)′′fδ(g)′ − δ(g)′′fδ(g)′ − δ(f)′′gδ(f)′ = 0.

From this we know D([A,A]) = 0 for every D ∈ cDerl(A). Part (3) of the lemma is a direct
consequence of the fact that (µδ)(f)− (µτδ)(f) ∈ [A,A] for every δ ∈ Derl(A) and f ∈ A.

2.2 Jacobi algebras of quivers with potentials

Let Q be an arbitrary finite quiver. Denote by Q0 and Q1 the sets of nodes and arrows of the quiver.
Define s, t : Q1 → Q0 to be the source and target maps. Denote by kQ the path algebra of Q with
respect to the path concatenation defined as follows. Let a be a path from i to j and b be a path
from j to k. Then ab is a path from i to k defined by a followed by b. Denote by ei the empty path

at the node i. Denote by Q
(ij)
1 the set of arrows with source i and target j. Denote by m the two

sided ideal generated by all arrows and by l the subalgebra kQ0 which is canonically isomorphic to
the quotient algebra kQ/m. As a consequence, kQ is an augmented l-algebra. An element of kQ is
a finite k-linear combination of paths. The length or degree |p| of a path p is defined in the obvious
way. The ideal mr consists of finite sum of paths of length ≥ r.

It is easy to check that l-derivations of kQ in an kQ-bimodule are uniquely determined by their
value at all a ∈ Q1. Thus kQ has double derivations ∂

∂a : kQ→ kQ⊗kQ given by

∂

∂a
(b) = δa,b es(a)⊗et(a). (2.3)

The kQ-bimodule Derl(kQ) is generated by ∂
∂a , a ∈ Q1, and the map µ ◦ − : Derl(kQ) → Derl(kQ)

is surjective. By (2.3), µ ◦ ∂
∂a = 0 for any arrow a such that s(a) 6= t(a). Denote by Da the cyclic

l-derivation corresponding to ∂
∂a , and so it take a path p to

Da(p) =
∑

p=uav
vu

where u, v are paths. By (2) of Lemma 2.1, Da([kQ, kQ]) = 0 for any a ∈ Q1. In particular, if p is
a path such that s(p) 6= t(p) then Da(p) = 0 for any a.

This cyclic derivation in the special case of n-loop quiver was first discovered by Rota, Sagan
and Stein [20]. Clearly, the kQ-bimodule cDerl(kQ) is generated by Da, a ∈ Q1. In addition, the
kQ-bimodule ΩkQ|l is generated by da, a ∈ Q1.

Definition 2.2. Elements of kQcyc := kQ/[kQ, kQ] are called potentials of kQ. Given a potential
Φ ∈ kQcyc, the two sided ideal

J(Q,Φ) := im(Φ∗)

is called the Jacobi ideal of Φ, where Φ∗ : cDerl(kQ) → kQ is the kQ-bimodule homomorphism
constructed in Lemma 2.1 (2). The associative algebra

Λ(Q,Φ) := kQ/J(Q,Φ)

is called the Jacobi algebra of Φ. Like kQ, it is an augmented l-algebra.

The above definition of Jacobi algebras coincides with the conventional one because J(Q,Φ) is
generated by Φ∗(Da), a ∈ Q1, as an ideal of kQ. Jacobi algebras of path algebras of quivers are key
objects of interest in literatures.
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2.3 Complete Jacobi algebras

Given a finite quiver Q, denote by k̂Q the completion of kQ with respect to the two sided ideal

m ⊂ kQ. Elements of k̂Q are (infinite) formal series
∑

w aww, where w runs over all paths (of finite

length) and aw ∈ k. Note that k̂Q contains the kQ as a l-subalgebra. Let m̂ ⊆ k̂Q be the ideal
generated by all arrows. For r ≥ 0, m̂r consists of formal series with no terms of degree < r. For

any subspace U of k̂Q, let U cl be the closure of U with respect to the m̂-adic topology on k̂Q. Note
that U cl = ∩r≥0(U + m̂r).

Clearly, l-derivations of k̂Q are uniquely determined by their value at all a ∈ Q1. However, it is

generally not true for l-derivations of k̂Q in an arbitrary k̂Q-bimodule. In particular, the assignment

(2.3) does not extend to a double derivation on k̂Q since its value on a general formal series will

not lie in the algebraic tensor product k̂Q⊗k̂Q which admits only finite sums. Thus we need an

alternative definition of double derivations of k̂Q to deal with noncommutative calculus on k̂Q.

Remark 2.3. Different from that of kQ, the k̂Q-bimodule Ω
k̂Q|l

is not generated by da for a ∈ Q1.

For example, take Q to be a quiver with one node and one loop. Then k̂Q ∼= k[[x]] and consider a
formal series

∑∞
n=0 anx

n with generic coefficients. Then

d
( ∞∑

n=0

anx
n
)
= dx

∞∑

n=0

an+1x
n + xdx

∞∑

n=0

an+2x
n + . . .

which can not be expressed as a finite sum of f · dx · g for some formal series f, g. It is an easy
exercise to show that this can be done only when

∑∞
n=0 anx

n is a geometric series.

Let k̂Q⊗̂k̂Q be the k-module whose elements are formal series of the form
∑

u,v Au,v u⊗v, where

u, v runs over all paths. This is nothing but the adic completion of k̂Q⊗k̂Q with respect to the ideal

m̂⊗k̂Q+ k̂Q⊗m̂. It contains k̂Q⊗k̂Q as a subspace under the identification

(
∑

u

a′u u)⊗(
∑

v

a′′v v) 7→
∑

u,v

a′ua
′′
v u⊗v.

There are two obvious bimodule structures on k̂Q⊗̂k̂Q, which we call the outer and the inner

bimodule structures respectively, extends those on the subspace k̂Q⊗k̂Q. Unless otherwise stated,

we view k̂Q⊗̂k̂Q as a k̂Q-bimodule with respect to the outer bimodule structure. In addition, there

are linear maps µ̂ : k̂Q⊗̂k̂Q→ k̂Q and τ̂ : k̂Q⊗̂k̂Q→ k̂Q⊗̂k̂Q given respectively by

µ̂(
∑

u,v

au,vu⊗v) =
∑

w

(
∑

w=uv

au,v) w and τ̂ (
∑

u,v

au,vu⊗v) =
∑

u,v

av,uu⊗v.

Clearly, µ̂ is a bimodule homomorphism extends µ, and τ̂ extends τ .

We call derivations of k̂Q in the k̂Q-bimodule k̂Q⊗̂k̂Q double l-derivations of k̂Q. The inner

bimodule structure on k̂Q⊗̂k̂Q naturally yields a bimodule structure on the space

D̂erl(k̂Q) := Derl(k̂Q, k̂Q⊗̂k̂Q).

For any δ ∈ D̂erl(k̂Q) and any f ∈ k̂Q, we also write δ(f) in Sweedler’s notation as (2.1), but

one shall bear in mind that this notation is an infinite sum. Clearly, double derivations of k̂Q are

7



uniquely determined by their values on all a ∈ Q1. Thus, by abuse of notation, we have double
derivations

∂

∂a
: k̂Q→ k̂Q⊗̂k̂Q, a 7→ δa,b es(a)⊗et(a), for a ∈ Q1

extending the double derivations ∂
∂a : kQ → kQ⊗kQ constructed in (2.3). Moreover, every double

derivation of k̂Q has a unique representation of the form

∑

a∈Q1

∑

u,v

A(a)
u,v u ∗

∂

∂a
∗ v, A(a)

u,v ∈ k, (2.4)

where t(u) = t(a) and s(v) = s(a), and ∗ denotes the scalar multiplication of the bimodule structure

of D̂erl(k̂Q). The infinite sum (2.4) makes sense in the obvious way. Further, note that the map

µ̂ ◦ − : D̂erl(k̂Q) → Derl(k̂Q) is surjective and the map

µ̂ ◦ τ̂ ◦ − : D̂erl(k̂Q) → Hom(k̂Q, k̂Q)

is a bimodule homomorphism. The image of µ̂ ◦ τ̂ ◦ − is denoted by ĉDerl(k̂Q) and its elements are

called cyclic l-derivations of k̂Q. By abuse of notation, we have cyclic l-derivations

Da := µ̂ ◦ τ̂ ◦
∂

∂a
: k̂Q→ k̂Q

extending the cyclic derivations Da : kQ → kQ. By (2.4), every cyclic l-derivation of k̂Q has a
decomposition (not necessary unique) of the form

∑

a∈Q1

∑

u,v

A(a)
u,v u ·Da · v, A(a)

u,v ∈ k, (2.5)

where t(u) = t(a) and s(v) = s(a).

Note that all derivations and cyclic derivations of k̂Q are continuous with respect to the m̂-adic

topology on k̂Q. Consequently, ξ([k̂Q, k̂Q]cl) ⊆ [k̂Q, k̂Q]cl for each derivation ξ ∈ Derl(k̂Q), and

D([k̂Q, k̂Q]cl) = 0 for each cyclic derivation D ∈ ĉDerl(k̂Q). In addition, note that

µ̂(δ(φ)) − µ̂(τ̂ (δ(φ))) ∈ [k̂Q, k̂Q]cl

for all double derivations δ ∈ D̂erl(k̂Q) and all formal series φ ∈ k̂Q. Given an element Φ of

k̂Qcyc := k̂Q/[k̂Q, k̂Q]cl,

the previous discussion implies that all its representatives φ yields the same commutative diagram

D̂erl(k̂Q)
µ̂◦τ̂◦−

// //

µ̂◦−
��
��

ĉDerl(k̂Q)
Φ∗

// k̂Q

π

��

Derl(k̂Q)
Φ#

// k̂Qcyc,

(2.6)

8



where π is the projection, Φ# : ξ 7→ π(ξ(φ)) and Φ∗ : D 7→ D(φ). Clearly, Φ∗ is a bimodule

homomorphism, so im(Φ∗) is a two sided ideal of k̂Q. Moreover, one has

({ Φ∗(Da) | a ∈ Q1 }) ⊆ im(Φ∗) ⊆ ({ Φ∗(Da) | a ∈ Q1 })cl.

Note that both equalities hold when ({ Φ∗(Da) | a ∈ Q1 }) ⊇ m̂r for some r ≥ 0.

Definition 2.4. Elements of k̂Qcyc := k̂Q/[k̂Q, k̂Q]cl are called potentials of k̂Q. Given a potential

Φ ∈ k̂Qcyc, the two sided ideal

Ĵ(Q,Φ) := im(Φ∗)

is called the Jacobi ideal of Φ, where Φ∗ : ĉDerl(k̂Q) → k̂Q is the k̂Q-bimodule homomorphism
occurs in Diagram (2.6). The associative algebra

Λ̂(Q,Φ) := k̂Q/Ĵ(Q,Φ),

is called the Jacobi algebra of Φ. The smallest integer r ≥ 0 such that Φ ∈ π(m̂r) is called the order
of Φ.

Remark 2.5. We fix a linear order on Q1. Recall that two cycles u, v are conjugate if there are
paths w1, w2 such that u = w1w2 and v = w2w1. Equivalent classes under this equivalence relation
are called necklaces or conjugacy classes. Also recall that a path u is lexicographically smaller than
another word v if there exist factorizations u = waw′ and v = wbw′′ with a < b. Obviously, this
order relation restricts to a total order on all necklaces. Let us call a cycle standard if it is maximal

in its necklace. Then every potential of kQ (resp. k̂Q) has a unique representative which is a finite
linear combination (resp. formal linear combination) of standard cycles. We shall refer to such
unique representatives of potentials the canonical representative.

Lemma 2.6. Fix a potential Φ ∈ k̂Qcyc. Suppose that k is noetherian. Then the canonical map

Λ̂(Q,Φ) → lim
r→∞

k̂Q/(Ĵ(Q,Φ) + m̂r) (2.7)

is an isomorphism of l-algebras. Consequently, Ĵ(Q,Φ) = ({ Φ∗(Da) | a ∈ Q1 })cl.

Proof. Since k is noetherian, every inverse system of finitely generated k-modules over the direct set
(N,≤) satisfies the Mittag-Leffler condition (See [22, Tag 0595] for the definition), and moreover all
such inverse systems form an abelian category. Then by [22, Tag, 0598], taking inverse limit is an
exact functor from this category to the category of k-modules.

Let d : D̂erl(k̂Q) → k̂Q be the map given by δ 7→ Φ∗(µ̂◦ τ̂ ◦δ). By definition, d is an k̂Q-bimodule

homomorphism and im(d) = Ĵ(Q,Φ). Clearly, the exact sequence

D̂erl(k̂Q)
d

−→ k̂Q→ Λ̂(Q,Φ) → 0

induces an exact sequence of inverse system of finitely generated k-modules over (N,≤) as follows:

{ D̂erl(k̂Q)/D̂erl(k̂Q)≥r }r∈N → { k̂Q/m̂r }r∈N → { k̂Q/(Ĵ(Q,Φ) + m̂r) }r∈N → 0, (2.8)
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where D̂erl(k̂Q)≥r :=
∑r

i=0 m̂
i ∗ D̂erl(k̂Q) ∗ m̂r−i. Clearly, all the morphism are l-linear. Consider

the following commutative diagram

D̂erl(k̂Q)
d

//

η1

��

k̂Q //

η2

��

k̂Q/Ĵ(Q,Φ) //

η3

��

0

limr→∞ D̂erl(k̂Q)/D̂erl(k̂Q)≥r
// limr→∞ k̂Q/m̂r // limr→∞ k̂Q/(Ĵ(Q,Φ) + m̂r) // 0,

where the bottom is the limit of the sequence (2.8) and η1, η2, η3 are the canonical maps. By the
general result mentioned in the last paragraph, the bottom sequence is also exact. It is easy to check
that η1 and η2 is an isomorphism, so is η3. This prove the first statement.

To see the second statement, it suffice to show Ĵ(Q,Φ) is closed with respect to the m̂-adic

topology. But we have Ĵ(Q,Φ) = ∩r≥0(Ĵ(Q,Φ) + m̂r) = Ĵ(Q,Φ)cl.

Remark 2.7. In the above lemma, the statement that Ĵ(Q,Φ) = ({ Φ∗(Da) | a ∈ Q1 })cl has
been claimed in [15, Lemma 2.8] without a proof; and the statement that the canonical map (2.7)

is an isomorphism is equivalent to say that the Jacobi algebra Λ̂(Q,Φ) is pseudocompact, which is
actually a special case of the general result [15, Lemma A.12]. Nevertheless, to avoid involve too
much, we give here a direct demonstration for reader’s convenience.

One may view potentials of kQ as potentials of k̂Q under the canonical injection kQcyc → k̂Qcyc.
Given a potential Φ ∈ kQcyc, we have a compare homomorphism of l-algebras

Λ(Q,Φ) → Λ̂(Q,Φ).

Lemma 2.8. Fix a potential Φ ∈ kQcyc of order ≥ 2. Let a := m/J(Q,Φ). Suppose that k is

noetherian. Then the compare map Λ(Q,Φ) → Λ̂(Q,Φ) factors into a composition as follows

Λ(Q,Φ) → lim
r→∞

Λ(Q,Φ)/ar
∼=−→ Λ̂(Q,Φ),

where the first map is the canonical one and the second map is an l-algebra isomorphism. Conse-
quently, if a is nilpotent, then the compare map Λ(Q,Φ) → Λ̂(Q,Φ) is an l-algebra isomorphism.

Proof. Let b = m̂/Ĵ(Q,Φ). It is easy to check that the compare map Λ(Q,Φ) → Λ̂(Q,Φ) induces an
isomorphism of inverse systems over (N,≤) of the form

{ Λ(Q,Φ)/ar }r∈N → { Λ̂(Q,Φ)/br }r∈N.

Then we have a commutative diagram of l-algebra homomorphisms

Λ(Q,Φ) //

��

Λ̂(Q,Φ)

��

limr→∞ Λ(Q,Φ)/ar
∼=

// limr→∞ Λ̂(Q,Φ)/br,

where all maps are the natural one. By Lemma 2.6, the map Λ̂(Q,Φ) → limr→∞ Λ̂(Q,Φ)/br is an
isomorphism. Thereof the first statement follows. The second statement is clear.
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Remark 2.9. In general, the compare map Λ(Q,Φ) → Λ̂(Q,Φ) is neither injective nor surjective.

It may happens that Λ(Q,Φ) is not finitely generated but Λ̂(Q,Φ) is as k-modules. Also, it may

happens that Λ(Q,Φ) and Λ̂(Q,Φ) are finitely generated k-modules of different rank. We give three
toy examples below, one for each of the considerations.

(1) Take k to be a field and Q to be the quiver with one node and two loops, i.e. kQ ∼= k〈x, y〉, and
Φ = π(12x

2+ 1
3x

3). Then Φ∗(Dx) = x+x2 and Φ∗(Dy) = 0. In this case, Λ(Q,Φ) = k〈x, y〉/(x+

x2) and Λ̂(Q,Φ) = k〈〈x, y〉〉/(x)cl ∼= k[[y]]. The canonical homomorphism k〈x, y〉/(x+ x2) →
k[[y]], which is given by x 7→ 0 and y 7→ y, has nonzero kernel contains the class of x and has
k[y] as its image.

(2) Take k and Q to be defined as the previous example, and Φ = π(12x
2+ 1

3x
3+ 1

2y
2+ 1

3y
3). Then

Φ∗(Dx) = x+x2 and Φ∗(Dy) = y+y2. It is easy to check that Λ(Q,Φ) = k〈x, y〉/(x+x2, y+y2)

is not finite dimensional but Λ̂(Q,Φ) = k〈〈x, y〉〉/(x, y)cl is of dimension one.

(3) Take k to be a field and Q to be the quiver with one node and one loop, i.e. kQ = k〈x〉 and

Φ = π(12x
2 + 1

3x
3). Again, Φ∗(Dx) = x(1 + x). So Λ(Q,Φ) is two diemsnional but Λ̂(Q,Φ) is

one dimensional. Note that Λ(Q,Φ) is not local.

There are some relations between Jacobi algebras of complete path algebras and that of power

series algebras. Fix i ∈ Q0. Let k[[Q
(ii)
1 ]] be the power series algebra generated by Q

(ii)
1 . For any

f ∈ k[[Q
(ii)
1 ]], we denote by fa the formal partial derivative of f with respect to a ∈ Q

(ii)
1 . The

Jacobi algebra of k[[Q
(ii)
1 ]] associated to f is defined to be the commutative algebra

Λ(k[[Q
(ii)
1 ]], f) := k[[Q

(ii)
1 ]]/(fa|a ∈ Q

(ii)
1 ).

Let ι(i) : k̂Q → k[[Q
(ii)
1 ]] be the k-algebra homomorphism defined by ej 7→ δij for nodes j ∈ Q0,

a 7→ a for arrows a ∈ Q
(ii)
1 and a 7→ 0 for arrows a ∈ Q1\Q

(ii)
1 . Clearly, ι(i) factors as

k̂Q
π
−→ k̂Qcyc

ι(i)
−−→ k[[Q

(ii)
1 ]].

Lemma 2.10. Fix a node i ∈ Q0 and a potential Φ ∈ k̂Qcyc. We have

ι(i)(Φ∗(Da)) =
(
ι(i)(Φ)

)
a
, a ∈ Q1.

Consequently, ι(i) induces a surjective k-algebra homomorphism Λ̂(Q,Φ) → Λ(k[[Q
(ii)
1 ]], ι(i)(Φ)).

Proof. If a cycle w contains an arrow a /∈ Q
(ii)
1 , then both sides of the equation (with Φ replaced by

w) vanish by the definition of ι(i). For an cycle w = b1 . . . br with bs ∈ Q
(ii)
1 , one can readily check

that
ι(i)

(
Da(w)

)
=

∑

{s|bs=a}

ι(i)
(
bs+1 . . . brb1 . . . bs−1

)
= ι(i)(w)a.

Since the maps ι(i), Da and (−)a all commute with taking formal sums, the result follows.
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2.4 Some technical results on complete path algebras

Lemma 2.11 (Chain rule). Let Q and Q′ be two finite quivers. Let H : k̂Q → k̂Q′ be an algebra
homomorphism such that H({ei | i ∈ Q0}) ⊆ {ej | j ∈ Q′

0}. Let ha := H(a) for a ∈ Q1. Then for

any φ ∈ k̂Q and β ∈ Q′
1 we have

∂

∂β

(
H(φ)

)
=

∑

a∈Q1

(
∂ha
∂β

)′′

∗ (H⊗̂H)(
∂φ

∂a
) ∗

(
∂ha
∂β

)′

with ∗ means the scalar multiplication with respect to the inner bimodule structure on k̂Q′⊗̂k̂Q′ and

H⊗̂H : k̂Q⊗̂k̂Q→ k̂Q′⊗̂k̂Q′ is given by u⊗v 7→ H(u)⊗H(v). Consequently,

Dβ(H(φ)) =
∑

a∈Q1

(
∂ha
∂β

)′′ ·H(Daφ) · (
∂ha
∂β

)′. (2.9)

Here we used the Sweedler’s notation for the double derivation ∂
∂β acting on ha. Note that because

a double derivation takes value in k̂Q′⊗̂k̂Q′, the Sweedler’s notation is an infinite sum.

Proof. Suppose φ =
∑

w Aww, where w runs over all paths of Q. Then we have

∂

∂β

(
H(φ)

)
=

∑
w
Aw

∂

∂β

(
H(w)

)

=
∑

w

Aw

∑

a∈Q1

(
∂ha
∂β

)′′ ∗ (H⊗̂H)
(∂w
∂a

)
∗ (
∂ha
∂β

)′

=
∑

a∈Q1

(
∂ha
∂β

)′′ ∗ (H⊗̂H)
(∑

w

Aw
∂w

∂a

)
∗ (
∂ha
∂β

)′

=
∑

a∈Q1

(
∂ha
∂β

)′′ ∗ (H⊗̂H)
(∂φ
∂a

)
∗ (
∂ha
∂β

)′,

as required. Since µ̂ ◦ τ̂ ◦ (H⊗̂H) = H ◦ µ̂ ◦ τ̂ , the desired formula for cyclic derivations follows
immediately from the justified formula for double derivations.

The next result (for free algebras) was stated in [9, Proposition 1.5.13] without a proof.

Lemma 2.12 (Poincare lemma). Let Q be a finite quiver. Fix fa ∈ es(a) · k̂Q · et(a) for each a ∈ Q1.
Suppose k contains a subring which is a field of characteristic 0. Then

∑

a∈Q1

[a, fa] = 0 ⇐⇒ ∃ φ ∈ k̂Q such that fa = Da(φ), for all a ∈ Q1.

Proof. To prove the if part, it suffices to check the case when φ is a cycle w = b1 . . . br. Then
∑

a∈Q1

[a,Da(w)] =
∑

a∈Q1

∑

{s|bs=a}

(
abs+1 . . . br . . . bs−1 − bs+1 . . . br . . . bs−1a

)

=

r∑

s=1

bsbs+1 . . . br . . . bs−1 −
r∑

s=1

bs+1 . . . br . . . bs−1bs

= 0.
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Now we prove the only if part. For a collection of formal series {fa|a ∈ Q1}, we define its

antiderivative to be an element φ ∈ k̂Q defined by

φ :=
∑

a∈Q1

∑

r≥1

1

r
a · fa[r − 1]

where fa[r − 1] is the sum of paths of degree r − 1 that occur in fa. It suffices to verify that
Da(

∑
b bfb[r − 1]) = rfa[r − 1]. Without loss of generality, we may simply assume that fa are

homogeneous of degree r for all a ∈ Q1. Then by the assumption
∑

a∈Q1
faa =

∑
a∈Q1

afa, φ is
invariant under the cyclic permutations. Therefore Daφ = fa by the definition of Da.

Lemma 2.13 (Inverse function theorem). Suppose H is an l-endomorphism of k̂Q preserving m̂

that induces an isomorphism m̂/m̂2
∼=
−→ m̂/m̂2. Then H is invertible.

Proof. By assumption we can choose an l-automorphism T : k̂Q → k̂Q induced by a collection of
invertible linear transformations on the spaces of arrows with fixed source and target such that the
composition G := H ◦ T satisfying

G(a) ≡ a mod m̂2, a ∈ Q1.

For a formal series f , let us denote f [r] to be the sum of all terms of degree r that occur in f . Then

G(f [r]) ≡ f [r] mod m̂r+1.

For a ∈ Q1, we let ga,1 = a and then inductively set

ga,r := −G(ga,1 + . . .+ ga,r−1)[r], r ≥ 2.

Note that ga,r consists of terms of degree r. Let ga :=
∑

r≥1 ga,r. Then for r ≥ 1 we have

G(ga) ≡ G(ga,1 + . . .+ ga,r) mod m̂r+1

≡ G(ga,1 + . . .+ ga,r−1) +G(ga,r) mod m̂r+1

≡ a− ga,r +G(ga,r) mod m̂r+1

≡ a mod m̂r+1.

Here, the third “≡” can be easily obtained by induction of r. Consequently, G(ga) = a and therefore

G is surjective. Now let us consider the r-jet space Jr := k̂Q/m̂r+1. They are all free k-modules
with a finite basis. The map G then induces an inverse system of (k-)linear maps

Gr : Jr → Jr.

Clearly, all Gr are surjective and thereof they are all invertible. This can be seen by consider these
maps as square matrices with entries in k and then the determinant trick applies. Since G is just
the inverse limit of Gr, it is invertible. Therefore H is also invertible.

Lemma 2.14 (Nakayama Lemma). Let Q be a finite quiver. Suppose N is an ideal of k̂Q with
N + m̂r ⊇ m̂r−1 for some r ≥ 1. Then N ⊇ m̂r−1.

Proof. Note that m̂r−1 is a finitely generated left k̂Q-module. Also note that elements of 1 + m̂ are

all invertible in k̂Q, so m̂ contains in the Jacobson radical of F̂ . By modularity,

N ∩ m̂r−1 + m̂r = (N + m̂r) ∩ m̂r−1 = m̂r−1.

Then by [16, Lemma 4.22], the Nakayama Lemma, we have N ∩ m̂r−1 = m̂r−1 and so N ⊇ m̂r−1.
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3 Noncommutative Mather-Yau theorem

This section is devoted to establish a noncommutative analogue of the well-known Mather-Yau
theorem in the hypersurface singularity theory [19, 2, 25].

Throughout, k stands for a commutative ring with unit, Q stands for a finite quiver and l = kQ0,

which is a subalgebra of k̂Q. Let m̂ ⊆ k̂Q be the ideal generated by arrows. We continue to use the

notations appear in Diagram (2.6). So π : k̂Q→ k̂Qcyc is the projection map, and for each potential

Φ ∈ k̂Qcyc there are maps Φ∗ : ĉDerl(k̂Q) → k̂Q and Φ# : Derl(k̂Q) → k̂Qcyc.

Also, let D̂er
+

l (k̂Q) be the space of double derivations of k̂Q that map m̂ to m̂⊗̂k̂Q+ k̂Q⊗̂m̂, and

Der+l (k̂Q) (resp. ĉDer
+

l (k̂Q)) the space of derivations (resp. cyclic derivations) of k̂Q that preserves

m̂. It is easy to check that µ̂(D̂er
+

l (k̂Q)) = Der+l (k̂Q) and µ̂(τ̂ (D̂er
+

l (k̂Q))) = ĉDer
+

l (k̂Q).

3.1 Right equivalence of potentials

We denote by G := Autl(k̂Q, m̂) the group of l-algebra automorphisms of k̂Q that preserves m̂. It

is a subgroup of Autl(k̂Q), the group of all l-algebra automorphisms of k̂Q. In the case when k is a

field, G = Autl(F̂ ). Note that G acts on k̂Qcyc in the obvious way.

Definition 3.1. For potentials Φ,Ψ ∈ k̂Qcyc, we say Φ is (formally) right equivalent to Ψ and write
Φ ∼ Ψ, if Φ and Ψ lie in the same G-orbit.

For potentials of the non complete path algebra kQ, one may similarly define the algebraically
right equivalence in terms of the action of the group of l-algebra automorphisms of kQ on kQcyc. It
turns out that two potentials of kQ can be algebraically right equivalent but not formally, and vice
versa. This subtle difference can be checked by the following example.

Example 3.2. Let k = C and Q the quiver with one node and one loop. Consider the potentials
Φ := 1

2x
2 + 1

3x
3 and Ψ := 1

2 (x − 1)2 + 1
3 (x − 1)3 of F . We have H(Φ) = Ψ for H : kQ → kQ the

C-algebra automorphism given by x 7→ x− 1, so Φ and Ψ are algebraically right equivalent. Since Φ

is not a unit of k̂Q but Ψ is, Φ and Ψ are not formally right equivalent. Now consider the potentials
Φ′ := x2 and Ψ′ := x2 +x3 of kQ. It is straightforward to show that Φ′ and Ψ′ are not algebraically

right equivalent. But we have H ′(Φ′) = Ψ′ for H ′ : k̂Q→ k̂Q the C-algebra automorphism given by
x 7→ x · u, where u is the power series expansion of (1 + x)1/2 at 0 (so u2 = 1 + x).

The main concern of this section is to explore relations between the isomorphism of Jacobi

algebras of k̂Q and the right equivalence relation of potentials of k̂Q.
The next result was already obtained in [7, Proposition 3.7] in a more general form. For com-

pleteness and reader’s convenience, we give a demonstration in our own notations.

Proposition 3.3. Let Φ ∈ k̂Qcyc and H ∈ G. Then

H(Ĵ(Q,Φ)) = Ĵ(Q,H(Φ)).

Consequently, H induces an isomorphism of l-algebras Λ̂(Q,Φ) ∼= Λ̂(Q,H(Φ)).
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Proof. By the chain rule (Lemma 2.11), we have H(Φ)∗(Da) ∈ H(Ĵ(Q,Φ)) for all a ∈ Q1. Then

by Lemma 2.6, Ĵ(Q,H(Φ)) = { H(Φ)∗(Da) | a ∈ Q1 }cl ⊆ H(Ĵ(Q,Φ)). Symmetrically, we have

Ĵ(Q,Φ) ⊆ H−1(Ĵ(Q,H(Φ))). Thus H(Ĵ(Q,Φ)) = Ĵ(Q,H(Φ)).

Remark 3.4. Proposition 3.3 tells us that two right equivalent potentials of k̂Q have isomorphic
Jacobi algebras. The converse is not true, even for k = C under the additional assumption that the
two isomorphic Jacobi algebras are finite dimensional. For example, take Q to be the quiver with
one node and one loop, Φ := 1

2x
2 + 1

3x
3 and Ψ := 1

2 (x − 1)2 + 1
3 (x − 1)3. Then Φ∗(Dx) = x + x2

and Ψ∗(Dx) = (x − 1) + (x − 1)2. So Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both isomorphic to the algebra C.

However, Φ and Ψ are not right equivalent simply because Φ is not a unit of k̂Q but Ψ is.

3.2 Statement of the nc Mather-Yau theorem

Given a potential Φ ∈ k̂Qcyc, let m̂Φ := m̂/Ĵ(Q,Φ), which is an ideal of Λ̂(Q,Φ). By Lemma 2.6,

the m̂Φ-adic topology of Λ̂(Q,Φ) is complete. Let

Λ̂(Q,Φ)cyc := Λ̂(Q,Φ)/[Λ̂(Q,Φ), Λ̂(Q,Φ)]cl.

Clearly, if Λ̂(Q,Φ) is a finitely generated k-module, then

Λ̂(Q,Φ)cyc = Λ̂(Q,Φ)cyc = HH0(Λ̂(Q,Φ)).

The projection map k̂Q→ Λ̂(Q,Φ) induces a natural map

pΦ : k̂Qcyc → Λ̂(Q,Φ)cyc

with kernel π(Ĵ(Q,Φ)). For any Θ ∈ k̂Qcyc, we write [Θ] = [Θ]Φ := pΦ(Θ).
Given a homomorphism γ : A → B of k-algebras, we denote by γ∗ : Acyc → Bcyc the induced

map. Our main result in this section is the next theorem, which is a noncommutative analogue of
the Mather-Yau theorem for isolated hypersurface singularities.

Theorem 3.5 (nc Mather-Yau Theorem). Let Q be a finite quiver. Let Φ,Ψ ∈ ĈQcyc two potentials

of order ≥ 3 such that the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Then
the following two statements are equivalent:

(1) There is an CQ0-algebra isomorphism γ : Λ̂(Q,Φ) ∼= Λ̂(Q,Ψ) so that γ∗([Φ]Φ) = [Ψ]Ψ.

(2) Φ and Ψ are right equivalent.

Proof. We postpone the proof to the end of this section. It needs some technical results which have
interest in their own right and will be presented in the following two subsections. Our discussion is
modified from that in [19], which deals with isolated hypersurface singularities.

Remark 3.6. Instead of considering the G-orbits in k̂Qcyc, we may rephrase an enhanced version

of the nc Mather-Yau theorem for G-orbits in k̂Q. Unfortunately, this cannot hold. Take Q to be
the quiver with one node and two arrows. Choose any formal series φ ∈ m̂4 with finite dimensional
Jacobi algebra. Then ψ := φ+ x2y − yx2 6∈ m̂4. Clearly, there is an isomorphism of Jacobi algebras

for φ and ψ. However, φ and ψ are not in the same G-orbit because any automorphism of k̂Q should
preserve powers of m̂.
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Definition 3.7. We call a potential Φ ∈ k̂Qcyc quasi-homogeneous if [Φ]Φ is zero in Λ̂(Q,Φ)cyc, or

equivalently, if Φ is contained in π(Ĵ(Q,Φ)).

Corollary 3.8. Let Q be a finite quiver. Let Φ,Ψ ∈ ĈQcyc two quasi-homogeneous potentials of

order ≥ 3 such that the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Then the
following two statements are equivalent:

(1) There is an CQ0-algebra isomorphism Λ̂(Q,Φ) ∼= Λ̂(Q,Ψ).

(2) Φ and Ψ are right equivalent.

Proof. Since [Φ]Φ and [Ψ]Ψ are both zero, the result is an immediate consequence of Theorem 3.5.

Quasi-homogeneous potentials are abundant. Let us call a potential of k̂Q weighted-homogeneous
if it has a representative with all terms have the same degree with respect to some choice of positive
weight of the arrows of Q. For example, take Q to be the quiver with one node and two arrows x, y.

Then Φ = π(x2y − 1
4y

4) ∈ k̂Qcyc is weighted-homogeneous. Note that all weighted-homogeneous
potentials must lie in kQcyc because there are only finitely many paths of the same degree with
respect to any choice of weights on arrows.

Lemma 3.9. Weighted-homogeneous potentials of k̂Q are quasi-homogeneous.

Proof. Suppose that all terms of the potential Φ ∈ k̂Qcyc have the same degree d with respect to the
choice of weight |a| = ra > 0. Then Φ = π(

∑
a∈Q1

ra
d a·Φ∗(Da)), and so Φ is quasi-homogeneous.

Remark 3.10. It is easy to check that the set of quasi-homogeneous potentials of k̂Q are closed
under the action of the group G. So for any weighted-homogeneous Φ, the potential H(Φ) will be
quasi-homogeneous but not weighted-homogeneous for some obvious choices ofH ∈ G. It is a natural
question to ask that given a quasi-homogeneous potential Φ does there exist an element H ∈ G such
that H(Φ) is weighted homogeneous. When Q is a n-loop quiver and k = C, the answer is positive

when Λ̂(Q,Φ) is finite dimensional (see [12]). This result can be viewed as the noncommutative
analogue of the famous theorem of Saito [21].

Recall from the hypersurface singularity theory that a power series f ∈ k[[x1, . . . , xn]] is quasi-
homogeneous if f lies in the ideal generated by the derivatives fx1 , . . . , fxn

. By Lemma 2.10, the

abelianization of a quasi-homogeneous potential of k̂Q (at any node) is quasi-homogeneous. However,
the next example tells us that the converse is not true, i.e., a non-quasi-homogenous potential may
also have quasi-homogeneous abelianization.

Example 3.11. Let k = C and Q the quiver with one node and two loops denoted by a and

b respectively. So ĈQ is the complete free algebra C〈〈a, b〉〉 and CQ is the free algebra C〈a, b〉.
Consider the potential

Φ = a2b−
∑

r≥4

(−1)r
br

r
.

It is not hard to check that the abelianization of Φ is quasi-homogeneous. We proceed to show that
Φ itself is not quasi-homogeneous. By a direct computation,

Φ∗(Da) = ab+ ba and Φ∗(Db) = (a2 + a2b− b3)(1 + b)−1.
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So

Λ̂(Q,Φ) =
C〈〈a, b〉〉

(ab+ ba, a2 + a2b− b3)cl
.

Consider the algebra

S =
C〈a, b〉

(ab+ ba, a2 − b3 + a2b)
.

A direct computation shows that a3 = 0 in S and all ambiguities of the rewriting system

{ ba 7→ −ab, b3 7→ a2 + a2b, a3 7→ 0 }

are resolvable. By the Diamond Lemma (see [3, Theorem 1.2]), S is nine dimensional with basis

1, a, b, a2, ab, b2, a2b, ab2, a2b2.

Moreover, ab3 = b6 = 0 in S. In particular, S is a local algebra. By a similar argument of the proof
of Lemma 2.8, the canonical morphism S → Λ̂(Q,Φ) is an isomorphism. By the division algorithm
with respect to the above rewriting system,

Φ =
3

4
a2b−

1

20
a2b2 6= 0 in Λ̂(Q,Φ).

Note that the commutator space [Λ̂(Q,Φ), Λ̂(Q,Φ)] is spanned by ab, a2b and ab2. So

[Φ] = −
1

20
a2b2 6= 0 in Λ̂(Q,Φ)cyc.

Thus by definition Φ is not a quasi-homogeneous potential.

3.3 Bootstrapping on Jacobi ideals

The remaining of this section aims to prove the nc Mather-Yau theorem (Theorem 3.5). This

subsection is devoted to establish a bootstrap relation between the Jacobi ideal Ĵ(Q,Φ) and the

higher Jacobi ideal m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂ for potentials Φ ∈ k̂Qcyc. The prototype of this
argument in the complex analytic case traces back to [19].

For our end, we need the following separation lemma for power series rings.

Lemma 3.12 (Separation lemma). Let P := k[[x1, . . . , xn]] be the power series ring over k and let
a be the ideal generated by x1, . . . , xn. Let f1, . . . , fn be a sequence of n elements in a. Suppose that
k is a field and the quotient k-algebra P/(f1, . . . , fn) is finite dimensional over k. Then there exists
a homomorphism η : P → k[[T ]] of k-algebras, where k is the algebraic closure of k, satisfying that
η(a) ⊆ (T ), η(f1) 6= 0 and η(fi) = 0 for i > 1.

Proof. Let I be the ideal of P generated by f2, . . . , fn. By an easy (Krull) dimension argument, one
obtain that dimP/I = 1 because dimP = n and dimP/(f1, . . . , fn) = 0. Fix a minimal prime ideal
p over I and let A := P/p. Clearly, f1 6∈ p and A is a noetherian local domain with residue field
k and of dimension 1. Moreover, A is complete by [22, Tag 0325]. Let B be the integral closure of
A in the fraction field of A. By standard commutative ring theory, B is a domain of dimension 1
and some maximal ideal of B contains a. By [22, Tag 032W], B is a finite module over A. Then,
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by [22, Tag 0325] again, B is also a noetherian complete local ring. It follows that the inclusion
map A → B is a finite local homomorphism. So the residue field K of B is of finite dimensional
over k and thereof we may identify K as a k-subalgebra of k. It is well-known that a Noetherian
normal local domain of dimension 1 is regular. By [22, Tag 0C0S], B ∼= K[[T ]] as K-algebras. Let
η : P → k[[T ]] be the composition of the following sequence of homomorphisms of k-algebras

P −→ A
⊆
−→ B

∼=
−→ K[[T ]]

⊆
−→ k[[T ]],

where the first one is the projection map. Clearly, η satisfies the requirements.

Proposition 3.13 (Bootstrapping). Let Φ ∈ k̂Qcyc be a potential of order ≥ 2. Suppose that k is

a field and the Jacobi algebra Λ(Q̂,Φ) is finite dimensional. Then

(1) Φ ∈ π(Ĵ(Q,Φ)) (i.e. Φ is quasi-homogeneous) if and only if Φ ∈ π(m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂).

(2) For any potential Ψ ∈ F̂cyc of order ≥ 2 with Ĵ(Q,Ψ) = Ĵ(Q,Φ), it follows that Φ − Ψ ∈

π(Ĵ(Q,Φ)) if and only if Φ−Ψ ∈ π(m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂).

Proof. The if part of both statements are obvious. For the only if part, we prove by contradiction.
To simplify the notation, let φa = Φ∗(Da) and ψa = Ψ∗(Da) for a ∈ Q1. Write Q1 = A ⊔ L, where
A consists of arrows between distinct nodes and L consists of loops. For a power series f ∈ k[[T ]],
let o(f) denote the order of f . It is defined to be the minimal degree of terms that occurs in f .

For every node i, let ι(i) : k̂Q→ k[[Q
(ii)
1 ]] be the abelianization map constructed before Lemma

2.10. For every a ∈ Q
(ii)
1 , let fa = ι(i)(φa). Clearly, k[[Q

(ii)
1 ]]/(fa : a ∈ Q

(ii)
1 ) is finite dimensional

over k. If the set Q
(ii)
1 6= ∅, then by Lemma 3.12, for any arrow b ∈ Q

(ii)
1 one may choose a local

homomorphism η
(i)
b : k[[Q

(ii)
1 ]] → k[[T ]] such that η

(i)
b (fb) 6= 0 but η

(i)
b (fa) = 0 for a 6= b. Define a

k-algebra homomorphism ω
(i)
b : k̂Q→ k[[T ]] by

ω
(i)
b = η

(i)
b ◦ ι(i).

Clearly, ω
(i)
b (m̂) ⊆ (T ), ω

(i)
b (ej) = δij , ω

(i)
b (φb) 6= 0 and ω

(i)
b (φa) = 0 for all a 6= b. Moreover, ω

(i)
b

factors through π : k̂Q→ k̂Qcyc by a linear map ω
(i)
b : k̂Qcyc → k[[T ]]. By the chain rule,

d ω
(i)
b (Φ)

d T
=

∑

s(a)=t(a)=i

ω
(i)
b (φa) ·

d ω
(i)
b (a)

d T
= ω

(i)
b (φb) ·

d ω
(i)
b (b)

d T
.

Consequently, o(ω
(i)
b (φb)) < o(ω

(i)
b (Φ)).

To see the only if part of (1), assume that Φ ∈ π(Ĵ(Q,Φ)), i.e.

Φ = π(
∑

a∈Q1

ha · φa) = π(
∑

a∈A

ha · φa +
∑

a∈L

ha · φa), where ha ∈ es(a) · k̂Q · et(a).

Clearly, ha ∈ m̂ for a ∈ A. Suppose that for some b ∈ L such that s(b) = t(b) = i,

hb =
∑

w

λb,w · w ∈ ei · k̂Q · ei,
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where w runs over cycles based at i and λb,w ∈ k, having λb,ei 6= 0. Since

ω
(i)
b (Φ) =

∑

a∈Q1

ω
(i)
b (ha) · ω

(i)
b (φa) = ω

(i)
b (hb) · ω

(i)
b (φb)

and ω
(i)
b (hb) is a unit of k[[T ]], we then obtain o(ω

(i)
b (φb)) = o(ω

(i)
b (Φ)), which is absurd.

To see the only if part of (2), let

Ψ− Φ = π(
∑

a∈Q1

ga · φa) = π(
∑

a∈A

ga · φa +
∑

a∈L

ga · φa), where ga ∈ es(a) · k̂Q · et(a)

Again, it is clear that ga ∈ m̂ for a ∈ A. Suppose that for some b ∈ L such that s(b) = t(b) = i,

gb =
∑

w

λ′b,w · w ∈ ei · k̂Q · ei,

where w runs over cycles based at i and λ′b,w ∈ k, having λ′b,ei 6= 0. Since

ω
(i)
b (Ψ) = ω

(i)
b (Φ) +

∑

a∈Q1

ω
(i)
b (ga) · ω

(i)
b (φa) = ω

(i)
b (Φ) + ω

(i)
b (gb) · ω

(i)
b (φb)

and ω
(i)
b (gb) is a unit of k[[T ]], we then obtain o(ω

(i)
b (Ψ)) = o(ω

(i)
b (φb)). Note that every ideal J of

k[[T ]] is principal; write o(J) for the order of its generator. Since

d ω
(i)
b (Ψ)

d T
=

∑

s(a)=t(a)=i

ω
(i)
b (ψa) ·

d ω
(i)
b (a)

d T
,

we obtain o(ω
(i)
b (ψa)) < o(ω

(i)
b (Ψ)) for at least one loop a such that s(a) = t(a) = i. Hence

o

((
ω
(i)
b (ψa) : a ∈ Q

(ii)
1

))
< o(ω

(i)
b (Ψ)) = o(ω

(i)
b (φb)) = o

((
ω
(i)
b (φa) : a ∈ Q

(ii)
1

))
.

But one has

(
ω
(i)
b (ψa) : a ∈ Q

(ii)
1

)
= ω

(i)
b (Ĵ(Q,Ψ)) = ω

(i)
b (Ĵ(Q,Φ)) =

(
ω
(i)
b (φa) : a ∈ Q

(ii)
1

)
,

which yields a contradiction.

3.4 Finite determinacy

Given an integer r ≥ 0, the r-th jet space of k̂Q is defined to be the quotient l-algebra Jr := k̂Q/m̂r+1.

Clearly, the projection map k̂Q→ Jr induces a canonical surjective map

qr : k̂Qcyc → Jr
cyc := Jr/[Jr, Jr]

with kernel π(m̂r+1). The image of a potential Φ ∈ k̂Qcyc under this map is denoted by Φ(r). For

two potentials Ψ1,Ψ2 ∈ k̂Qcyc, Ψ
(r)
1 = Ψ

(r)
2 if and only if their canonical representatives share the

same coefficients for standard cycles of length ≤ r.
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Proposition 3.14. Let Φ,Ψ ∈ k̂Qcyc be potentials satisfy that Φ(r) = Ψ(r) in Jr
cyc for some r > 0.

Suppose Ĵ(Q,Φ) ⊇ m̂r−1. Then

Ĵ(Q,Φ) = Ĵ(Q,Ψ).

Consequently, Λ̂(Q,Φ) = Λ̂(Q,Ψ) as l-algebras.

Proof. Note that D(m̂s) ⊆ m̂s−1 for any D ∈ ĉDerl(k̂Q) and any s ≥ 1. It follows that

Ĵ(Q,Ψ) + m̂r = Ĵ(Q,Φ) + m̂r ⊇ m̂r−1.

By Lemma 2.14, we also have Ĵ(Q,Ψ) ⊇ m̂r−1 and consequently

Ĵ(Q,Ψ) = Ĵ(Q,Ψ) + m̂r = Ĵ(Q,Φ) + m̂r = Ĵ(Q,Φ).

The equality of Jacobi algebras is just by definition.

Given an integer r ≥ 0, let Gr be the group of all l-algebra automorphisms of Jr = k̂Q/m̂r+1

preserving m̂/m̂r+1. Clearly, the canonical map G → Gr is surjective. A potential Φ ∈ k̂Qcyc is called

r-determined (with respect to G) if Φ(r) ∈ Gr · Ψ(r) implies Φ ∼ Ψ for all Ψ ∈ k̂Qcyc. Clearly, it is

equivalent to the condition that Φ(r) = Ψ(r) implies Φ ∼ Ψ for all Ψ ∈ k̂Qcyc. If Φ is r-determined
for some r ≥ 0 then it is called finitely determined (with respect to G).

Remark 3.15. If Φ ∈ k̂Qcyc is r-determined for some integer r ≥ 0 then Φ ∼ Φ(r).

This subsection is devoted to prove the following theorem, which can be viewed as a noncommu-
tative analogue of Mather’s infinitesimal criterion [24, Theorem 1.2].

Theorem 3.16 (Finite determinacy). Let Q be a finite quiver and Φ ∈ ĈQcyc a potential. If

the Jacobi algebra Λ̂(Q,Φ) is finite dimensional then Φ is finitely determined. More precisely, if

Ĵ(Q,Φ) ⊇ m̂r for some integer r ≥ 0 then Φ is (r + 1)-determined.

The proof of this theorem will be addressed after several auxiliary results.
Let us fix some notations once for all. We denote K for the algebra of entire functions on the

complex plane C. The base ring k that we need below are C and K. Let l = CQ0 and m̂ the ideal

of ĈQ generated by arrows. Let L = KQ0 and n̂ the ideal of K̂Q generated by arrows.

We identify ĈQ (resp. ĈQcyc) as a subspace of K̂Q (resp. K̂Qcyc) in the natural way. Since

l-algebra automorphisms of ĈQ and L-algebra automorphisms of K̂Q are both uniquely determined

by their values on the arrows, one may naturally identify the group Autl(ĈQ) = Autl(ĈQ, m̂) as a

subgroup of AutL(K̂Q, n̂). For every t ∈ C, let

(−)t : K̂Q→ ĈQ, f 7→ ft

be the map given by evaluating coefficients at t. Furthermore, there is a map

(−)t : AutL(K̂Q, n̂) → Autl(ĈQ, m̂), H 7→ Ht : a 7→ H(a)t, a ∈ Q1.

One may consider H ∈ AutL(K̂Q, n̂) as an analytic curve t 7→ Ht of l-automorphisms of ĈQ.

Given a formal series f =
∑

w aw(t)w ∈ K̂Q, the derivative d f
d t is defined to be the formal series∑

w a
′
w(t)w. It is easy to check that take derivation preserves cyclic equivalence relation on K̂Q.

Consequently, one may naturally define dΦ
d t for any superpotential Φ ∈ K̂Qcyc.
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Lemma 3.17. Fix an element fa ∈ es(a) · n̂ · et(a) for every arrow a ∈ Q1. There exists an

automorphism H ∈ AutL(K̂Q, n) such that

H0 = Id and
dH(a)

d t
= −H(fa) for a ∈ Q1.

Proof. Write fa =
∑

w λa,w(t) w, where w runs over all paths and λa,w(t) ∈ K. Note that λa,ei = 0
for all arrows a and nodes i, and λa,w = 0 for all arrows a and paths w that don’t have the same
source and end. For each pair of nodes i and j, let

Mij(t) := [λa,b(t)]a,b∈Q
(ij)
1
,

which is an (Q
(ij)
1 ×Q

(ij)
1 )-matrix with entries in K. If desired H exists, write

H(a) =
∑

w

γa,w(t) w, a ∈ Q1.

Then we would have

(1) γa,ei(t) = 0 for all arrows a and nodes i, and γa,w(t) = 0 for all arrows a and paths w that
don’t have the same source and end.

Moreover, we would also have:
∑

|w|≥1

γ′a,w(t) w = −
∑

|w|≥1

λa,w(t) H(w), a ∈ Q1.

Compare the coefficients we then would have for each pair of nodes i and j that

(2) (γa,b(0))a∈Q
(ij)
1

= (δa,b)a∈Q
(ij)
1

for all arrows from i to j, and (γa,w(0))a∈Q
(ij)
1

= 0 for all paths

w from i to j of length ≥ 2.

(3) For paths w from i to j of length ≥ 1,

(γ′a,w(t))a∈Q
(ij)
1

= −Mij(t) · (γa,w(t))a∈Q
(ij)
1

+ (Fa,w(t))a∈Q
(ij)
1
,

where Fa,w(t) ∈ ei · K̂Q · ej is a finite linear sum of finite products of elements in

{λa,u(t) | 2 ≤ |u| ≤ |w|, s(u) = i, t(u) = j}
⋃

{γb,v(t) | b ∈ Q1, 1 ≤ |v| < |w|}.

Here the operation of (Q
(ij)
1 ×Q

(ij)
1 )-matrices on Q

(ij)
1 -tuples is defined in the natural way.

By the stand theory of analytic ODE (see [5]), we can construct all these coefficients γa,w(t) ∈ K
by induction on the length of w from the above three conditions (1), (2) and (3). Then of course

the induced L-algebra endomorphism H of K̂Q satisfies the ODE, and also

[γa,b(t)]a,b∈Q
(ij)
1

= eNij(t), i, j ∈ Q0,

where Nij(t) is the antiderivative of Mij(t) with Nij(0) the identity (Q
(ij)
1 × Q

(ij)
1 )-matrix. In

particular, [γa,b(t)]a,b∈Q
(ij)
1

is invertible with inverse e−Nij(t) for each pair of nodes i and j. By

Lemma 2.13, H is an L-algebra automorphism of K̂Q preserves n̂.
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Lemma 3.18 (Local triviality). Let Θ ∈ K̂Qcyc be a potential. Suppose dΘ
dt ∈ Θ#(Der+L (K̂Q)).

Then there exists an automorphism H ∈ AutL(K̂Q, n̂) such that

H0 = Id and H(Θ) = Θ0 in K̂Qcyc.

Proof. Choose ξ ∈ Der+L(K̂Q) such that dΘ
dt = Θ#(ξ). Then there exists a double L-derivation

δ =

n∑

a∈Q1

∑

u,v

λ(a)u,v(t) u ∗
∂

∂a
∗ v ∈ D̂er

+

L (K̂Q),

where u and v runs over paths with t(u) = t(a) and s(v) = s(a) respectively, such that ξ = µ̂ ◦ δ. In

K̂Qcyc, we have

Θ#(ξ) = π

(
Θ∗

(
µ̂ ◦ τ̂ ◦ δ

))

= π
( ∑

a∈Q1

∑

u,v

λ(a)u,v(t) u ·Θ∗(Da) · v
)

= π
( ∑

a∈Q1

∑

u,v

λ(a)u,v(t) vu ·Θ∗(Da)
)

= π
( ∑

a∈Q1

ξ(a) ·Θ∗(Da)
)

Note that ξ(a) ∈ es(a) · n̂ · et(a). Let H ∈ AutL(K̂Q, n) be chosen as in Lemma 3.17. So

H0 = Id and
dH(a)

d t
= −H(ξ(a)) for a ∈ Q1.

Then, in K̂Qcyc we have

dH(Θ)

d t
= H(

dΘ

d t
) + π

( ∑

a∈Q1

dH(a)

d t
·H

(
Θ∗(Da)

))

= H

(
Θ#(ξ)− π

( ∑

a∈Q1

ξ(a) ·Θ∗(Da)
))

= 0.

Thus all coefficients of the canonical representative of H(Θ) are constants and hence H(Θ) =
H(Θ)0 = H0(Θ0) = Θ0.

Lemma 3.19. For any potential Φ ∈ ĈQcyc ⊆ K̂Qcyc, we have

Φ∗

(
ĉDer

+

l (ĈQ)
)
⊇ m̂r ⇐⇒ Φ∗

(
ĉDer

+

L(K̂Q)
)
⊇ n̂r, r > 0.

Proof. We may identify ĈQ⊗̂CĈQ with a subspace of K̂Q⊗̂KK̂Q in the obvious way. Since double

l-derivations of ĈQ and double L-derivations of K̂Q are uniquely determined by their values at
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arrows, we may naturally identify D̂erl(ĈQ) with a subspace of D̂erL(K̂Q). By the definition of
cyclic derivations, the forward implication is clear.

To see the backward implication, fix an arbitrary element f ∈ m̂r ⊆ n̂r. Choose a double

L-derivation δ ∈ D̂er
+

L(K̂Q) with Φ∗(µ̂K̂Q
◦ τ̂

K̂Q
◦ δ) = f . It is easy to see that every element

g ∈ K̂Q⊗̂KK̂Q can be uniquely decomposed into the following form:

g = g1 + t · g2, g1 ∈ ĈQ⊗̂CĈQ, g2 ∈ K̂Q⊗̂KK̂Q.

Using the decompositions
δ(a) = δ(a)1 + t · δ(a)2, a ∈ Q1

as above, we get a decomposition

δ = δ1 + tδ2, δ1 ∈ D̂er
+

l (ĈQ) ⊆ D̂er
+

L (K̂Q), δ2 ∈ D̂er
+

L (K̂Q).

In fact, δ1 (resp. δ2) is given by δ1(a) = δ(a)1 (resp. δ2(a) = δ(a)2). We have

f = Φ∗(µ̂K̂Q
◦ τ̂

K̂Q
◦ δ) = Φ∗(µ̂ĈQ

◦ τ̂
ĈQ

◦ δ1) + t · Φ∗(µ̂K̂Q
◦ τ̂

K̂Q
◦ δ2).

It follows that f = Φ∗(µ̂ĈQ
◦ τ̂

ĈQ
◦ δ1) and hence f ∈ Φ∗

(
ĉDer

+

l (ĈQ)
)
.

Proof of Theorem 3.16. It suffices to show the second statement. Suppose Ĵ(Q,Φ) ⊇ m̂r. We

proceed to show Φ is (r + 1)-determined. Suppose Ψ ∈ ĈQcyc such that Ψ(r+1) = Φ(r+1). Let

Θ := Φ + t(Ψ − Φ) ∈ K̂Qcyc.

Clearly, we have

Φ∗

(
ĉDer

+

l (ĈQ)
)
⊇ m̂r+1.

Then Lemma 3.19 tells us

Φ∗

(
ĉDer

+

L(K̂Q)
)
⊇ n̂r+1.

Since Θ and Φ has the same (r + 1)-jet in K̂Qcyc, it follows readily that

Θ∗

(
ĉDer

+

L(K̂Q)
)
+ n̂r+2 = Φ∗

(
ĉDer

+

L (K̂Q)
)
+ n̂r+2 ⊇ n̂r+1.

Then Lemma 2.14, the Nakayama lemma, tells us

Θ∗

(
ĉDer

+

L(K̂Q)
)
⊇ n̂r+1.

Consequently,

Θ#

(
Der+L(K̂Q)

)
= π

(
Θ∗

(
ĉDer

+

L(K̂Q)
))

⊇ π(n̂r+1) ∋ Ψ− Φ =
dΘ

d t
.

Apply Lemma 3.18, there is an automorphism H ∈ AutL(K̂Q, n̂) such that H(Θ) = Θ0 = Φ. In
particular, H1(Ψ) = H1(Θ1) = H(Θ)1 = Φ and so Ψ is right equivalent to Φ.
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3.5 Proof of the nc Mather-Yau theorem (Theorem 3.5)

Proof of Theorem 3.5. By Proposition 3.3, it remains to show (1) implies (2).

Let γ : Λ̂(Q,Φ) → Λ̂(Q,Ψ) be an l-algebra isomorphism such that γ∗([Φ]Φ) = [Ψ]Ψ. We claim

that γ can be lifted to an l-algebra automorphism of ĈQ. Denote the image of arrows a ∈ Q1 in
Λ̂(Q,Φ) and Λ̂(Q,Ψ) both by a. Clearly, any lifting ha ∈ es(a) · CQ · et(a) of γ(a), a ∈ Q1, lifts γ to

an l-algebra endomorphism H : a 7→ ha of ĈQ. In other words, we have a commutative diagram:

ĈQ

��

H
// ĈQ

��

Λ̂(Q,Φ)
γ

// Λ̂(Q,Ψ).

Recall that m̂Φ ⊂ Λ̂(Q,Φ) is defined to be m̂/Ĵ(Q,Φ) and similarly for m̂Ψ ⊂ Λ̂(Q,Ψ). Because Φ
and Ψ are of order ≥ 3, there is a canonical isomorphism of l-bimodules m̂/m̂2 ∼= m̂Φ/m̂

2
Φ
∼= m̂Ψ/m̂

2
Ψ.

Because γ induces an isomorphism on m̂Φ/m̂
2
Φ
∼= m̂Ψ/m̂

2
Ψ, H induces an isomorphism on m̂/m̂2. By

Lemma 2.13, H is invertible.
By the assumption γ∗([Φ]Φ) = [Ψ]Ψ we have [H(Φ)]Ψ = [Ψ]Ψ, and by Lemma 3.3 we have

Ĵ(Q,Ψ) = H(Ĵ(Q,Φ)) = Ĵ(Q,H(Φ)).

Thus, without lost of generality, we may replace Φ by H(Φ) and assume in priori that

Ĵ(Q,Φ) = Ĵ(Q,Ψ) and [Φ]Φ = [Ψ]Ψ.

Let r be the minimal integer so that Ĵ(Q,Φ) ⊇ m̂r. By finite determinacy (Theorem 3.16), it suffice
to show that Φ(s) and Ψ(s) lie in the same orbit of Gs = Autl(J

s) for s = r + 1. If Φ(s) = Ψ(s) then
there is nothing to proof. So we may assume further that Φ(s) 6= Ψ(s).

Since Js
cyc is a finite dimensional vector space, it has a natural complex manifold structure.

Also, it is not hard to check that Gs is a complex Lie group acts analytically on Js
cyc. So the orbit

Gs · Ξ(s) is an immersed submanifold of Js
cyc for any potential Ξ ∈ ĈQcyc. We proceed to calculate

TΞ(s)(Gs · Ξ(s)), the tangent space of Gs · Ξ(s) at Ξ(s). Let Der+l (J
s) be the space of l-derivations of

Js satisfying that δ(m̂/m̂s+1) ⊆ m̂/m̂s+1. Clearly, the canonical map ρs : Der+l (ĈQ) → Der+l (J
s) is

surjective. We have a commutative diagram of vector spaces over C as following:

D̂er
+

l (ĈQ)
µ̂◦τ̂◦−

// //

µ̂◦−
��
��

ĉDer
+

l (ĈQ)
Ξ∗

// ĈQ

π

��

Der+l (ĈQ)

ρs

��
��

Ξ#
// ĈQcyc

qs

��

Der+l (J
s)

(Ξ(s))#
// Js

cyc,
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where (Ξ(s))# is constructed in Lemma 2.1 (1). Recall that Der+l (J
s) is the tangent space of Gs at

the identity map, we have

TΞ(s)(Gs · Ξ(s)) = im((Ξ(s))#) = qs

(
π
(
m̂ · Ĵ(Q,Ξ) + Ĵ(Q,Ξ) · m̂

))
.

Now consider the complex line L := { Θ
(s)
t = tΨ(s) + (1− t)Φ(s) | t ∈ C } contained in Js

cyc. By

the assumption that Ĵ(Q,Φ) = Ĵ(Q,Ψ), we have

TΨ(s)(Gs ·Ψ(s)) = TΦ(l)(Gs · Φ(s)) = qs

(
π
(
m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂

))
,

as subspaces of Js
cyc. It follows that for any t the tangent space T

Θ
(s)
t

(Gs · Θ
(s)
t ) is a subspace of

qs

(
π
(
m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂

))
. Let L0 be the subset of L consisting of those Θ

(s)
t such that

T
Θ

(s)
t

(G ·Θ
(s)
t ) = qs

(
π
(
m̂ · Ĵ(Q,Φ) + Ĵ(Q,Φ) · m̂

))
.

Then Φ and Ψ are both in L0. It remains to show that L0 lies in the orbit Gs · Φ(s). By a standard
lemma in the theory of Lie group (c.f. Lemma 1.1 [24]), it suffices to check that

(1) The complement L\L0 is a finite set (so L0 is a connected smooth submanifold of Js
cyc);

(2) For all Θ
(s)
t ∈ L0, the dimension of T

Θ
(s)
t

(Gs ·Θ
(s)
t ) are the same;

(3) For all Θ
(s)
t ∈ L0, the tangent space T

Θ
(s)
t

(L0) is contained in T
Θ

(s)
t

(Gs ·Θ
(s)
t ).

Condition (1) holds because L\L0 corresponds to the locus of the continuous family

{(Θ
(s)
t )# : Der+l (J

s) → Js
cyc}t∈C

of linear maps between two finite dimensional spaces that have lower rank. Condition (2) follows
from the construction of L0. Note that the tangent space of L0 at each of its point is spanned by
Φ(s) −Ψ(s) = qs(Φ−Ψ) in Js

cyc. By Proposition 3.13 (2), condition (3) holds if Φ−Ψ ∈ π(Ĵ(Q,Φ)),
which is equivalent to the assumption that [Φ]Φ = [Ψ]Ψ.

4 A rigidity theorem on complete Ginzburg dg-algebra

First we recall the definition of the complete Ginzburg dg-algebra D̂(Q,Φ) associated to a finite

quiver Q and a potential Φ ∈ k̂Qcyc, where k is a fixed field.

Definition 4.1. (Ginzburg) Let Q be a finite quiver and Φ a potential on Q. Let Q be the graded
quiver with the same vertices as Q and whose arrows are

• the arrows of Q (of degree 0);
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• an arrow θa : j → i of degree −1 for each arrow a : i→ j of Q;

• a loop ti : i→ i of degree −2 for each vertex i of Q.

The (complete) Ginzburg (dg)-algebra D̂(Q,Φ) is the dg k-algebra whose underlying graded algebra
is the completion (in the category of graded vector spaces) of the graded path algebra kQ with
respect to the two-sided ideal generated by the arrows of Q. Its differential is the unique linear
endomorphism homogeneous of degree 1 satisfying the Leibniz rule, and which takes the following
values on the arrows of Q:

• dei = 0 for i ∈ Q0 where ei is the idempotent associated to i;

• da = 0 for a ∈ Q1;

• d(θa) = Φ∗(Da) for a ∈ Q1;

• d(ti) = ei(
∑

a∈Q1
[a, θa])ei for each i ∈ Q0.

It follows from Lemma 2.12 that D̂(Q,Φ) is a dg-l-algebra with l = kQ0. Taking the topology into

consideration, D̂(Q,Φ) is a pseudocompact dg-l-algebra in the sense of [15, Appendix].

The degree zero component of D̂(Q,Φ) is exactly the complete path algebra k̂Q, which is itself

a pseudocompact algebra. The (−1)- component D̂−1(Q,Φ) consists of formal series of the form

∑

a∈Q1

∑

u,v

A(i)
u,v u · θa · v, A(i)

u,v ∈ k,

where t(u) = t(a) and s(v) = s(a). Note that both D̂−1(Q,Φ) and D̂erl(k̂Q) are pseudocompact

k̂Q-bimodules in the sense of [15, Appendix]. Moreover, we have a commutative diagram

D̂−1(Q,Φ)
d

//

∼=
��

k̂Q

=

��

D̂erl(k̂Q)
µ̂◦τ̂◦−

// ĉDerl(k̂Q)
Φ∗

// k̂Q.

(4.1)

The map D̂−1(Q,Φ)
∼=
−→ D̂erl(k̂Q) appears above is the k̂Q-bimodule isomorphism given by

∑

a∈Q1

∑

u,v

A(i)
u,v u · θa · v 7→

∑

a∈Q1

∑

u,v

A(i)
u,v u ∗

∂

∂a
∗ v.

Recall that the notation ∗ denotes the scalar multiplication of the bimodule structure of D̂erl(k̂Q)

induced from the inner bimodule structure of k̂Q⊗̂k̂Q.

Lemma 4.2. Let Q be a finite quiver. For any potential Φ ∈ k̂Qcyc, one has

Λ̂(Q,Φ) = H0(D̂(Q,Φ)).

Proof. This is a direct consequence of the commutative diagram (4.1).
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The main theorem of this section is as follows.

Theorem 4.3. Fix a finite quiver Q. Let Φ,Ψ ∈ ĈQcyc be two potentials of order ≥ 3, such that

the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Assume there is a CQ0-algebra

isomorphism γ : Λ̂(Q,Φ) → Λ̂(Q,Ψ) so that γ∗([Φ]) = [Ψ]. Then there exists a dg-CQ0-algebra
isomorphism

Γ : D̂(Q,Φ)
∼=

// D̂(Q,Ψ)

such that Γ(ti) = ti for all i ∈ Q0.

Proof. Let l = CQ0. By the nc Mather-Yau theorem (Theorem 3.5), there exists a l-algebra auto-

morphism H of ĈQ such that H(Φ) = Ψ in ĈQcyc. Choose such an automorphismH so that a 7→ ha,
and let H−1 : a 7→ h−1

a be its inverse. Warning: h−1
a refers to the component of the automor-

phism H−1 that corresponds to a, instead of the inverse of ha. Define a dg-algebra homomorphism
Γ : D̂(Q,Φ) → D̂(Q,Ψ) by

Γ : ei 7→ ei, a 7→ ha, θa 7→
∑

β∈Q1

H

((∂h−1
β

∂a

)′′
)
· θβ ·H

((∂h−1
β

∂a

)′
)
, ti 7→ ti.

We need to check that Γ is compatible with d. The above assignment defines a morphism of dg-
algebras if and only if the following equalities hold:

Γ
(
d(θa)

)
= d

(
Γ(θa)

)
, a ∈ Q1;

Γ
(
d(ti)

)
= d

(
Γ(ti)

)
, i ∈ Q0.

We verify the first equality (using chain rule).

Γ
(
d(θa)

)
= Γ

(
Φ∗(Da)

)
= Γ

(
H−1(Ψ)∗(Da)

)

= H

( ∑

β∈Q1

(∂h−1
β

∂a

)′′
·H−1

(
Ψ∗(Dβ)

)
·
(∂h−1

β

∂a

)′
)

=
∑

β∈Q1

H

((∂h−1
β

∂a

)′′
)
·Ψ∗(Dβ) ·H

((∂h−1
β

∂a

)′
)

= d
(
Γ(θa)

)

By the canonical identification D̂−1(Q,Φ) ∼= D̂erl(ĈQ), to verify the second equality, it suffices to
show the following equality holds for any a.

a ∗
∂

∂a
−

∂

∂a
∗ a =

∑

β∈Q1

hβ ∗H

((∂h−1
a

∂β

)′′
)
∗
∂

∂a
∗H

((∂h−1
a

∂β

)′
)

−H

((∂h−1
a

∂β

)′′
)
∗
∂

∂a
∗H

((∂h−1
a

∂β

)′
)
∗ hβ .

It is enough to check the application of both sides on b ∈ Q1. For b 6= a, both sides equal to zero.
The b = a case reduces to the equality

es(a)⊗a− a⊗et(a) =
∑

β∈Q1

H

((∂h−1
a

∂β

)′
)
⊗hβH

((∂h−1
a

∂β

)′′
)
−H

((∂h−1
a

∂β

)′
)
hβ⊗H

((∂h−1
a

∂β

)′′
)
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Applying H−1⊗̂H−1 to both sides of the equation, it is equivalent to verify the identity

es(a)⊗h
−1
a − h−1

a ⊗et(a) =
∑

β∈Q1

(∂h−1
a

∂β

)′
⊗β

(∂h−1
a

∂β

)′′
−
(∂h−1

a

∂β

)′
β⊗

(∂h−1
a

∂β

)′′
.

We claim this holds for arbitrary path w = a1 . . . ar with s(w) = s(a) and t(w) = t(a), and therefore
holds in general. Indeed, we have

es(a)⊗w − w⊗et(a) =
∑

β∈Q1

∑

as=β

(
a1 . . . as−1⊗asas+1 . . . ar − a1 . . . as−1as⊗as+1 . . . ar

)
.

Since
∂w

∂β
=

∑

as=β

a1 . . . as−1⊗as+1 . . . ar,

the desired identity follows.
Similarly, we may define a dg-morphism

Γ−1 : ei 7→ ei, b 7→ h−1
b , θb 7→

∑

α∈Q1

H−1

((∂hα
∂b

)′′
)
· θα ·H−1

((∂hα
∂b

)′
)
, ti 7→ ti.

Apply the canonical identification D̂−1(Q,Φ) ∼= D̂erl(ĈQ) again, to prove Γ−1 is the inverse of Γ, it
suffices to check the identity

∂

∂b
=

∑

α∈Q1

∑

β∈Q1

(∂h−1
α

∂b

)′′
∗H−1

((∂hβ
∂b

)′′
)
∗
∂

∂β
∗H−1

((∂hβ
∂b

)′
)
∗
(∂h−1

α

∂b

)′

It suffices to check the application of both sides on all a such that s(a) = s(b) and t(a) = t(b). Then
we get

∑

α∈Q1

H−1

((∂ha
∂b

)′
)(∂h−1

α

∂b

)′
⊗
(∂h−1

α

∂b

)′′
H−1

((∂ha
∂b

)′′
)

=
∂
(
H−1(ha)

)

∂b

= δa,bes(a)⊗et(a).

The equality follows by the chain rule. The desired identity follows.

Remark 4.4. The condition Γ(ti) = ti in Theorem 4.3 can be interpreted as a volume-preserving
condition in noncommutative geometry.

Remark 4.5. When we finished our proof of Theorem 4.3, we learned that Keller and Yang has

already got the fact that every l-algebra automorphism H of k̂Q, which transform Φ to Ψ, can be

extended to a dg-l-algebra isomorphism D̂(Q,Φ)
∼=
−→ D̂(Q,Ψ), see [15, Lemma 2.9]. From this fact

and the nc Mather-Yau theorem, one immediately obtain Theorem 4.3 as well. However, we retain
our proof in full detail for completeness and reader’s convenience.
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The correct setup to discuss the complete Ginzburg dg-algebra is to use the language of pseu-
docompact dg-algebras and derived categories. We now state several definitions and results due to
Keller and Van den Bergh. For simplicity, we will omit the definitions of pseudocompact dg-algebras
and derived categories. The interested readers can find the details in the Appendix of [15] and a
generalization in Section 6 of [23].

Let l be a finite dimensional separable k-algebra over a field k. Let A be a pseudocompact dg-
l-algebra. Denote the pseudocompact derived category of A by Dpc(A). Define the perfect derived
category perpc(A) to be the thick subcategory of Dpc(A) generated by the free A-module of rank 1.
Define the finite-dimensional derived category Dfd,pc(A) to be the full subcategory whose objects
are the pseudocompact dg-modules M such that HomDpc(A)(P,M) is finite dimensional for each
perfect P . We say that A is topologically homologically smooth if the module A considered as a
pseudocompact dg-module over Ae := A⊗̂Aop is quasi-isomorphic to a strictly perfect dg-module
(See [15, Appendix A.11] for the definition).

Let d be an integer. For an object L of Dpc(A
e), define L# = RHomAe(L,Ae[d]). The dg-algebra

A is topologically bimodule d-Calabi-Yau if there is an isomorphism

A
∼=
−→ A#

in Dpc(A
e). In this case, the category Dfd,pc(A) is d-Calabi-Yau as a triangulated category. If a

pseudocompact dg-algebra A is topologically homologically smooth and topological d-Calabi-Yau
as a bimodule, we say A is a topological d-Calabi-Yau algebra. In this case, Dfd,pc(A) is a full
subcategory of perpc(A) (Proposition A.14 (c) [15]).

Note that if a pseudocompact dg-algebra A is topologically d-Calabi-Yau and has cohomology
concentrating in degree 0 then H0(A) is also topologically d-Calabi-Yau as a pseudocompact algebra
(see [15, Proposition A.14 (e) ]). Here, the topological structure on H0(A) is inherited from A. If A
is algebraic (non-topological), then the notion of homologically smooth, bimodule Calabi-Yau and
d-Calabi-Yau algebra can be defined similarly but with the pseudocompact derived category Dpc

replaced by the algebraic derived category.

Theorem 4.6. ([15, Theorem A.17]) Complete Ginzburg dg-algebras are topologically 3-Calabi-Yau.

Assume a pseudocompact dg-l-algebra A satisfies the following additional conditions:

(1) A is topologically 3-Calabi-Yau,

(2) for each p > 0, the space Hp(A) vanishes,

(3) the algebra H0(A) is finite-dimensional over k.

The topological generalized cluster category of A is defined to be the Verdier quotient

perpc(A)/Dfd,pc(A).

For a non-topological dg-l-algebraA, which is (non-topological) 3-Calabi-Yau and satisfies conditions
(2) and (3) above, the algebraic generalized cluster category per(A)/Dfd(A) was first studied by
Amiot (see Theorem 2.1 [1]).

As an immediate consequence of Theorem 4.3, we have
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Corollary 4.7. Fix a finite quiver Q. Let Φ,Ψ ∈ ĈQcyc be two potentials of order ≥ 3, such that

the Jacobi algebras Λ̂(Q,Φ) and Λ̂(Q,Ψ) are both finite dimensional. Assume there is an CQ-algebra

isomorphism γ : Λ̂(Q,Φ) → Λ̂(Q,Ψ) so that γ∗([Φ]) = [Ψ]. Then the topological generalized cluster

categories of D̂(Q,Φ) and of D̂(Q,Ψ) are triangle equivalent. �

Remark 4.8. Let C be a contractible rational curve in a smooth quasi-projective Calabi-Yau
threefold Y . The derived noncommutative deformation of OC is represented by a Ginzburg algebra
D̂(Q,Φ), and the underived deformation is represented by the Jacobi algebra Λ̂(Q,Φ). Its generalized
cluster category is equivalent to the derived category of singularity for contraction of Y . Corollary
4.7 is used in [11] to prove that the Jacobi algebra Λ̂(Q,Φ) together with the class [Φ] classifies all
three dimensional flops.
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