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Abstract. We present a numerical model for determining a finite Blaschke
product of degree n + 1 having n preassigned distinct critical points
z1, . . . , zn in the complex (open) unit disk D. The Blaschke product is
uniquely determined up to postcomposition with conformal automor-
phisms of D. The proposed method is based on the construction of a
sparse nonlinear system where the data dependency is isolated to two
vectors and on a certain transformation of the critical points. The effi-
ciency and accuracy of the method is illustrated in several examples.

1. Introduction

A finite Blaschke product of degree n is a rational function of the form

(1.1) B(z) = c

n∏
j=1

z − αj
1− αj z

, c, αj ∈ C, |c| = 1, |αj | < 1 ,

which thereby has all its zeros in the open unit disc D, all poles outside the
closed unit disc D and constant modulus |B(z)| = 1 on the unit circle T.
The overbar in (1.1) and in the sequel stands for complex conjugation.

The finite Blaschke products of degree n form a subset of the rational
functions of degree n which are unimodular on T. These functions are given
by all fractions

(1.2) B̃(z) =
a0 + a1 z + ...+ an z

n

an + an−1 z + ...+ a0 zn
, a0, ..., an ∈ C .

An irreducible rational function of form (1.2) is a finite Blaschke product
when all its zeros are in D. We adopt the convention of calling irreducible
rational functions of form (1.2) Blaschke forms if the function has at least
one pole in D. A Blaschke form can be interpreted as a quotient of finite
Blaschke products.

The critical points of a finite Blaschke product are the zeros of the deriv-
ative and there are exactly n− 1 critical points in D, counting multiplicity,
if the Blaschke product is of degree n. The classical Gauss-Lucas theorem
states that the critical points of a polynomial lie in the convex hull of its
zeros, see e.g. [5] p. 25. The analogous geometrical result for finite Blaschke
products, due to Walsh, is that the critical points situated in D lie within or
on the non-Euclidean convex hull of the zeros of the Blaschke product with
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2 C.GLADER AND R.PÖRN

respect to the Poincaré metric, see [8] and [9] p. 157, where Walsh refers
to finite Blaschke products as non-Euclidean polynomials. In [8] Walsh also
shows that if the zeros α1, . . . , αn of the Blaschke product lie within a circle
C in D, then so do the n − 1 critical points. It can furthermore be shown
that the n − 1 critical points in D lie in the convex hull of the point set
{0, α1, . . . , αn}, see [5] p. 374.

This paper presents a numerical method to solve the following problem:

Problem I. Given n distinct points z1, . . . , zn in D, find a finite Blaschke
product B of degree n+ 1 such that B′(zj) = 0, j = 1, . . . , n.

A solution to Problem I always exists by a theorem of Heins [1] p. 48:

Theorem 1.1. Given points z1, . . . , zn in D, not necessarily distinct, then
there is a finite Blaschke product B of degree n + 1 whose set of critical
points in D coincides with the prescribed points z1, . . . , zn.

The finite Blaschke product B in Theorem 1.1 is unique up to postcom-
position by conformal automorphisms of D, see the comments on this by
Kraus and Roth in [2] on p. 185, where they also note that all proofs that
exist of Theorem 1.1, e.g. the proof by Zakeri [12] and including the one by
Heins, are nonconstructive. In [2] a constructive method to find a Blaschke
product with prescribed critical points is presented, but the authors how-
ever claim that it is not really suitable to obtain a solution in explicit form
and pose the question: “Is there a finite algorithm that allows one to com-
pute a finite Blaschke product from its critical points?” It is primarily this
question that has motivated us to investigate the problem in the case with
distinct prescribed critical points. In [2] Theorem 1.1 is generalized to the
(infinite) Blaschke product setting where the sequence of critical points in D
is required to satisfy a Blaschke condition. In the recent paper [11] Semmler
and Wegert show that the problem of determining a finite Blaschke product
with prescribed critical points is equivalent to two other problems, namely
the problem of finding the equilibrium position of moveable point charges
interacting with a special configuration of fixed charges, and the problem
of solving a moment problem for the canonical representation of power mo-
ments on the real axis. Problem I has also been studied in the circle packing
context by Stephenson in [7], p. 268.

The Wronskian of two polynomials p and q that define a rational function
R := p/q is given by

W (z) := p′(z) q(z)− p(z) q′(z) ,
so R has a critical point zi of multiplicity ni if and only if that critical
point is a zero of W of multiplicity ni. General rational functions can be
ordered into classes where the functions are identical up to postcomposition
by linear-fractional transformations and where the theory of Fuchsian dif-
ferential equations and Wronskians come into play, see [4]. The Wronskians
of finite Blaschke products (1.1) and Blaschke forms (1.2) are very special in
structure, they are, after a unimodular scaling, self-inversive polynomials,

which means that if W is of degree n, then eiϕW (z) = zn eiϕW (1/z), for
some ϕ ∈ R . More specifically, if z1, . . . , zk are non-zero critical points with
multiplicities n1, . . . , nk of a Blaschke product or a Blaschke form in D of
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degree n+ 1, then also 1/z1, . . . , 1/zk are critical points with corresponding
multiplicities. If n0 is the multiplicity of z0 = 0 as a critical point, (n0 = 0
if zero is not a critical point), we obtain

(1.3) W (z) = r eiθ zn0

k∏
j=1

(z−zj)nj (z−
1

zj
)nj , r > 0 , θ ∈ R ,

k∑
j=0

nj = n ,

as the factored representation in the critical points of the Wronskian for a
finite Blaschke product or Blaschke form of irreducible degree n+ 1. If the
unimodularly scaled Wronskian is written in coefficient form eiϕW (z) =∑2n

j=0 cjz
j , the self-inversiveness implies that cj = c2n−j , j = 0, . . . , 2n,

shortly denoted c = flip c, where c is the vector of coefficients and flip is the
operator that reverses the order of the elements in a vector. We call a vector
c self-reversive if it satisfies c = flip c. The flip operator applied to a matrix
conjugates and reverses the order of the elements along both dimensions.

In section 2 we derive a model with linear and quadratic constraints for
numerical solution of Problem I. The efficiency of the method is demon-
strated in section 3.

2. A sparse linear model for Problem I

The goal of this section is to recast a nonlinear (conjugate quadratic) sys-
tem obtained from the Wronskian for the solution of Problem I. To this end
we derive a sparse linear system with simple quadratic constraints (2.19),
that contains the solution to Problem I and also the meromorphic Blaschke
form solutions. We are able to completely describe the nullspace of a re-
laxed linear system derived from the full Wronskian, apart from one data
dependent basis vector which, together with a particular solution to the
system, can be computed with the fast Fourier transform. This renders a
good starting point for the solution scheme described in section 3 for solv-
ing the reduced relaxed linear system with quadratic constraints (2.19). To
accomplish the derivation of the model (2.19) reordering of the terms of
the Wronskian are performed according to their polynomial degree and cer-
tain index sets are constructed. To make this process more transparent we
illustrate it with intertwined examples for the case n = 3.

To singel out a particular Blaschke product B of degree n+ 1 that solves
Problem I above, one could use the normalization by Zakeri in [12]: B(0) = 0
and B(1) = 1. We however proceed with a different normalization presented
below and assume that n distinct nonzero critical points z1, . . . , zn in D are
preassigned.

That zi 6= 0 introduces no loss of generality, because if z1 = 0 we could
transform the data by defining

(2.1) b(z) =
z − z?
1− z?z

with z? ∈ D and z? 6= zj , j = 1, . . . , n. Later, in section 3, we in fact
advocate the use of z? = (z1 + . . . + zn)/n as a standard normalization of

the data. Then, if B̃(z) is a finite Blaschke product of degree n + 1 with

critical points b(z1), . . . , b(zn), the Blaschke product B(z) := B̃(b(z)) solves
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Problem I for z1, . . . , zn. Having computed B̃ and its zeros α̃j , the zeros αj
of the Blaschke product B are given by αj = b−1(α̃j).

Define zn+1 = 1/z1, . . . , z2n = 1/zn. Then we have a vector [z1, . . . , z2n]T

of 2n distinct prescibed critical points, of which the n first are in D and the
rest are outside D. Now we make the Ansatz that the Blaschke product B
is of degree n + 1 and of form (1.2) with the normalization B(0) = 0 and
an+1 = 1,

(2.2) B(z) =
p(z)

q(z)
=
a1z + · · ·+ an z

n + zn+1

1 + an z + · · ·+ a1 zn
.

For this Ansatz the requirement W (zk) = 0, k = 1, . . . , 2n, generates a
nonlinear system in the complex coefficients ai. Expansion of

W (z) = p′(z)q(z)− p(z)q′(z)
= (a1 + 2a2z + ...+ nanz

n−1 + (n+ 1)zn) · (1 + anz + ...+ a1z
n)

− (a1z + a2z
2 + ...+ anz

n + zn+1) · (an + 2an−1z + ...+ na1z
n−1)

=
n∑
i=1

iaiz
i−1 +

n∑
i=1

n∑
j=1

iaian−j+1z
i+j−1 + (n+ 1)

n∑
j=1

an−j+1z
n+j

+ (n+ 1)zn −
n∑
i=1

n∑
j=1

jaian−j+1z
i+j−1 −

n∑
j=1

jan−j+1z
n+j ,

gives

(2.3)

W (z) =
n∑
i=1

n∑
j=1

(i− j)aian−j+1z
i+j−1 +

n∑
i=1

iaiz
i−1

+
n∑
i=1

(n− i+ 1)an−i+1z
n+i + (n+ 1)zn .

Thus our focus will be on the following nonlinear system

(2.4)
n∑
i=1

n∑
j=1

(i− j)aian−j+1z
i+j−1
k︸ ︷︷ ︸

quadratic in a

+
n∑
i=1

iaiz
i−1
k +

n∑
i=1

(n− i+ 1)an−i+1z
n+i
k︸ ︷︷ ︸

linear in a

+ (n+ 1)znk︸ ︷︷ ︸
constant

= 0 ⇐⇒ Ax(a) = b ,

where A is a matrix of size 2n × (n2 + n), b = −(n + 1)[zn1 , . . . , z
n
2n]T and

x = x(a) is a vector of variables with quadratic structure. This dense
system has n variables, 2n equations and each equation has n2−n conjugate
quadratic terms and 2n linear terms. It turns out that the matrix A has very
high condition number, mainly due to many high powers of zk, resulting in
an ill-conditioned system. This problem can be circumvented by studying
the relaxed linear system

(2.5) Ax = b , x ∈ Cn
2+n ,
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which contains all solutions to the nonlinear system Ax(a) = b. When the
quadratic structure is considered the vector is denoted by x(a) and if this
condition is relaxed the vector is denoted by x.

The Wronskian (2.3) has a total of n2 + n terms that are dependent on
coefficients a and one constant term. The terms in W are now reordered.
All terms that correspond to a certain degree d, 0 ≤ d ≤ 2n, are summed
in a specific order. For 0 ≤ d ≤ n− 1 each sum starts with the linear term
of degree d and continues with all quadratic terms of degree d ordered with
increasing index i for variables ai. For n+ 1 ≤ d ≤ 2n the order is reversed.
The part of the Wronskian that contains all terms of degree d dependent of
a is denoted by W d(z), so

(2.6) W (z) =

2n∑
d=0

W d(z) + (n+ 1)zn.

The formal definition of W d(z) is:

(2.7)

W d(z) =



a1 , if d = 0,

2a2z , if d = 1,

(d+ 1)ad+1z
d+∑d

i=1(2i− d− 1)aian−d+iz
d , if 2 ≤ d ≤ n− 1,∑n

i=1(2i− n− 1)aiaiz
n , if d = n,∑2n−d

i=1 (2n− 2i− d+ 1)a2n−d−i+1an−i+1z
d+

(2n− d+ 1)a2n−d+1z
d , if n+ 1 ≤ d ≤ 2n− 2,

2a2z
2n−1 , if d = 2n− 1,

a1z
2n , if d = 2n .

Proposition 2.1. The Wronskian given in equation (2.3) is equivalent to

the definition W (z) =
∑2n

d=0W
d(z) + (n+ 1)zn in (2.6).

Proof. We start by inspecting all constant and linear terms in the sum (2.3):

n∑
i=1

iaiz
i−1 +

n∑
i=1

(n− i+ 1)an−i+1z
n+i + (n+ 1)zn .

The terms of this sum are written out in increasing order with respect to
the degree of z giving

a1+2a2z+
n∑
i=3

iaiz
i−1+(n+1)zn+

n−2∑
i=1

(n−i+1)an−i+1z
n+i+2a2z

2n−1+a1z
2n .

Reindexing the sums results in the expression

a1+2a2z+
n−1∑
i=2

(i+1)ai+1z
i+(n+1)zn+

2n−2∑
i=n+1

(2n−i+1)a2n−i+1z
i+2a2z

2n−1+a1z
2n .
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This sum is now identical to the sum of all linear terms in W d(z), d =
0, . . . , 2n, and the constant term (n + 1)zn. Next quadratic terms are con-
sidered. The quadratic terms appear in three different parts in the definition
of W d(z). We prove only the middle case where d = n, the two other cases
are proved similarly. All quadratic terms in the sum (2.3) that correspond
to degree d = n are collected. We set d = n = i+ j − 1⇔ j = n− i+ 1 in
the double sum in (2.3) obtaining

n∑
i=1

n∑
j=1

(i− j)aian−j+1z
i+j−1 =

n∑
i=1

(i− (n− i+ 1))aian−(n−i+1)+1z
i+n−i+1−1

=

n∑
i=1

(2i− n− 1)aiaiz
n ,

where the last expression is the quadratic sum in W d(z) corresponding to
degree d = n. The cases when 2 ≤ d ≤ n − 1 and n + 1 ≤ d ≤ 2n − 2 are
proved in a similar way, so the two definitions of W (z) are equivalent. �

For future use we express W d(z), 2 ≤ d ≤ 2n− 2, as matrix products

W d(z) = wdxd(a)T zd ,

where

(2.8)
w0 = w2n = 1 , w1 = w2n−1 = 2 , kd := (2n− d+ 1)/2 and

wn =

{(
(2i− n− 1)ni=1

)
, n even ,(

(2i− n− 1)ni=1, i 6=(n+1)/2

)
, n odd ,

wd =

{(
d+ 1, (2i− d− 1)di=1

)
, d even , 2 ≤ d ≤ n− 1 ,(

d+ 1, (2i− d− 1)di=1, i 6=(d+1)/2

)
, d odd , 2 ≤ d ≤ n− 1 ,

wd =


(
(2(n− i)− d+ 1)2n−di=1 , 2n− d+ 1

)
, d even , n+ 1 ≤ d ≤ 2n− 2 ,(

(2(n− i)− d+ 1)2n−di=1,
i6=kd

, 2n− d+ 1
)
, d odd , n+ 1 ≤ d ≤ 2n− 2

x0(a) = a1 , x
1(a) = a2 , x

2n−1(a) = a2 , x
2n(a) = a1 and

xn(a) =

{(
(aiai)

n
i=1

)
, n even ,(

(aiai)
n
i=1, i 6=(n+1)/2

)
, n odd ,

xd(a) =

{(
ad+1, (aian−d+i)

d
i=1

)
, d even , 2 ≤ d ≤ n− 1 ,(

ad+1, (aian−d+i)
d
i=1, i 6=(d+1)/2

)
, d odd , 2 ≤ d ≤ n− 1 ,

xd(a) =

{(
(a2n−d+1−ian+1−i)

2n−d
i=1 , a2n−d+1

)
, d even , n+ 1 ≤ d ≤ 2n− 2 ,(

(a2n−d+1−ian+1−i)
2n−d
i=1,i 6=kd , a2n−d+1

)
, d odd , n+ 1 ≤ d ≤ 2n− 2 .

The complete variable and weight vectors, x = x(a) and w, are then
obtained by concatenation as x(a) = (x0(a), x1(a), . . . , x2n(a)) and w =
(w0, w1, . . . , w2n). From (2.8) it is clear that wd = flipw2n−d, d 6= n and

w\wn = flipw\wn and xd(a) = flipx2n−d(a) and x(a)\xn(a) = flipx(a)\xn(a).
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An upper index xd refers to the subvector that corresponds to degree d and
a lower index xi to the element at position i. The next step is to analyze
the order of the elements in the vector x(a). That is, the relationship be-
tween variable xi and the product ajak. We let a zero index indicate that
a certain factor is missing and define a0 := 1 and a0 := 1, so then, for
example, x1 = a1a0 = a1 and x4 = a1a2. Index vectors Id for variables aj ,
0 ≤ d ≤ n− 1, are obtained directly from (2.7),

(2.9) Id =


(1) , d = 0 ,(
d+ 1, (i)di=1

)
, d even , 1 ≤ d ≤ n− 1,(

d+ 1, (i)di=1

)
\
(
d+1
2

)
, d odd , 1 ≤ d ≤ n− 1,

and corresponding vectors for conjugate variables ak, 0 ≤ d ≤ n− 1, are

(2.10) I
d

=


(0) , d = 0 ,(
0, (n− d+ i)di=1

)
, d even , 1 ≤ d ≤ n− 1,(

0, (n− d+ i)di=1

)
\
(
2n−d+1

2

)
, d odd , 1 ≤ d ≤ n− 1,

and for degree n we have identical index vectors

(2.11) In = I
n

=

{
(1, 2, ..., n) , n even ,

(1, 2, ..., n)\
(
n+1
2

)
, n odd .

Index vectors for degrees n+ 1 ≤ d ≤ 2n are given by the flip-operation.

Lemma 2.1. It holds that Id = flip I
2n−d

and I
d

= flip I2n−d for n + 1 ≤
d ≤ 2n.

Proof. It follows directly from the two first and last equations of (2.7) that
the formulas hold for d = 2n and d = 2n − 1. Let d = n + k for some k,

1 ≤ k ≤ n−2, and suppose that d is even. Then I
2n−(n+k)

= I
n−k

= (0, (n−
(n−k)+i)n−ki=1 ) = (0, (k+i)n−ki=1 ) . Reversion gives flip I

n−k
= ((k+i)1i=n−k, 0),

equalling ((n−j+1)n−kj=1 , 0) after the change of indices j = n−k−i+1. From

(2.7), case n+1 ≤ d ≤ 2n−2, it follows that In+k = ((n−i+1)
2n−(n+k)
i=1 , 0) =

((n− i+ 1)n−ki=1 , 0). The case for odd d is proved in the same way using the

last expression in (2.10). Thus Id = flip I
2n−d

for n+ 1 ≤ d ≤ 2n− 2 . The
other identity is proved analogously. �

From (2.9)-(2.11) and Lemma 2.1 it follows that the number of elements
in the index vectors for 0 ≤ d ≤ n− 1 are

|Id| = |I2n−d| = |Id| = |I2n−d| = 2

⌊
d

2

⌋
+ 1 and |In| = |In| = 2

⌊n
2

⌋
.

The complete index vectors for variables a and conjugate variables a are
then given by the concateneted vectors

I = (I0, I1, ..., I2n) and I = (I
0
, I

1
, ..., I

2n
) .

The total number of elements in I and I is n2 + n. Let J = (J0, . . . ,Jn)
be a vector where Ji, i = 1, . . . , n, indicates the position of variable ai in
x(a). Also define J0 := 0, x0 := a0 and x0 := a0.
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Proposition 2.2. The coefficients ai, i = 1, . . . , n, of the Blaschke product
are located at positions

(2.12) Ji =
⌈(i− 1)2

2

⌉
+ 1

in the variable vector x(a), that is ai = xJi(a).

Proof. The proof is by induction for 0 ≤ d ≤ n− 1. Index i corresponds to

degree d+ 1. The formula (2.12) holds for i = 1, since J1 = d (1−1)
2

2 e+1 = 1
and a1 = xJ1(a) = x1(a). Now we assume that the formula holds for i ≥ 1.
If i is even, then d = i − 1 is odd and the vector xd(a) in (2.8) contains d
elements. The first element in each vector xd(a) is the coefficient ad+1, so

Ji+1 = Ji+d =
⌈(i− 1)2

2

⌉
+1+ i−1 =

(i− 1)2

2
+

1

2
+ i =

i2

2
+1 =

⌈ i2
2

⌉
+1,

where we in step three used the fact that i − 1 is odd and in the last step
that i is even. If i is odd, then d = i−1 is even and the vector xd(a) contains
d+ 1 elements. Then

Ji+1 = Ji+d+1 =
⌈(i− 1)2

2

⌉
+1+i =

(i− 1)2

2
+1+i =

i2 + 1

2
+1 =

⌈ i2
2

⌉
+1,

where we used the fact that i is odd in the last step. We conclude that the
formula (2.12) holds for all i = 1, . . . , n. �

Example 1. Index vectors are computed for n = 3 according to (2.9)-
(2.11) and Lemma 2.1. This results in I0 = 1, I1 = 2, I2 = (3, 1, 2), I3 =

(1, 3), I4 = (3, 2, 0), I5 = I6 = 0 and I
0

= I
1

= 0, I
2

= (0, 2, 3), I
3

=

(1, 3), I
4

= (2, 1, 3), I
5

= 2, I
6

= 1. Concatenation gives complete index
vecors I = (1, 2, 3, 1, 2, 1, 3, 3, 2, 0, 0, 0) and I = (0, 0, 0, 2, 3, 3, 1, 2, 1, 3, 2, 1).
The length of the variable vector is n2 + n = 12 and J = (0, 1, 2, 3), where
indexing starts from 0. The connection between variable xi and ajak is
explicitely given by the products

xi = aIi aIi , i = 1, ..., 12 .

After applying (2.12) we obtain xi = aIi aIi = xJIi xJIi
. Some examples:

x2 = xJI2 xJI2
= xJ2 xJ0 = a2a0 = a2 ,

x5 = xJI5 xJI5
= xJ2 xJ3 = a2a3 ,

x6 = xJI6 xJI6
= xJ1 xJ1 = a1a1 = |a1|2 ,

x10 = xJI10 xJI10
= xJ0 xJ3 = a0a3 = a3 .

The next proposition describes the construction of particular solutions to
(2.5) and to the associated homogeneous system Ax = 0.

Proposition 2.3. Let Ax(a) = b be the description of the nonlinear system
(2.4) and let Ax = b be the corresponding relaxed linear system (2.5). A
particular solution α to (2.5) and a non-trivial solution β to Ax = 0 can be
constructed using the fast Fourier transform and the Wronskian (1.3).
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Proof. 1. The proof is by construction. First we determine a particular
solution α to (2.5). We seek a solution were we put elements in x = x(a)
that are of the form aian−j+1 in (2.4) to zero. Thus (2.4) reduces to

(2.13)

n∑
i=1

iaiz
i−1
k +

n∑
i=1

(n− i+ 1)an−i+1z
n+i
k + (n+ 1)znk = 0,

from which it is clear that we seek a polynomial of degree 2n with its zeros
at the 2n distinct critical points and with coefficient n + 1 for zn. Define
W0 by

W0(z) :=
n∏
j=1

(z − zj)(z −
1

zj
) ,

which is the Wronskian in (1.3) with r = 1 and θ = 0. Expanding W0 we
obtain

W0(z) = b0 + b1z + . . . + b2n−1z
2n−1 + z2n .

The coefficients bj can be computed by sampling W0 on the unit circle in

2l equidistant points stored in the vector f = (W0(e
k2πi

2l ))2
l−1
k=0 . Then the

fast Fourier transform, (b = fft(f)/2l in Matlab), supplies us with a vector b
containing the coefficients of W0. Thus we get the correct scaling by defining

cj =
(n+1)bj
bn

, j = 0, . . . , 2n− 1 and c2n = (n+1)
bn

, giving the representation

(2.14) W1(z) = c0 + c1z + . . . + c2nz
2n .

Then W1(z) in (2.14) is a self-inversive polynomial satisfying (2.13) and we
determine ai from the equations iai = ci−1, i = 1, . . . , n and put α := x(a).
Then α is a particular solution to the relaxed linear system Ax = b, but
not to the nonlinear system Ax(a) = b, since the quadratic elements in x(a)
were set to zero.

2. Next we construct a non-trivial solution β to the homogeneous system
Ax = 0, (the constant term in (2.4) is omitted). Variables in x = x(a) of
the form aian−j+1, i 6= n − j + 1, in (2.4) are now put to zero, so that the
double sum of the nonlinear terms in (2.4) is reduced to

(2.15)
( n∑
i=1

(2i− n− 1)aiai

)
znk .

Notice that if n is odd the middle term is zero in (2.15) and the variable
aiai with i = dn/2e is omitted from x(a). We select the nonlinear variables
aiai, i = 1, . . . , bn/2c , dn/2e+ 1, . . . , n, in x(a) by defining

(2.16) aiai :=

{
−3(n+1−2i)

n(n−1) , i = 1, . . . , bn/2c ,
−an+1−ian+1−i , i = dn/2e+ 1, . . . , n .

Then the sum in (2.15) is equal to (n+ 1) and the system (2.4) with deleted
constant term is reduced to the system

n∑
i=1

iaiz
i−1
k +

n∑
i=1

(n− i+ 1)an−i+1z
n+i
k + (n+ 1)znk = 0 ,

which is identical to system (2.13), so we can use the coefficients of the poly-
nomial W1 in (2.14) and again determine ai from iai = ci−1, i = 1, . . . , n.
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Defining β := x(a), we have constructed a nontrivial solution to the homo-
geneous system Ax = 0 corresponding to the relaxed linear system (2.5). �

Remark 1. A very important observation in the second part of the proof is
that the first element β1 in the solution β is always nonzero, (a consequence
of the fact that all the distinct critical points are nonzero), which later on
will guarantee that β is linearly independent of the data independent vectors
which together with β will form a basis for the null space of the matrix A.
Remark 2. The particular solution α is self-reversive by construction and
the data dependent null space vector β is self-reversive after deletion of
elements that correspond to degree n , (2.16), that is α = flipα and β\βn =

flipβ\βn.

From now on when using W (z) we always refer to definition (2.7).

Example 2. The structure of the quadratic equation system is illustrated
for n = 3. The Ansatz is

B(z) =
a1z + a2z

2 + a3z
3 + z4

1 + a3z + a2z2 + a1z3
.

The Wronskian parts W d(z) are computed for d = 0 to d = 6.

W 0(z) = a1, W
1(z) = 2a2z, W

2(z) = 3a3z
2 − a1a2z2 + a2a3z

2 ,

W 3(z) = −2a1a1z
3 + 2a3a3z

3 + 4z3 ,

W 4(z) = a2a3z
4 − a1a2z4 + 3a3z

4, W 5(z) = 2a2z
5, W 6(z) = a1z

2n .

The system W (zk) = 0, k = 1, . . . , 6, can be expressed in relaxed lin-
earized form Ax = b, where x, with the quadratic structure embedded, and
b are given by

x = x(a) =
(
a1, a2, a3, a1a2, a2a3, a1a1, a3a3, a2a3, a1a2, a3, a2, a1

)T
,

b = −4
(
z31 , z

3
2 , z

3
3 , z

3
4 , z

3
5 , z

3
6

)T
.

The matrix A is of size 6× 12 in our relaxed linear system; 1 2z1 3z21 −z21 z21 −2z31 2z31 z41 −z41 3z41 2z51 z61
...

...
...

1 2z6 3z26 −z26 z26 −2z36 2z36 z46 −z46 3z46 2z56 z66


︸ ︷︷ ︸

A

x = b .

Since zk are distinct points rank A = 6 and dimN(A) = 12− 6 = 6. A set
of nullspace vectors of A is, for example, given by the columns of the matrix

C =

0 0 1 3 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 3 1 0 0





T

,

where the blocks correspond to degrees 2, 3 and 4. With α and β from
Proposition 2.3, an affine description of the solution space is x = α+Ct+βtβ,
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where α, β ∈ C12, C ∈ R12×5 and t ∈ C5 and tβ ∈ C contain arbitrary
complex weights.

A recipe is now given that allows for the construction of a complete null
space matrix C that corresponds to an arbitrary number n of distinct pre-
scribed critical points zk. The matrix C is built from blocks that correspond
to different degrees. In the following two propositions the null space of vec-
tor wd defined in (2.8) is described. We note that the dimension is zero for
the null spaces that correspond to the degrees 0, 1, 2n − 1 and 2n . A zero
column vector with d elements is denoted by 0d.

Proposition 2.4. Let d be even, 2 ≤ d ≤ 2n− 2, and wd defined by (2.8).
a) For 2 ≤ d ≤ n− 1 and 2 ≤ k ≤ d we define

vd1 =

d− 1
d+ 1
0d−1

 and vdk =


0k−1

−d+ 2k − 1
d− 2k + 3

0d−k

 .

The null space of wd is

N(wd) = span{vd1 , vd2 , . . . , vdd} and dimN(wd) = d .

b) For n even and 2 ≤ k ≤ n we define

vnk =


0k−2

−n+ 2k − 1
n− 2k + 3

0n−k

 .

The null space of wn is

N(wn) = span{vn2 , . . . , vnn} and dimN(wn) = n− 1 .

c) For n+1 ≤ d ≤ 2n−2 and 1 ≤ k ≤ 2n−d we define vdk = flip v2n−d2n−d−k+1.

The null space of wd is

N(wd) = span{vd1 , vd2 , . . . , vd2n−d} and dimN(wd) = 2n− d .

Proof. a) For even d the vector wd has d+ 1 elements. Then wd ∈ Rd+1, so
its range has dimension 1 and dimN(wd) = d. The first vector vd1 belongs
to the null space:

wd

d− 1
d+ 1
0d−1

 = (d+ 1)(d− 1) + (−d+ 1)(d+ 1) = 0.

Next consider vector vdk with nonzero elements at positions k and k+1. The

first element in wd is d + 1 and the elements at positions k and k + 1 are
−d+ 2k − 3 and −d+ 2k − 1, respectively. Then

wdvdk = 0 + (−d+ 2k− 3)(−d+ 2k− 1) + (−d+ 2k− 1)(d− 2k+ 3) + 0 = 0 ,

so vdk is also in the null space. It is clear from the construction that

{vd1 , . . . , vdd} is a linearly independent set of vectors. Thus the set spans

the null space of wd for 2 ≤ d ≤ n− 1. The case b) is proved analogously.
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c) Consider the product wdvdk for some n + 1 ≤ d ≤ 2n − 2 and 1 ≤ k ≤
2n−d. From case a) it follows that w2n−dv2n−dk = 0, or w2n−dv2n−d2n−d−k+1 = 0

if the order of the vectors in N(w2n−d) is reversed. The inner product is

unaffected by reversion of both vectors so flipw2n−dflip v2n−dk = 0. Then

wdvdk = wdflip v2n−d2n−d−k+1 = flipw2n−dflip v2n−d2n−d−k+1 = 0 ,

and vector vdk = flip v2n−d2n−d−k+1 belongs to N(wd). Clearly, by construction,

all vdk are linearly independent so the nullspace for degree d, n + 1 ≤ d ≤
2n− 2, is spanned by vectors vdk, with k = 1, . . . , 2n− d. �

Remark 3. For even d let Cd, 2 ≤ d ≤ n− 1, be the matrix with columns
vdk for k = 1, . . . , d. Then dimCd = (d + 1) × d, and dimCn = n × (n − 1)
for even d = n. From case c) it follows for even d with n + 1 ≤ d ≤ 2n− 2
that Cd = flipC2n−d.

Proposition 2.5. Let d be odd, 3 ≤ d ≤ 2n− 3, and wd defined by (2.8).
a) For 3 ≤ d ≤ n− 1 and 2 ≤ k ≤ d− 1 we define

vd1 =

d− 1
d+ 1
0d−2

 and vdk =


0k−1

−d+ 2k − 1
d− 2k + 3

0d−k−1

 , 2 ≤ k ≤ d−1
2 ,

vd(d+1)/2 =


0(d−1)/2

1
1

0(d−3)/2

 and vdk =


0k−1

−d+ 2k + 1
d− 2k + 1

0d−k−1

 , d+3
2 ≤ k ≤ d− 1 .

The null space of wd is

N(wd) = span{vd1 , vd2 , . . . , vdd−1} and dimN(wd) = d− 1 .

b) For n odd and 2 ≤ k ≤ n− 1 we define

vn(n+1)/2 =


0(n−3)/2

1
1

0(n−3)/2

 and vnk =


0k−2

−n+ 2k − 1
n− 2k + 3

0n−k−1 ,

 2 ≤ k ≤ n−1
2 ,

vnk =


0k−2

−n+ 2k + 1
n− 2k + 1

0n−k−1

 , n+3
2 ≤ k ≤ n− 1 .

Then null space of wn is

N(wn) = span{vn2 , . . . , vnn−1} and dimN(wn) = n− 2 .

c) For n+1 ≤ d ≤ 2n−3, 1 ≤ k ≤ 2n−d−1, define vdk = flip v2n−d2n−d−k+1.

The null space of wd is

N(wd) = span{vd1 , vd2 , . . . , vd2n−d−1} and dimN(wd) = 2n− d− 1 .
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Proof. a) This case is proved similarly as case a) in Proposition 2.4. Again
it is clear from the construction that {vd1 , . . . , vdd−1} is a linearly independent

set of vectors. Now wd ∈ Rd, so compared to Proposition 2.4, where wd ∈
Rd+1, the dimension is reduced by one in all cases. The first vector vd1 and
the case when 2 ≤ k ≤ (d − 1)/2 is identical to the even case, apart from
the decrease in dimension by 1, so these vectors belong to the null space.
The middle case when k = (d+ 1)/2 is slightly different. The element -2 in
wd is at position (d− 1)/2 and the element 2 is at position (d+ 1)/2, hence
it follows that wdvd(d+1)/2 = −2 · 1 + 2 · 1 = 0 and this vector belongs to the

null space. The last case when (d+ 3)/2 ≤ k ≤ d− 1 results in

wdvdk = 0 + (−d+ 2k− 1)(−d+ 2k+ 1) + (−d+ 2k+ 1)(d− 2k+ 1) + 0 = 0 ,

so vdk belongs to the null space. The case b), where d = n, is proved similarly,
only with the first vector missing. The case c) is proved in the same manner
as case c) in the previous proposition. �

Remark 4. For odd d let Cd, 3 ≤ d ≤ n − 1, be the matrix with columns
vdk for k = 1, . . . , d− 1. Then dimCd = d× (d− 1) and for n odd dimCn =
(n− 1)× (n− 2). From case c) it follows for odd d with n+ 1 ≤ d ≤ 2n− 2
that Cd = flipC2n−d.

A complete sparse description of the affine solution space of the relaxed
system Ax = b is then given by

(2.17)


x0

x1

x2

...
x2n

 =


α0

α1

α2

...
α2n

+



0 . . . 0
0 . . . 0
C2

C3

. . .

C2n−2

0 . . . 0
0 . . . 0




t2

t3

...
t2n−2

+


β0

β1

...
β2n

 tβ .

A compact representation of this system is x = α + Ct + βtβ, where all
nonspecified entries in C are zero. The system can also be expressed degree-
wise as xd = αd + Cdtd + βdtβ for 2 ≤ d ≤ 2n − 2 and xd = αd + βdtβ
for d = 0, 1, 2n− 1, 2n. In the following proposition some properties of this
system are summarized.

Proposition 2.6. The system (2.17) has the following structural properties:

a) αd = flipα2n−d, 0 ≤ d ≤ 2n.

b) βd = flipβ2n−d, 0 ≤ d ≤ 2n, d 6= n.

c) xd = flipx2n−d, 0 ≤ d ≤ 2n, d 6= n.
d) Cd = flipC2n−d, 2 ≤ d ≤ 2n− 2.

e) td = flip t2n−d, 2 ≤ d ≤ 2n− 2, d 6= n.
f) The variable tβ is real.

Proof. Cases a), b) and d) are implied by the proofs of Propositions 2.3-
2.5. Case c) follows from the quadratic structure of the variable vector
x(a) = (x0(a), . . . , x2n(a)) defined by the vectors xd(a) introduced in (2.8).
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Case f). The first element of x(a) is x1 = a1 = α1 + β1tβ and the
last element is xn2+n = a1 = αn2+n + βn2+ntβ. Clearly x1 = xn2+n so

α1 + β1tβ = αn2+n + βn2+ntβ = α1 + β1tβ and it follows that tβ = tβ so tβ
is real.

Case e). We study the equality xd − flipx2n−d = 0, from case c), for a d
such that 2 ≤ d ≤ 2n− 2.

xd − flipx2n−d = αd + Cdtd + βdtβ − flip (α2n−d + C2n−dt2n−d + β2n−dtβ)

= Cdtd − flip (C2n−dt2n−d)

= Cdtd − Cdflip t2n−d

= Cd(td − flip t2n−d) = 0 ,

so td = flip t2n−d, since matrix Cd is full rank. �

Proposition 2.7. The null space of matrix A, with dimN(A) = n2 − n, is
completely defined by the structure of the Wronskian W (z), i.e. the matrix
C, together with the data dependent vector β from Proposition 2.3.

Proof. The vector β belongs to the null space of A by construction. Each
column of C belongs to the null space of A since each column of Cd contains
a null space vector vdk that corresponds to some degree d, 2 ≤ d ≤ 2n − 2.
All columns of C are also clearly linearly independent by Propositions 2.4
and 2.5. Recall that dimN(wd) = dimN(wd+1) for even d. Consider the
case of even n:

2n−2∑
d=2

dimN(wd) =
n−1∑
d=2

dimN(wd) + dimN(wn) +
2n−2∑
d=n+1

dimN(wd)

=
n−1∑

d=2,d even

2dimN(wd) + n− 1 +
2n−2∑

d=n+2,d even

2dimN(wd)

=

(n−2)/2∑
d=1

2dimN(w2d) + n− 1 +

(n−2)/2∑
d=1

2dimN(wn+2d)

= 2

(n−2)/2∑
d=1

(2d+ 2n− (n+ 2d)) + n− 1

= n− 1 + 2

(n−2)/2∑
d=1

n = n(n− 2) + n− 1 = n2 − n− 1 .

For odd n a similar computation gives
∑2n−2

d=2 dimN(wd) = n2−n−1. Thus
C has n2 − n − 1 linearly independent columns and rankC = n2 − n − 1.
Since β1 6= 0, due to Remark 1, and the first element in each column of
C is zero it is clear that the data dependent vector β together with all
columns of C form a linearly independent set of vectors. Hence, including
β, a complete description of the null space with n2 − n null space basis
vectors is obtained. �
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At this point we define m := bn2/2c and p := bn2/2c + n and the

reduced Wronskian Ŵ (z)

Ŵ (z) :=
n∑
d=0

W d(z) + (n+ 1)zn.

A straight forward calculation gives that p equals the total number of terms
in Ŵ (z) that contain variables a. Note that the solution to Ax(a) = b is
completely determined by the values a1 to an and the self-reversive structure
of x(a). It is enough to consider the part x̂ = x̂(a) = (x0, x1, . . . , xn) ∈ Cp
of the vector x(a) that corresponds to degrees 0 to n, since the rest can be
obtained by conjugation and reversion. Thus we define the reduced system

Âx̂(a) = b̂ ,

where Â ∈ Cn×p, x̂(a) ∈ Cp and b̂ := −(n + 1)[zn1 , ..., z
n
n ]T . The matrix Â

is the submatrix consisting of rows 1 to n and columns 1 to p of A. For
distinct critical points zk we have rank Â = n and dimN(Â) = p − n = m.

Any reduced solution to Âx̂(a) = b̂ can be expanded to a full solution
of Ax(a) = b by concateneting conjugated elements. Conversely, any full
solution x(a) can be reduced to a solution x̂(a) by deletion of end elements.
Omitting the quadratic structure, we study the solution space defined by
the reduced relaxed linear system

Âx̂ = b̂

defined by the reduced Wronskian Ŵ (z). We adopt an identical notation

for the reduced particular solution α̂ to Âx̂ = b̂ and for the reduced data
dependent vector β̂, which is not a solution to Âx̂ = 0. Let again Cd be the
matrix with columns vdk constructed according to Propositions 2.4 and 2.5

and let subvectors in the vectors x̂, α̂ and β̂ corresponding to degree d be
denoted by xd, αd and βd, 0 ≤ d ≤ n. For weights td and tβ we define the
reduced system

(2.18)


x0

x1

x2

...
xn

 =


α0

α1

α2

...
αn

+



0 . . . 0
0 . . . 0
C2

C3

. . .

Cn




t2

t3

...
tn

+


β0

β1

...
βn

 tβ

A compact representation of this system is x̂ = α̂ + Ĉt̂ + β̂tβ or xd =

αd +Cdtd +βdtβ for 2 ≤ d ≤ n and xd = αd +βdtβ for d = 0, 1. Block Cd is

positioned in the block matrix Ĉ with its northwest corner at row dd2/2e+1
and column b(d− 1)2/2c+ 1.

Proposition 2.8. a) If the vector x ∈ Cn2+n is contained in the affine space
(2.17) then the reduced vector x̂ ∈ Cp is in the affine space (2.18).

b) Any vector x̂ in the space (2.18) can be extended to a vector x contained
in the space (2.17).
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Proof. a) This case is clear from the construction of the affine spaces.
b) Let (x̂, t̂, tβ) be a solution to the reduced system, that is xd = αd +

Cdtd + βdtβ for 2 ≤ d ≤ n and xd = αd + βdtβ for d = 0, 1. Using the
results from Proposition 2.7 it is clear that this solution can be extended to

degrees n + 1 ≤ d ≤ 2n according to αd = flipα2n−d, βd = flipβ2n−d and

xd = flipx2n−d and for n + 1 ≤ d ≤ 2n − 2 according to Cd = flipC2n−d

and td = flip t2n−d. If we append degrees n + 1 ≤ d ≤ 2n to the reduced
solution (x̂, t̂, tβ) the obtained triplet (x, t, tβ) clearly represents a solution
to the full system (2.17). �

We summarize our investigation in the main theorem that defines the
sparse quadratic model which has as solutions a finite Blaschke product
and Blaschke forms of degree n + 1, all of the form (2.2). The first set
of constraints represents the affine description of the solution set and the
second set imposes the conjugate quadratic structure embedded in x̂(a).

Theorem 2.1. A sparse representation of the quadratic system Âx̂(a) = b
is given by

(2.19)

{
x̂ = α̂+ Ĉt̂+ β̂tβ

xi = xJIi xJIi
, i ∈ {0, 1, 2, ..., p}\J ,

where t ∈ Cm−1, tβ ∈ R and x̂ ∈ Cp. A solution to this system represents a
Blaschke product (or form) and the coefficients ai can be retrieved from the
solution according to ai = xJi for i = 1, . . . , n.

Remark 5. This sparse representation contains no high powers of the crit-
ical points zk. The only data dependent parts are the reduced particular
solution α̂ and the reduced data dependent (null space) vector β̂. The num-
ber of linear constraints is p, the number of quadratic constraints is m and
the total number of variables p+m. If we substitute all occurences of vari-
ables x in the quadratic constraints, using the sparse affine representation
x̂ = α̂+ Ĉt̂+ β̂tβ, we arrive at a quadratic square system of size m×m in
variables t and tβ.

Example 3. Let α̂ ∈ C7 and β̂ ∈ C7 be known vectors computed according
to the recipe in Proposition 2.3. The sparse quadratic system for n = 3 is
given by

x1 = α1 +β1tβ

x2 = α2 +β2tβ

x3 = α3 + t1 +β3tβ

x4 = α4 + 3t1 +t2 +β4tβ

x5 = α5 +t2 +β5tβ

x6 = α6 + t3 +β6tβ

x7 = α7 + t3 +β7tβ

x4 = x1x2, x5 = x2x3, x6 = |x1|2, x7 = |x3|2

x ∈ C7, t ∈ C3, tβ ∈ R.
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Substitution of x variables gives a 4× 4 square quadratic system in vari-
ables t and tβ,

α4 + 3t1 + t2 + β4tβ = (α1 + β1tβ)(α2 + β2tβ)

α5 + 3t1 + t2 + β5tβ = (α2 + β2tβ)(α3 + t1 + β3tβ)

α6 + t3 + β6tβ = (α1 + β1tβ)(α1 + β1tβ)

α7 + t3 + β7tβ = (α3 + t1 + β3tβ)(α3 + t1 + β3tβ).

From the solution t the coefficients in (2.2) are calculated as ai = xJi , i =
1, 2, 3 giving a1 = α1 + β1tβ, a2 = α2 + β2tβ and a3 = α3 + t1 + β3tβ.

3. Numerical experiments and illustrations

In this section we conduct a series of numerical experiments to illustrate
the efficiency of the proposed method. All instances were solved using a
Matlab R2014a implementation of the method. To solve the quadratic sys-
tem the command fsolve was used with the following options (optimset):

Algorithm = trust-region-reflective

TolFun = 1e-12

MaxIter = 5000.
Different algorithms were initially tested but the trust-region reflective

method was the best choice. Internal numerical differentiation was used and
the sparsity pattern of the Jacobian was supplied. The reduced particular
solution α̂ was used as the initial point for fsolve in all cases. The computer
used for the test suite was a laptop Intel (R) Core (TM) i5-5200U CPU
2.2 GHz with RAM 8 GB running Windows 7 64-bit. A total of N =
50 random instances are generated and solved for each case. An instance
is classified as accurately solved if the solver stops within 5000 iterations
with a tolerance less than 1e-12 and with a maximal error between the
prescribed and computed critical points less than 0.5e-4 (4 correct decimals).
The standard norm in C is used in the error computation. Computational
results (iterations, cpu-time, maximal error) are usually reported as triplets
consisting of the minimum/median/maximum observation out of N = 50
instances.

All solutions in this section are checked and they are Blaschke products,
although Blaschke forms are also possible solutions to system (2.19). The
point xinitial := α̂ seems to be a very stable choice as the initial point that
strongly enhance convergence to the solution that corresponds to a Blaschke
product. If some other choice of initial point is used, for example zero or
any random point, the solution is much more likely to be a Blaschke form
with at least one pole in D.

Optimal assignment of computed critical points
In order to produce accurate maximal errors between computed and pre-

scribed critical points an assignment problem is solved [13]. Each computed
criticial point zci , i = 1, . . . , n, is assigned to a prescribed critical point
zi, i = 1, . . . , n, in an optimal way. An optimal pairing can be obtained
by minimizing the maximal distance between every possible pair of com-
puted and prescribed critical points. A distance matrix D is defined by
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dij = |zi − zcj | resulting in the following bottleneck linear assignment prob-

lem [13], pp. 29-31, with variables xij ∈ {0, 1}
min
x

max
1≤i,j≤n

dijxij

n∑
j=1

xij = 1, i = 1, . . . , n

n∑
i=1

xij = 1, j = 1, . . . , n

xij ∈ {0, 1}n.
The constraint matrix in this problem is totally unimodular so the binary
conditions can be relaxed to xij ≥ 0. For each problem in this section the
optimal pairing is given as the solution to this linear programming problem.
All problems are solved using Matlab2014a and the CVX toolbox [14].

Transformation of data
During our initial experiments we also observed that it is very beneficial

to always transform the data (critical points) using the transformation (2.1)
according to

b(z) =
z − z?
1− z?z

, z? = (z1 + . . .+ zn)/n ∈ D.

If z? = zj for some j = 1, . . . , n a small random perturbation is added
to z? avoiding a zero critical point. This transformation will produce an
approximate mean centering of the critical points, resulting in problems
that very often are solved much more efficiently.

Let B̃(z) be a finite Blaschke product of degree n+ 1 of form (2.2) with
prescribed critical points b(z1), . . . , b(zn) and computed critical points z̃cj and

zeros α̃j . Then the Blaschke product B1(z) := B̃(b(z)) with critical points
zcj := b−1(z̃cj) is a numerical solution of Problem I for prescribed critical

points z1, . . . , zn. B1 has zeros αj = b−1(α̃j) but it is not of form (2.2).
To remedy this situation we postcompose B1 with the automorphism bp(z)
defined by

bp(z) :=
z − B̃(b(0))

1− B̃(b(0))z
,

giving us B(z) := (bp ◦ B̃ ◦ b)(z) of desired form (2.2) with critical points
zcj . The implemented algorithm delivers the coefficients of B. The reported
cpu-times include the transformation of the critial points, the generation,
including computation of α̂ and β̂, and solution of the equation system, and
the inverse transformation and postcomposition of the obtained solution.
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Figure 1. Numerical results when solving original (untrans-
formed) and transformed instances with n = 20, r = 0.99 and
N = 50.

Numerical test 1: Impact of transformation
To illustrate the impact of the transformation we generate N = 50 in-

stances each with n = 20 critical points randomly and uniformly distributed
in a origo centered disk with radius r = 0.99. The results for the untrans-
formed (original) data is:

• cpu-time = 0.25/3.58/111 seconds
• iterations = 8/154/5000
• max-error = 5.9e-12/1.2e-9/9.5e-1
• 76% accurately solved instances (6 instances did not converge within

5000 iterations and another 6 instances did converge but the maximal
error exceeded 0.5e-4)

For the transformed data the results are significantly improved to:

• cpu-time = 0.19/0.30/1.51 seconds
• iterations = 5/8/60
• max-error = 6.1e-14/5.0e-12/1.2e-9
• 100% accurately solved instances.

Detailed, instance by instance, results are illustrated in figure 1. The
solution time and number of iterations are typically improved by at least a
factor 10 and the maximal error is consistenly small after the transformation
is applied. Both the speed of convergence and the accuracy of the obtained
solution are significantly improved by the transformation of critical points.

Numerical test 2: Experiments with different disk radius r
In this experiment we consider transformed instances with n = 30 random

critical points in disks with the radius ranging from 0.1 to 1. The maximal
error and the maximal absolute value of the derivative in computed critical
points, max1≤i≤n |B′(zci )|, are shown in figure 2. For 0.1 ≤ r ≤ 0.5 the
maximal error is large, but the maximal absolute derivative (as well as the
Wronskian) is very small. This indicates that the Blaschke product B(z) is
flat almost everywhere in a small disk that contains many critical points.
Such instances are in a numerical sense ill-posed since the derivative is small
at the same time as the computed critical points can be far from the pre-
scribed points. When r ≥ 0.6 the maximal error decreases and accuracy is
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Figure 2. Numerical results when solving transformed in-
stances with n = 30, r = 0.1, 0.2, . . . , 1 and N = 50.

improved. The median number of iterations for each value of the disk radius
was 2, 3, 3, 3, 3, 4, 5, 6, 8 and 14.

Numerical test 3: Large scale instances
In this test set large scale instances are considered. For such instances

the transformation is always applied to the critical points prior to solution.
Random instances with r = 0.999 and n ranging from 10 to 60 are generated
and solved. The results from this test set are presented in table 1 and
figure 3. The results show that random instances with critical points in
a disk can efficiently and accurately be solved up to n = 40 and many
times even up to n = 50. The solver did reach MaxIter=5000 in a few
instances and occasionally it reported that the problem was inaccurately
solved (typically for n ≥ 50). For n = 60 only a few instances were solved
within the prescribed limits. If we allow the maximal error to be 0.5e-2 (2
correct decimals), the percentage of accurately solved instances increases to
100% (n = 40), 72% (n = 50) and 32% (n = 60). The nonlinear system
(2.19) may be numerically very challenging to solve accurately for more than
50 random critical points in the disk. One could argue that the situation
is approaching the one described in Numerical test 2, that is with n ≥ 50
the sought after Blaschke product B is very flat in the vicinity of some
of the prescribed critical points and the problem is approaching numerical
ill-posedness.

Points Size Iterations Cpu-time (s) Maximal error Solved

n n2 + n min/median/max min/median/max min/median/max %

10 110 4/6/58 0.06/0.11/0.56 3.4e-15/1.2e-13/6.2e-11 100

20 420 5/11/892 0.22/0.37/19.4 2.9e-13/9.2e-12/8.3e-7 100

30 930 7/12/489 0.61/0.89/23.4 3.6e-12/1.1e-9/1.8e-6 100

40 1640 7/34/3420 1.31/3.72/319 5.3e-10/9.6e-7/2.2e-4 92

50 2550 8/40/5000 2.11/7.77/879 2.8e-7/4.7e-4/9.8e-1 30

60 3660 9/83/5000 3.85/23.9/1305 7.5e-6/4.1e-1/9.8e-1 4

Table 1. Numerical results from the test set with large scale
instances. The second column corresponds to the size (num-
ber of real variables) of system (2.19).
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Figure 3. Test results when solving transformed instances
with n = 10 to n = 60, r = 0.999 and N = 50. The dash-
dotted lines correspond to the maximal error 0.5e-4 and iter-
ation limit 5000. Each square marks the median result and
the dots correspond to separate instances.

Numerical test 4: Example of hard and easy instances
As a last experiment we consider one special case which is very hard to

solve untransformed and one case that is very easy to solve untransformed.
One example of hard problems is when the critical points form a nonorigo
centered cluster. Such an instance can be generated by sampling points

zj = (1 + i)/3 + 1/4(N(0, 1) + iN(0, 1))

that form a random cluster with midpoint approximately at (1 + i)/3. If
|zj | ≥ 1 the point zj is discarded and a new point generated. To illustrate the
impact of the transformation we generate N = 50 instances each with n = 10
critical points in a cluster. The results for the untransformed (original) data
are:

• cpu-time = 0.31/16.2/21.6 seconds
• iterations = 27/4057/5000
• max-error = 5.0e-11/7.5e-1/9.2e-1
• 32% accurately solved instances

The convergence is very slow for untransformed clustered instances and the
majority are not accurately solved.
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For transformed data the results are:

• cpu-time = 0.03/0.08/0.22 seconds
• iterations = 3/4/15
• max-error = 1.9e-14/1.5e-12/7.1e-10
• 100% accurately solved instances.

The improvement in speed of convergence and accuracy of the obtained
solution is remarkable when clustered instances are transformed. One type
of easy problems can be generated by sampling critical points approximately
equidistant (with a small random perturbation) on an origo centered circle.
These instances are generated with parameters r = 0.95, n = 50 andN = 50.
The results for untransformed critical points are:

• cpu-time = 3.06/4.37/22.5 seconds
• iterations = 12/21/132
• max-error = 8.6e-13/9.8e-8/2.6e-3
• 74% accurately solved instances

and for the transformed case the results are:

• cpu-time = 2.93/4.20/10.4 seconds
• iterations = 11/19/55
• max-error = 1.8e-12/4.9e-9/1.4e-3
• 74% accurately solved instances.

The results are similar. In this case there is only minor impact of the
transformation. The configuration of critical points is in this case almost
invariant under the transformation. Instances with n = 50 random points
in a disk are very hard to solve untransformed but instances with an equal
number of critical points approximately on a circle are significantly easier
solved untransformed as well as transformed. If a maximal error of 0.5e-2 is
allowed, all instances are classified as accurately solved.

4. Discussion

We have presented a constructive method for determining a finite Blaschke
product of degree n+1 having n preassigned distinct critical points z1, . . . , zn
in the complex (open) unit disk D.

Starting from a dense, highly data dependent and ill-conditioned qua-
dratic system derived from the Wronskian W (z), a sparse model that in-
cludes a set of affine constraints and a set of simple quadratic constraints
was constructed. The affine part represents a complete description of the
null space of the Wronskian matrix together with a particular solution to a
relaxed linear system Ax = b. The null space is almost entirely described
by the strucure of the Wronskian and the data dependency is isolated to
one single null space basis vector. The other data dependent part is the
particular solution, and both can be efficiently and reliably computed using
the fast Fourier transform.

The numerical model was tested and several experiments showed that
random generated instances could very accurately be solved up to n = 40
critical points and in many cases up to n = 50. For n > 50 it is likely that
any proposed method based on the Wronskian will encounter numerical
difficulties due to the increasing numerical ill-posedness of the problem.
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The key components in the proposed method that enables accurate and
efficient solution of this demanding problem are: transformation of the crit-
ical points, efficient computation of the data dependent particular solution
and null space vector, the sparse structure of the system and a stable choice
of initial point for the solver.

Future work could include the possibility of prescribing nondistinct critical
points in the disk.
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