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Abstract. We study the irreducible components of special loci of curves whose group
of symmetries is given as certain group extension. We introduce some relative Hurwitz
data, which we show by using mixed étale cohomology theory, identifies some irreducible
components for rational and normal non-abelian special loci and Hurwitz spaces. A
heuristic, that is supported by three classes of examples, provides an additional context
for building further irreducible loci.
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Hurwitz Stacks and Irreducibility

1. Introduction
This paper is motivated by the study of the stack arithmetic of the moduli spaces of

curves of genus 𝑔 with 𝑚-marked points ℳ𝑔,[𝑚], i.e the study of the Gal(Q̄/Q)-action on
its stack inertia groups 𝐼ℳ,𝑥(Q̄), and more precisely by its geometric formulation in terms
of irreducible components of special loci ℳ𝑔,[𝑚](𝐺) of curves with automorphism group
𝐺 ≃ 𝐼ℳ,𝑥(Q̄). As detailed in [CM14] §1.1, this approach relies on determining algebraic
invariants in family of the irreducible components of ℳ𝑔,[𝑚](𝐺). Via the identification
of the normalisation ℳ̃𝑔(𝐺) ≃ ℳ𝑔[𝐺]/Aut(𝐺), this question can be reformulated at the
level of Hurwitz spaces ℳ𝑔[𝐺] of curves endowed with a 𝐺-action, and thus shares some
similarity, in motivations and techniques, with the role of 𝐺-covers in the Regular Inverse
Galois Problem.

After a brief reminder on the arithmetic of Hurwitz spaces and special loci, we first
discuss the definition of our relative invariants ♦ of components of G-covers with rational
locus ℳ𝑔[𝐺]𝑟𝑎𝑡, then present our irreducibility result for rational special loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ ,
and finally introduce certain Heuristic that is supported by 3 types of loci and produces
multiple irreducible special loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ and ℳ𝑔(𝐺)♦̄.

1.1. Hurwitz Spaces and Special Loci in Arithmetic Geometry. Let 𝐺 be a finite
group, and denote by ℳ𝑔[𝐺] and ℳ𝑔(𝐺) respectively the Hurwitz stack of 𝐺-covers and the
special loci of 𝐺 in ℳ𝑔 – i.e. the moduli stack of curves admitting a 𝐺-action. Arithmetic
motivations for the study of the irreducible components of those stacks comes from two
similar questions in the study of the absolute Galois group of rational numbers Gal(Q̄/Q).

The Regular Inverse Galois Problem (RIGT) – that is to realize 𝐺 as a quotient of
the absolute Galois group of rationals Gal(Q̄/Q) – turns into the geometric questions
of realizing 𝐺 as a regular Galois cover of P1 ∖ {0, 1,∞} and to the existence of a Q-
rational point in ℳ𝑔[𝐺]. Weakening the latter Diophantine condition to the question of
the existence of geometrically irreducible components in ℳ𝑔[𝐺] leads to the construction
of Harbater-Mumford irreducible components that are defined over Q – see [Fri95] –, then
the realization of every center-free group 𝐺 over F𝑞 – see [Wew98], and also [DE06] for the
realization of a projective system of finite groups in terms of Hurwitz towers.

The Geometric Galois Actions (GGA) study the actions of Gal(Q̄/Q) on the étale
fundamental group of moduli stacks of curves Gal(Q̄/Q) → 𝐴𝑢𝑡[𝜋𝑒𝑡1 (ℳ𝑔,[𝑚] ⊗ Q̄), �̄�], where
�̄� denotes a geometric point of ℳ𝑔,[𝑚]. The question of the 𝐺-arithmetic appears through
the stack inertia 𝐼ℳ,�̄�(Q̄) ≃ 𝐺 →˓ 𝜋𝑒𝑡1 (ℳ𝑔,[𝑚] ⊗ Q̄, �̄�) or equivalently the irreducible
components of special loci ℳ𝑔,[𝑚](𝐺) – see [CM14] §1 for details. This geometric approach
leads to the description of the Gal(Q̄/Q)-action for respectively 𝑝-groups and cyclic groups
[CM15] Theorem 5.9, [CM14] Theorem 4.8, where it is proven to be given by 𝜒-conjugation.

The general context being given by the inertia stratification in local gerbes bounded by
the automorphism group of objects, this raises the question of describing this Gal(Q̄/Q)-
action on higher inertia groups. A first essential step in this direction is given by the
definition of rational invariant of irreducible components of the special loci in family – see
[CM15] Theorem 4.3 for the cyclic case and for quotient curves of any genus.
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In this paper, we exploit the arithmetic of 𝐺-covers through the rationality of the
ramification locus: We deal with the stack ℳ𝑔(𝐺)𝑟𝑎𝑡♦ of rational special loci with rational
ramification locus and with given rational Hurwitz datas ♦ that extends the invariants k
built in [CM15] §3.1 for the need of the cyclic study – see Remark 2.1.7.

1.2. Invariants of Components of Special Loci. The construction of discrete invariants
of irreducible components of ℳ𝑔(𝐺) relies on a long tradition of geometric invariants of
𝐺-covers via group theoretic methods in terms either of equivalence classes of generating
vectors – see [Bro90] for 𝐺-curves of genus 2 and 3, and [BW07] for abelian groups –, or of
equivalence classes of monodromy representations of the 𝐺-quotient curve 𝐷 as for RIGT.

Such numerical invariants include: (1) the genus of 𝐷, (2) the Nielsen invariants counting
the number of local monodromy belonging to a given set of conjugacy classes, and more
recently (3) a global second homology invariant [CLP15] which refines the previous ones in
the case of 𝐺-action with étale factorization and 𝐺 = 𝐷2𝑛 – see ibid.

Our approach is to define some similar relative invariants k and ♦, i.e. for a family 𝐶/𝑆
of 𝐺-curves in ℳ𝑔[𝐺]. For cyclic group, the construction of k is achieved in terms of étale
cohomology, see [CM15] §3, with similar irreduciblity results for ℳ𝑔(𝛾)k – see Theorem 4.3
and Proposition 3.12 ibid. Their generalisation ♦ and ♦̄ in §2.1.2 involves some additional
characters data {𝜒𝑖}𝐼 and supports some arithmetic properties – see §2.1.3.

The irreduciblity property is then dealt with by the use of mixed cohomology 𝐻∙
𝑃 (𝑋𝑒𝑡, 𝐻)

of [Gro68][Chap. V] in the case of (𝐻;𝐺)-covers, 𝐺 being an extension of 𝑃 by 𝐻: this
determines both the ramification and the global parts of the covers within an algebraic
deformation – see §4.2 and §4.3 for the construction of this deformation. Under some
additional assumptions, this in turns provides some irreduciblity results for ℳ𝑔(𝐻 ▷ 𝐺)𝑟𝑎𝑡♦
and ℳ𝑔(𝐻 ▷ 𝐺)♦̄

1.3. Characterizing Irreducible Components of Special Loci. Under a certain
Aut♦-liftability condition of 𝐺 with respect to ♦ and 𝐻 ▷ 𝐺, the main result of this paper
is to spread the irreducibilty from ℳ𝑔′(𝐺/𝐻)𝑟𝑎𝑡cores(♦) to ℳ𝑔(𝐺)𝑟𝑎𝑡♦ = ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺) –
see Theorem 5.2 and above for the precise definitions:

Theorem (A). Let 𝐺 be a finite group and ♦ a 𝐺-Hurwitz data so that 𝐺 is Aut♦-liftable
with respect to 𝐻 ≃ Z/𝑝Z ▷ 𝐺, that ♦ is 𝐻-irreducible, and that ♦ contains 𝐻 < 𝐺 as
isotropy group. Then ℳ𝑔(𝐺)𝑟𝑎𝑡♦ is irreducible.

This result relies essentially on the irreducibility of the relative quotient morphism
Φ𝑟𝑎𝑡
♦ : ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut𝐺/𝐻,♦(𝐺;𝐻) → ℳ𝑔′ [𝐺/𝐻]𝑟𝑎𝑡cores𝐺

𝑃 (♦), see Theorem 4.1. Under the exis-
tence of a 𝐻-ramification point on top of a 𝑃 -ramification one, we proceed by building
a certain deformation via the compactification of 𝐺-equivariant torsors of [Mau16], see
Proposition 4.2.1, and the identification of (𝐻;𝐺)-covers to a certain stack [𝑅1𝑓*𝐻]𝐺/𝐻
of 𝐻-torsors, see §4.2.2. Notice that the deformation of the global part relies on an an-
alytic result that may be unavoidable since it is already a key ingredient in proving the
irreducibility of ℳ𝑔 in [DM69] and of the special loci ℳ𝑔,[𝑚][Z/𝑛Z]♦ in [Cor87, Cat12]
then [CM15].

We furthermore introduce an Aut♦-solvable Heuristic – that is the existence of a series
𝐺 = 𝐺0 ◁ 𝐺1 ◁ · · · ◁ 𝐺𝑚 = {1} that provides a sequence of data {(♦𝑘, 𝐻𝑘)}16𝑘6𝑚 whose
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associated intermediate quotients satisfy the hypothesis of Theorem (A), see §5.3 and Fig. 1
– which provides further irreducible rational special loci, see loc. cit. and Remark 5.3.1.
We support this Heuristic by introducing 3 types of special loci: (1) a cyclic type C, (2) an
Elementary Abelian type AE, and (3) a dihedral type Drot – see §6. Our approach partially
covers the dihedral cases of [CLP15] – see Remark 6.2.1, and is complementary to group
cohomology methods (e.g. Schur multiplier and thus Fried’s universal Frattini covers) –
see Remark 5.1.3.

Moreover, we discuss the question of the descent from ℳ𝑔(𝐺)𝑟𝑎𝑡♦ to ℳ𝑔(𝐺)♦ that tends
to show that the arithmetic invariants ♦ provide either a rational irreduciblity for ℳ𝑔(𝐺)𝑟𝑎𝑡♦ ,
or descend to ℳ𝑔(𝐺)♦̄ – see §5.3 and the 𝐷2𝑝-case in §6.2.

The plan of the article goes as follow. The definition of rational Hurwitz data and rational
Hurwitz loci, as well as moduli properties by (co)restriction and under Aut-quotient are
presented in §2; the development of mixed cohomology and their relation with (𝐻;𝐺)-covers
and torsors occupies §3; the relative irreducible result for Φ𝑟𝑎𝑡

♦ is established in §4 following
the deformation of (𝐻;𝐺)-covers with 𝐻-ramification – with algebraic and analytical results;
§5 deals with the irreducibility of the rational special loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ , also discusses the
Aut♦-liftability Heuristic, and illustrates the non-triviality of the Aut-liftability property;
§6 presents the various types that support the Aut♦-liftability Heuristic. An Appendix
corrects a mistake of taking a stack quotient in [Mau16].

We expect this paper, in combination with a thoughtful study of explicit groups and
Hurwitz data and with the use of inertial limit Galois actions of [CM14], to lead to further
descriptions of the GGA on higher stack inertias 𝐼ℳ,𝑥(Q̄).

2. Hurwitz Characters and Normality
Let 𝐺 be a finite group and 𝑔 ≥ 0 an integer. We consider the stack ℳ𝑔[𝐺] of smooth

proper curves of genus 𝑔 with a given faithful 𝐺-action, which is a Deligne-Mumford stack
over Z[1/|𝐺|]. In what follows, the scheme 𝑆 belongs to the category of Z[1/|𝐺|]-schemes
or Q-schemes to avoid any wild ramification difficulties.

2.1. Rational Hurwitz Invariants. Let 𝐶/𝑆 be a smooth proper curve endowed with a
faithful 𝐺-action 𝜄 : 𝐺 →˓ Aut𝑆(𝐶), i.e. faithful in every fibre. After some reminders on the
reduced ramification locus 𝑅𝑎𝑚𝑆(𝐶, 𝜄) of (𝐶/𝑆, 𝜄), we define a notion of rational Hurwitz
data over 𝑆 which are shown to reflect rational and arithmetic properties of (𝐶/𝑆, 𝜄) and is
a variant of the geometric ones introduced in [Fri77] and [Ser08].

2.1.1. Let 𝜇|𝐺| denote the group scheme of |𝐺|-roots of unity, and consider a geometric
fibre 𝐶𝑠 of 𝐶/𝑆 at 𝑠 = Spec (𝑘). For every ramified point 𝑥 ∈ 𝐶𝑠, denote by 𝐺𝑥 < 𝐺 its
isotropy group. This is a cyclic group since the action is tame, and it defines a Hurwitz
character via the cotangent representation:

𝜒𝑥 : 𝐺𝑥 → 𝜇|𝐺|(𝑘)

that is locally given by 𝜒𝑥(ℎ) = ℎ(𝜛)/𝜛 mod 𝜛2, where 𝜛 is a uniformising parameter
of 𝐶 at 𝑠. This representation is primitive, i.e. of order |𝐺𝑥|.
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In the relative case, denoting 𝐶𝐻 the scheme of fixed points, one defines a ramification
divisor

𝑅𝑎𝑚(𝐶, 𝜄) =
∑︁

𝐻 ̸=1
𝜑(|𝐻|)𝐶𝐻 where 𝜑 denotes the Euler function

which is a relative Cartier divisor over 𝑆 – we refer to [BR11] §3 for the original approach
and details.

Suppose that the support of the ramification divisor 𝑅𝑎𝑚(𝐶, 𝜄) is given by disjoint
sections (𝑒𝑖)𝑖∈𝐼 . By the same arguments as above, one attaches to each 𝑒𝑖 a cyclic stabilizer
group 𝐺𝑖 and a primitive character

(2.1.1) 𝜒𝑖 : 𝐺𝑖 → 𝜇|𝐺|,

which are locally constants over 𝑆 – see especially Lemme 3.1.3 Ibid. If 𝑆 is the spectrum
of an algebraically closed field, these characters are induced by the action of 𝐺𝑖 on the
tangent space of 𝐶 at 𝐶(𝑒𝑖).

Let us introduce the stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 of 𝐺-covers with rational ramification locus.

Definition 2.1.1. Let 𝐺 be a finite group and 𝐼 a finite 𝐺-set of cardinal 𝑚. We denote
by ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 the stack classifying equivariant 𝐺-curves (𝐶/𝑆, 𝜄) together with disjoint
sections {𝑒𝑖 : 𝑆 → 𝐶}𝑖=1,...,𝑚.

For such a 𝐺-curve, one has

(2.1.2) 𝑅𝑎𝑚(𝐶, 𝜄) =
𝑚⨁︁
𝑖=1

𝜑(|𝐺𝑖|)𝑒𝑖,

where 𝐺𝑖 is the stabiliser of 𝑒𝑖 in 𝐺.

Denoting |𝐼| = 𝑚, the stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 is naturally a closed substack of the algebraic
stack of 𝑚-pointed 𝐺-curves ℳ𝑔,𝑚[𝐺]. Moreover, as the ramification divisor of every
𝐺-curve (𝐶/𝑆, 𝜄) splits up to an étale base change, the morphism given by forgetting the
ramification divisor

ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 → ℳ𝑔[𝐺]
is étale.

The equation (2.1.2) tells us in particular that the genus 𝑔′ of the quotient curve 𝐶/𝐺
is fixed, as it is given by the Hurwitz formula:

2𝑔 − 2 = (2𝑔′ − 2)|𝐺| +
∑︁
𝑖∈𝐼

(|𝐺𝑖| − 1)

In a similar way to the moduli stack of curves, one proves that the stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 is a
smooth Deligne-Mumford algebraic stack as GIT quotient – see [BR11] §6.3. We recall that
ℳ𝑔[𝐺] (resp. ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡) is not a substacks of ℳ𝑔 (resp. of ℳ𝑔,𝑚), and that forgetting
the 𝐺-action corresponds to the normalization morphism ℳ𝑔[𝐺]/Aut(𝐺) → ℳ𝑔(𝐺) (resp.
idem for 𝑚-pointed curves) – see [Rom11] §3.4 and [CM15] §2.1 for details.

The notion of Hurwitz characters encodes some geometric and Galois properties that we
formalize in the next section.
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2.1.2. Let (𝐶/𝑆, 𝜄) ∈ ℳ𝑔,𝐼 [𝐺] be an equivariant curve, with isotropy groups {𝐺𝑖}𝐼 ,
to which can be associated some primitive characters {𝜒𝑖}𝐼 in a functorial way as in
Eq. (2.1.1) above. We recall that for a 𝛾 ∈ 𝐺, the 𝐺-action on 𝐶 induces conjugacy
morphisms 𝜓𝛾,𝑖 : 𝐺𝑖 → 𝐺𝛾.𝑖 on the isotropy groups which on the characters translates as
follow:
(2.1.3) 𝐺𝛾.𝑖 = 𝛾−1𝐺𝑖𝛾 and 𝜒𝛾.𝑖 = 𝜒𝑖 ∘ 𝜓−1

𝛾,𝑖 where 𝛾 ∈ 𝐺.

The following is a variant of [Ser08,Fri77] which originally defines the Hurwitz data on
geometric fibre and as conjugacy classes of Hurwitz datas.
Definition 2.1.2. Let 𝐺 be a finite group and 𝐼 a finite 𝐺-set of cardinal 𝑚. A Hurwitz
data ♦ associated to 𝐺 and 𝐼 is a 𝑚-tuple ((𝐺1, 𝜒1), ..., (𝐺𝑚, 𝜒𝑚)) of cyclic subgroups
𝐺𝑖 < 𝐺 and primitive 𝐺𝑖-characters 𝜒𝑖 ∈ Isom(𝐺𝑖, 𝜇|𝐺|) such that equations (2.1.3) are
satisfied.

We denote by ♦𝐼𝐺 the set of ♦𝐼𝐺-Hurwitz data associated to 𝐺 and 𝐼. For ♦ ∈ ♦𝐼𝐺, we
write 𝑠𝑡𝑎𝑏(♦) (resp. 𝑐ℎ𝑎𝑟(♦)) for the list of 𝐺-isotropy groups (resp. 𝐺-primitive character),
and we call 𝐼 the set of indices of ♦.

The Hurwitz data attached to a 𝐺-cover of ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 encodes all its classical elementary
invariants (eg. the ramification indices and the genus of the quotient curve 𝐶/𝐺). For a
cyclic group 𝐺, it also coincides with the 𝛾-type introduced in [CM14] §2.2 whose relation
to the classical branching data {𝑘𝑗}𝐼 of a geometric cover is given by Lemma 2.4 Ibid – see
also Remark 2.1.7.

Let ♦ be a ♦𝐼𝐺-Hurwitz data, we denote by ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ the substack of ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡 whose
sections are 𝐺-curves with Hurwitz datas ♦.
Proposition 2.1.3. The stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ is open and union of connected components in
ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡.

This immediately follows first from the local constance of the Hurwitz data by [BR11]
Lemme 3.1.3, then from the stability under specialisation.

Recall that the set ♦𝐼𝐺 is naturally endowed with a 𝐺-action through the action of 𝐺 on
𝐼 induced by the conjugacy action of Eq. (2.1.3).
Definition 2.1.4. A Hurwitz data ♦ = ((𝐺1, 𝜒1), ..., (𝐺𝑚, 𝜒𝑚)) is said to be normal if for
all 𝑖 ∈ 𝐼 and 𝛾 ∈ 𝐺 we have 𝐺𝛾.𝑖 = 𝐺𝑖 and 𝜒𝛾.𝑖 = 𝜒𝑖.

The choice of a representative in each class in ♦𝐼𝐺/𝐺 is then sufficient to recover the
whole Hurwitz data up to an order on 𝐼 only. For a normal Hurwitz data ♦ and for 𝛾 ∈ 𝐺,
the difference between ♦ and 𝛾.♦ is only the permutation of 𝐼 given by 𝛾.
Proposition 2.1.5. Let ♦ = ((𝐺1, 𝜒1), . . . , (𝐺𝑚, 𝜒𝑚)) be a ♦𝐼𝐺-Hurwitz data. If 𝐺𝑖 < 𝑍(𝐺)
for all 𝑖 ∈ 𝐼, then ♦ is normal. In particular, every Hurwitz data of an abelian group is
normal.
Proof. It follows from Eq.(2.1.3) that a Hurwitz data ♦ is normal if and only if for all 𝑖 ∈ 𝐼
one has:

𝜒𝑖 = 𝜒𝛾.𝑖, ∀𝛾 ∈ 𝐺 i.e.
{︃
𝐺𝑖 E𝐺

𝜒𝑖(ℎ) = 𝜒𝑖(𝛾ℎ𝛾−1), ∀ℎ ∈ 𝐺𝑖, ∀𝛾 ∈ 𝐺,
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which by the injectivity of the characters, is equivalent to 𝐺𝑖 < 𝑍(𝐺) for all 𝑖 ∈ 𝐼. �

In the case of curves in ℳ𝑔[𝐺] with non-rational ramification locus, an unordered Hurwitz
data is given as a class ♦̄ ∈ ♦𝐼𝐺/𝐺, and we define ℳ𝑔[𝐺]♦̄ as the locus of 𝐺-curves in
ℳ𝑔[𝐺] that are étale locally isomorphic to a curve inside ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ , for a certain ♦ ∈ ♦̄.
The stack ℳ𝑔[𝐺]♦̄ is naturally a Deligne-Mumford algebraic substack of the curves with
𝑚-marked points ℳ𝑔,[𝑚]. As the ramification divisor splits étale locally in a 𝐺-equivariant
way, we have an étale surjective morphism∐︁

♦∈♦̄

ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ → ℳ𝑔[𝐺]♦̄.

We have the following proposition.

Proposition 2.1.6. Let 𝐺 be a finite groupe, 𝐼 a finite 𝐺-set and ♦ ∈ ♦𝐼𝐺. For ♦ normal,
the Hurwitz stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ is obtained as:

ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ //

��

ℳ𝑔[𝐺]𝑟𝑎𝑡

��
ℳ𝑔[𝐺]♦̄ //ℳ𝑔[𝐺].

Remark 2.1.7. In the case of 𝐺 ≃ Z/𝑛Z cyclic, the definition of (normal) unordered
♦𝐼𝐺-Hurwitz data ♦̄ is identical to the one of Hurwitz data k ∈ (Z/𝑛Z)𝜈/S𝜈 of [CM15]
Def. 3.5. The requirement of considering the Aut(𝐺)-classes as in ibid. Rem. 3.6 ii) is
dealt with later in terms of Aut♦(𝐺;𝐻)-quotient, see §2.2.3 and §5.

2.1.3. Let us describe briefly the arithmetic of Hurwitz data and in which sense the
normality property of a ♦𝐼𝐺-Hurwitz data encodes some arithmetic of 𝐺-covers.

Let 𝐶 ∈ ℳ𝑔,𝑚[𝐺]♦̄(𝑘) be a 𝐺-cover 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺 defined over 𝑘, and let 𝑅𝜋 ⊂ 𝑋

be the ramification divisor that splits over 𝐾 ⊃ 𝑘. The Gal(𝑘/𝑘)-action on 𝑅𝜋 translates
as follow on {♦}♦𝐼

𝐺
: it is given (1) on the {𝐺𝑖}𝐼 by conjugacy, and (2) on the {𝜒𝑖}𝐼 by

change of primitive 𝑁 -root of unity in 𝜇|𝐺𝑖|(𝐾).

Let us further denote by 𝑌 ′ the 𝐺-quotient minus the branch locus of 𝜋. The monodromy
representations provides a correspondence between classes of 𝐺-covers over 𝑌 ′, and 𝐺-
conjugacy classes of morphisms 𝜓𝜋 : 𝜋𝑒𝑡1 (𝑌 ′)� 𝐺 – see [DE06] §2.4.2. Assuming that 𝑌 ′

admits a rational point 𝑥 ∈ 𝑌 ′ gives a splitting of the arithmetic-geometric fundamental
exact sequence:

1 → 𝜋1(𝑌 ′ × Spec 𝑘) → 𝜋1(𝑌 ′) → Gal(𝑘/𝑘) → 1
and 𝜓𝜋 gives a morphism 𝜑 : Gal(𝑘/𝑘) � 𝐺: under which Gal(𝑘/𝑘) acts on the class of
𝐺-covers. Under this Gal(𝑘/𝑘)-action, the ramification divisor 𝑅𝜋 of 𝜋 is globally invariant
and 𝜑 reads as the Gal(𝑘/𝑘)-action on the generic unramified fiber over 𝑥 of the cover –
see Ibid §2.9.
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In terms of moduli spaces ℳ𝑔,𝑚[𝐺]𝑟𝑎𝑡♦ associated to a normal Hurwitz data ♦, one
recovers via 𝜑 the previously described Gal(𝑘/𝑘)-action, here on {ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡𝛾.♦, 𝛾 ∈ 𝐺} via
the 𝐺-action on ♦. This action satisfies the following property.

Proposition 2.1.8. For ♦ a normal ♦𝐼𝐺-Hurwitz data, the moduli stack ℳ𝑔,𝐼 [𝐺]𝑟𝑎𝑡♦ is
Gal(Q̄/Q)-invariant in ℳ𝑔,[𝑚].

This result is immediate following the properties of normal Hurwtiz datas developed in
the previous sections. By controlling the Gal(Q̄/Q)-action on the characters {𝜒𝑖}𝐼 , the
normality condition thus provides an a priori finer arithmetic invariant than the global
Gal(Q̄/Q)-invariance of 𝑅𝜋, i.e the control of the 𝐺-isotropy groups of 𝑅𝜋 only.

2.2. Functorial Properties and Moduli. We briefly present some properties of the
Hurwitz stack with rational ramification ℳ𝑔[𝐺]𝑟𝑎𝑡 and of the Hurwitz data ♦ under change
of group and under quotient by automorphisms. In what follows we denote by 𝐻 ▷ 𝐺 a
normal subgroup of 𝐺 and by 𝑃 = 𝐺/𝐻 the associated quotient.

2.2.1. Let (𝐸, 𝜄𝐺) be a curve with 𝐺-action, and let us denote 𝐶 = 𝐸/𝐻 and 𝐷 = 𝐸/𝐺
the various quotients given by the situation above, which induces a restricted 𝐻-action
(𝐸, 𝜄𝐻) on 𝐸 as well as a corestricted 𝑃 -action (𝐶, 𝜄𝑃 ).

For a given Hurwitz data ♦ = {(𝐺𝑖, 𝜒𝑖)}𝑖∈𝐼 , one obtains some restricted res𝐺𝐻(♦) =
{(𝐻𝑗 , 𝜒

′
𝑗)}𝑗∈𝐽 and corestricted cores𝐺𝑃 (♦) = {(𝑃𝑘, �̃�𝑘)}𝑘∈𝐾 Hurwitz datas given respectively

by

res𝐺𝐻(♦𝐺) =
{︃
𝐻𝑗 = 𝐻 ∩𝐺𝑗

𝜒′
𝑗 = 𝜒𝑗|𝐻∩𝐺𝑗

cores𝐺𝑃 (♦𝐺) =
{︃
𝑃𝑘 = 𝐺𝑘/𝐺𝑘 ∩𝐻

�̃�𝑘 = 𝜒
|𝐺𝑘∩𝐻|
𝑘

,

whose definition is functorial and is similar to those of [BR11] §2.2.2.
Note that the indices 𝐽 defining res𝐺𝐻(♦) (resp. 𝐾 defining cores𝐺𝑃 (♦)) are taken over the

indices of 𝐼 ∈ ♦ with non-trivial induced isotropy groups 𝐻𝑖 (resp. non-trivial 𝑃𝑖). These
Hurwitz datas res𝐺𝐻(♦) and cores𝐺𝑃 (♦) correspond respectively to those of the restricted
and corestricted actions (𝐶, 𝜄𝐻) and (𝐷, 𝜄𝑃 ) on the curves.

2.2.2. Let ♦ be a ♦𝐼𝐺-Hurwitz data and let us denote by 𝑔′ the genus of the quotient
as defined by ♦. We now write ℳ𝑔[𝐻 E 𝐺] instead of ℳ𝑔[𝐺] for the Hurwitz stack of
𝐺-curves to remember that a normal subgroup 𝐻 E 𝐺 is fixed.

By forgetting the action of 𝐺, resp. considering the (tame) quotient by 𝐻, one obtains
some restricted and quotient morphisms

ℳ𝑔[𝐻 ▷ 𝐺] −→ ℳ𝑔[𝐻], resp. ℳ𝑔[𝐻 ▷ 𝐺] → ℳ𝑔′ [𝑃 ],
as well as their rational variants on ℳ𝑔[𝐺]𝑟𝑎𝑡. One deduces from the study above their
versions with Hurwitz data, ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ −→ ℳ𝑔[𝐻]𝑟𝑎𝑡res𝐺

𝐻(♦) and also

(2.2.1) Φ̃𝑟𝑎𝑡
♦ : ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ → ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡cores𝐺

𝑃 (♦).

Proposition 2.2.1. The morphism
Φ̃ : ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡 → ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡

is smooth.
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Proof. Because the action of 𝐻 is tame, so that 𝐻 is reductive, we see that Φ̃ induces first
a surjection at the level of tangent spaces by Proposition 4.6 of [Mau16], then at the level
of geometric points as it can be checked functorially. The result then follows from the
smoothness of ℳ𝑔[𝐻 ▷𝐺]𝑟𝑎𝑡 and ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡, which can be proven using deformation theory
using once more the reductiveness of 𝑃 and 𝐺, and from the characterisation of smooth
morphisms between smooth schemes (cf. [Gro67], Théorème 17.11.1). �

2.2.3. Recall that one has a left Aut(𝐺)-action on ℳ𝑔[𝐺]. The effect of an automorphism
𝜓 ∈ Aut(𝐺) on a 𝐺-Hurwitz data ♦ attached to a curve (𝐶, 𝜄𝐺) ∈ ℳ𝑔[𝐺]𝑟𝑎𝑡♦ is read on the
𝜓-twisted 𝐺-cover (𝐶, �̃�𝐺) ∈ ℳ𝑔[𝐺]𝜓(♦) as follow:

i) the action of 𝐺 on 𝐼 and 𝐶 is obtained through the action of 𝐺 twisted by 𝜓,
ii) the ramification divisor – with the 𝐺-action given via the sections through 𝐼 – is

unchanged Ram((𝐶, 𝜄𝐺)) = Ram((𝐶, �̃�𝐺)), although its numbering is, together with
the action on 𝐼,

iii) a 𝐺-isotropy group 𝐺𝑖 ∈ ♦ is sent to one of (𝐶, �̃�𝐺): 𝜓(𝐺𝑖) = 𝐺𝑗 ≃ 𝐺𝐼 < 𝐺,
iv) the characters 𝜒𝑖 : 𝐺𝑖 → 𝜇|𝐺| are uniformly changed by composition by 𝜓: 𝜓.𝜒𝑖 =

𝜒𝑖 ∘ 𝜓|𝐺𝑖
.

In particular if 𝜓 fixes ♦ then 𝜓(𝐺𝑖) = 𝐺𝑖 for all 𝑖 ∈ 𝐼.

For a given ♦ ∈ ♦𝐼𝐺-Hurwitz data, we denote by Aut♦(𝐺) the subgroups of Aut(𝐺)
that fixes ♦, and one defines the subgroup Aut𝐺/𝐻,♦(𝐺;𝐻) of Aut𝐺/𝐻(𝐺;𝐻) fixing ♦
– see Appendix A. In particular, we can now consider the ♦-fixing variant ℳ𝑔[𝐻 ▷
𝐺]𝑟𝑎𝑡♦ /Aut𝐺/𝐻,♦(𝐺;𝐻) of ℳ𝑔[𝐻 ▷𝐺]𝑟𝑎𝑡/Aut𝐺/𝐻(𝐺;𝐻) and the relative quotient morphism:

(2.2.2) Φ𝑟𝑎𝑡
♦ : ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut𝐺/𝐻,♦(𝐺;𝐻) → ℳ𝑔′ [𝐺/𝐻]𝑟𝑎𝑡cores𝐺

𝐺/𝐻
(♦).

whose irreducibility is established in §4.

3. Mixed Cohomology and Torsors Extensions
Let 𝑋 be a 𝑆-scheme endowed with an action of a finite group 𝑃 . We study a certain

set of torsors extensions associated to the 𝑃 -torsor 𝑋 and to some finite abelian groups 𝐻
as given in the figure below.

𝑍

𝐻
��

𝐺

��

𝑋

𝑃
��
𝑌

This is achieved in term of mixed étale cohomology following [Gro68,
§2.1]. Recall that the mixed étale cohomology groups H𝑖

𝑃 (𝑋ét,ℱ) are
defined as the derived functors of ℱ ↦→ H0

ét(𝑋,ℱ)𝑃 for a sheaf of
abelian groups with a 𝑃 -action ℱ ∈ 𝑆ℎ𝐴𝑏(𝑋,𝑃 ), and that they are
the abutment of two spectral sequences – see Ibid. and [Gro57, Chap.
V] – which relates these extensions to their branch loci and class of
group extensions respectively via their étale and group cohomologies.

In what follows 𝑋 denotes an irreducible 𝑆-scheme endowed with a
faithful action of a finite abstract group 𝑃 such that 𝑌 = 𝑋/𝑃 exists as a 𝑆-scheme, the
group 𝐻 is an abelian finite group, and 𝑍 → 𝑋 denotes a torsor extension as above, also
designed as an 𝐴𝑢𝑡𝑌 (𝑍)-torsor when 𝐺 is not identified.
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3.1. From Mixed Cohomology to Group Cohomology. Let 𝑍 be a scheme endowed
with a 𝐺-action denoted 𝑖𝑍 . We endow the set of torsors extensions with the equivalence
relation given by 𝐺-equivariant isomorphisms given by 𝐻-conjugacy.

Definition 3.1.1. With the notations and assumptions above, we denote by 𝒯 𝑜𝑟𝑠𝑋,𝑃 (𝐻,𝐺)
the set of classes of (𝐻;𝐺)-torsors extensions of 𝑃 -torsors 𝑋:

𝒯 𝑜𝑟𝑠𝑋,𝑃 (𝐻,𝐺) =
{︂
𝐻-torsor 𝑍 ′ → 𝑋|𝑍 ′ → 𝑌 is a 𝐺-torsor and
𝑍 ′/𝐻 ∼= 𝑋 as 𝑃 -torsor

}︂
/ ∼

where two (𝐻;𝐺)-torsors extensions (𝑍 ′ → 𝑋) and (𝑍 ′′ → 𝑋) are equivalent if and
only if there exists a 𝐺-equivariant 𝑌 -isomorphism 𝜑 : 𝑍 ′ ≃ 𝑍 ′′ and ℎ ∈ 𝐻 such that
𝜑 ∘ 𝑖𝑍′(𝛾) = 𝑖𝑍′′(ℎ𝛾ℎ−1) for all 𝛾 ∈ 𝐺.

It follows from [Mau16] Proposition 2.2 that the condition for a scheme 𝑍 ∈ H1
ét(𝑋,𝐻) to

be an 𝐴𝑢𝑡𝑌 (𝑍)-torsor over 𝑌 is to be a 𝑃 -equivariant 𝐻-torsor over 𝑋, i.e. 𝑍 ∈ H1
ét(𝑋,𝐻)𝑃 ;

in this case the group Aut𝑌 (𝑍) is an extension 𝐺 of 𝑃 by the kernel 𝐻. As shown below,
the mixed cohomology presents a refinement of this situation.

3.1.1. For ℱ ∈ 𝐴𝑏𝑆ℎ(𝑋𝑒𝑡, 𝑃 ), let us consider the first spectral sequence of mixed coho-
mology of [Gro68, §2.1]

(3.1.1) 𝐸𝑝,𝑞2 = H𝑝(𝑃,H𝑞
ét(𝑋,ℱ)) ⇒ H𝑝+𝑞

𝑃 (𝑋ét,ℱ).

For a finite group 𝐻 with a given 𝑃 -action, we define the constant 𝑃 -sheaf 𝐻𝑋 on 𝑋,
which leads to the long exact sequence

(3.1.2) 0 → H1(𝑃,𝐻𝑋) → H1
𝑃 (𝑋ét, 𝐻𝑋) → H1

ét(𝑋,𝐻𝑋)𝑃 → H2(𝑃,𝐻𝑋)

where we identify H1(𝑃,H0
ét(𝑋,𝐻𝑋)) = H1(𝑃,𝐻𝑋) since 𝑋 is connected.

In particular, one recovers that two mixed 𝑃 -covers of 𝑋, with difference 𝛼 ∈ H1
𝑃 (𝑋ét, 𝐻),

giving rise to the same element in H1
ét(𝑋,𝐻)𝑃 have the same 𝐻-conjugacy class of splitting

extension of 𝑃 . Moreover as an 𝐴𝑢𝑡𝑌 (𝑍)-torsor defines a group extension 𝐺 ≃ 𝐴𝑢𝑡𝑌 (𝑍) ∈
H2(𝑃,𝐻) of abelian kernel 𝐻, the difference of two 𝑃 -invariant 𝐻-torsors of H1

𝑃 (𝑋𝑒𝑡, 𝐻)
with same image in H2(𝑃,𝐻) is actually a 𝐺-torsor over 𝑌 for 𝐺 ∈ H2(𝑃,𝐻).

3.1.2. Following the discussion above, the exact sequence (3.1.2) defines an action of
H1
𝑃 (𝑋ét, 𝐻) on the set of (𝐻;𝐺)-torsors extensions as defined via the association of a

𝐺 ∈ H2(𝑃,𝐻), and this action is well-defined on the classes in 𝒯 𝑜𝑟𝑠𝑋,𝑃 (𝐻,𝐺) via H1(𝑃,𝐻).

Theorem 3.1.2. Let 𝑃 be a finite group, 𝐻 a finite abelian group, 𝑌 a scheme and 𝑋/𝑌
a 𝑃 -torsor. For any extension 𝐺 of 𝑃 by 𝑌 , the mixed cohomology group H1

𝑃 (𝑋ét, 𝐻) acts
simply transitively on 𝒯 𝑜𝑟𝑠𝑋,𝑃 (𝐻,𝐺).

This result is a key ingredient in establishing our main Theorem 4.1 as it allows a fine
control of the set of (𝐻;𝐺)-torsors.
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3.2. From Mixed Cohomology to Cohomology of the Quotient Space. Let us
consider the second spectral sequence converging to the mixed cohomology groups. With
the same notations as above, let us denote by 𝜋 : 𝑋 → 𝑌 = 𝑋/𝑃 the quotient morphism.
For ℱ ∈ 𝑆ℎ𝐴𝑏(𝑋,𝑃 ), one has as a special case of the Leray spectral sequence:
(3.2.1) 𝐸𝑝,𝑞2 = H𝑝

ét(𝑌,R
𝑞𝜋𝑃* ℱ) ⇒ H𝑝+𝑞

𝑃 (𝑋ét,ℱ).
When 𝜋 is étale – i.e. the action of 𝑃 is free – one has R𝑞𝜋𝑃* ℱ = 0 for 𝑞 > 0 and we get by
degeneracy:

H𝑝
𝑃 (𝑋ét,ℱ) = H𝑝

ét(𝑌, 𝜋
𝑃
* ℱ).

In what follows, we consider a finite abelian group 𝐻 endowed with a given action of 𝑃 ,
and we denote by 𝐻𝑋 the associated sheaf on 𝑋. In this case, the sequence (3.2.1) leads
to a local-global long exact sequence:
(3.2.2) 0 → H1

ét(𝑌, 𝜋𝑃* 𝐻𝑋) → H1
𝑃 (𝑋ét, 𝐻𝑋) → H0

ét(𝑌,R1𝜋𝑃* 𝐻𝑋) → H2
ét(𝑌, 𝜋𝑃* 𝐻𝑋).

We establish a lifting property of the global part H1
ét(𝑌, 𝜋𝑃* 𝐻𝑋) of the mixed cohomology

group which is a key element in controlling the deformation of (𝐻;𝐺)-covers in the proof
of Theorem 4.1.

3.2.1. To compute the global part H1
ét(𝑌, 𝜋𝑃* 𝐻𝑋) we consider the following norm morphism:

(3.2.3) 𝑁𝑃 : 𝐻𝑌 → 𝜋*𝜋
*𝐻𝑌 = 𝜋*𝐻𝑋 → 𝜋𝑃* 𝐻𝑋

defined by 𝑁𝑃 (𝑎) =
∑︀
𝑔∈𝑃 𝑔.𝑎. Let us denote by 𝒦 is kernel and by 𝒞 its cokernel. For

𝑦 ∈ 𝑌 in the étale locus of 𝜋 the norm 𝑁𝑃 induces an isomorphism in a neighbourhood of
𝑦. The sheaves 𝒦 and 𝒞 have therefore their support in the branch locus.

We can actually be more specific: let 𝑥 ∈ 𝑋 be a ramified point of 𝜋 and let 𝑦 = 𝜋(𝑥) ∈ 𝑌 .
Denoting by 𝑃𝑥 the stabiliser of 𝑥 in 𝑃 , we have

(𝜋*𝐻𝑋)𝑦 =
⨁︁
𝑥′∈𝑃.𝑥

𝐻𝑋,𝑥′ thus (𝜋𝑃* 𝐻𝑋)𝑦 ∼= 𝐻𝑃𝑥
𝑋,𝑥,

so we identify 𝒦𝑦 and 𝒞𝑦 to the kernel and cokernel of the norm morphism 𝑁 𝑙𝑜𝑐
𝑃 : 𝐻𝑌,𝑦 →

𝐻𝑃𝑥
𝑋,𝑥. From this we deduce:

Proposition 3.2.1. Let 𝑥 ∈ 𝑋 be a ramified point of 𝜋 of stabilizer 𝑃𝑥 in 𝑃 and let
𝑦 = 𝜋(𝑥). Then there exists isomorphisms

𝒦𝑦
∼= H0(𝑃𝑥, 𝐻𝑋,𝑥) and 𝒞𝑦 ∼= H2(𝑃𝑥, 𝐻𝑋,𝑥)

where 𝒦𝑦 and 𝒞𝑦 are the kernel and cokernel of 𝑁 𝑙𝑜𝑐
𝑃 above.

3.2.2. Suppose moreover that 𝑋 is a curve and the action of 𝑃 is faithfull. Since 𝒦 and 𝒞
are supported in the branch locus of 𝜋 which is discrete, their higher cohomology groups
vanish and we obtain a long exact sequence:

0 → H0
ét(𝑌,𝒦) → H0

ét(𝑌,𝐻𝑌 ) → H0
ét(𝑌, 𝜋𝑃* 𝐻𝑋) → H0

ét(𝑌, 𝒞) →
H1

ét(𝑌,𝐻𝑌 ) → H1
ét(𝑌, 𝜋𝑃* 𝐻𝑋) → 0

From this we deduce the main property of this subsection.

Proposition 3.2.2. The norm morphism 𝑁𝑃 of Eq. (3.2.3) induces a transitive action of
H1

ét(𝑌,𝐻𝑌 ) on H1
ét(𝑌, 𝜋𝑃* 𝐻𝑋).
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In particular, this reduces the construction of 𝑃 -equivariant 𝐻-torsors over 𝑌 to the
construction of 𝐻 ▷𝐺 torsors over 𝑌 – see Corollary 4.3.1 for the application to deformation
of the global part of (𝐻;𝐺)-covers.

3.2.3. We now give a group theoretic description of H1
𝑃 (𝑋𝑒𝑡, 𝐻𝑋).

In terms of group theory, the same approach that in §3.2.1 shows that the fibers at
𝑦 ∈ 𝑌 of the sheaf R1𝜋𝑃* 𝐻𝑋 identifies to

(3.2.4)
(︁
R1𝜋𝑃* 𝐻𝑋

)︁
𝑦

∼= H1(𝑃𝑥, 𝐻),

where 𝑥 ∈ 𝑋 is a lifting of 𝑦, via the isomorphism
(︁
R1𝜋𝑃* 𝐻𝑋

)︁
𝑦

∼= H1(𝑃, (𝜋*𝐻𝑋)𝑦). This
implies some refinements on the description of 𝐻1

𝑃 (𝑋𝑒𝑡, 𝐻𝑋) in term of kernel/cokernel,
that depend on the first and second group cohomology class extensions of 𝑃 by 𝐻.

For example, for 𝐻 and 𝑃 coprime order cyclic groups with trivial class in 𝐻2(𝑃,𝐻),
one obtains that 𝐻1

𝑃 (𝑋𝑒𝑡, 𝐻𝑋) ≃ 𝐻1(𝑌,𝐻). The other cases of class of 𝐺 ∈ 𝐻2(𝑃,𝐻) lead
to similar identification of 𝐻1

𝑃 (𝑋𝑒𝑡, 𝐻𝑋) that we do not reproduce here, since we do not
make use of these computations.

4. Irreducibility of the Relative Quotient Morphism

Let 𝐺 be a finite group, 𝐻 ▷ 𝐺 a subgroup and 𝑃 = 𝐺/𝐻 its quotient, and let ♦ ∈ ♦𝐼𝐺
be a Hurwitz data. The goal of this section is to prove the irreducibility of the quotient
morphism Φ𝑟𝑎𝑡

♦ of Eq. (2.2.2) when ♦ has a 𝑃 -étale point, i.e when one of the 𝑒𝑖 of 𝑅𝑎𝑚(𝐶, 𝜄)
has an image modulo 𝐻 with trivial stabilizer.

Theorem 4.1. Let 𝐺 be a finite group, 𝐼 a finite 𝐺-set, 𝐻 ▷ 𝐺 be a cyclic group of prime
order and let ♦ be a ♦𝐼𝐺-Hurwitz character. If ♦ has a 𝑃 -étale point, then the morphism

Φ𝑟𝑎𝑡
♦ : ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut𝐺/𝐻,♦(𝐺;𝐻) → ℳ𝑔′ [𝐺/𝐻]𝑟𝑎𝑡cores𝐺

𝑃 (♦)

is geometrically irreducible.

Recall that Aut𝐺/𝐻,♦(𝐺;𝐻) denotes the subset of Aut(𝐺) that leaves 𝐺/𝐻 and ♦ fixed
– see A.1.1.

The context, along the lines of [Mau16], is given by whose of (𝐻;𝐺)-torsors, which
allows to go back and forth to 𝐺-curves, as well as to apply the results of mixed cohomology
on étale and group cohomology of the previous section §3. The proof follows two steps:
first a local deformation of the ramification locus – see Proposition 4.2.1 – up to a global
part, then the deformation of the global part in cohomology – see Corollary 4.3.1. The
local deformation relies on the arithmetic properties of torsors and their compactification
to construct explicit 𝑃 -equivariant deformations of 𝐻-torsors up to a global torsor. The
global deformation then relies on equivariant generalisations of ideas developed in [Cor87].

Before going into the deformation process, we first recall some properties of the stack
[𝑅1𝑓*𝐻]𝐺/𝐻 that classifies the 𝐺/𝐻-invariant 𝐻-torsors.
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4.1. Stack of Covers and Stack of Torsors. Following [Mau16], a stack of𝐺-equivariant
curves can be described in terms of a certain stack of torsors [R1𝑓*𝐺]. Indeed, let
𝒞 → ℳ𝑔′,[𝑚][𝐺/𝐻] be the universal 𝐺/𝐻-equivariant curve of genus 𝑔′ endowed with
an equivariant divisor ℬ of degree 𝑚. Let us write 𝑓 : 𝒞 ∖ |ℬ| → ℳ𝑔′,[𝑚][𝐺/𝐻]. Following
ibid. §3.2, one attaches to this situation an algebraic stack [𝑅1𝑓*𝐻]𝐺/𝐻 over ℳ𝑔′,[𝑚][𝐺/𝐻]
that classifies the local 𝐻-torsors that are 𝐺/𝐻-invariants. This stack admits a stratifica-
tion [𝑅1𝑓*𝐻]𝐺/𝐻g=𝑔 given by the genus 𝑔 of the fibres – see ibid. §4.2 – and in our case fits
within the diagram – see ibid §4.4:

(4.1.1) ℳ[𝐻 ▷ 𝐺]♦ //

��

[𝑅1𝑓*𝐻]𝐺/𝐻g=𝑔

��
ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut𝐺/𝐻,♦(𝐺;𝐻)

Ψ
44

Φ //ℳ𝑔′ [𝐺/𝐻]𝑟𝑎𝑡cores𝐺
𝐺/𝐻

(♦)

where 𝐻 ▷ 𝐺 is here to recall that we implicitly deal with (𝐻;𝐺)-covers. In this diagram,
Aut𝐺/𝐻,♦(𝐺;𝐻) denotes a certain subgroup of the automorphisms of 𝐺 preserving 𝐻 ▷𝐺 –
see Appendix A for definition and properties – and Ψ factorizes the upper-left triangle, cf.
Eq. (A.2.1).

This implies the identification of the fibres of Φ to a space of torsors, or more precisely
(see §5 of [Mau16]):

Proposition 4.1.1. In the situation above, let us consider Z/𝑝Z ≃ 𝐻 ▷ 𝐺. Then
[𝑅1𝑓*𝐻]𝐺/𝐻g=𝑔 is representable by an algebraic stack and Ψ induces an isomorphism onto its
image.

This construction allows to identify equivariant spaces of curves to some particular
torsors. In terms of the analytification of these spaces, we are able to construct topological
paths on [𝑅1𝑓*𝐻]𝐺/𝐻g=𝑔 that automatically lift to ℳ𝑔[𝐻 ▷ 𝐺]/Aut𝐺/𝐻(𝐺;𝐻) thanks to the
isomorphism Ψ. We emphasize the importance of the quotient by Aut∙(𝐺;𝐻) in order for
Φ to be a local immersion – see Appendix A.

4.2. Deformation of Branch Locus. Let 𝐸 and 𝐸′ be two 𝐺-curves with respective
rational ramification 𝑅𝐸 and 𝑅𝐸′ , and same ♦𝐼𝐺-Hurwitz data ♦. In particular, 𝐸 and
𝐸′ have same 𝐺-quotient 𝐷. Suppose that 𝐸 and 𝐸′ have also isomorphic 𝐻-quotient
𝐶 = Φ𝑟𝑎𝑡

♦ (𝐸) = Φ𝑟𝑎𝑡
♦ (𝐸′) in ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡cores𝐺

𝑃 (♦). Assuming that ♦ has a 𝑃 -étale point, our goal
is to deform 𝐸 into an 𝐺-equivariant curve with quotient 𝐷, same Hurwitz data ♦ and
with an 𝐻-branch locus equal to that of 𝐸′.

4.2.1. We denote by 𝐽𝐻 the indices of res𝐺𝐻(♦). Writing 𝑅𝐸 = (𝑒𝑖)𝑖∈𝐼 and 𝑅𝐸′ = (𝑒′
𝑖)𝑖∈𝐼 ,

we consider
𝑍 = 𝐸 ∖ ∪𝑖∈𝐽𝐻

{𝑒𝑖} and 𝑍 ′ = 𝐸′ ∖ ∪𝑖∈𝐽𝐻
{𝑒′
𝑖}

with 𝑋 = 𝑍/𝐻 and 𝑋 ′ = 𝑍 ′/𝐻, so that 𝑍 (resp. 𝑍 ′) is exactly the étale loci of 𝜋𝐻 : 𝐸 → 𝐶
(resp. 𝜋′

𝐻 : 𝐸′ → 𝐶). In particular, 𝑍 → 𝑋 and 𝑍 ′ → 𝑋 ′ are both 𝐻-torsors.
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𝑍

��

𝑍 ′

��

𝐸, 𝐸′

𝐻

��
𝜋

(′)
𝐺

��

𝑋

��

⊃�̃�⊂𝑋 ′

��

𝐶

𝑃𝜋

��
𝑌 𝐷

Let 𝐼𝑃𝐻 ⊂ 𝐽𝐻 be the 𝑃 -étale indices of the restricted 𝐻-cover,
i.e. 𝐼𝑃𝐻 = {𝑖 ∈ 𝐽𝐻 , 𝐺𝑖 ⊂ 𝐻}. By definition 𝐼𝑃𝐻 is exactly the
set of indices of 𝐽𝐻 for which 𝑒𝑖 ∈ 𝑅𝐸 and 𝑒′

𝑖 ∈ 𝑅𝐸′ are sent to
étale points in 𝐶 → 𝐶/𝑃 . Notice that 𝐼𝑃𝐻 is naturally endowed
with a free 𝑃 -action because if 𝑖 ∈ 𝐼𝑃𝐻 , then 𝐺𝑖 = 𝐻 as 𝐻 is of
prime order.

Let 𝑅𝑃𝐸 = {𝜋𝐻(𝑒𝑖)}𝑖∈𝐼𝑃
𝐻

and 𝑅𝑃𝐸′ = {𝜋′
𝐻(𝑒′

𝑖)}𝑖∈𝐼𝑃
𝐻

, which are
the ramification points of 𝐶 → 𝐶/𝑃 , since 𝜋𝐻(𝑒𝑖) = 𝜋′

𝐻(𝑒′
𝑖) for

𝑖 ∈ 𝐼 ∖ 𝐼𝑃𝐻 . In the deformation process, the points of 𝑅𝑃𝐸 and
𝑅𝑃𝐸′ are thus the only ones that have to be moved, and we assume 𝐼𝑃𝐻 ≠ ∅ accordingly.
This deformation of 𝑅𝑃𝐸 to 𝑅𝑃𝐸′ is achieved using torsors and their compactification.

Finally, the schemes 𝑋 and 𝑋 ′ can actually be embedded into 𝐶 in a 𝑃 -equivariant way
since 𝐸/𝐻 = 𝐸′/𝐻 = 𝐶. We then consider �̃� = 𝑋 ∩𝑋 ′, which inherits a 𝑃 -action, and
identifies 𝑍 and 𝑍 ′ are elements of the mixed cohomology group H1

𝑃 (�̃�,𝐻) by Theorem
3.1.2.

4.2.2. We now prove the existence of a deformation of 𝐸 whose difference with 𝐸′ is
actually in H1(𝑌, 𝜋𝑃* 𝐻), i.e. whose image in H0(𝑌,R1𝜋𝑃* 𝐻) is zero according to exact
sequence 3.2.2. This result is obtained by deforming the branch locus in 𝐶 and relies on
the existence of compactification of torsors in family as in [Mau16].

Proposition 4.2.1. Let 𝐸 and 𝐸′ be two 𝐺-curves, with 𝐻▷𝐺, and under the assumptions
above, in particular with a 𝑃 -étale point. Then there exists an algebraic deformation �̂� of
𝐸 such that the difference of the 𝐻-torsors induced by 𝐸′ and �̂� belongs to in H1(�̃�, 𝜋𝑃* 𝐻).

In other words, the difference of 𝐸′ and �̂� is global. We denote by ℰ/𝒮 this algebraic
deformation, whose construction occupies the rest of this section and is done in two steps:
first with respect to the Hurwitz data, and then to the class of 𝐺.

We can suppose that there exists a �̂� ∈ 𝑅𝑃𝐸 ∖ 𝑅𝑃𝐸′ . Otherwise, 𝑅𝑃𝐸 = 𝑅𝑃𝐸′ implies that
𝑋 = 𝑋 ′, and the equality of the Hurwitz data implies that the difference is already in
H1(�̃�, 𝜋𝑃* 𝐻) thanks to the exact sequence (3.2.2). Let us move 𝑡0 = �̂� ∈ 𝑅𝑃𝐸 ⊂ 𝐶 to a point
of 𝑅𝑃𝐸′ by keeping fixed the points that are already in 𝑅𝑃𝐸 ∩𝑅𝑃𝐸′ .

To do so, we first build a family 𝑍 → 𝐶 × �̃�∘ of 𝐻-torsors that:
i) is 𝑃 -invariant;
ii) is branched over each 𝑒𝑖 ×𝐷∘ with ramification data (𝐺𝑖, 𝜒𝑖), for 𝑖 ∈ 𝐼𝐻 ∖ (𝐺.̂𝚤);
iii) is branched over 𝑃.𝜋𝐻(𝑒�̂�) over one fibre and over 𝑃.𝜋′

𝐻(𝑒′
�̂�) over another;

iv) is branched over a constant divisor denoted ∞̂.
For this, let us fix a point ∞ ∈ 𝐷 distinct from all the 𝜋𝐺(𝑒𝑖) and 𝜋′

𝐺(𝑒′
𝑖), and let us

define

�̂� = 𝐷 ×𝐷∘, where we set 𝐷∘ = 𝐷 ∖
(︂{︀
𝜋𝐺(𝑒𝑖), 𝑖 ∈ 𝐼𝐻 ∖𝐺.̂𝚤

}︀
∪ {∞}

)︂
,

which is naturally a family of curves over 𝐷∘. We then consider the relative Cartier divisor
�̂� defined through the diagonal 𝐷∘ → 𝐷 × 𝐷∘, which by definition does not meet the
pulback ∞̂ of ∞ along �̂� → 𝐷∘.

15/26



B. Collas & S. Maugeais

�̂�𝐻

((
��

�𝑌𝐻

''��

𝐶

��
�̂� ∖ (�̂� ∪ ∞̂) �

� // 𝐷 ×𝐷∘ = �̂�

��
𝐷∘

Fig. 1. Deformation of (𝐻; 𝐺)-torsor

It follows from Kummer theory – see [CM15] §4.1 – that, up to a an étale base change
�̃�∘ → 𝐷∘, there exists a family of 𝐻-torsors 𝑌𝐻 over (�̂� ∖ (�̂� ∪ ∞̂)) ×𝐷∘ �̃�∘ that has
Hurwitz data equal to (𝐺�̂�, 𝜒�̂�) over 𝐵 and equal to (𝐺�̂�, 𝜒−1

�̂� ) over ∞ ×𝐷∘. Up to another
base change, let us fix some liftings 𝑓�̂� (resp. 𝑓 ′

�̂�) of 𝜋𝐺(𝑒�̂�) (resp. of 𝜋′
𝐺(𝑒′

�̂�)) in �̃�∘. By
pulling back along 𝐶 = 𝐶 × �̃�∘ → 𝐷 × �̃�∘, we get an equivariant family �̂�𝐻 of 𝐻-torsors
which are 𝑃 -equivariant, and that are ramified along the pullbacks �̂�𝑋 and ∞̂𝑋 of �̂� and
∞̂.

Notice that the fibre (�̂�𝑋)𝑓�̂�
is naturally identified to

∑︀
𝑖∈𝐺.̂𝚤 𝑒𝑖, and that (�̂�𝑋)𝑓�̂�

is
identified to

∑︀
𝑖∈𝐺.̂𝚤 𝑒

′
𝑖; the branch points are thus the right ones, and so are the ramification

data by construction. The map �̂�𝐻 → �̂� is however 𝑃 × 𝐻-equivariant only, i.e. with
respect to the trivial extension of 𝑃 by 𝐻 only, and one must still recover the proper class
of 𝐺. We refer to Figure 1 for a summary of the construction at this stage.

The next step is thus to go from 𝐻 × 𝑃 to 𝐺. For this, we define a family 𝑍 over �̂� of
𝐻-torsors, where

(4.2.1) 𝑍 =
(︁
𝑍 − (�̂�𝐻)𝑓�̂�

)︁
× �̃�∘ + �̂�𝐻 and �̂� = 𝐶 ∖

(︁
�̂�𝑋 ∪ ∞̂𝑋 ∪

(︁
∪𝑖∈𝐼𝐻

𝑒𝑖 × �̃�∘
)︁)︁
.

This family is obtained by base change and addition of 𝐻-torsors over �̂�, and it satisfies
the previous conditions (1) − (4). By Theorem 3.1.2, this 𝑃 -invariant 𝐻-torsor defines an
element 𝐻1

𝑃 (�̃�𝑒𝑡, 𝐻), and thus inherits an action of a group �̂� which is an extension of 𝑃
by 𝐻. Since the restriction of this torsor over 𝑓�̂� equal to 𝑍, we obtains �̂� = 𝐺.

The 𝒮-family ℰ of deformation is finally obtained as a 𝐺-equivariant compactification of
𝐺-torsor. Since the Hurwitz data are constant, so is the genus of the compactification of
the fibres of 𝑍 → �̃�∘. Up to an alteration 𝒮 → �̃�∘, the existence of such a 𝐺-equivariant
compactification ℰ → 𝒮 of 𝑍 ×�̃�∘ 𝒵 follows from [Mau16] Theorem 4.7.

Regarding the Hurwitz datas, there exists moreover liftings 𝑓�̂� and 𝑓 ′
�̂� of 𝑓�̂�, resp. 𝑓 ′

�̂� , in
𝒮, such that ℰ𝑓�̂�

= 𝐸. The Hurwtiz data of ℰ𝑓 ′
�̂�

over 𝜋𝐻(𝑒�̂�) and of 𝐸′ at 𝜋′
𝐻(𝑒′

�̂�) are thus
equal, while the Hurwitz datas at the other poins of 𝑅𝑃𝐸 are not changed. Repeating this
process over all the points over which the Hurwitz data of 𝐸 and 𝐸′ differ, one builds a
similar 𝒮-deformation ℰ of 𝐸 into a curve �̃�.
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The difference between the 𝐻-torsors induced by �̃� and 𝐸′ is thus global in H1(�̃�, 𝜋𝑃* 𝐻)
and this concludes the proof of Proposition 4.2.1.

4.3. Deformation of the Global Part. In the situation of 𝐺-covers with a 𝑃 -étale point
– see §4.2.1 for the context –, we establish a deformation result of the global part of the
(𝐻;𝐺)-torsors. Joined to the local deformation result of Proposition 4.2.1, this concludes
the proof of Theorem 4.1.

The following is a direct application of §4.2.2, and relies on the analytification of the
spaces.

Proposition 4.3.1. Let 𝐶 be a complete smooth curve, 𝑋 ⊂ 𝐶 be an open subscheme. Let
𝑍 and 𝑍 ′ be two (𝐻;𝐺)-torsors over 𝑋 with same local datas such that 𝑍/𝐻 ∼= 𝑍 ′/𝐻 as
𝑃 -torsors. If there exists 𝑥 ∈ 𝐶 with trivial stabiliser in 𝑃 and over which the completion 𝐸
of 𝑍 and 𝐸′ of 𝑍 ′ are branched, then 𝐸 can be deformed continuously and 𝐺-equivariantly
to 𝐸′ in ℳ𝑔[𝐻 ▷ 𝐺]/Aut𝐺/𝐻(𝐺;𝐻).

Under this assumptions, notice that 𝐸 and 𝐸′ have in particular a 𝑃 -étale point.

Proof. According to the exact sequence (3.2.2), the difference 𝑐 = 𝑍 − 𝑍 ′ ∈ 𝐻1
𝑃 (𝑋,𝐻𝑋)

being global means that 𝑐 ∈ 𝐻1
ét(𝑌, 𝜋𝑃* 𝐻𝑋), and it follows from Proposition 3.2.2 that 𝑐

comes from an element 𝑐 ∈ 𝐻1
ét(𝑌,𝐻𝑋).

Let us denote by 𝜋𝑃 : 𝐶 → 𝐷 the 𝑃 -quotient morphism and let us write 𝑦 = 𝜋𝑃 (𝑥)
that we take as base point of 𝜋𝑡𝑜𝑝1 (𝐷(C)𝑎𝑛, 𝑦). The Betti-étale comparison isomorphism
H1

ét(𝐷,𝐻) ≃ H1(𝐷(C)𝑎𝑛, 𝐻) – see [Mil80], Theorem III.3.12 – being induced by the
morphisms

𝜋𝑡𝑜𝑝1 (𝐷(C)𝑎𝑛, 𝑦)� H1(𝐷(C)𝑎𝑛,Z)� H1
ét(𝐷,𝐻),

the 𝐻-torsor 𝑐 over 𝑌 lifts to a topological loop 𝛾 ∈ 𝜋𝑡𝑜𝑝1 (𝐷(C)𝑎𝑛, 𝑦𝑖).
Using the notations of §4.1, the loop 𝛾 defines a path of torsors in 𝛾′ in [𝑅1𝑓*𝐻]𝐺/𝐻g=𝑔 by

considering a family of 𝐺/𝐻-equivariants 𝐻-torsors that is branched over the (moving)
path 𝛾 ⊂ 𝐶 and over all the other (fixed) branched points coming from 𝐸 → 𝐷 – they are
equal to those of 𝐸′ → 𝐷 as the difference between 𝑍 and 𝑍 ′ is global. Finally, the path
𝛾′ can be lifted into ℳ𝑔[𝐻 ▷ 𝐺]/Aut𝐺/𝐻(𝐺;𝐻) by Proposition 4.1.1 and it links 𝐸 to 𝐸′.

�

The proof of Theorem 4.1 is now straightforward under the assumptions of 𝐻 to be cyclic
of prime order and of ♦ to have a 𝑃 -étale point: for a given 𝐸 ∈ ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut𝑃,♦(𝐺;𝐻),
Proposition 4.2.1 gives an algebraic deformation of the ramification locus in 𝐶 = 𝐸/𝐻
up to a global torsors, which in turn admits a topological deformation by Corollary 4.3.1,
hence Φ𝑟𝑎𝑡

♦ is geometrically irreducible.

Remark 4.3.2. In the case of Hurwitz data without 𝑃 -étale point, the fibres of Φ𝑟𝑎𝑡
♦ are

discrete thus not geometrically irreducible; the fact that 𝐻 does not contain any 𝐺-isotropy
group does not allow the deformation of the global part of the 𝐺-cover. The morphism
Φ̃𝑟𝑎𝑡
♦ : ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ → ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡cores𝐺

𝑃 (♦) is nevertheless still flat by Proposition 2.2.1.
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5. Irreducibility of rational Special Loci
We establish the main result of this paper, which since the normalisation of ℳ𝑔(𝐺)

identifies to ℳ𝑔[𝐺]/Aut(𝐺), is a special loci version of Theorem 4.1 for the rational
special loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ = ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺). To this intent, we introduce the following
terminology:

Definition 5.1. Let 𝐺 be a finite group, 𝐻 ▷ 𝐺 and ♦ be a 𝐺-Hurwitz data.
i) the group 𝐺 is said to be Aut♦-liftable with respect to 𝐻 ▷ 𝐺 and ♦ (resp. aut-

liftable) if the morphism Aut♦(𝐺;𝐻) → Autcores𝐺
𝐺/𝐻

(♦)(𝐺/𝐻) (resp. Aut(𝐺;𝐻) →
Aut(𝐺/𝐻)) is surjective;

ii) the Hurwitz data ♦, is said to be 𝐻-irreducible if the corresponding quotient stack
ℳ𝑔′ [𝐺/𝐻]𝑟𝑎𝑡cores𝐺

𝐺/𝐻
(♦)/Autcores𝐺

𝐺/𝐻
(♦)(𝐺/𝐻) is irreducible.

The main result of this paper is now:

Theorem 5.2. Let 𝐺 be a finite group and ♦ be a 𝐺-Hurwitz data. Assume that 𝐺 is
Aut♦-liftable with respect to some 𝐻 ≃ Z/𝑝Z ▷ 𝐺 such that ♦ has a 𝐺/𝐻-étale point. If ♦
is moreover 𝐻-irreducible, then ℳ𝑔(𝐺)𝑟𝑎𝑡♦ is irreducible.

After some discussion and illustration of the aut-liftability properties, we give the proof
of the main theorem, then provide an application to the irreducibility of various rational
special loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ under a certain Aut♦-solvable heuristic – see §5.3 and Remark .5.3.1.

5.1. Lifting Automorphisms with Hurwitz Data. We review various examples,
counter-example and properties to the liftability of morphisms to automorphisms with or
without Hurwitz data conditions.

5.1.1. Aut-liftablity: a Panorama. A straightforward argument provides two canonical
classes of aut-liftable groups.

Proposition 5.1.1.
i) Finite cyclic groups, and groups of the form (Z/𝑝Z)𝑁 are aut-liftable with respect

to their factors;
ii) Dihedral groups 𝐷2𝑛 = Z/𝑛Z o Z/2Z are aut-liftable with respect to their rotation

groups 𝐻 ≃ Z/𝑛Z.

We provide 2 examples which illustrate the importance of the choice of 𝐻 ▷ 𝐺 for
aut-liftability in the case of abelian and split metacyclic groups.

Example 5.1.2.
i) Let 𝐺 = Z/𝑝Z × Z/𝑝2Z and 𝐻 = ⟨(0, 𝑝)⟩.

Then the automorphism 𝜙 ∈ 𝐴𝑢𝑡(𝑃 ) defined by the matrix
(︂

0 1
1 0

)︂
is not liftable to

𝐺: otherwise, such a lifting 𝐴 = (𝑎𝑖𝑗) leads to 𝑝𝐴(1, 0) = (0, 0) as (1, 0) is of order
𝑝 in 𝐺, while 𝑝𝑎12 = 𝑝 ̸= 0 in Z/𝑝2Z.
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ii) Let 𝐺 = Z/7Z o𝜓 Z/3Z defined by the representation 𝜓 : Z/3Z → 𝐴𝑢𝑡(Z/7Z) ≃
Z/6Z given by 𝜓(1) = 2, and let us consider 𝐻 = Z/7Z.
It then follows from [Cur08] Theo. 1 that a general automorphism 𝜑 ∈ Aut(𝐺;𝐻)
is of the form

𝜑 =
(︂
𝛼 𝛽
0 𝛿

)︂
with

⎧⎪⎪⎨⎪⎪⎩
𝛼 ∈ Aut(Z/7Z), satisfying:
𝛽 : Z/3Z → Z/7Z, 𝛽(𝑘𝑘′) = 𝛽(𝑘)𝛽(𝑘′)𝜙(𝛿(𝑘))

𝛿 ∈ Aut(Z/3Z) 𝛼(ℎ𝜓(𝑘)) = 𝛼(ℎ)𝜓(𝛽(𝑘)𝛿(𝑘)).

where 𝛿 is a given automorphism of 𝑃 = Z/3Z that we want to lift to 𝐺.
Since 𝛽 is by definition trivial, the only remaining condition is

𝛼(ℎ2𝑘) = 𝛼(ℎ)2𝛿(𝑘)

but since 𝛼 is an automorphism, we get that 2𝑘 = 2𝛿(𝑘) for all 𝑘, that is 𝛿 = 𝐼𝑑.

In particular Example 5.1.2 ii) shows even automorphisms that are liftable as homomor-
phism are not always trivially aut-liftable.

Remark 5.1.3. A group cohomology argument for central group extension and the Schur-
Zassenhaus establish the aut-liftablity of non-abelian groups that are product of 2 coprime
factors, one being cyclic. This property will not be used in the rest of the paper.

5.1.2. Aut-liftability vs Aut♦-liftablity. The characterization of the Aut(𝐺)-action on Hur-
witz data given in §2.2.3 and the injectivity of the characters provide a criterion for an
automorphism of 𝐺 to fix a ♦ in terms of the isotropy subgroup. This is used in the
following proposition to provide a 𝐴𝑢𝑡♦-liftable criterion in terms of 𝑅 = ⟨𝐺𝑖⟩𝐼 < 𝐺.

Proposition 5.1.4. Let 𝐺, 𝐻 ▷𝐺, 𝑃 = 𝐺/𝐻, ♦ = {𝐺𝑖, 𝜒𝑖}𝐼 and 𝑅 < 𝐺 be as above, and
assume that 𝜙 ∈ Autcores𝐺

𝑃 (♦)(𝑃 ) lifts to 𝜙 ∈ Aut(𝐺;𝐻). Then 𝜙 fixes ♦ if and only if
𝜙|𝑅 = 𝑖𝑑. In particular,

i) if the image of 𝑅 generates 𝑃 , then 𝜙 lifts trivially to 𝜙 = 𝐼𝑑 ∈ Aut♦(𝐺).
ii) if 𝐺 is abelian, then 𝜙 lifts canonically to a 𝜙 ∈ Aut♦(𝐺).

Proof. The proof is straightforward by noting that the injectivity of the 𝜒𝑖 forces 𝜙|𝐺𝑖
= 𝐼𝑑,

then by writing 𝐺 = 𝐻 ⊕ �̃�⊕ �̃� with 𝑅 = 𝐻 ⊕ �̃�. �

To control the a priori non-trivial action of Aut(𝐺;𝐻) on the 𝐺-Hurwitz data is one of
the motivation for working under the Aut♦-solvable Heuristic of §5.3, see also below.

5.2. Proof of the Rational Irreducibility. Under our Aut♦-liftability and𝐻-irreducibility
assumptions, the main theorem follows from the relative irreduciblity result of Theorem 4.1.
Because 𝐺 is by assumption Aut♦-liftable with respect to 𝐻 and ♦, one first obtains a
Cartesian diagram:

(5.2.1)

ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut𝑃,♦(𝐺;𝐻)
Φ𝑟𝑎𝑡
♦ //

��

ℳ𝑔′ [𝑃 ]cores𝐺
𝑃 (♦)

��
ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺;𝐻) //ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡cores𝐺

𝑃 (♦)/Aut(𝑃 )
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where one has identifies
(︁
ℳ𝑔′ [𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut𝑃,♦(𝐺;𝐻)

)︁
/Aut♦(𝐺;𝐻) with the quotient in

the left bottom corner.
By 𝐻-irreducibility hypothesis the right bottom corner is connected, and as Φ𝑟𝑎𝑡

♦ is
geometrically irreducible by Theorem 4.1 with a surjective left arrow in (5.2.1), the bottom
morphism is geometrically irreducible by base change property as in [Gro65] Proposition
4.5.6 (ii). It thus follows from ibid. Proposition 4.5.13, that ℳ𝑔′ [𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺;𝐻) is
geometrically connected, hence irreducible since normal.

Moreover, since the morphism

ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺;𝐻) → ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺)

is surjective, the stack ℳ𝑔(𝐺)𝑟𝑎𝑡♦ = ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺) is geometrically irreducible by
[Gro65] Proposition 4.5.4, which concludes the proof.

5.3. An Aut♦-solvable Heuristic. For 𝐺 a general finite group and ♦ a general 𝐺-
Hurwitz data, the previous section motivates to work under the following assumption – see
also §6.3.

Aut♦-solvable Heuristic. The group G admits an Aut♦-solvable series with respect to a
Hurwitz data ♦, i.e. a series 𝐺 = 𝐺0 ◁ 𝐺1 ◁ · · · ◁ 𝐺𝑚 = {1} such that for every 𝑘 ∈ J1,𝑚K:
(i) 𝐻𝑘 = 𝐺𝑘−1/𝐺𝑘 ≃ Z/𝑝Z, and (ii) each 𝐺/𝐺𝑘 is Aut♦-liftable with respect to 𝐻𝑘 ▷ 𝐺/𝐺𝑘
– i.e. Aut♦(𝐺/𝐺𝑘;𝐻𝑘) → Autcores𝐺

𝐺/𝐻𝑘
(♦)(𝐺/𝐺𝑘−1) is surjective for every 𝑘 ∈ J1,𝑚K.

We call such a tower {𝐺𝑘}16𝑘6𝑚 an Aut♦-resolution of 𝐺 with respect to ♦. Note that
(i) implies that this series is in particular of maximal length.

Under the Aut♦-solvable Heuristic, let us write ♦𝑘 = cores𝐺/𝐺𝑚−𝑘+1
𝐺/𝐺𝑚−𝑘

(♦) and assume
moreover the following two properties to be satisfied:

(𝐻𝑒𝑡) that ♦ induces a sequence {(♦𝑘, 𝐻𝑘)}16𝑘6𝑚 so that each ♦𝑘 has a 𝐺/𝐺𝑘−1-étale
point

(𝐻𝑞𝑢𝑜𝑡) that the last step ♦𝑚−1 is 𝐻𝑚−1-irreducible.

Examples of the latter includes when ℳ(𝐺/𝐺1) is a cyclic special loci, i.e. 𝐺/𝐺1 ≃ ⟨𝛾⟩ as
in [CM15]. In this situation, an iterative application of Theorem 5.2, see also Fig. 1, leads
to:

Under the Aut♦-solvable heuristic for 𝐺 with respect to a 𝐺-Hurwitz data ♦, if
♦ satisfies the properties (𝐻𝑒𝑡) and (𝐻𝑞𝑢𝑜𝑡), then the rational loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ is
irreducible.

On the whole, the (𝐻𝑒𝑡) conditions for general 𝐺-Hurwitz data, and the (𝐻𝑞𝑢𝑜𝑡) irre-
ducibility condition are both highly impracticable to check for general groups, and thus
require some case-by-case and explicit check – see types 𝐸𝐴, 𝐶 and 𝐷𝑟𝑜𝑡 of §6 for some
examples.
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Fig. 1. Irreducibility of ℳ(𝐺) := ℳ𝑔(𝐺)𝑟𝑎𝑡
♦ under the Aut♦-solvable heuristic and the (𝐻𝑒𝑡)-(𝐻𝑞𝑢𝑜𝑡)

hypothesis for 𝐺 and ♦.

𝐺 𝐺/𝐺𝑚−1 𝐺/𝐺𝑚−2 ... 𝐺/𝐺2 𝐺/𝐺1

𝐺1 𝐺1/𝐺𝑚−1 𝐺1/𝐺𝑚−2 · · ·
... · · · 𝐻𝑚−1 = 𝐺1/𝐺2 {1}

... · · · · · ·
... · · · · · ·

... · · · · · ·
... · · · {1}

𝐺𝑚−2 𝐻2 = 𝐺𝑚−2/𝐺𝑚−1 {1}

𝐻1 = 𝐺𝑚−1 {1}

{1}

ℳ(𝐻1 ▷ 𝐺) ℳ(𝐻2 ▷ 𝐺/𝐺𝑚−1) ℳ(𝐻3 ▷ 𝐺/𝐺𝑚−2) . . . ℳ(𝐻𝑚−1 ▷ 𝐺/𝐺2) ℳ(𝐺/𝐺1)

6 6 6

6

6 6

6 6 6 6

6

6 6 6

6 6

6

It further appears that the two questions of the irreducibility of the rational special
loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ = ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺) and of the irreducibility of the normal special locus̃︁ℳ𝑔(𝐺)♦̄ ≃ ℳ𝑔[𝐺]♦̄/Aut♦(𝐺) are of two complementary arithmetico-geometric nature: for
the former, dihedral groups provide some canonical examples of Aut♦-liftability, while
Example 5.1.2 i) shows a non-canonical obstruction for abelian group; for the latter,
Aut♦-liftable abelian groups automatically provide some irreducible special loci ℳ𝑔(𝐺)♦̄,
while dihedral group show some general descent obstruction from ℳ𝑔(𝐺)𝑟𝑎𝑡♦ to ̃︁ℳ𝑔(𝐺)♦̄: a
dihedral loci is either irreducible or has rational descent from ℳ𝑔(𝐷2𝑝)𝑟𝑎𝑡♦ to ℳ𝑔(𝐷2𝑝)♦̄ –
see §6 and Remark 6.2.1.

Remark 5.3.1. This approach, under the same hypothesis, implies the irreducibility of
each quotient loci ℳ(𝐺/𝐺𝑘) for 1 6 𝑘 6 𝑚 − 1. In the case where every 𝐺/𝐺𝑚−𝑘 is
also a split extension of 𝐻𝑘+1 by 𝐺/𝐺𝑚−𝑘−1, one obtains up to isomorphism a lattice of
irreducible subloci ℳ(𝐺/𝐺𝑚−𝑘−1) < ℳ(𝐺/𝐺𝑚−𝑘).

6. Cyclic, Elementary Abelian, Dihedral and Irreducible Special Loci
We provide some elementary blocks of irreducible loci for elementary abelian, cyclic, and

dihedral groups that support the Aut♦-solvable heuristic. We further illustrate the dual
geometric and arithmetic nature of the irreducibility of ℳ𝑔(𝐺)𝑟𝑎𝑡♦ and ℳ𝑔(𝐺)♦̄ in terms
of explicit obstruction.

6.1. An Irreducible Elementary Abelian Special Loci. Let us consider𝐺 = (Z/𝑝Z)𝑁 ,
and let ♦ be any non-empty 𝐺-Hurwitz data. The special loci ℳ𝑔(𝐺)♦̄ is then irreducible.

Indeed, up to a change of factor, one can assume that 𝐻 ≃ Z/𝑝Z is the first factor of 𝐺
and that one has 𝑃 -étale ramification. Since 𝐻 is factor of an abelian group 𝐺, the latter
is aut-liftable with respect to 𝐻 ≃ Z/𝑝Z by Proposition 5.1.1 i), while Proposition 5.1.4 ii)
gives the Aut♦-liftability of ♦ with respect to 𝐻.

On the other hand, since ♦ is 𝐻-irreducible for 𝑁 = 2 – since the quotient is a cyclic
special loci that is irreducible by [CM15] Theorem 4.3 – one obtains by induction on 𝑁
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that the Aut♦-solvable heuristic is satisfied, and thus ℳ𝑔(𝐺)𝑟𝑎𝑡♦ = ℳ𝑔[𝐺]𝑟𝑎𝑡♦ /Aut♦(𝐺) is
irreducible.

By Proposition 2.1.5, the Hurwitz data ♦ is moreover normal, and it follows Proposition
2.1.6 that the normal locus ̃︁ℳ𝑔(𝐺)♦ ≃ ℳ𝑔[𝐺]♦̄/Aut♦(𝐺) is well defined; the special locus
ℳ𝑔(𝐺)♦̄ is thus in turns irreducible.

Accordingly, we define:

Type 𝐸𝐴. For 𝐺 = (Z/𝑝Z)𝑁 , 𝐻 ≃ Z/𝑝Z ▷ 𝐺 first factor, and a Hurwitz data ♦
that has non-trivial ramification, an elementary abelian loci ℳ𝑔(Z/𝑝Z ▷ 𝐺)𝑟𝑎𝑡♦ or
ℳ𝑔(Z/𝑝Z ▷ 𝐺)♦̄ is said of type 𝐸𝐴.

We recall that a cyclic special loci ℳ𝑔(Z/𝑛Z)𝑟𝑎𝑡♦ or ℳ𝑔(Z/𝑛Z)♦̄ – said of Type 𝐶 – is
directly irreducible by [CM15] and Remark 2.1.7.

6.2. Dihedral Special Loci, Irreducibility and Obstruction. We illustrate how di-
hedral Hurwitz data provide some examples (1) of descent obstruction from ℳ𝑔(𝐷2𝑝)𝑟𝑎𝑡♦
to ℳ𝑔(𝐷2𝑛)♦ and (2) of irreducible rational special loci ℳ𝑔(𝐷2𝑝)𝑟𝑎𝑡♦ .

6.2.1. Let 𝐷2𝑝 = Z/𝑝Z o Z/2Z with 𝑝 > 5 with presentation ⟨𝑥, 𝑦|𝑥𝑝 = 𝑦2 = (𝑥𝑦)2 = 1⟩,
let ♦ be a 𝐺-Hurwitz data, and let {𝐺𝑖}𝐼 denote the 𝐺-isotropy groups of ♦. We refer
to Proposition 2.1.5: If one 𝐺𝑖 = ⟨𝑥⟩ is a rotation, then ♦ is not normal since 𝐺𝑖 has
(𝑝 − 1)/2 > 1 conjugacy classes of length 2 and the normality condition 𝐺𝑖 E 𝐺 for ♦
of Eq. (2.1.3) is thus never fulfilled. On the other hand, if 𝐺𝑖 = ⟨𝑥𝑦𝑥−1⟩ ≃ Z/2Z is a
reflection for all 𝑖 ∈ 𝐼, then this condition holds by unicity of the conjugacy class. The
normality of ♦ follows from the second condition given by Eq. (2.1.3) on the characters
{𝜒𝑖 : 𝐺𝑖 → 𝜇2}𝐼 , which is trivially satisfied.

6.2.2. Let us study the irreducibility with respect to the hypothesis of Theorem 5.2.
Since 𝐻 ≃ Z/𝑝Z we have (cyclic) 𝐻-irreducibility for any Hurwitz data ♦. The 𝑃 -étale
assumption requires that one of the isotropy group 𝐺𝑖0 ≃ Z/𝑝Z is a rotation, while one
has Aut♦-liftablity with respect to any ♦ because of the triviality of Aut(Z/2Z).

Accordingly, we define:

Type 𝐷𝑟𝑜𝑡. For 𝐺 = 𝐷2𝑝, 𝑝 > 5 prime, and 𝐻 = Z/𝑝Z ▷ 𝐷2𝑝, a dihedral loci
ℳ𝑔(Z/𝑝Z ▷𝐷2𝑝)𝑟𝑎𝑡♦ whose Hurwitz data ♦ contains a rotation is said of type 𝐷𝑟𝑜𝑡.

The rational dihedral loci ℳ𝑔(𝐷2𝑝)𝑟𝑎𝑡♦ is again in particular irreducible by Theorem 5.2.

Remark 6.2.1.
i) The irreducibility assumptions for ℳ𝑔(𝐷2𝑝)𝑟𝑎𝑡♦ impose a non-normal Hurwitz data

which blocks the descent to a potentially irreducible ℳ𝑔(𝐷2𝑝)♦̄;
ii) When ♦ has only rotation type isotropy groups, the type 𝐷𝑟𝑜𝑡 is an example of one

of the two cases among three for which the geometric invariant 𝜀 of [CLP15] is finer
than the Nielsen-numerical one (the other being the case of étale dihedral covers),
see below Th. 5.1 ibid, case 2.
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6.3. En Guise de Conclusion. The 3 previous types provide some elementary block loci
for building irreducible loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ and ℳ𝑔(𝐺), that should motivates further explicit
studies of Hurwitz data for specific groups.

With the terminology of §5.3, let 𝐺 be a finite group and ♦ be a 𝐺-Hurwitz data such
that G admits a series 𝐺 = 𝐺0 ◁𝐺1 ◁ · · ·◁𝐺𝑚 = {1} with induced sequence {♦𝑘, 𝐻𝑘}16𝑘6𝑚,
𝐻𝑘 = 𝐺𝑘−1/𝐺𝑘. If for 1 6 𝑘 6 𝑚, the respective loci:

i) ℳ𝑔(𝐻𝑘 ▷ 𝐺/𝐺𝑚−𝑘−1)𝑟𝑎𝑡 are either of type 𝐸𝐴, of type 𝐶, or of type 𝐷𝑟𝑜𝑡,
ii) ℳ𝑔(𝐻𝑘 ▷ 𝐺/𝐺𝑚−𝑘−1) are of type 𝐸𝐴 or of type 𝐶,

then the rational loci ℳ𝑔(𝐺)𝑟𝑎𝑡♦ is irreducible, resp. the the special loci ℳ𝑔(𝐺)♦̄ is ir-
reducible. Indeed, in each case 𝐺 satisfies the Aut♦-solvable Heurisitic with the (𝐻𝑒𝑡)
and the (𝐻𝑞𝑢𝑜𝑡) properties; in ii) the assumptions ensure descent from ℳ𝑔(𝐺)𝑟𝑎𝑡♦ to the
normalisation ̃︁ℳ𝑔(𝐺)♦.

⋆ ⋆ ⋆

23/26



B. Collas & S. Maugeais

A. Erratum to “Quelques calculs d’espaces 𝑅1𝑓*𝐺 sur des courbes” –
by S. Maugeais

Let 𝑓 : 𝒳 → 𝒮 be a morphism of algebraic stacks and 𝐺 be a smooth group scheme
over 𝑆 and 𝐻 ▷ 𝐺. In [Mau16], we define a certain stack [𝑅1𝑓*𝒢] over 𝒮 which gives a
local classification of 𝐺-torsors – denoted [𝑅1𝑓*𝐺] in the case of the complement of a
relative Cartier divisor in a smooth curve 𝑓 : 𝒰 → 𝒮 – and whose 𝐺/𝐻-equivariant version
[𝑅1𝑓*𝐻]𝐺/𝐻 we show is related to a certain moduli stack ℳ𝑔[𝐻 ▷ 𝐺] – see §4.4 Ibid. It
has to be noted that since the action of 𝐺 is fixed, the group 𝐻 is not a subgroup of
the automorphism groups of elements of ℳ𝑔[𝐻 ▷ 𝐺], and thus one can not consider the
2-quotient ℳ𝑔[𝐻 ▷ 𝐺]//𝐻 as it is done in loc. cit.

Instead of this 2-quotient by 𝐻, let us present how the geometric interpretation of
[𝑅1𝑓*𝐻]𝐺/𝐻 is given by forgetting the action of 𝐻 while keeping that of 𝐺/𝐻 on the
quotient curves.

A.1. Let Aut(𝐺;𝐻) denote the subgroup of elements of Aut(𝐺) sending 𝐻 onto itself.

Definition A.1.1. Let 𝐺 be a finite group and 𝐻 ▷ 𝐺. We denote by Aut𝐺/𝐻(𝐺;𝐻) the
kernel of the morphism Aut(𝐺;𝐻) → Aut(𝐺/𝐻).

This group comes with a natural morphism
(A.1.1) Aut𝐺/𝐻(𝐺;𝐻) → Aut(𝐻)
induced by restriction to 𝐻 (when viewed as elements of Aut(𝐺;𝐻)), which is not injective
in general. This groups takes place in an exact sequence
(A.1.2) 0 → Aut𝐺/𝐻(𝐺;𝐻) → Aut(𝐺;𝐻) → Aut(𝐺/𝐻)
whose last morphism is not surjective.

Note that in general, the description of the automorphism group Aut𝐺/𝐻(𝐺;𝐻) is far
from being straightforward: see [Wel71].

Considering the Hurwitz stack with rational ramification ℳ𝑔[𝐺]𝑟𝑎𝑡 of §2.1.2 and the
quotient morphism of §2.2.2, one establishes in a similar way to Proposition 2.2.1:

Proposition A.1.2. The morphism
Φ: ℳ𝑔[𝐻 ▷ 𝐺]𝑟𝑎𝑡/Aut𝐺/𝐻(𝐺;𝐻) → ℳ𝑔′ [𝑃 ]𝑟𝑎𝑡

is flat, hence universally open.

A.2. The ℳ𝑔[𝐻 ▷𝐺] stack being endowed with an action of Aut(𝐺;𝐻), one obtains more
precisely a factorization of the natural morphism Ψ as below:

(A.2.1) ℳ𝑔,𝑔′ [𝐻 ▷ 𝐺] Ψ //

**

[𝑅1𝑓*𝐻]𝐺/𝐻

ℳ𝑔,𝑔′ [𝐻 ▷ 𝐺]/Aut𝐺/𝐻(𝐺;𝐻)

OO

which comes with the corresponding corrections p. 388 and in Proposition 5.2 Ibid. given
by replacing the 2-quotient by 𝐻 by the quotient by Aut𝐺/𝐻(𝐺;𝐻).
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The only point that needs verification is actually the point 𝑖) of Lemme 4.8 Ibid., because
all the others are still valid. This can be rephrased as follows: let 𝜄1 and 𝜄2 be two actions
of 𝐺 on a curve 𝐶/Spec 𝑘 inducing the same 𝐻-torsor in a 𝐺/𝐻-equivariant way. The
actions 𝜄1 and 𝜄2 are then equal up to an automorphism of 𝐺 sending 𝐻 to 𝐻 and inducing
the identity on 𝐺/𝐻.
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