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MAXIMAL ANTIPODAL SETS IN IRREDUCIBLE COMPACT

SYMMETRIC SPACES

JUN YU

Abstract. We give an explicit classification of maximal antipodal sets in any
irreducible compact symmetric space except for spin groups and half spin groups,
and some quotient symmetric spaces associated to them.
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1. Introduction

A closed Riemannian manifold M is said to be a compact symmetric space if for
any point x ∈M , there is a Riemannian isometry sx :M →M such that: (i) sx = x;
(ii) the tangent map (sx)∗ : Tx(M) → Tx(M) is −1. For any compact symmetric
space M , it is known that there exists a connected compact Lie group G and an
involutive automorphism θ of it such that M = G/Gθ (cf. [8, Thm. 4.6, p. 185]).
We call a nonempty subset X of M an antipodal set if

sx(y) = y (∀x, y ∈ X).

An antipodal set must be a finite set since it is a discrete set and M is compact. We
call an antipodal set a maximal antipodal set if it is not properly contained in any
other antipodal set. In [4], Chen and Nagano introduced and calculated the invariant
2-number #2(M) of a compact symmetric space, which is the maximal cardinality
of antipodal sets in a compact symmetric space M . After this paper, there are
many studies on maximal antipodal sets. Particularly, Tanaka and Tasaki made
the classification of maximal antipodal sets for some kinds of compact symmetric
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2 JUN YU

spaces ([12], [13], [14], [15]): symmetric R-spaces, some compact classical Lie groups,
etc. The readers may consult [2] for an excellent survey on the study of 2-numbers
and maximal antipodal sets. In this paper we deduce the classification of maximal
antipodal sets from the classification of elementary abelian 2-subgroups in compact
Lie groups ([17]).

Let G be a connected compact Lie group, and θ be an involutive automorphism
of it. Put M = G/Gθ. Set Ḡ = G⋊ 〈θ̄〉, where θ̄2 = 1 and Ad(θ̄)|G = θ. Write Cθ̄ =
{gθ̄g−1 : g ∈ G}. The Cartan quadratic morphism (cf. [2]) is a map φ : G/Gθ → G
defined by

φ(gGθ) = gθ(g)−1, ∀g ∈ G.

Let X be a subset of M containing the origin o = eGθ ∈M . Write

φ(X) = {φ(x) : x ∈ X} ⊂ G,

F1(X) = 〈φ(X)〉 ⊂ G

and

F2(X) = 〈φ(X), θ̄〉 ⊂ Ḡ.

Using the Cartan quadratic morphism, we show a correspondence between maximal
antipodal sets in G/Gθ and certain elementary abelian 2-subgroups of Ḡ.

Theorem 1.1. Let X be a subset of M = G/Gθ containing the origin o = eGθ ∈M .
Then X is a maximal antipodal set if and only if F2(X) is a maximal element in the
set of elementary abelian 2-subgroups of Ḡ which are generated by elements in Cθ̄,
and

X = {x ∈M : φ(x) ∈ F2(X) ∩ Cθ̄θ̄
−1}.

We call a compact symmetric space “irreducible” if it is not isogenous to the
product of two positive-dimensional compact symmetric spaces. With an explicit list
of irreducible compact symmetric spaces, we show a precise classification of maximal
antipodal sets in most of them using Theorem 1.1. The only cases which haven’t
been treated are spin groups and half spin groups, and some quotient symmetric
spaces of them.

The content of this paper is organized as follows. In Proposition 2.1, we give a
criterion of antipodal sets using the Cartan quadratic morphism φ : G/Gθ → G.
With it, we show Theorem 1.1. In Subsection 2.2, we study Weyl groups of maximal
antipodal sets. In Section 3, we give a precise list of irreducible compact symmetric
spaces that are not of group form. In Section 4, we present an explicit classification
of maximal antipodal sets in most irreducible compact symmetric spaces. The re-
maining ones which haven’t been treated are listed in Subsection 5.3. In Subsection
5.1, we illustrate how to classify Gθ orbits in the fixed point set of s0, which are
related to polars defined by Chen and Nagano.

Notation and conventions. In this paper a compact Lie group G is said to be “simple”
if its Lie algebra is a non-abelian simple Lie algebra. Let Esc

6 (or E6) denote a
connected and simply-connected compact simple Lie group of type E6; let E

ad
6 denote
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a connected adjoint type compact simple Lie group of type E6. Similarly, we have
the notations Esc

7 , E7, E
ad
7 , E8, F4, G2. The last three are connected compact Lie

groups which are both simply-connected and of adjoint type.

Write

Jm =

(

0 Im
−Im 0

)

, Ip,q =

(

−Ip 0
0 Iq

)

.

In Spin(2n), write c = cn = e1 · · · e2n, where {e1, e2, . . . , e2n} is a standard normal
basis of the Euclidean space based on which Spin(2n) is defined. Involutive auto-
morphisms σi of compact exceptional simple Lie algebras are as specified in [7, Table
1].

Write ωm = e
2πi
m , which is a primitive m-th root of unity.

Acknowledgements. A part of this work was done when the author visited MPI Bonn
in the summer of 2016 and a draft was written when the author visited National
University of Singapore in January 2018. The author would like to thank both
institutions for their support and hospitality. I would like to thank the referees
for providing useful references and giving very helpful comments. This research is
partially supported by the NSFC Grant 11971036.

2. Characterization of antipodal sets

2.1. Proof of Theorem 1.1. Let G be a connected compact Lie group and θ be an
involutive automorphism of it. Write H = Gθ. Put M = G/Gθ, which is a compact
symmetric space. Let o = eGθ denote the origin. There is a left G action on G/Gθ

through
Lg(g

′Gθ) = g · g′Gθ = gg′Gθ,

and there is a G-action on itself through

g ∗ g′ = gg′θ(g)−1.

The Cartan quadratic morphism map φ is G-equivariant with regard to these two
actions, i.e.,

φ(g · x) = g ∗ φ(x), ∀g ∈ G, ∀x ∈ G/H.

It is clear that φ is an imbedding. Apparently, the translation by any element in G
of an antipodal set in G/Gθ is still an antipodal set.

Proposition 2.1. Let X be a subset of M containing the origin o = eH ∈ M =
G/H. Then X is an antipodal set if and only if φ(x) ∈ H and φ(x)2 = 1 for any
x ∈ X, and φ(x) commutes with φ(y) for any x, y ∈ X.

Proof. We first show that: X is an antipodal set if and only if φ(g−1
2 g1) ∈ H for any

two points x1 = g1H ∈ G/H and x2 = g2H ∈ G/H . Note that

so(gH) = θ(g)H, ∀g ∈ G.

Since Lg1(o) = g1H = x1, we have sx1
= Lg1soL

−1
g1
. Then,

sx1
(x2) = Lg1soL

−1
g1
(g2H) = Lg1so(g

−1
1 g2H) = Lg1(θ(g

−1
1 g2)H) = g1θ(g

−1
1 g2)H.
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Thus, x2 = sx1
(x2) if and only if g1θ(g

−1
1 g2)H = g2H. This is equivalent to

φ(g−1
2 g1) = g−1

2 g1θ(g
−1
1 g2) ∈ H.

Necessarity. Suppose X is an antipodal set. Write x = gH ∈ X . Taking x1 = x
and x2 = o, we get φ(x) = gθ(g)−1 ∈ H . That is to say, θ(φ(x)) = φ(x). We also
have

θ(φ(x)) = θ(gθ(g)−1) = θ(g)g−1 = φ(x)−1.

Thus, φ(x)2 = 1. Taking x = g1H ∈ X and y = g2H ∈ X , we get φ(g−1
2 g1) ∈ H . By

the argument above this leads to φ(g−1
2 g1)

2 = 1. Equivalently,

(g−1
2 g1θ(g

−1
1 )θ(g2))

2 = 1.

This is equivalent to (φ(x)φ(y)−1)2 = 1. Since φ(x)2 = φ(y)2 = 1, it follows that:
φ(x) commutes with φ(y).

Sufficiency. Suppose φ(x) ∈ H and φ(x)2 = 1 for any x ∈ X , and φ(x) commutes
with φ(y) for any x, y ∈ X . For any two points x, y ∈ M , write x = g1H and
y = g2H . Reverse to the above argument, by the conditions of φ(x)2 = φ(y)2 = 1
and φ(x) commutes with φ(y), one gets φ(g−1

2 g1)
2 = 1. Again by the above argument,

this is equivalent to φ(g−1
2 g1) ∈ H . Then, X is an antipodal set. �

Proof of Theorem 1.1. Assume that X is a maximal antipodal set. By Proposition
2.1, F2(X) is an elementary abelian 2-subgroup of Ḡ generated by elements in Cθ̄.
Write

X ′ = {x ∈M : φ(x) ∈ F2(X) ∩ Cθ̄θ̄
−1}.

Then, X ⊂ X ′ and F2(X
′) ⊂ F2(X). By Proposition 2.1, X ′ is an antipodal set. By

the maximality of X , we get X = X ′. By a similar argument, one shows that F2(X)
is a maximal element in the set of elementary abelian 2-subgroups of Ḡ which are
generated by elements in Cθ̄. The converse is clear. �

Note that each elementary abelian 2-subgroup is contained in a maximal one. In
practice, we first classify maximal elementary abelian 2-subgroups of Ḡ containing
θ̄ up to conjugacy. Take such an F and let X be the set elements x ∈ M such
that φ(x) ∈ F . Then, we remove such X which are not maximal and leave only
the maximal ones. In this way, we get all maximal antipodal sets in G/Gθ up to
conjugacy.

2.2. Weyl group. Define a map ψ : G/H → Ḡ by

ψ(gH) = gθ̄g−1.

Let X be a subset of M = G/H , not necessarily contain the origin. Put ψ(X) =
{ψ(x) : x ∈ X}. By Proposition 2.1, one can show that X is an antipodal set in M
if and only if ψ(X) generates an elementary abelian 2-subgroup of G. Let it be still
denote by F2(X). Set

NG(X) = {g ∈ G : g ·X = X},

ZG(X) = {g ∈ G : g · x = x, ∀x ∈ X}
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andWG(X) = NG(X)/ZG(X). Apparently, the conjugation action of any g ∈ NG(X)
on G stabilizes F2(X), and the inducing action on F2(X) is trivial if and only if
g ∈ ZG(X). Thus, we have an injective homomorphism WG(X) →֒ WG(F2(X)). It
is clear that

WG(X) = {w ∈ WG(F2(X)) : w · ψ(X) = ψ(X)}.

Proposition 2.2. If X is a maximal antipodal set inM , thenWG(X) =WG(F2(X)).

Proof. Write X ′ = {x ∈ M : ψ(x) ∈ F2(X)}. Then, X ′ ⊃ X . Using Proposition 2.1
one can show that X ′ is an antipodal set. By the maximality of X , we get X = X ′.
Sine the conjugation action of each w ∈ WG(F2(X)) on F2(X) preserves conjugacy
classes, it stabilizes Cθ̄ ∩ F2(X) = ψ(X ′) = ψ(X). Hence,

WG(X) = {w ∈ WG(F2(X)) : w · ψ(X) = ψ(X)} = WG(F2(X)).

�

2.3. Irreducible compact symmetric spaces of adjoint type. Now assume that
G is a connected compact simple Lie group of adjoint type. Let u0 be the Lie algebra
of G, which is a compact simple Lie algebra. Then, G ∼= Int(u0). For simplicity
we identify G with Int(u0), and regard θ as an element of Aut(u0) which acts on
G = Int(u0) by conjugation. Divide the discussion into two cases: (i)θ is an inner
automorphism; (ii)θ is an outer automorphism. In the first case, θ ∈ Int(u0) = G
and θ̄θ−1 is a central element of Ḡ. Thus, Ḡ = G× 〈θ̄θ−1〉. Let π : Ḡ→ Int(u0) = G
be the adjoint homomorphism. Then π|G = id and ker π = 〈θ̄θ−1〉. Write

Cθ = {gθg−1 : g ∈ Int(u0)} ⊂ Int(u0).

Let F (X) = p(F2(X)). Then θ ∈ F (X) and F (X) is an elementary abelian 2-
subgroup of Int(u0) generated by elements in Cθ. In the second case, θ ∈ Aut(u0)−
Int(u0). We could identify θ̄ with θ ∈ Aut(u0) and regard Ḡ as a subgroup of Aut(u0).
Let F (X) = F2(X). Then θ ∈ F (X) and F (X) is generated by elements in

Cθ = {gθg−1 : g ∈ Int(u0)} ⊂ Aut(u0).

The following theorem follows from Theorem 1.1 directly.

Theorem 2.3. Let X be a subset of M = Int(u0)/ Int(u0)
θ containing the origin.

Then, X is a maximal antipodal set if and only if F (X) is a maximal element in the
set of elementary abelian 2-subgroups of Aut(u0) generated by elements in Cθ and

X = {gH : gθg−1 ∈ F (X)}.

Remark 2.4. With Theorem 2.3, we can deduce the classification of maximal antipo-
dal sets in Int(u0)/ Int(u0)

θ from the classification of elementary abelian 2-subgroups
of Aut(u0) given in [17]. It is only a routine work, we omit the details here. Note
that conjugacy classes of elements of each elementary abelian 2-subgroup of Aut(u0)
are described well in [17].
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3. A precise list of irreducible compact symmetric spaces

Analogous to Lie groups, we use coverings to define isogeny for symmetric spaces.

Definition 3.1. Two compact symmetric spaces M1,M2 are said to be isogenous if
they admit isomorphic universal coverings.

We define irreducible symmetric spaces as follows.

Definition 3.2. A compact symmetric spaceM is said to be irreducible if there exists
no positive-dimensional compact symmetric spaces M1,M2 such that M is isogenous
to M1 ×M2.

The following theorem is from [8], which is pointed out to the author by an anony-
mous referee.

Theorem 3.3 ([8], p. 145, Theorem 4.6). Let M be a compact symmetric space.
Then there is a compact Lie group G and an involutive automorphism θ of G such
that M ∼= G/Gθ.

One can show that (for example, use Theorem 3.3) any irreducible compact sym-
metric space M is isomorphic to one of the following: (i)S1; (ii)a compact simple
Lie group; (iii)G/Gθ with G a compact simple Lie group and θ an involutive auto-
morphism of it. Compact symmetric spaces in cases (i)-(ii) are said to be of group
form.

Definition 3.4. Let M be a compact symmetric space. We call M semisimple if its
fundamental group π1(M) is finite; we call M simply-connected if π1(M) = 1; we
call M of adjoint type if there is no proper Riemannian covering M → M ′ for M ′

another compact symmetric space.

In this section we give an explicit list of irreducible compact symmetric spaces that
are not of group form by using Theorem 3.3 and calculating symmetric subgroups Gθ

(cf. [7, Table 2, p. 408]). Recall that simply-connected compact symmetric spaces

are classified by Élie Cartan and can be found in the classical textbooks like [6], [9],
[16]. The description and construction of non-simply connected compact symmetric
spaces are given in some excellent monographs (cf. [1, Thm. 4.5, p. 103], [6, Thm.
9.1, p. 326], [9, Proposition 2.4, p. 68-69], [16, Thm. 8.3.11, p. 244]).

1, Grassmannians. Put c = e1 . . . en ∈ Spin(n) and L2n = 1+e1e2n+1√
2

· · · 1+e2ne4n√
2

∈

Spin(4n). Any irreducible compact symmetric spaceM which is isogenous to a (real,
complex or quaternion) Grassmannian is isomorphic to G/Gθ for some (G, θ) as in
the following list:

(i) adjoint type: G = PSU(p + q), PSO(p + q) or PSp(p + q) (q ≥ p ≥ 1),
θ = Ad(Ip,q).

(ii) G = SU(2p) (p ≥ 1), θ = Ad(Ip,p), and G
θ = S(U(p)× U(p)).

(iii) G = Sp(2p) (p ≥ 1), θ = Ad(Ip,p), and G
θ ∼= Sp(p)× Sp(p).

(iv) G = SO(2p) (p ≥ 4), θ = Ad(Ip,p), and G
θ = S(O(p)×O(p)).
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(v) G = Spin(p+ q) (q ≥ p ≥ 1), θ = Ad(e1 . . . ep), G
θ = Spin(p) · Spin(q)).

(vi) G = Spin(4n)/〈c〉 (n ≥ 2), θ = Ad(e1 . . . e2n), and Gθ = ((Spin(2n) ·
Spin(2n))⋊〈L2n〉)/〈c〉.

2, Types AI and AII. Write Gn,m = SU(n)/〈ωmI〉 for any integer m|n. Put

Jk =

(

0k Ik
−Ik 0k

)

. Let τ be the complex conjugation on SU(n) (and on Gn,m).

When n is even, let τ ′ = τ ◦Ad(Jn/2). Any irreducible compact symmetric space M
which is of type AI or AII in Cartan’s notation is isomorphic to Gn,m/G

τ
n,m (m|n) or

Gn,m/G
τ ′

n,m (m|n and n is even). The isomorphism types of the groups Gτ
n,m, G

τ ′

n,m

are as follows:

(1) If m is odd, then Gτ
n,m

∼= SO(n) and Gτ ′

n,m
∼= Sp(n/2) (in case n is even).

(2) If m and n
m

are both even, then Gτ
n,m

∼= PSO(n) × Z/2Z and Gτ ′

n,m
∼=

PSp(n/2)× Z/2Z.
(3) If m is even and n

m
is odd, then Gτ

n,m
∼= PO(n) and Gτ ′

n,m
∼= PSp(n/2).

3, Types CI and DIII. Any irreducible compact symmetric space which is of type
CI or DIII in Cartan’s notation is isomorphic to G/Gθ for some (G, θ) as in the
following list:

(i) adjoint type: G = PSp(n) (n ≥ 1), θ = Ad(iI).
(ii) G = Sp(n) (n ≥ 1), θ = Ad(iI), and Gθ = U(n).
(iii) adjoint type: G = PSO(2n) (n ≥ 3), θ = Ad(Jn).
(iv) G = SO(2n) (n ≥ 3), θ = Ad(Jn), and G

θ = U(n).

4, Irreducible compact symmetric spaces of exceptional type. We call an
irreducible compact symmetric space M of exceptional type if the neutral subgroup
of its isometry group is a compact exceptional simple Lie group. Any irreducible
compact symmetric space of exceptional type is isomorphic to G/Gθ for some (G, θ)
as in the following list:

(i) adjoint type: when G is a connected compact simple Lie group of adjoint
type, and θ is an involutive automorphism of G.

(ii) G = Esc
6 , θ ∼ σ3 or σ4 as in [7, Table 1], Gσ3 ∼= F4 and Gσ4 ∼= PSp(4).

(iii) G = Esc
7 , θ ∼ σ2 or σ3 as in [7, Table 1], Gσ2 ∼= (Esc

6 ×U(1))/〈(c, 1)〉 (where c
is a nontrivial central element of Esc

6 ) and G
σ3 ∼= SU(8)/〈−I〉.

4. Explicit classification of maximal antipodal sets

In this section we classify maximal antipodal sets in irreducible compact symmetric
spaces.

4.1. Irreducible compact symmetric spaces of group form. Let M = G be
an irreducible compact symmetric space of group form. Then, either G ∼= U(1), or
G is a compact simple Lie group. In this case, the geodesic symmetry sx acts by
sx(y) = xy−1x (∀x, y ∈ G). Let X be a subset of M containing the origin. It is
clear that X is a maximal antipodal set if and only if it is a maximal elementary
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abelian 2-subgroup of G. When G = U(1), then X = {±1}. When G is of adjoint
type, maximal elementary abelian 2-subgroups of G are classified in [5] and [17]. The
other connected compact simple Lie groups fall into the following list:

(i) SU(n)/〈e
2πi
m I〉 (m|n, m 6= n).

(ii) Sp(n) (n ≥ 2).
(iii) Spin(n) (n ≥ 7).
(iv) SO(n) (n ≥ 8, even).
(v) Spin(4m)/〈c〉 (m ≥ 2).
(vi) Esc

6 .
(vii) Esc

7 .

In item (i), let G = SU(n)/〈e
2πi
m I〉. When m is odd, any maximal elementary

abelian 2-subgroup is conjugate to the subgroup consisting of diagonal matrices
with entries ±1; when m is even, the map X 7→ π(X) with π the projection
G → PSU(n) gives a bijection between conjugacy classes of maximal elementary
abelian 2-subgroups in G and that in PSU(n). The latter is classified in [17, Propo-
sition 2.4].

In item (ii) or item (iv), there is a unique conjugacy class of maximal elementary
abelian 2-subgroups, i.e., those conjugate to the subgroup consisting of diagonal
matrices with entries ±1.

In item (vi), due to Z(Esc
6 )

∼= Z/3Z is of odd degree, the map X 7→ π(X) with
π the projection Esc

6 → Ead
6 gives a bijection between conjugacy classes of maximal

elementary abelian 2-subgroups in Esc
6 and that in Ead

6 . There are two conjugacy
classes, corresponding to the subgroups F ′

2,3 and F ′
0,1,0,2 in [17, Pages 272-273].

In item (vii), X ∼ π−1(X ′) with π the projection Esc
7 → Ead

7 , and X ′ = F ′′′
0,3 (rank

6) or F ′′
2 (rank 5) in [17, Page 284].

We do not know yet a complete classification of maximal elementary 2-subgroups
for groups in item (iii) and item (v).

4.2. Grassmannians. In this subsection we classify maximal antipodal sets in an
irreducible compact symmetric space which is isogenous to a Grassmannian. As
stated in Section 3, there are six cases to consider: item (i) is the adjoint type case,
which is treated in Remark 2.4; for item (v) and item (vi), we do not have a full
classification yet. Below we treat items (ii)-(iv).

Example 4.1. Let M = SU(2p)/S(U(p) × U(p)) and let X ⊂ M be a maximal
antipodal set containing the origin o. Write G = SU(2p). Define θ ∈ Aut(G) by

θ(g) = Ip,pgI
−1
p,p , ∀g ∈ G.

Then, M = G/Gθ. Set Ḡ = G⋊ 〈θ̄〉, where θ̄2 = 1 and Ad(θ̄)|G = θ.

When p is odd, we may identity Ḡ with SU±(2p) and identify θ̄ with Ip,p. Then,
F2(X) is diagonalizable. Without loss of generality we assume that F2(X) is con-
tained in the subgroup F of Ḡ = SU±(2p) consisting of diagonal matrices with entries
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±1. Then,

|X| = |F2(X) ∩ Cθ̄| = |F ∩ Cθ̄| =

(

2p

p

)

.

When p is even, we may identify θ with Ip,p. Then, Ḡ = G × 〈θ̄θ−1〉, F2(X) =
F1(X)× 〈θ̄〉 and F2(X) is diagonalizable. Without loss of generality we assume that
F1(X) is contained in the subgroup F of SU(2p) consisting of diagonal matrices with
entries ±1. Then,

|X| = |F2(X) ∩ Cθ̄| = |F ∩ Cθ| =

(

2p

p

)

.

Example 4.2. When M = Sp(2p)/(Sp(p) × Sp(p)), the classification proceeds the
same as in Example 4.1: there is a unique maximal antipodal set X in M up to
conjugacy, and |X| =

(

2p
p

)

.

Example 4.3. Let M = SO(2p)/S(O(p)×O(p)) (p ≥ 3), the classification proceeds
the same as in Example 4.1: there is a unique maximal antipodal set X in M up to
conjugacy, and |X| =

(

2p
p

)

.

4.3. Types AI and AII. As stated in § 3, any irreducible compact symmetric
space M which is of type AI or AII in Cartan’s notation is isomorphic to G/Gθ

where G = Gn,m and θ = τ or τ ′. When m = n, M is of adjoint type and it is
treated in Remark 2.4. According to [17, Propositions 2.12 and 2.16], there are k+1
conjugacy classes of maximal elementary abelian 2-subgroups in PO(n) = Gτ (or
PSp(n/2) = Gτ ′), where k is the 2-power index of n (or n

2
).

When m = 1, we have M ∼= SU(n)/ SO(n) or SU(n)/ Sp(n/2).

Example 4.4. Let M = SU(n)/ SO(n) and let X ⊂ M be a maximal antipodal set
containing the origin o. Write G = SU(n) and θ = τ ∈ Aut(G). Then, M = G/Gθ.
Set Ḡ = G⋊〈θ̄〉, where θ̄2 = 1 and Ad(θ̄)|G = θ. Taking similar study as in Example
4.1, we have F1(X) ⊂ Gθ = SO(n). Then, F1(X) is conjugate to the subgroup of
SO(n) consisting of diagonal matrices with entries ±1 and

|X| = |F2(X) ∩ Cθ̄| = |F1(X)| = 2n−1.

Example 4.5. When M = SU(n)/ Sp(n
2
) (n ≥ 4, even), the classification is along

the same line as in Example 4.4 by replacing τ , SO(n) with τ ′, Sp(n
2
) respectively.

The result is: there is a unique maximal antipodal set X in M up to conjugacy and
|X| = 2

n
2
−1.

In general, when m is odd, the classification is the same as in the case of m = 1.
When n/m is odd, the classification is the same as in the adjoint type case. When m
and n/m are both even, we have Gτ ∼= PSO(n)×Z/2Z and Gτ ′ ∼= PSp(n/2)×Z/2Z.
Using the classification of elementary abelian 2-subgroups of PSO(n) and of PSp(n

2
)

given in [17], one can classify maximal antipodal sets.
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4.4. Types CI and DIII. LetM be a compact symmetric space of type CI or DIII.
Item (i) as listed in § 3 is treated in Remark 2.4. We treat items (ii)-(iii) below.

Example 4.6. Let M = SO(2n)/U(n) and let X ⊂ M be a maximal antipodal set
containing the origin o. Write G = SO(2n) and θ = Ad(Jn) ∈ Aut(G). Then,
M = G/Gθ. Set Ḡ = G ⋊ 〈θ̄〉, where θ̄2 = 1 and Ad(θ̄)|G = θ. Taking similar
study as in Example 4.1, we have F1(X) ⊂ Gθ = U(n). Then, F1(X) is conjugate
to the subgroup of U(n) consisting of diagonal matrices with entries ±1 and with
determinant 1 (this condition is forced by F2(X) is generated by elements in Cθ̄) and

|X| = |F2(X) ∩ Cθ̄| = |F1(X)| = 2n−1.

Example 4.7. Let M = Sp(n)/U(n) and let X ⊂ M be a maximal antipodal set
containing the origin o. The classification is similar to Example 4.6: there is a
unique maximal antipodal set X in M up to conjugacy and |X| = 2n.

4.5. Exceptional type. Let M be an irreducible compact symmetric space of ex-
ceptional type. Item (i) as listed in § 3 is treated in Remark 2.4. We treat items
(ii)-(iii) below.

Example 4.8. Let M = Esc
6 /(E

sc
6 )

θ for θ an outer involution, and let X ⊂ M be
a maximal antipodal set containing the origin o. Write G = Esc

6 . Set Ḡ = G ⋊ 〈θ̄〉,
where θ̄2 = 1 and Ad(θ̄)|G = θ. Let π : Ḡ→ Aut(e6) be the adjoint homomorphism.

When θ ∼ σ3, by [17, Proposition 6.3] one shows that π(F2(X)) is conjugate to
the subgroup F2,0 of F4 = Gθ. Then, |X| = 4.

When θ ∼ σ4 and π(F2(X)) contains no element conjugate to σ3, by [17, Propo-
sition 6.5] one shows that π(F2(X)) is conjugate to the subgroup F0,1,0,2 of Aut(e6).
Then, |X| = 64. When θ ∼ σ4 and π(F2(X)) contains an element conjugate to σ3,
by [17, Proposition 6.3] one shows that π(F2(X)) is conjugate to the subgroup F2,3 of
Aut(e6). Then, |X| = 25 − 22 = 28.

Example 4.9. Let M = Esc
7 /(E

sc
7 )

θ for θ ∼ σ2 or θ ∼ σ3, and let X ⊂ M be a
maximal antipodal set containing the origin o. Write G = Esc

7 . Set Ḡ = G ⋊ 〈θ̄〉,
where θ̄2 = 1 and Ad(θ̄)|G = θ. Let π : Ḡ→ Aut(e7) be the adjoint homomorphism.

When θ ∼ σ2, taking similar study as in Example 4.1 we have

F1(X) ⊂ Gθ ∼= (E6×U(1))/〈(c, e
2πi
3 )〉.

Write c = [(1,−1)] ∈ (E6×U(1))/〈(c, e
2πi
3 )〉. As shown in [17, §7.1], for any element

x ∈ F1(X), xθ̄ ∈ Cθ̄ if and only if x ∼ 1, c, τ2 or cτ2 in (E6×U(1))/〈(c, e
2πi
3 )〉. Then,

F1(X) is of the form F1(X) = J × 〈(1,−1)〉, where J is an elementary abelian 2-
subgroup of E6. By [17, Proposition 6.5] one can show that π(F2(X)) is conjugate
to F ′

0,1,0,2 ⊂ Ead
7 . Counting conjugacy classes of elements in F ′

0,1,0,2 we get |X| =

2× 26−23

2
= 56.

When θ ∼ σ3, taking similar study as in Example 4.1 we have

F1(X) ⊂ Gθ ∼= SU(8)/〈−I〉.
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For any element x ∈ F1(X), xθ̄ ∈ Cθ̄ if and only if x is conjugate to [I], [iI], [I4,4] or
[iI4,4] in SU(8)/〈−I〉. Choose a maximal elementary abelian 2-subgroup F of PSU(8)
containing the image of projection F of F1(X) in it. As in [17, §2], it is associated
with a multiplicative function m : F × F → {±1}. Put r = rank kerm + 1 and
s = 1

2
rank(F/ kerm). Then, r · 2s = 8. Then, (r, s) = (8, 0), (4, 1) or (1, 3). When

(r, s) = (8, 0), we have |X| = 72; when (r, s) = (4, 1), we have |X| = 24 · 3+23 = 56;
when (r, s) = (1, 3), we have |X| = 128.

5. Supplements

5.1. Characterization of polars. Let M be a compact symmetric space. Con-
nected components of the fixed point set of the geodesic symmetry sx at a point
x ∈M are called polars by Chen and Nagano and are classified in [3] and [10]. Now
let M = G/Gθ for G a connected compact simple Lie group and θ an involutive
automorphism of G. We remark here that results in [7] also apply to classify Gθ

orbits in the fixed point set of so. When Gθ is connected, this is equivalent to the
classification of polars. In general, π0(G

θ) = (Z/2Z)r (r = 0, 1, 2) and r = 2 happens
only when M = PSO(8)/PSO(8)[Ad(I4,4)] ([7, Table 2, p. 408]). Thus, a Gθ orbit is
the union of 1,2 or 4 polars. Set Ḡ = G⋊ 〈θ̄〉 where θ̄2 = 1 and Ad(θ̄)|G = θ. Write
Cθ̄ = {gθ̄g−1 : g ∈ G}. The classification is based on the following lemma, which is
easy and we omit the proof.

Lemma 5.1. A point x = gGθ ∈ G/Gθ is in the fixed point set of so if and only if
φ(x) ∈ Gθ and φ(x)2 = 1. The Gθ orbits in the fixed point set of so are in one-to-one
correspondence with G orbits of ordered pairs (θ1, θ2) ∈ Ḡ× Ḡ such that θ1, θ2 ∈ Cθ̄

and θ1θ2 = θ2θ1.

When G is of adjoint type, ordered pairs of commuting involutions in Ḡ are clas-
sified in [7]. When G is not of adjoint type, the classification can be made by
considering the projection π : G → Int(u0) and using the classification in [7]. For
any o 6= x = gGθ ∈ G/Gθ, put θ1 = θ̄ and θ2 = gθ̄g−1. Then,

StabGθ(x) = Gθ ∩ gGθg−1 = ZG(〈θ1, θ2〉).

The group 〈θ1, θ2〉 is a Klein four subgroup of G, the centralizers ZG(〈θ1, θ2〉) are
calculated in [7, Table 6, p. 420] when G is of adjoint type. When G is not of adjoint
type, one can apply the method in [7] to calculate the centralizers ZG(〈θ1, θ2〉) as
well.

5.2. Some corrections to [17]. Here I would like to make several corrections to
[17]. In [17, p. 273, lines 7-9], the correct definition for the groups Fǫ,δ,r,s (ǫ+ δ ≤ 1,
r + s ≤ 2) should be

Fǫ,δ,r,s =

{

〈x0, x1, . . . , xǫ+2δ, x3, . . . , x2+r+2s〉 if (r, s) 6= (2, 0)
〈x0, x1, . . . , xǫ+2δ, x3, x5〉 if (r, s) = (2, 0).
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Accordingly, F ′
ǫ,δ,r,s (ǫ+ δ ≤ 1, r + s ≤ 2) should be defined by

F ′
ǫ,δ,r,s =

{

〈x1, . . . , xǫ+2δ, x3, . . . , x2+r+2s〉 if (r, s) 6= (2, 0)
〈x1, . . . , xǫ+2δ, x3, x5〉 if (r, s) = (2, 0).

I would like to thank Alastair Litterick, Heiko Dietrich, Haian He for pointing out
these two mistakes.

In [17, p. 291, lines -1], it should be C = Γ3. In [17, p. 291, lines -12 - -11], it
should be

F ′′
r,0 = Ar × B,

F ′′
r,1 = Ar × C,

F ′′
r,2 = Ar ×D,

where B,C,D are elementary abelian 2-subgroups with rank equal to 1,2,3 respec-
tively and each has a unique element conjugate to σ1.

These mistakes do not affect the statement of any result in [17].

5.3. Open cases. In summary, the only irreducible compact symmetric spaces for
which we do not have a complete classification of maximal antipodal sets yet are in
the following list:

(i) M = Spin(n) (n ≥ 7).
(ii) M = Spin(4n)/〈c〉 (n ≥ 3).
(iii) M = Spin(p+ q)/ Spin(p) · Spin(q) (p ≥ q ≥ 1 and p+ q ≥ 7).
(iv) M = G/Gθ where G = Spin(4n)/〈c〉 and θ = Ad(e1e2 . . . e2n).

For any k ≥ 1, identify the Z/2Z-vector space Vk = (Z/2Z)k with the set of subsets
of {1, . . . , k} and denote by eI ∈ Vk for an element corresponding to a subset I of
{1, . . . , k}. Define an anti-symmetric form on Vk by (eI , eJ) = |I ∩ J | (mod 2). Let
V ′
k be the subspace of eI ∈ Vk such that ♯I is even. A sub-vector spaceW of V ′

k is said
to be an isotropic subspace if (eI , eJ) = 0 for any eI , eJ ∈ W ; an isotropic subspace
W of V ′

k is called a Lagrangian if it is not properly contained in any other isotropic
subspace. Write Xk for the set of Lagrangians in V ′

k and write X ′
k for the subset of

Xk consisting of Lagrangians W ⊂ V ′
k such that |I| 6= 2 for any eI ∈ W . Then, both

Xk and X ′
k admit actions of the permutation group Sk. Write Xk/Sk, X

′
k/Sk for the

corresponding orbit sets. For any W ∈ Xk (or W ∈ X ′
k), write [W ] ∈ Xk/Sk (or

[W ] ∈ X ′
k/Sk) for the Sk orbit containing W .

The following proposition says something for maximal antipodal sets in Spin(n).

Proposition 5.2. Let n ≥ 1. Then:

(1) the cardinality of each maximal antipodal set in Spin(n) is equal to 2⌊
n+2

2
⌋;

(2) the orbit set of maximal antipodal sets in Spin(n) can be parametrized by the
set Xn/Sn;

(3) there is a decomposition

Xn/Sn
∼=

⊔

0≤r≤⌊n
2
⌋
X ′

n−2r/Sn−2r.
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(4) X ′
k = ∅ if k ∈ {2, 3, 4, 5, 6}.

Sketch of proof. We show a correspondence between maximal antipodal sets in Spin(n)
and Lagrangians in V ′

n. Let F be a maximal antipodal set in Spin(n). Without loss
of generality we assume that 1 ∈ F . Then, F is a maximal elementary abelian
2-subgroup of Spin(n). Thus, Z(Spin(n)) ⊂ F . Consider the natural projection
π : Spin(n) → SO(n). Since any elementary abelian 2-subgroup of SO(n) is conju-
gate to a diagonal one, we assume that π(F ) is contained in the subgroup F ′

0 of diag-
onal matrices in SO(n). Identify F ′

0 with the Z/2Z-vector space V ′
n ⊂ Vn = (Z/2Z)n,

and also the set of subsets I of {1, . . . , n} with ♯I even. Let W ⊂ V ′
n correspond

to π(F ). We have [eI , eJ ] = (−1)I∩J ∈ Spin(n) (the repetition of the notation eI
to mean either an element in VI or an element in Spin(n) is cute, here eI , eJ means
elements in Spin(n)) for any two subsets I, J of {1, . . . , n} with eI , eJ ∈ W . Then,
F is a maximal elementary abelian 2-subgroup if and only if W is a Langrangian.
This shows the assertion (1).

The assertion (2) can be shown in an inductive way using two facts: (a)π(eI) and
π(eJ) are conjugate in SO(n) if and only if I and J and in the same Sn orbit; (b)for
any set of elements eI1, . . . , eIs of F , the centralizer of 〈π(eI1), . . . , π(eIs)〉 in O(n) is
a product of O(nj) (1 ≤ j ≤ t) where

∑

1≤j≤t nj = n.

The assertion (3) is easy to show. The assertion (4) can be shown by a case by
case verification. �

For items (ii)-(iv), I even don’t know cardinalities of maximal antipodal sets except
when n or min{p, q} is small.
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