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Abstract

For a locally Lipschitz continuous function f : X → R the generalized
gradient ∂f(x) of Clarke is used to develop some (set-valued) gradient on a
set A ⊂ X. Existence, uniqueness and some approximation are considered for
optimal descent directions on set A. The results serve as basis for nonsmooth
numerical descent algorithms that can be found in subsequent papers.

1 Introduction

For a smooth function f : X → R the derivative f ′(x) in particular indicates di-
rections of descent near x. This fact serves as basis for typical numerical descent
algorithms. However such algorithms fail in cases where the direction of descent
changes rapidly in a small neighborhood of x. This typically occurs for functions
having large second derivatives and, even worse, for functions that are not differ-
entiable. In such situations it becomes necessary to use more information of f for
the selection of a descent direction. If we consider some f being the pointwise max-
imum of two (non-constant) linear functions, we have to realize that also Clarke’s
set-valued generalized gradient ∂f(x), defined for Lipschitz continuous functions f ,
does not provide enough information for a stable scheme. Therefore the selection of
a robust descent direction is only possible if one uses relevant information of f from
some suitable neighborhood of x.

We consider locally Lipschitz continuous functions f : X → R on a Banach
space X . Using the generalized gradients of Clarke we introduce some (set-valued)
gradient ∂f(A) of f on a set A ⊂ X and, with Clarke’s generalized directional
derivative f 0(y; h), we define some directional derivative f 0(A; h) of f on A in di-
rection h. In Section 2 we verify basic properties for these new quantities where
some are quite similar to that in Clarke’s calculus. For sequences of sets Ak → A
converging in the Hausdorff metric, some general upper semicontinuity is shown.
Here the relevance of certain assumptions is illuminated by examples. Moreover we
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show that the ε-generalized gradient δεf(x) of f at x introduced in Goldstein [5] for
X = R

n (that somehow relies on Rademacher’s Theorem for Lipschitz continuous
functions) agrees with ∂f(Bε(x)). Finally we consider regularity in the sense that
0 6∈ ∂f(A) and, in particular, a result from Goldstein [5] is extended to Banach
spaces. In Section 3 we define descent directions and optimal descent directions of
f on A . Then existence and general properties of optimal descent directions are
analyzed. An example demonstrates that there might be no optimal descent direc-
tion in a non-reflexive Banach space. Uniqueness of an optimal descent direction
can be verified for strictly convex Banach spaces. Examples show that the selection
of descent directions and optimal descent directions needs much more care in spaces
that are not strictly convex. Furthermore we provide some stability and approxi-
mation results for optimal descent directions that are very useful for applications in
numerics. The advantage of gradients on sets and corresponding descent directions
for numerical algorithms is demonstrated by a simple but typical example. Applica-
tions of the analytical results to nonsmooth descent algorithms and corresponding
numerical simulations can be found in subsequent papers.

Notation: By X we denote a Banach space, by X∗ its dual, and by 〈·, ·〉 the
corresponding duality pairing. We call X (or X∗) strictly or uniformly convex if the
norm has that property (cf. [2]). For a set M we use M for its closure, convM for
its convex hull, and conv∗M for its weak∗-closed convex hull. Bε(x) stands for the
open ε-neighborhood of point x and Bε(M) for the open ε-neighborhood of set M .
We write ]x, y[ and [x, y] for the open and closed segment (or interval), respectively,
generated by the points x, y. Clarke’s generalized directional derivative is denoted
by f 0(x; h) and its generalized gradient by ∂f(x) ⊂ X∗ (cf. Clarke [3]). Notice that
∂f(A) denotes the gradient defined in (2.1) and does not mean

⋃

x∈A ∂f(x).

2 Gradients on sets

Let X be a Banach space and let f : X → R be a locally Lipschitz continuous
function. We denote the generalized gradient at x by ∂f(x) and the generalized
directional derivative at x in direction y by f 0(x; y) (cf. Clarke [3]). While these
quantities somehow express the behavior of f at the point x, we are interested in
information that expresses the behavior of f on a whole set. Therefore we introduce
some set-valued gradient of f on a set A ⊂ X by using Clarke’s pointwise quantities.
Later sets A = Bε(x) with ε > 0 will be of particular interest.

For A ⊂ X ( 6= ∅) we define the gradient of f on A by

∂f(A) := conv∗
⋃

y∈A

∂f(y) (2.1)

(where conv∗ denotes the weak∗ closure of the convex hull) and the directional deriva-
tive of f at A in direction h ∈ X by

f 0(A; h) := sup
y∈A

f 0(y; h) . (2.2)
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Clearly ∂f(x) = ∂f({x}) and f 0(x; h) = f 0({x}; h). Let us start with some basic
properties.

Proposition 2.3. Let A ⊂ X be nonempty and let f : X → R be Lipschitz contin-
uous of rank L on a neighborhood of A. Then:

(1) ∂f(A) is nonempty, convex, weak∗-compact and bounded by L.

(2) f 0(A; ·) is finite, positively homogeneous, subadditive, and Lipschitz continuous
of rank L. Moreover it is the support function of ∂f(A) with

f 0(A; h) = max
a∈∂f(A)

〈a, h〉 for all h ∈ X . (2.4)

(3) We have

∂f(A) =
{

a ∈ X∗
∣

∣ 〈a, h〉 ≤ f 0(A; h) for all h ∈ X
}

. (2.5)

(4) Let h ∈ X with f 0(A; h) < 0, let x ∈ A, and let t > 0 with ]x, x + th[ ⊂ A.
Then

f(x+ th) ≤ f(x) + tf 0(A; h) < f(x) .

Proof. For (1) we recall that ∂f(y) is nonempty and bounded by L for all y ∈ A
(cf. [3, Prop. 2.1.2]). Thus the stated properties follow easily from the definition of
∂f(A) and the Banach Alaoglu Theorem.

For (2) we first notice that f 0(y; ·) is the support function of ∂f(y) (cf. [3,
Prop. 2.1.2]). Therefore we obtain for the support function of ∂f(A) at h ∈ X

sup
a∈∂f(A)

〈a, h〉 = sup

{

〈a, h〉
∣

∣

∣
a ∈ conv∗

(

⋃

y∈A

∂f(y)

)}

= sup

{

〈a, h〉
∣

∣

∣
a ∈ conv

(

⋃

y∈A

∂f(y)

)}

= sup

{

〈a, h〉
∣

∣

∣
a ∈

(

⋃

y∈A

∂f(y)

)}

= sup
y∈A

sup
a∈∂f(y)

〈a, h〉 = sup
y∈A

f 0(y; h) = f 0(A; h) .

Since ∂f(A) is weak∗-compact, the supremum is attained and (2.4) follows. The
remaining properties are now easy consequences.

For (3) we notice that characterization (2.5) is as general property of support
functions (cf. [3, Prop. 2.1.4]).

For (4) we use Lebourg’s mean value theorem (cf. [3, Prop. 2.3.7]) to get some
z ∈]x, x+ th[ and some a ∈ ∂f(z) ⊂ ∂f(A) such that

f(x+ th)− f(x) = 〈a, th〉
(2.4)
≤ tf 0(A; h) < 0 ,

which directly implies the assertion. ♦

3



Proposition 2.6 (upper semicontinuity). Let f : X → R be locally Lipschitz con-
tinuous, let hk → h in X, and let Ak, A ⊂ X with A compact and Ak → A in the
Hausdorff metric, i.e.

d(Ak, A) := inf
{

δ > 0
∣

∣ A ⊂ Bδ(Ak) and Ak ⊂ Bδ(A)
} k→∞
−−−→ 0 .

Then

lim sup
k→∞

f 0(Ak; hk) ≤ f 0(A; h) (2.7)

{

a ∈ X∗ | ak
∗
⇀a for ak ∈ ∂f(Ak)

}

⊂ ∂f(A) . (2.8)

If A ⊂ Ak for all k ∈ N, then we have equality in (2.8) and

lim
k→∞

f 0(Ak; hk) = f 0(A; h) (2.9)

With A = {x} we directly derive the following statement.

Corollary 2.10. Let x ∈ X and εk → 0 such that x ∈ Ak ⊂ Bεk(x) and let h ∈ X.
Then

lim
k→∞

f 0(Ak; h) = f 0(x; h) and
⋂

k∈N

∂f(Ak) = ∂f(x) .

Proof of Proposition 2.6. By definition and assumption there exist xk ∈ Ak and
zk ∈ A with

f 0(Ak; hk) ≥ f 0(xk; hk) ≥ f 0(Ak; hk)−
1

k
and ‖xk − zk‖ → 0 .

By compactness of A we get, possibly for a subsequence,

f 0(xk; hk) → lim sup
k→∞

f 0(Ak; hk) and zk →: z ∈ A .

Consequently xk → z. Since f 0(·; ·) is upper semicontinuous (cf. [3, Prop. 2.1.1]),

f 0(A; h) ≥ f 0(z; h) ≥ lim
k→∞

f 0(xk; hk) = lim sup
k→∞

f 0(Ak; hk)

and we have (2.7).

Let now ak ∈ ∂f(Ak) with ak
∗
⇀a. Hence

f 0(A; h) ≥ lim sup
k→∞

f 0(Ak; h) ≥ lim
k→∞

〈ak, h〉 = 〈a, h〉 for all h ∈ X .

Thus a ∈ ∂f(A) by (2.5). If A ⊂ Ak, then f 0(A; ·) ≤ f 0(Ak; ·) and ∂f(A) ⊂ ∂f(Ak)
by definition. Hence, equality in (2.8) follows in the case that A ⊂ Ak for all k ∈ N.
Furthermore

f 0(A; h) ≤ lim inf
k→∞

f 0(Ak; hk) ≤ lim sup
k→∞

f 0(Ak; hk)
(2.7)
≤ f 0(A; h)

and (2.9) follows. ♦
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Example 2.11. We present some examples showing the necessity of central assump-
tions in Proposition 2.6.

(1) Let f : R → R be given by f(x) = |x| and let

hk = h = −1 , Ak :=]− 1
k
, 1[ , A :=]0, 1[ .

Obviously d(Ak, A) → 0, but A is not compact. We have ∂f(A) = {1} and

f 0(Ak; hk) ≥ f 0(0; h) = 1 > −1
(2.4)
= f 0(A; h) .

Hence (2.7) is not satisfied.

(2) Let again f : R → R be given by f(x) = |x| and let

hk = h = −1 , Ak := [ 1
k
, 1] , A := [0, 1] .

Here A is compact and d(Ak, A) → 0, but A 6⊂ Ak. We have ∂f(Ak) = {1}
and

f 0(A; h) ≥ f 0(0; h) = 1 > −1
(2.4)
= f 0(Ak; hk) .

Therefore (2.7) is satisfied, but without equality as in (2.9).

(3) For X = ℓ2 (sequences x = (ξi)i∈N in R with ‖x‖2 =
∑

k∈N |ξi|
2 < ∞) we

consider

A := {0} , Ak := B1(0) ∩
{

(ξi) ∈ ℓ2
∣

∣ ξj = 0 for j < k
}

.

Clearly A is compact and A =
⋂

k∈N

Ak. But d(Ak, A) 6→ 0, since there are

xk ∈ Ak with ‖xk‖ = 1. With fixed z ∈ ℓ2 \ {0} and φ ∈ C∞(R,R) satisfying

φ(α) = 1 for α < 1
4
, φ(α) = 0 for α > 3

4
,

we define f : ℓ2 → R by

f(x) := 〈z, x〉 φ(‖x‖) .

Obviously f is locally Lipschitz continuous with

f 0(x;−z) = 0 if ‖x‖ = 1 and f 0(0;−z) = −‖z‖2 6= 0 .

For hk = h = −z we obtain

f 0(Ak; hk) ≥ f 0(xk;−z) = 0 > −‖z‖2 = f 0(0;−z) = f 0(A; h)

and, again, (2.7) is violated.

ForX = R
n and ε ≥ 0 the ε-generalized gradient of f at x ∈ X is given according

to Goldstein [5] by

δεf(x) := conv

∞
⋂

k=1

{

f ′(y)
∣

∣ y ∈ Bε+ 1

k

(x), f ′(y) exists
}

(2.12)

(where f ′(x) denotes the usual derivative).
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Corollary 2.13. Let f : Rn → R be locally Lipschitz continuous. Then

δεf(x) = ∂f(Bε(x)) for all x ∈ R
n, ε ≥ 0 .

Proof. Using the characterization of ∂f(x) in R
n (cf. [3, Theorem 2.5.1]), we get

∂f(Bε(x)) ⊂ δεf(x)
(2.12)
⊂

⋂

k∈N

∂f(Bε+ 1

k

(x))
(2.8)
⊂ ∂f(Bε(x))

(most right inclusion is already an equality by Bε(x) ⊂ Bε+ 1

k

(x) for all k ∈ N). ♦

The following statement somehow generalizes Goldstein [5, Propostion 2.8] from
X = R

n to a general Banach space X .

Proposition 2.14. Let f : X → R be locally Lipschitz continuous and let A ⊂ X
be compact such that 0 /∈ ∂f(x) for all x ∈ A. Then there exists ε > 0 and σ > 0
such that

min
{

‖a‖
∣

∣ a ∈ ∂f(Bε(x))
}

≥ σ for all x ∈ A . (2.15)

Proof. Notice that there is a minimum in (2.15), since the norm ‖·‖ in X∗ is weak∗

lower semicontinuous and ∂f(Bε(x)) is weak∗ compact. If the statement would be
wrong, then there are xk ∈ A with

min
{

‖a‖
∣

∣ a ∈ ∂f(B 1

k

(xk))
}

< 1
k

for all k ∈ N .

By compactness of A we can assume that xk →: x ∈ A. Moreover we find ak ∈
∂f(B 1

k

(xk)) with ak → 0. Since d
(

B 1

k

(xk), {x}
)

→ 0, Proposition 2.6 gives the

contradiction 0 ∈ ∂f(x). ♦

Let us finally show that 0 /∈ ∂f(x) implies some regularity also in a small neigh-
borhood of x.

Proposition 2.16. Let f : X → R be locally Lipschitz continuous and let 0 /∈ ∂f(x)
for some x ∈ X. Then there exist ε > 0 and h ∈ X with ‖h‖ = 1 such that

− ‖a‖ ≤ 〈a, h〉
(2.4)
≤ f 0(A; h) < 0 for all A ⊂ Bε(x), a ∈ ∂f(A) . (2.17)

Proof. By 0 /∈ ∂f(x), property (2.5) with A = {x} provides the existence of some
h ∈ X with ‖h‖ = 1 and f 0(x; h) < 0. Proposition 2.6 implies

lim
k→∞

f 0(B 1

k

(x); h) = f 0(x; h) < 0 .

Hence we get the most right inequality in (2.17) for some ε > 0 sufficiently small.
With (2.4) we obtain for any a ∈ ∂f(A)

− ‖a‖ ≤ 〈a, h〉 ≤ f 0(A; h)

which verifies the assertion. ♦
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3 Optimal descent directions

Motivated by Proposition 2.3 (4) we say that h ∈ X is a descent direction of f on
A if f 0(A; h) < 0 (cf. also Clarke [4, Ex. 10.7]). We call h̃ ∈ X steepest or optimal
descent direction of f on A with respect to ‖ · ‖ if

‖h̃‖ = 1 and f 0(A; h̃) = min
‖h‖≤1

f 0(A; h) < 0 . (3.1)

For reflexive Banach spaces the existence of optimal descent directions follows from
duality theory.

Proposition 3.2 (existence of optimal descent directions). Let A ⊂ X be nonempty
and let f : X → R be Lipschitz continuous on a neighborhood of A. Then:

(1) There is some ã ∈ ∂f(A) such that

inf
‖h‖≤1

f 0(A; h) = − min
a∈∂f(A)

‖a‖ = −‖ã‖ . (3.3)

(2) For every pair (ã, h̃) ∈ ∂f(A)× B1(0) with

‖ã‖ = min
a∈∂f(A)

‖a‖ and f 0(A; h̃) = min
‖h‖≤1

f 0(A; h) (3.4)

we have
− ‖ã‖ = 〈ã, h̃〉 = f 0(A; h̃) . (3.5)

(3) If X is reflexive, then there exists a pair (ã, h̃) ∈ ∂f(A) × B1(0) satisfying
(3.4).

Before providing the proof we still formulate a simple consequence.

Corollary 3.6. Let A ⊂ X be nonempty and let f : X → R be Lipschitz continuous
on a neighborhood of A. Then

inf
‖h‖≤1

f 0(A; h) < 0 ⇐⇒ 0 /∈ ∂f(A) . (3.7)

Moreover, if 0 /∈ ∂f(A) and (ã, h̃) ∈ ∂f(A) × B1(0) satisfies (3.4), then h̃ is an
optimal descent direction of f on A.

Proof of Propostion 3.2. For (1) we readily see that we have a minimizer ã ∈ ∂f(A)
and we use (2.4) to get

inf
‖h‖≤1

f 0(A; h) = inf
‖h‖≤1

max
a∈∂f(A)

〈a, h〉 .

Since ∂f(A) is weak* compact, we can exchange inf and max by Aubin’s lopsided
minimax theorem (cf. [1, Theorem 6.2.7]) and obtain

inf
‖h‖≤1

f 0(A; h) = max
a∈∂f(A)

inf
‖h‖≤1

〈a, h〉 = max
a∈∂f(A)

−‖a‖ = − min
a∈∂f(A)

‖a‖ . (3.8)
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For (2) let (ã, h̃) ∈ ∂f(A)× B1(0) satisfy (3.4). Then

−‖ã‖
(3.3)
= f 0(A; h̃)

(2.4)
= max

a∈∂f(A)
〈a, h̃〉 ≥ 〈ã, h̃〉 ≥ inf

‖h‖≤1
〈ã, h〉 = −‖ã‖

which readily gives (3.5).
For (3) we first observe that there is a minimizer ã ∈ ∂f(A) satisfying the left

part of (3.4) (cf. also (1)). For the right part we use that f 0(A; ·) is convex and
continuous and, thus, weakly lower semicontinuous. Since X is reflexive, there is a
minimizer h̃ on the bounded set B1(0) by the Weierstraß Theorem. ♦

The following example shows that there might not be an optimal descent direc-
tion in a non-reflexive Banach space X .

Example 3.9. For X = c0 (sequences x = (ξi)i∈N in R with ξi → 0 and ‖x‖ =
maxi∈N |ξi|) the dual is X∗ = ℓ1 (sequences x = (ξi)i∈N in R with ‖x‖ =

∑

k∈N |ξi| <
∞, cf. [6, Satz II.2.3]). Then f =

(

1
2i+1

)

i∈N
∈ X∗ is a Lipschitz continuous function

on c0 with

f(x) = 〈f, x〉 =
∑

i∈N

ξi
2i+1

and ‖f‖ = 1 .

By linearity, ∂f(x) = ∂f(A) = {f} for all x ∈ c0 and all nonempty A ⊂ c0. Hence
ã = f always satisfies (3.4) and we have

inf
‖h‖≤1

f 0(A; h) = inf
‖h‖≤1

〈f, h〉 = −1 for all nonempty A ⊂ c0 .

But there is no h̃ ∈ c0 with ‖h̃‖ ≤ 1 such that f 0(A; h̃) = −1, i.e. there is no
optimal descent direction. We merely find arbitrarily good approximations as e.g.
hk = (ξki )i∈N ∈ c0 with

ξki = −1 for i ≤ k , ξki = 0 for i > k .

Obviously ‖hk‖ = 1 and, using (2.4), we readily get f 0(A; hk) = 〈f, hk〉 → −1.

Theorem 3.10 (uniqueness of optimal descent direction). Let X be reflexive and
let X, X∗ be strictly convex, let A ⊂ X be nonempty, and let f : X → R be Lipschitz
continuous on a neighborhood of A. Then there is a unique ã ∈ ∂f(A) with

‖ã‖ = min
a∈∂f(A)

‖a‖ . (3.11)

Moreover, if 0 /∈ ∂f(A), then there exists a unique optimal descent direction h̃ of f
which is characterized by

〈ã, h̃〉 = −‖ã‖ with ‖h̃‖ = 1 . (3.12)

Proof. By Propostion 3.2 there are ã and h̃ satisfying (3.11), (3.12). Since X∗ is
strictly convex and ∂f(A) convex, ã in (3.11) is unique. Since X is strictly convex,
h̃ in (3.12) is also unique. ♦
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Remark 3.13. Notice that for every reflexive Banach space X there exists an
equivalent norm such that X and X∗ are strictly convex (cf. [2, Theorem III.2.9]).
However, since the optimal descent direction h̃ depends on the norm in general, h̃
might change by a change of norm. In particular, the derivative f ′(x) of a smooth
function f is independent of an equivalent norm, but the optimal descent direction
h̃ on A = {x} might be different for an equivalent norm.

Example 3.14. We consider X := R
2 with the non strictly convex norms ‖x‖1

(1-norm) and ‖x‖∞ (maximum norm). We will demonstrate that the selection of a
descent direction needs more care in a reflexive but not strictly convex space where
(3.12) is not sufficient for the selection.

(1) Let X = (R2, ‖·‖1) and, thus, its dual X
∗ = (R2, ‖·‖∞). We define f : R2 → R

by
f(x1, x2) = x1 + |x2| .

With x = (1, 0) and A = {x} we get

∂f(A) = ∂f(x) = {(1, λ) | λ ∈ [−1, 1]} .

Obviously any ã ∈ ∂f(A) satisfies (3.11) and, with Proposition 3.2,

− 1 = −‖ã‖∞ = − min
a∈∂f(A)

‖a‖∞ = min
‖h‖1≤1

f 0(A; h) .

Taking ã = (1, 1) ∈ ∂f(A) we obtain (3.12) e.g. for h̃ = (0,−1). However f
is strictly increasing in the directions ±h̃ and f 0(A; h̃) = 1. Hence h̃ is not
a descent direction and (3.12) is not sufficient for their selection. Obviously
h̃ = (−1, 0) is an optimal descent direction on A and satisfies (3.12) for every
ã ∈ ∂f(A).

(2) Let X = (R2, ‖·‖∞) and, thus, its dual X∗ = (R2, ‖·‖1). We define f : R2 → R

by

f(x, y) =
1

2
(x+ y + |x− y|) .

For x = (0, 0) and A = {x} we have

∂f(A) = ∂f(x) = {(λ, 1− λ) | λ ∈ [0, 1]} .

Again any ã ∈ ∂f(A) satisfies (3.11) and, with Proposition 3.2,

− 1 = −‖ã‖1 = − min
a∈∂f(A)

‖a‖1 = min
‖h‖∞≤1

f 0(A; h) .

With ã = (1, 0) ∈ ∂f(A) and h̃ = (−1, 1) we have (3.12), but in both directions
±h̃ function f is strictly increasing and f 0(A; h̃) = 1. Hence h̃ is not a descent
direction and also here (3.12) is not sufficient for their selection. We readily
verify that h̃ = −(1, 1) is an optimal descent direction on A and satisfies (3.12)
for every ã ∈ ∂f(A).

As a consequence of Theorem 3.10 we obtain that descent directions are stable.
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Corollary 3.15 (stability of descent directions). Let the assumptions of Theo-
rem 3.10 with 0 /∈ ∂f(A) be satisfied, let ã, h̃ be as there, and let L be the Lipschitz

constant of f on a neighborhood of A. Then every h ∈ X with ‖h − h̃‖ < ‖ã‖
L

is a
descent direction on A.

Proof. Let h ∈ X be as in the statement. By (2.4) there is a ∈ ∂f(A) such that

f 0(A; h) = 〈a, h〉 = 〈a, h− h̃〉+ 〈a, h̃〉
Prop. 2.3

≤ L‖h− h̃‖+ f 0(A; h̃)

< ‖ã‖+ f 0(A; h̃)
(3.5)
= 0 .

Hence h is a descent direction. ♦

The stability of descent directions allows to work with approximations of an
optimal descent direction.

Corollary 3.16 (approximation of an optimal descent direction). Let X be uni-
formly convex (or finite dimensional and strictly convex) and let X∗ be strictly con-
vex. Moreover let A ⊂ X be nonempty, let f : X → R be Lipschitz continuous on a
neighborhood of A with 0 /∈ ∂f(A), and let ã ∈ ∂f(A) be as in Theorem 3.10. Then
for any δ ∈]0, 1[ there is some τ > 0 such that for every a′ ∈ ∂f(A) with

‖a′‖ ≤ min
a∈∂f(A)

‖a‖+ τ
(

= ‖ã‖+ τ
)

the unique h′ ∈ X satisfying

〈a′, h′〉 = −‖a′‖ with ‖h′‖ = 1 (3.17)

is a descent direction on A with
(

max
a∈∂f(A)

〈a, h′〉 =
)

f 0(A; h′) < −δ‖ã‖ .

Recall that uniformly convex Banach spaces are reflexive (cf. [2, Theorem II.2.9])
and, thus, the results of Theorem 3.10 are available in the corollary.
Proof . The usual dual mapping j : X∗ \ {0} →

{

x ∈ X
∣

∣ ‖x‖ = 1
}

is given by

〈a, j(a)〉 = ‖a‖ .

Hence (3.17) just means h′ = −j(a′) and (3.12) gives h̃ = −j(ã) (notice that 0 /∈
∂f(A)). If the assertion would be false, then there are δ > 0 and a′k ∈ ∂f(A) such
that

‖a′k‖ ≤ ‖ã‖+
1

k
and f 0(A;−j(a′k)) ≥ −δ‖ã‖ for all k ∈ N . (3.18)

By (2.4) there are ak ∈ ∂f(A) with f 0(A;−j(a′k)) = 〈ak,−j(a′k)〉. Since X is
reflexive and ∂f(A) weak∗-compact, we have up to a subsequence that

a′k
∗
⇀ : a′ ∈ ∂f(A) and ak

∗
⇀ : a ∈ ∂f(A) .
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With (3.11) we obtain

‖ã‖ ≤ ‖a′‖ ≤ lim inf
k→∞

‖a′k‖ ≤ lim sup
k→∞

‖a′k‖
(3.18)
≤ ‖ã‖ .

Since ã is uniquely determined by (3.11), we get a′ = ã and ‖a′k‖ → ‖ã‖. Uniform
convexity (or finite dimension) of X implies a′k → ã. Reflexivity of X and strict
convexity of X and X∗ imply continuity of j (cf. [2, Prop. II.5.5]) and, thus,

−δ‖ã‖
(3.18)
≤ lim inf

k→∞
f 0(A;−j(a′k)) = lim

k→∞
〈ak,−j(a′k)〉 = 〈a, h̃〉

(2.4)

≤ f 0(A; h̃)
(3.5)
= −‖ã‖ .

But this is a contradiction and the assertion follows. ♦

Let us finally demonstrate with a simple but typical example how the introduced
optimal descent direction can improve numerical descent methods.

Example 3.19. For X = R
2 equipped with the Euclidean norm we consider

f(x1, x2) := |x1|+ α|x2| with 0 < α << 1

Here steepest descent methods starting from (x1, x2) with x2 >> |x1| easily approach
(but usually do not reach) the axis {x1 = 0} after a few steps. Then they highly
oscillate around that axis, since the gradients switch between (±1, α). But with a
nonsmooth strategy we would choose a suitable ball A = Bε(x) at an iteration point
x near {x1 = 0}. If 0 ∈ Bε(x), then 0 ∈ ∂f(Bε(x)) and we either stop the algorithm
or we decrease “step size” ε. If otherwise 0 6∈ Bε(x), then

∂f(Bε(x)) =
{

(λ, α)
∣

∣ λ ∈ [−1, 1]
}

.

Obviously ã = (0, α) has the smallest norm in ∂f(Bε(x)) and the corresponding
optimal descent direction on Bε(x) according to Theorem 3.10 is h̃ = (0,−1). Now
a descent step or a line-search in direction h̃ goes quite directly to the minimizer
(0, 0).
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