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THE GROUP GENERATED BY RIORDAN INVOLUTIONS.
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Abstract. We prove that any element in the group generated by the Riordan involutions

is the product of at most four of them. We also give a description of this subgroup as

a semidirect product of a special subgroup of the commutator subgroup and the Klein

four-group.
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1. Introduction

To set our results in a wider context, we have to say that the group generated by the

involutions in a group G has been studied for different kinds of groups. In many of these

groups has been obtained that any element in the group generated by the involutions in G is

the product of at most four of them. See as a sample [20, 13, 48, 11, 12, 21, 22, 36, 44, 37, 34]

and the references therein. The aim of this paper is to prove the same result for the Riordan

groups R(K) and Rn(K), n ≥ 1. That is,

Theorem 1. Let n ≥ 1 and G = R(K) or Rn(K). Then, any element in the group

generated by the involutions in G is the product of at most four of them.

The Riordan group R(K) is a multiplicative group whose elements are some special

infinite lower triangular matrices with entries in K, a field of characteristic zero. Some of

its subgroups and many of its elements appear in many different context along the time.

For instance in Rota’s and collaborators’ description of Umbral Calculus or equivalently the

study of Sheffer sequences of polynomials [40], see also [3, 19, 15, 47, 30, 31]. Even more,

every generalized Appell polynomial sequence [6] can be obtained by means of a Riordan

matrix. In particular, the matrices associated to many classical polynomial sequences

are Riordan matrices. For example: Chebyshev polynomials, Fibonacci polynomials, Pell

polynomials, Morgan-Voyce polynomials, Fermat polynomials. See [30]. Of course, the

sequence of binomial polynomials gives rise to the oldest and most studied Riordan matrix:

Pascal’s triangle.

The group of invertible infinite lower triangular Toeplitz matrices is a subgroup of the

Riordan group. Also, the family of all invertible Jabotinsky matrices. These matrices can

be considered as matrices associated to composition operators in suitably chosen spaces.
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Riordan matrices correspond to invertible weighted composition operators in an appropriate

space. See [28]. The above observation describes the way a Riordan matrix transforms

power series. The formula representing this transformation is called the Fundamental

Theorem of Riordan Arrays by some authors in the specific literature. The group of the

formal power series of order one with composition and the so-called substitution group of

formal power series are naturally isomorphic to some subgroups of the Riordan group. See

for example [5, 16, 17, 41, 36, 2]. Verde-Star in [46] describes a group of operators in the

multivariate context that now can be interpreted as an extension of the Riordan group in

several variables. See [7, 38] for some recent related results.

The Riordan group was introduced, under this name and in a more restrictive context,

by L. Shapiro and collaborators in [42]. Soon after R. Sprugnoli [45] obtained many com-

binatorial identities using this group. Because of the origin of Riordan arrays, they are

intrinsically related to Combinatorics. There, there are its first and most of its applica-

tions. Currently, the Riordan group is being studied under different angles, including the

algebraic structure, the construction of new matrices from old, polynomials associated, Ri-

ordan pattern quest, among some others. A non-exhaustive list of works related to Riordan

group is the following [4, 8, 9, 14, 18, 25, 26, 33, 35, 39, 43, 47, 49] and references therein.

The first and second authors ran into this group from a fixed point problem to compute

the quotient of series
f

g
, see [28, 29, 24]. This caused the T (f | g) notation for a Riordan

matrix.

In [27] R(K) is described as an inverse limit of a certain inverse sequence of groups

Rn(K) formed by (n + 1)× (n + 1) invertible lower triangular matrices. For K = R or C,

the groups Rn(K) have a natural structure of Lie groups. Using both facts above, in [10]

the authors got and exploited a Frechet-Lie group structure in R(K). Another consequence

of the inverse limit approach is the description of any involutions in every Riordan group

Rn(K) and R(K), see [32]. This is the starting point for this paper.

In Section 2 we recall some basic facts needed about Riordan matrices, specially those

related to involutions in Riordan groups. In Section 3 we observe that the subgroup of

Riordan matrices with ones in the main diagonal plays a significant role in our context. In

fact, we prove that this subgroup is the commutator subgroup and that any of its elements

is a commutator. We illustrate our result with Pascal’s triangle example. Section 4 contains

the main results in this paper. In particular, a detailed proof of Theorem 1, a description of

the group generated by involutions involving the semidirect product of a special subgroup

of the commutator subgroup and a copy of the Klein four-group. Finally, we compute the

minimal number of involutions needed to describe any element in the group generated by

them in Rn, n ≥ 1 and in R.
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To end this introduction, we would like to note that Riordan groups, far from being finite

and/or simple, share with finite non-abelian simple groups the commutator and involution

width. See the recent crucial papers [23] and [34].

2. Previous results.

In this paper N represents the set {0, 1, 2, 3, · · · } ⊂ K. An element D = (di,j)i,j∈N in

the Riordan group R(K) denoted by (d, h) or T (f | g) is an infinite matrix whose entries

are di,j = [xi]d(x)hj(x) for (d, h) notation or di,j = [xi]
xjf(x)

gj+1(x)
for T (f | g) notation, with

d, f, g ∈ K[[x]] invertible for Cauchy product and h ∈ K[[x]] invertible for composition

operation. Moreover, [xk] denotes the k-th coefficient in the series expansion. Note that, by

definition, these matrices are invertible infinite lower triangular. In terms of the parameters

the operations in the group are:

(d, h)(l, m) = (dl(h), m(h)), (d, h)−1 =

(

1

d(h−1)
, h−1

)

where h−1 ◦ h = h ◦ h−1 = x. Or

T (f | g)T (r | s) = T

(

fr

(

x

g

)

∣

∣

∣
gs

(

x

g

))

, T−1(f | g) = T

(

1

f
(

x
A

)

∣

∣

∣
A

)

where x
g
◦ x

A
= x

A
◦ x

g
= x and αβ

(

x
γ

)

means α(x)β
(

x
γ(x)

)

. The series A is the so-called A-

sequence associated to the Riordan matrix T (f | g). The A-sequence allows us to construct

horizontally, i. e. by rows, in the following way

di,j =

i−j
∑

k=0

akdi−1,j−1+k i, j ≥ 1

where A =
∑

n≥0 anx
n. See [39]. Note that the series g =

∑

n≥0 gnx
n allows us to construct

vertically, i.e. by columns, a Riordan matrix in the following way

di,j =

i−j
∑

k=0

gkdi+1−k,j+1 i, j ≥ 0.

See [28, 24]. In the special case that D = T (f | g) is a Riordan involution, then A = g. In

fact, g is always the A-sequence of the inverse of D. See Proposition 7 in [24].

The action induced by D = (d, h) in K[[x]] is given by

(d, h)α = dα(h) for α ∈ K[[x]].

That is, (d, h) is a weighted composition operator in K[[x]]. One can get consistently the

corresponding formula for the T (f | g) notation.
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For every n ∈ N consider the general linear group GL(n + 1,K) formed by all (n +

1) × (n + 1) invertible matrices with coefficients in K. In the sequel, if it cause not

confusion, we denote only by R or Rn to refer to Riordan groups. Since every Ri-

ordan matrix is lower triangular, we can define a natural homomorphism Πn : R →

GL(n+1,K) given by Πn((di,j)i,j∈N) = (di,j)i,j=0,1,··· ,n. Consider the subgroup Rn = Πn(R)

of GL(n + 1,K). We can recover the group R as the inverse limit of the inverse sequence

of groups {(Rn)n∈N, (Pn)n∈N} where Pn : Rn+1 → Rn is such that if D ∈ Rn+1, Pn(D) is

obtained from D by deleting its last row and its last column, i.e. Pn((di,j)i,j=0,1,··· ,n+1) =

(di,j)i,j=0,1,··· ,n. See [27]. Obviously if n = 0 then R0 = K∗ with the usual product in K

being K∗ = K \ {0}.

Later in [32], using the inverse limit approach described above we got

Theorem 2. (Riordan Involution’s Formula) Suppose n ≥ 2. Let D = (di,j) ∈ Rn−1

be an involution and take D̂ = (di,j) ∈ Rn such that Pn−1(D̂) = D.

(a) If n is even, D̂ is an involution if and only if dn,1 is arbitrary and

(1) dn,0 = −
1

2d0,0

n−1
∑

k=1

dn,kdk,0

(b) If n is odd, D̂ is an involution if and only if dn,0 is arbitrary and

(2) dn,1 = −
1

2d1,1

n−1
∑

k=2

dn,kdk,1

Moreover, if a0, · · · , an−2 are the parameters in Theorem 5 in [27] to construct D, then

the needed an−1 to construct D̂ is given by the formula

(3) an−1 =
1

dn−1,n−1

(

dn,1 −

n−2
∑

j=0

ajdn−1,j

)

A consequence of Theorem 2 is the following.

Corollary 3. Let α =
∑

i∈N αix
i be an arbitrary formal power series then

(i) There is an unique nontrivial involution D = (di,j)i,j∈N such that

d0,0 = 1, d2i+1,0 = α2i and d2i+2,1 = α2i+1 for i = 0, 1, · · ·

we denote it by I+
α .

(ii) There is an unique nontrivial involution D = (di,j)i,j∈N such that

d0,0 = −1, d2i+1,0 = α2i and d2i+2,1 = α2i+1 for i = 0, 1, · · ·

we denote it by I−
α .
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Moreover, any nontrivial Riordan involution can be constructed by this way.

The next two propositions were also obtained in [32]. T (f | g) notation seems to be

specially adequate to obtain them.

Proposition 4. If T (f | g) is a Riordan involution then g2 = 0, where g =
∑

n≥0 gnx
n.

Proposition 5. If Ω0 = {T (f | g) ∈ R, | g2 = 0}, then Ω0 is a subgroup of R.

Remark 6. The group Ω0 above can be described as the set of Riordan matrices whose

A-sequences have null quadratic coefficient, because if T (f | g) is an involution and A its

A-sequence then g = A. On the other hand, the condition g2 = 0 turns into

(4) h2
2 = h1h3

in the (d, h) notation, for h =
∑

n≥1 hnx
n.

It is no difficult to prove that Ω0 is not normal in the Riordan group.

3. The commutator subgroup and some relations with involutions.

Let I be the set of all Riordan involutions and denote by < I > the group generated

by I. To describe < I > some observations are relevant. First, note that every Riordan

matrix (d, h) ∈ R can be written as the product of a Riordan matrix with 1’s in the main

diagonal and a diagonal Riordan matrix as follows

(d, h) ∈ R, (d, h) =

(

d

d0
,
h

h1

)

(d0, h1x).

Second, every product of Riordan involutions has in its main diagonal 1’s or -1’s or alter-

natively 1 and -1 starting at 1 or at -1. So, in the case that (d, h) ∈< I > we get that

(d0, h1x) ∈ K where K = {I,−I, I+
0 , I

−
0 }. Moreover, K is a subgroup of the Riordan group

(the Klein four-group), K ≈ Z2 × Z2. Third, from Proposition 20 and Proposition 21 in

[32] we obtain that < I >≤ Ω0. Finally, the matrix
(

d
d0
, h
h1

)

has 1’s in its main diagonal

and if (d, h) ∈< I > then
(

d
d0
, h
h1

)

∈ Ω0.

As a summary,

(i)
(

d
d0
, h
h1

)

has 1’s in its main diagonal.

(ii) If (d, h) ∈< I > then
(

d
d0
, h
h1

)

∈ Ω0 and (d0, h1x) ∈ K.

(iii) < I > E Ω0.

In view of the above observations, Riordan matrices with 1’s in the main diagonal play

an important role. In fact,
5



Theorem 7. The commutator subgroup of R, denoted by [R,R], is formed by all Riordan

matrices with 1’s in the main diagonal. That is,

[R,R] = {(d, h) ∈ R, / d0 = 1, h1 = 1}.

Moreover, every element in [R,R] is a commutator.

Proof. Consider the set

C = {(d, h) ∈ R, / d0 = 1, h1 = 1}.

Obviously, C is a subgroup of R. If D ∈ [R,R] ⇒ ∃ C1, C2, · · · , Ck commutators such

that D = C1C2 · · ·Ck. But all Ci’s are commutators and triangular matrices then Ci ∈ C,

so D ∈ C. Consequently [R,R] ⊆ C.

If D ∈ C then D = (d, h) with d0 = 1 and h1 = 1. Let r ∈ K such that r 6= 0, rn 6=

1, ∀n ≥ 1. Consider the diagonal Riordan matrix Ar = (1, rx). We are going to prove that

there exists at least a Riordan matrix Br = (l, m) depending on r, and of course on D,

such that D = [Ar, Br]. That is,

(d, h) = (1, rx)(l, m)
(

1,
x

r

)

(

1

l(m−1)
, m−1

)

.

Using the product in the Riordan group we get

(d, h) =





l(rx)

l
(

m−1
(

m(rx)
r

)) , m−1

(

m(rx)

r

)





hence

h = m−1

(

m(rx)

r

)

and d =
l(rx)

l
(

m−1
(

m(rx)
r

))

h = m−1

(

m(rx)

r

)

⇔ m(h) =
m(rx)

r
⇔ (1, h)m =

(

1

r
, rx

)

m

Consequently for n ≥ 2

mn =
1

rn−1 − 1

n−1
∑

k=1

[xn]hkmk

with m1 6= 0 arbitrary and [xn]hk represents the coefficient of xn of the k-th of the formal

power series h. Analogously,

d =
l(rx)

l
(

m−1
(

m(rx)
r

)) ⇔ d =
l(rx)

l(h)
⇔

⇔ dl(h) = l(rx) ⇔ (d, h)l = (1, rx)l
6



then l0 6= 0 and

ln =
1

rn − 1

n−1
∑

k=0

dn,klk, for n ≥ 1

Hence D is a commutator and of course D ∈ [R,R]. �

Remark 8. Note that we have actually proved something stronger than the statement

of the theorem because we can use the same matrix Ar for any commutator.

Example 9. In view of the above result, Pascal’s triangle
(

1
1−x

, x
1−x

)

is a commutator

in the Riordan group. For example for r 6= 0, 1 we get
(

1

1− x
,

x

1− x

)

= (1, rx)

(

r − 1

r − 1− x
,

rx− x

r − 1− x

)

(

1,
x

r

)

(

r − 1

r − 1 + x
,

rx− x

r − 1 + x

)

.

Since the abelianization of a group G is the quotient group G/[G,G] it is clear that

Corollary 10. The abelianization of the Riordan group is isomorphic to the subgroup

formed by all diagonal Riordan matrices. Consequently, it is isomorphic to the direct prod-

uct K∗ ×K
∗.

Note also that, in this case:

R ≈ [R,R]⋊R/[R,R]

Remark 11. ForRn (Riordan groups of finite matrices) analogous results hold. [Rn,Rn]

is formed by all (n+1)×(n+1) Riordan matrices with 1’s in the main diagonal. Moreover,

for n ≥ 1 the abelianization of Rn is also isomorphic to K
∗ ×K

∗. Note that the group R0

is (K⋆, ·) and then it is abelian. In the remaining cases we obtain

Rn ≈ [Rn,Rn]⋊Rn/[Rn,Rn]

4. The group generated by Riordan involutions

To prove Theorem 1 we have to use the following partial fact that describes how certain

Riordan matrices can be expressed as product of three Riordan involutions. We are going to

construct the three involutions doing an exhaustive use of the Riordan involution’s Formula

in Theorem 2. Theorem 12 below is the key to obtain the general result.

Theorem 12. Let d =
∑

n≥0 dnx
n and h =

∑

n≥1 hnx
n be two power series such that

d0 = 1 and h1 = −1. Suppose also that the Riordan matrix (d, h) ∈ Ω0, then there are

three Riordan involutions, I+
α = (δ1, ω1), I+

β = (δ2, ω2), I+
γ = (δ3, ω3) such that (d, h) =

(δ1, ω1)(δ2, ω2)(δ3, ω3)
7



Proof. To prove this theorem is equivalent to show that the system of functional equations

(5) d(x) = δ1(x)δ2(ω1(x))δ3(ω2(ω1(x)))

(6) h(x) = ω3(ω2(ω1(x)))

has solutions with I+
α = (δ1, ω1), I

+
β = (δ2, ω2) and I+

γ = (δ3, ω3) Riordan involutions. We

begin by equation (6). Notice that the matrices (1, ω1), (1, ω2), (1, ω3) are also involutions.

Equation (6) is equivalent to

(1, ω1)(1, h) = (1, ω2)(1, ω3) and then to (1, ω1)h = (1, ω2)ω3

Suppose now

(1, ω1) = (ai,j)i,j∈N, (1, ω2) = (bi,j)i,j∈N, (1, ω3) = (ci,j)i,j∈N

The equation in R2 is






1 0 0

0 −1 0

0 a2,1 1













0

−1

h2






=







1 0 0

0 −1 0

0 b2,1 1













0

−1

c2,1







The above equality is equivalent to the linear equation

(7) a2,1 − b2,1 + c2,1 = h2

that has infinite solutions because a2,1, b2,1 and c2,1 can be choosen arbitrarily by (a) in

Theorem 2.

The equation in R3 is










1 0 0 0

0 −1 0 0

0 a2,1 1 0

0 −a22,1 −2a2,1 −1





















0

−1

h2

h3











=











1 0 0 0

0 −1 0 0

0 b2,1 1 0

0 −b22,1 −2b2,1 −1





















0

−1

c2,1

−c22,1











The above equality is equivalent to the system
{

a2,1 − h2 = b2,1 − c2,1
a22,1 − 2h2a2,1 − h3 = (b2,1 − c2,1)

2.

Since (1, h) ∈ Ω0, using (4) the system above reduces to the unique linear equation (7)

which is just the same as in R2. Then it has solutions.

Suppose now that the equation in Rn has solution. In Rn+1 only the following new

equation appears

(8)
n+1
∑

k=1

an+1,khk =
n+1
∑

k=1

bn+1,kck,1

8



If n is odd, (8) becomes

−an+1,1 +

n
∑

k=2

an+1,khk + hn+1 = −bn+1,1 +

n
∑

k=2

bn+1,kck,1 + cn+1,1

that is

(9) an+1,1 − bn+1,1 + cn+1,1 = hn+1 +

n
∑

k=2

(an+1,khk − bn+1,kck,1)

Induction hypothesis allows us to set solutions in Rn. Once we take one of them, all in

the right side of equation (9) is known by the construction of Riordan matrices by rows.

Moreover, by (a) in Theorem 2, an+1,1, bn+1,1, cn+1,1 can be taken arbitrarily to construct

the involutions. So, (9) has infinite solutions. The system obtained adding (9) to the

previous one used to compute solutions in Rn is consistent. Then we have solutions for

n+ 1.

If n is even, the coefficients an+1,1, bn+1,1, cn+1,1 can not be taken arbitrarily to construct

the involutions. From (2) in Theorem 2 they depend, in particular, on an,1, bn,1 and cn,1.

So, to be sure of the existence of solutions in Rn+1, assuming that they exist in Rn, we

have to study the consistency of the system
{

an,1 − bn,1 + cn,1 = hn +
∑n−1

k=2(an,khk − bn,kck,1)
∑n+1

k=1 an+1,khk =
∑n+1

k=1 bn+1,kck,1

where the unknown variables are an,1, bn,1 and cn,1. Using (2) in Theorem 2 we get

an+1,1 =
1

2

n
∑

k=2

an+1,kak,1 =
1

2
(an+1,2a2,1 + an+1,nan,1) +K1

bn+1,1 =
1

2

n
∑

k=2

bn+1,kbk,1 =
1

2
(bn+1,2b2,1 + bn+1,nbn,1) +K2

cn+1,1 =
1

2

n
∑

k=2

cn+1,kck,1 =
1

2
(cn+1,2c2,1 + cn+1,ncn,1) +K3

where

K1 =
1

2

n−1
∑

k=3

an+1,kak,1, K2 =
1

2

n−1
∑

k=3

bn+1,kbk,1, K3 =
1

2

n−1
∑

k=3

cn+1,kck,1.

Note that K1, K2, K3 can be computed once one set a solution in Rn−1 by induction

hypothesis and by the construction by rows of Riordan matrices.

Since n is even we get

an+1,2 =
n−1
∑

k=0

Aω1

k an,1+k = −an,1 +
n−2
∑

k=1

Aω1

k an,1+k + Aω1

n−1

9



where Aωi

k is the k-th coefficient of the A-sequence, Aωi, of the involution (1, ωi) for i =

1, 2, 3. From (3) in Theorem 2 and recalling that an,0 = 0 for n ≥ 1, we obtain that

Aω1

n−1 =
1

an−1,n−1

(

an,1 −

n−2
∑

k=0

Aω1

k an−1,k

)

= −an,1 +

n−2
∑

k=1

Aω1

k an−1,k

hence

an+1,2 = −2an,1 +K4,

where

K4 =
n−2
∑

k=1

Aω1

k (an,1+k + an−1,k).

In a similar way we get

bn+1,2 = −2bn,1 +K5, cn+1,2 = −2cn,1 +K6,

where

K5 =
n−2
∑

k=1

Aω2

k (bn,1+k + bn−1,k), K6 =
n−2
∑

k=1

Aω2

k (cn,1+k + cn−1,k).

Now, we are going to write the equation

n+1
∑

k=1

an+1,khk =

n+1
∑

k=1

bn+1,kck,1

as

−an+1,1 + an+1,2h2 +
n+1
∑

k=3

an+1,khk = −bn+1,1 + bn+1,2c2,1 + bn+1,ncn,1 − cn+1,1 +
n−1
∑

k=3

bn+1,kck,1

it can be written as

an+1,1 − bn+1,1 + bn+1,2c2,1 + bn+1,ncn,1 − cn+1,1 − an+1,2h2 = K7

putting on the left side what depends on unknown variables and on the right side, K7,

what depends on the induction hypothesis and on data, note that

K7 =

n+1
∑

k=3

an+1,khk −

n−1
∑

k=3

bn+1,kck,1.

Moreover, as (1, ωi) i = 1, 2, 3 are involutions and we are considering n even, we get

an+1,n = −na2,1, bn+1,n = −nb2,1, cn+1,n = −nc2,1.

Then, gathering together every equalities above we obtain

1

2
(an+1,2a2,1 + an+1,nan,1)−

1

2
(bn+1,2b2,1 + bn+1,nbn,1) + bn+1,2c2,1 + bn+1,ncn,1−

−
1

2
(cn+1,2c2,1 + cn+1,ncn,1)− an+1,2h2 = K8

10



where K8 = K7 −K1 +K2 +K3, o equivalently
(

1

2
a2,1 − h2

)

an+1,2 +
1

2
an+1,nan,1 +

(

c2,1 −
1

2
b2,1

)

bn+1,2 −
1

2
bn+1,nbn,1+

+

(

bn+1,n −
1

2
cn+1,n

)

cn,1 −
1

2
cn+1,2c2,1 = K8

and
(

1

2
a2,1 − h2

)

(−2an,1 +K4) +
1

2
an+1,nan,1 +

(

c2,1 −
1

2
b2,1

)

(−2bn,1 +K5)−
1

2
bn+1,nbn,1+

(

bn+1,n −
1

2
cn+1,n

)

cn,1 −
1

2
(−2cn,1 +K6)c2,1 = K8

so

(2h2 − a2,1 +
1

2
an+1,n)an,1 + (b2,1 − 2c2,1 −

1

2
bn+1,n)bn,1+

+(c2,1 + bn+1,n −
1

2
cn+1,n)cn,1 = K9

where

K9 = K8 −

(

1

2
a2,1 − h2

)

K4 −

(

c2,1 −
1

2
b2,1

)

K5 +
1

2
c2,1K6.

Finally
(

2h2 −
(n

2
+ 1
)

a2,1

)

an,1 +
((n

2
+ 1
)

b2,1 − 2c2,1

)

bn,1 +
((n

2
+ 1
)

c2,1 − nb2,1

)

cn,1 = K9.

It is important to note that for m = 1 · · · 9, Km depends only on the solution for Rn−1

and on h.

In summary, we have to study the consistency of the linear system
{

an,1 − bn,1 + cn,1 = hn +
∑n−1

k=2(an,khk − bn,kck,1)
(

2h2 −
(

n
2
+ 1
)

a2,1
)

an,1 +
((

n
2
+ 1
)

b2,1 − 2c2,1
)

bn,1 +
((

n
2
+ 1
)

c2,1 − nb2,1
)

cn,1 = K9.

Consider the matrix
(

1 −1

2h2 −
(

n
2
+ 1
)

a2,1
(

n
2
+ 1
)

b2,1 − 2c2,1

)

whose determinant is
(

n
2
− 1
)

(b2,1 − a2,1) by (7). Since we can choose a2,1 6= b2,1 in (7) and

n ≥ 4 the system is consistent and we get solutions for n+ 1.

To complete the proof of the theorem we are going to substitute in (5) the solutions found

before for (6). The involutions (1, ωi) and (δi, ωi) share the A-sequence denoted before by

Aωi. In particular, we have to recall that Aω1

1 = −a2,1, A
ω2

1 = −b2,1 and a2,1 6= b2,1 where

(1, ω1) = (ai,j) and (1, ω2) = (bi,j). Additionally, we will prove also that we can always
11



suppose that δ3 ≡ 1 in (5). Doing this (5) turns into any of the following three equivalent

equations

δ1(x)δ2(ω1(x)) = d(x)

(δ1, ω1)(δ2, ω2)(1) = d(x)

or

(10) (δ1, ω1)d(x) = (δ2, ω2)(1)

Suppose that

(δ1, ω1) = (ui,j)i,j∈N, (δ2, ω2) = (vi,j)i,j∈N, d(x) =
∑

k≥0

dk,0x
k.

So, in R0 equation (10) holds tautologically. In R1 the equation (10) is
(

1 0

u1,0 −1

)(

1

d1,0

)

=

(

1 0

v1,0 −1

)(

1

0

)

and the linear equation

(11) u1,0 − v1,0 = d1,0

has infinite solutions for any d1,0 for the unknowns u1,0 and v1,0 and then we have solutions

in R1. In R2 the equation (10) is






1 0 0

u1,0 −1 0

−1
2
u1,0u2,1 u2,1 1













1

d1,0

d2,0






=







1 0 0

v1,0 −1 0

−1
2
v1,0v2,1 v2,1 1













1

0

0







then we have to solve the system whose first equation is (11) and the second one is

−
1

2
u1,0u2,1 + u2,1d1,0 + d2,0 = −

1

2
v1,0v2,1

or equivalently
(

d1,0 −
1

2
u1,0

)

u2,1 + d2,0 = −
1

2
v1,0v2,1.

Using (11) we get
(

v1,0 −
1

2
u1,0

)

u2,1 −
1

2
v1,0v2,1 = d2,0.

By the construction of Riordan matrices by means of the A-sequence we obtain

u2,1 = a2,1 − u1,0, v2,1 = b2,1 − v1,0,

consequently
(

v1,0 −
1

2
u1,0

)

(a2,1 − u1,0)−
1

2
v1,0(b2,1 − v1,0) = d2,0

12



or
1

2
(u1,0 − v1,0)

2 +

(

v1,0 −
1

2
u1,0

)

a2,1 −
1

2
v1,0b2,1 = d2,0.

Doing some computations we obtain

−a2,1u1,0 + (2a2,1 − b2,1)v1,0 = 2d2,0 − d21,0

So, the linear system to solve is
{

u1,0 − v1,0 = d1,0,

−a2,1u1,0 + (2a2,1 − b2,1)v1,0 = 2d2,0 − d21,0.

Using (7) and (11) we prove that the above system has solutions. Consequently we solve

our problem for R2.

We proceed by induction in a similar way to the previous case. Suppose we have solved

(5) in Rn and we want to solve it in Rn+1. Then we have the linear system with the n

previous equations and the new equation

(12)
n+1
∑

j=0

un+1,jdj,0 = vn+1,0

which is the same as

un+1,0 − vn+1,0 = dn+1,0 −
n
∑

j=1

un+1,jdj,0

or

un+1,0 − vn+1,0 = L1

with L1 = dn+1,0 −
∑n

j=1 un+1,jdj,0. As in the case of the previous symbols Km, Lj groups

together terms depending on induction hypothesis and data.

Since the elements (2k+1, 0) in an involution are arbitrary and the elements (2k, 0) are

given by (1) we have to distinguish two cases. In the case n+ 1 odd, un+1,0 and vn+1,0 are

arbitrary. Then, the linear system with the new equation has solutions. In the case that

n + 1 even, these elements are given by (1). Then we must study the consistency of the

linear system
{

un,0 − vn,0 = dn,0 −
∑n−1

j=1 un,jdj,0,
∑n+1

j=0 un+1,jdj,0 = vn+1,0.

By using formula (1) we get

un+1,0 = −
1

2
(un+1,1u1,0 + un+1,nun,0) + L2

vn+1,0 = −
1

2
(vn+1,1v1,0 + vn+1,nvn,0) + L3

13



where

L2 = −
1

2

n−1
∑

k=2

un+1,kuk,0 and L3 = −
1

2

n−1
∑

k=2

vn+1,kvk,0.

Moreover, by means of the horizontal construction of a Riordan matrix we have

un+1,1 = −un,0 + L4, vn+1,1 = −vn,0 + L5,

where

L4 =

n
∑

k=1

Aω1

k un,k, L5 =

n
∑

k=1

Aω2

k vn,k

Beside, we know that

un+1,n = −u1,0 + na2,1 and vn+1,n = −v1,0 + nb2,1.

By (11) we can write equation (12) as

un+1,0 + un+1,1(u1,0 − v1,0)− vn+1,0 = L6,

where L6 = −
∑n+1

j=2 un+1,jdj,0. Now we replace the expressions above to obtain

−
1

2
(un+1,1u1,0 + un+1,nun,0) + un+1,1(u1,0 − v1,0)−

1

2
(vn+1,1v1,0 + vn+1,nvn,0)) = L6 −L2 +L3

(
1

2
u1,0 − v1,0)un+1,1 −

1

2
un+1,nun,0 −

1

2
(vn+1,1v1,0 + vn+1,nvn,0)) = L6 − L2 + L3

(
1

2
u1,0−v1,0)(−un,0+L4)−

1

2
(−u1,0+na2,1)un,0−

1

2
((−vn,0+L5)v1,0+(−v1,0+nb2,1)vn,0)) = L6−L2+L3

(
1

2
u1,0 − v1,0)(−un,0)−

1

2
(−u1,0 + na2,1)un,0 −

1

2
((−vn,0)v1,0 + (−v1,0 + nb2,1)vn,0)) = L7

where

L7 = L6 − L2 + L3 − (
1

2
u1,0 − v1,0)L4 +

1

2
v1,0L5

reorganizing the variables we get the linear system
{

un,0 − vn,0 = dn,0 −
∑n−1

j=1 un,jdj,0,
(

v1,0 −
n
2
a2,1
)

un,0 +
(

n
2
b2,1 − v1,0

)

vn,0 = L7.

It has solutions because
∣

∣

∣

∣

∣

1 −1

v1,0 −
n
2
a2,1

n
2
b2,1 − v1,0

∣

∣

∣

∣

∣

=
n

2
b2,1 − v1,0 + v1,0 −

n

2
a2,1 =

n

2
(b2,1 − a2,1) 6= 0

that is the needed condition for the equation (6) holds. Then the case n + 1 has also

solutions.

So, we have proved that our result is true in Rn for every n ∈ N. Since the group R is

the inverse limit of the inverse sequence of groups {(Rn)n∈N, (Pn)n∈N} and Pn transforms

solutions in Rn+1 to solutions in Rn, the proof is finished. �
14



Note that, if D ∈< I >, the main diagonal of D is the same as the main diagonal of

one of the diagonal Riordan involutions. In each of the cases, we can multiply D by one

of the diagonal involutions to get a Riordan matrix (d, h) with d0 = 1 and h1 = −1, then

by Theorem 12 we obtain that D is a product of at most four involutions. Then we have

proved Theorem 1 for R and Rn, n ≥ 1.

In fact we can describe, up to isomorphism, the group generated by involutions using

the commutator subgroup and the semidirect product concept in the following way.

Theorem 13.

< I >≈ [R,R]0 ⋊K

where [R,R]0 = Ω0 ∩ [R,R] and K = {I,−I, I+
0 , I

−
0 }.

Proof. Note that < I >⊆ [R,R]0K where [R,R]0K represents the set of Riordan matrices

obtained by multiplying an element in [R,R]0 with an element in K in such order. Now

suppose DK ∈ [R,R]0K with D ∈ [R,R]0 and K ∈ K. Then DI+
0 = I+

α I
+
β I

+
γ by Theorem

12. Consequently D = I+
α I

+
β I

+
γ I

+
0 , hence DK ∈< I >. So, < I >= [R,R]0K. We also

proved in Theorem 12 that, in fact, [R,R]0 = [R,R]∩ < I >. Therefore [R,R]0E < I >.

Finally, [R,R]0 ∩ K = {I}. This implies the result by using [1] page 133. �

Final remark: It is easy to prove that any element in the group generated by involutions

inR1 can be described as the product of two of them. Using Theorem 2 herein and Corollary

7 in [32], the matrix






1 0 0

0 1 0

1 0 1






=







1 0 0

1 −1 0

−1 2 1













1 0 0

1 −1 0

0 0 1













1 0 0

0 −1 0

0 −2 1













1 0 0

0 −1 0

0 0 1







points out that, for n ≥ 2, in Rn and in R there are elements in the group generated by

involutions that can not be described as the product of three or less involutions.
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