
ar
X

iv
:1

80
3.

07
60

4v
1 

 [
m

at
h.

G
T

] 
 2

0 
M

ar
 2

01
8

CONTINUOUS COHOMOLOGY OF TOPOLOGICAL QUANDLES

MOHAMED ELHAMDADI, MASAHICO SAITO, AND EMANUELE ZAPPALA

Abstract. A continuous cohomology theory for topological quandles is introduced,
and compared to the algebraic theories. Extensions of topological quandles are studied
with respect to continuous 2-cocycles, and used to show the differences in second
cohomology groups for specific topological quandles. A method of computing the
cohomology groups of the inverse limit is applied to quandles.
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1. Introduction

Quandles are non-associative algebraic structures whose study was motivated, in part,
by knot theory. Quandles and racks arose in many different areas of mathematics and
appeared in the literature with different names since 1940’s (e.g. [22]). In 1982, Joyce
[14] (used the term quandle) and Matveev [15] (who call them distributive groupoids)
introduced independently the notion of a knot quandle Q(K) associated to each oriented
knot K. The knot quandle is a complete invariant up to reversed mirror. Since then
quandles have been investigated for constructing knot and link invariants (e.g. [3,6,10]).
Quandles have been also studied from different point of views such as the study of
the set-theoretic Yang-Baxter equation [4] and pointed Hopf algebras [1]. Topological
quandles were introduced in [20] and investigated further in [7, 8, 10]. Smooth quandles
and their cohomology have been introduced by Nosaka [18].

Homology theories of racks [12] and quandles [6] have been defined and investigated
algebraically. They have also been used for constructing knot invariants called quandle
cocycle invariants. Continuous cohomology of topological groups have been studied
extensively (see [21] for an overview), and the problem has been posed how quandle
cohomology theories can be extended to topological quandles.

In the present article, a continuous cohomology theory for topological quandles is in-
troduced, and compared to the algebraic theories. Extensions of topological quandles
are studied with respect to continuous 2-cocycles, and used to show differences in second
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cohomology groups for specific topological quandles, and to show non-triviality of con-
tinuous cohomology groups. The formula of computing cohomology groups for inverse
limits have been used in various contexts (see [23] for the case of groups). We investigate
this method in our context of quandles, and apply it to concrete families of quandles to
determine cohomology groups of their inverse limits.

The following is the organization of the paper. Section 2 gives the preliminary back-
ground on quandles. In Section 3, a continuous cohomology is introduced for topological
quandles, and the first cohomology groups of topological Alexander quandles is inves-
tigated. Furthermore extensions of quandles by continuous 2-cocycles is studied in the
topological context. Section 4 discusses the notion of inverse and direct limits of quandles
and their cohomology groups, with examples presented. Further examples of non-trivial
cohomology groups are presented in Appendix A, and the results that continuous iso-
morphism classes differ from algebraic isomorphism classes for topological quandles are
presented in Appendix B, that were obtained by W. Edwin Clark.

2. Preliminary

In this section we review basic definitions and properties of quandles. A rack is a set
X, together with a binary operation ∗ : X ×X −→ X satisfying the following axioms:

(i) for all x, y ∈ X, there exists a unique z ∈ X such that z ∗ x = y;
(ii) for all x, y and z in X: (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Property (ii) is commonly referred to as right self-distributivity. Property (i) states that
the map Rx, defined by right ∗-multiplication by the element x ∈ X, is a bijection of X
onto itself. A quandle is an idempotent rack:

(iii) for all x ∈ X, x ∗ x = x.

A quandle homomorphism between two quandles X,Y is a map f : X → Y such that
f(x ∗X y) = f(x) ∗Y f(y), where ∗X and ∗Y denote the quandle operations of X and
Y , respectively. The subgroup of Sym(X) generated by the permutations Rx, x ∈ X,
is called the inner automorphism group of X, and is denoted by Inn(X). A quandle is
indecomposable (we use this term instead of connected to avoid confusion with topological
meaning) if Inn(X) acts transitively on X.

A topological space X with a continuous binary operation (x, y) 7→ x ∗ y satisfying
right self-distributivity and such that Rx is a homeomorphism for all x ∈ X is called a
topological rack. If moreover, the operation ∗ is idempotent then X is called a topological
quandle. Any rack (X, ∗) can be regarded as a topological rack if X is endowed with the
discrete topology.

Example 2.1. Typical examples of quandles arise as topological quandles when considered
with topological structures as follows.

Any topological group G becomes a topological quandle with operation ∗ given by
conjugation: x ∗ y = y−1xy. This quandle is denoted Conj(G), the conjugation quandle
associated to G.

For a topological group G and a continuous automorphism f : G → G, x ∗ y =
f(xy−1)y for x, y ∈ G defines a topological quandle structure on G. This is called a
generalized Alexander quandle and is denoted by (G, f). If G is abelian it is called an
Alexander quandle.

In particular, for any T ∈ GL(n,R), Rn can be given a topological quandle structure
by defining x ∗ y = Tx+(I −T )y, for all x, y ∈ R

n, where I denotes the identity matrix.

Example 2.2. Consider the n-dimensional sphere S
n ⊂ R

n+1. The operation x ∗ y =
2(x · y)y − x, for all x, y ∈ S

n endows the sphere with a topological quandle structure,
where x · y denotes the standard inner product in R

n+1. Also, this operation induces
a topological quandle structure on the real projective space RP

n giving a topological



CONTINUOUS COHOMOLOGY OF TOPOLOGICAL QUANDLES 3

quandle homomorphism Sn → RP
n. Knot colorings by these quandles have been studied

in [20].
Similarly for a topological abelian group G, a topological quandle structure on G is

defined by the rule x ∗ y = 2y − x. These are a generalization of what is commonly
referred to as Takasaki quandles [22].

For more informations about quandles, discrete and topological, the interested reader
can consult [6, 10,11,14,15,20].

3. Continuous Cohomology of Topological Quandles

In this section we define a continuous cohomology theory for topological quandles. A
similar theory for smooth quandles was also defined and studied by Nosaka [18] indepen-
dently. Rack and quandle homology theories have been defined and studied in several
different contexts and have been generalized ([1,3,6], for example). In this section we fol-
low [3] and in Section 3.3 we discuss a generalization of the quandle cohomology defined
in [1] for topological quandles.

Let X be a topological quandle. Let A be a topological abelian group, T : A → A
be a continuous automorphism, and A is also considered with the generalized Alexander
quandle structure (A,T ). Consider the following abelian groups:

Γn(X,A) = {f : Xn → A | f is continuous, f(x1, · · · , xn) = 0 if xi = xi+1 for some i },

where Xn is given the product topology induced by X and the sum in Γn is induced by
pointwise addition in A. Define the following maps Γn(X,A) −→ Γn+1(X,A), n ∈ N:

δi0f(x1, . . . , xn+1) = f(x1, . . . , x̂i, . . . , xn+1);

δi1f(x1, . . . , xn+1) = f(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn+1).

We define the chain complex:

· · · → Γn(X,A)
δ
−→ Γn+1(X,A)→ · · ·

by setting:

δn =

n+1
∑

i=1

(−1)i[Tδi0 − δ
i
1].

We define the nth continuous cohomology group of X with coefficients in A by

Hn
TC(X,A) =

ker(δn)

im(δn−1)
,

assuming that the map δ0 is defined to be the canonical inclusion of the trivial group
into Γ1(X,A), i.e. H1

TC(X,A) = Γ1(X,A).
When T = 1, the groups Hn

TC(X,A) are called (untwisted) continuous quandle coho-
mology groups and will be denoted Hn

C(X,A). Furthermore, in Section 3.3, a general-
ization of the twisted cohomology theory using quandle modules defined in [1] is defined
and denoted by Hn

GC.
Any topological quandle can be viewed as a discrete quandle, by forgetting the topo-

logical structure; it is clear that the chain complex above is a subcomplex of the usual
(discrete) chain complex associated to X. The original and twisted quandle cohomology
groups were denoted by HQ and HT. Our notation is summarized as follows.

HQ : Original (untwisted) HT : Original twisted
HC : Continuous (untwisted) HTC : Continuous twisted
HGC : Continuous generalized (quandle module)
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Example 3.1. Let X be a topological quandle and (A,T ) be a topological Alexander
quandle. Then a continuous map η : X → A is a continuous 1-cocycle if it satisfies
T [η(y)− η(x)]− [η(y)− η(x ∗ y)] = 0, that is, η is a continuous quandle homomorphism,
η(x ∗ y) = Tη(x) + (1 − T )η(y). If, in particular, T = 1 and A is considered as a
topological abelian group with trivial quandle structure, then the 1-cocycle condition is
η(x ∗ y) = η(x).

A continuous map φ : X2 → A is a 2-cocycle if and only if it satisfies the condition:

Tφ(x1, x2) + φ(x1 ∗ x2, x3) = Tφ(x1, x3) + (1− T )φ(x2, x3) + φ(x1 ∗ x3, x2 ∗ x3)

and φ(x, x) = 0. These considerations appear in [3] except the requirement of continuity.

3.1. Continuous First Cohomology. Let X be a topological quandle and (A,T ) be
a topological Alexander quandle. As mentioned in Example 3.1, it follows from the
definition that H1

TC(X,A) is the group of continuous quandle homomorphisms η : X →
A.

As a special case of T = 1, where A is regarded as a topological abelian group with
the trivial quandle structure, we have the following.

Proposition 3.2. Let X and A be as above. If X is indecomposable, then the first
cohomology group H1

C(X,A) is isomorphic to A.

Proof. The proof is similar to the original case, and our purpose here to include the
proof is to observe that the continuity does not play a role in the argument below as the
1-cocycle condition implies functions being constant.

Let x, x′ ∈ X be arbitrary elements of X and let f : X → A be a 1-cocycle. By
indecomposability of X there exist y1, . . . , yn ∈ X such that (· · · (x∗ǫ1 y1)∗

ǫ2 · · · ∗ǫn yn) =
x′, such that ǫi = ±1, where ∗

−1 is defined by x ∗−1 y = z if z ∗ y = x. Recall that in
this case the 1-cocycle condition is f(x∗y) = f(x), which also implies f(x∗−1 y) = f(x).
Therefore

f(x′) = f(· · · (x ∗ǫ1 y1) ∗
ǫ2 · · · ∗ǫn yn) = f(· · · (x ∗ǫ1 y1) ∗

ǫ2 · · · ∗ǫn−1 yn−1)

where the second equality follows from the 1-cocycle condition for f . Inductively it
follows that f is a constant map. On the other hand, any constant map satisfies the
cocycle condition and is continuous, hence it is in H1

C(X,A) = Z1
C(X,A). Hence there is

a bijective correspondence between H1
C(X,A) and A that respects the group structures

as the group operation of cocycles is pointwise, and the lemma follows. �

Proposition 3.3. Let X = (Rn, S) and A = (Rm, T ) be indecomposable Alexander quan-
dles, where S, T are continuous additive automorphisms. Then H1

TC(X,A) is isomorphic
to

{ F + a : Rn → R
m | a ∈ A, F is linear, FS = TF }.

Proof. Since X and A are indecomposable, we have I − S and I − T invertible. Let
G ∈ H1

TC(X,A). Then G is a continuous quandle homomorphism G : X → A. Then
for all a ∈ A, G + a ∈ H1

TC(X,A). For any G ∈ H1
TC(X,A), there is a ∈ A such that

(G + a)(0) = 0. By Lemma B.2, F = G + a is linear, and FS = TF . Hence the result
follows. �

Proposition 3.4. Let X = (Rn, T ) be an indecomposable Alexander quandle. Then
H1

TC(X,X) 6∼= H1
T(X,X).

Proof. By Proposition B.5, there are quandle isomorphisms that are not continuous.
Hence we have that H1

TC(X,X) is a proper subgroup of H1
T(X,X). �
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3.2. Continuous Second Cohomology and Extensions. We define the concept of
extension of a quandle, in the topological context, following [3, 5], see also [10].

Assume we are given a quandle X and an Alexander quandle (A,T ). For a 2-cocycle
ψ ∈ Z2

T (X,A) (so that ψ(x, x) = 0 for all x ∈ X), a quandle structure is defined on
X ×A by

(x, a) ∗ (y, b) = (x ∗ y, a ∗ b+ ψ(x, y))

for all x, y ∈ X and a, b ∈ A, as in [5]. The resulting quandle is denoted by X ×ψ A
and called an extension of X by A. The projection π : X ×ψ A → X is a quandle
homomorphism.

For a topological quandle X and a topological Alexander quandle (A,T ), we observe
the following. Assume ψ ∈ Z2

TC(X,A), a continuous 2-cocycle. Then X ×ψ A has the
product topology and the quandle operation on X×ψA is continuous, therefore X×ψA
is a topological quandle. Furthermore, the projection π : X ×ψ A → X is continuous,
hence π is a topological quandle morphism. Although we call X ×ψ A the extension of
a topological quandle, we require continuity as described above. For topological spaces,
it appears desirable to consider fiber bundles instead of product spaces. However, for
the purpose of investigating differences of cohomology groups between continuous and
algebraic, and for non-triviality of continuous cohomology groups, in this article we focus
on the product cases. See also Section 3.4 that is related to this issue.

We define morphisms in the class of extensions of X by the abelian group A and,
consequently, define an equivalence relation corresponding to the isomorphism classes.
The class of extensions of X by A can be viewed therefore as a category. Consider
two topological extensions X ×ψ A and X ×φ A where ψ and φ are two 2-cocycles. A
morphism X ×ψ A → X ×φ A of extensions of X by A is a morphism of topological
quandles f : X ×ψ A→ X ×φ A making the following diagram commute:

X ×ψ A X ×φ A

X X

f

In particular, if f is an isomorphism of topological quandles with the property of making
the above diagram commute, it will be called an isomorphism of topological extensions.
Two extensions are equivalent if there is an isomorphism f as above. We now prove
the following result, analogous to the classification of the second cohomology group for
group cohomology and the corresponding result for discrete quandles, as in [3, 5].

Proposition 3.5. There is a bijective correspondence between equivalence classes of
topological abelian extensions of X by A and the second cohomology group H2

TC(X,A)
of X with coefficients in A.

Proof. Although computations below are similar to those in [3], we examine topological
aspects of the argument. Assume X ×ψ A and X ×φ A are two topological extension of
X with ψ and φ cohomologus 2-cocycles (i.e. they differ by a coboundary). Consider
the map f : X × A → X × A, (x, a) 7→ (x, a + g(x)), where g : X → A is such that
δg = ψ − φ. Since g ∈ Z1

TC(X,A), g is continuous, and so is f . We have

f((x, a) ∗ (y, b)) = f(x ∗ y, a ∗ b+ φ(x, y)) = (x ∗ y, a ∗ b+ φ(x, y) + g(x ∗ y)).

On the other hand we have

f(x, a) ∗ f(y, b) = (x, a+ g(x)) ∗ (y, b+ g(y)) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + ψ(x, y)).

These two terms are equal since φ = ψ + δg, hence f is an isomorphism of quandles.
Since it is also a homeomorphism and clearly makes the required diagram commute, we
get that X ×ψ A and X ×φ A are equivalent.



6 MOHAMED ELHAMDADI, MASAHICO SAITO, AND EMANUELE ZAPPALA

Conversely, assume X ×ψ A and X ×φ A are equivalent. Say f : X × A → X × A
is an isomorphism of topological extensions. Since, by definition, both π(x, a) = x and
π(f(x, a)) = x, the map f is determined by its second component. Using the group
structure of A we can also write f as f(x, a) = (x, a + g(x)) for some map g : X → A.
Now the continuity of f implies the continuity of g. Since f is a morphism of quandles
we get, for all x, y ∈ X and all a, b ∈ A,

(x ∗ y, a ∗ b+ g(x ∗ y) + ψ(x, y)) = f((x, a) ∗ (y, b))

= f(x, a) ∗ f(y, b) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + φ(x, y)).

Equating the second component, we find that ψ and φ differ by δg, i.e. they are repre-
sentatives of the same cohomology class, since g is continuous. �

Lemma 3.6. Let X be a topological quandle, and (A,T ) be a topological Alexander
quandle. Let α ∈ ZT

n (X,A) be an n-cycle (in the usual sense of discrete homology), and
φ ∈ ZnTC(X,A) be a continuous n-cocycle. If φ(α) 6= 0, then [φ] 6= 0 ∈ Hn

TC(X,A).

Proof. The standard argument applies as follows in continuous case. Suppose φ is a
coboundary in H2

C(X,A). Then, by definition, there exists some continuous f : X →
A such that δf = φ which, in particular, means that [φ] = 0 in H2(X,A) (discrete
cohomology). As a consequence, applying the Kronecker pairing we get:

φ(α) = 〈[φ]|[α]〉 = 〈[δf ]|[α]〉 = 〈[f ]|[∂α]〉 = 0

since α ∈ ZT
n (X,A). This contradicts the assumption. �

Let (G,+) be a topological abelian group. Consider Gm with the quandle structure
given by the rule:

(a1, . . . , am) ∗ (b1, . . . , bm) = (a1, a2 + b1 − a1, . . . , am + bm−1 − am−1).

By direct computation we see that the operation just defined respects the defining axioms
for a quandle structure and it is continuous, hence define a topological quandle structure
on Gm. This construction is motivated from [5].

Proposition 3.7. Let (G,+) be a topological abelian group, x 6= 0, and (Gm, ∗) be the
topological quandle defined as above. Then H2

C(G
m, G) 6= 0.

Proof. Consider the following 2-cycle (in the usual sense of discrete homology):

α = (0, . . . , 0)× (x, 0, . . . , 0) + (0, x, 0, . . . , 0)× (−x, x, 0, . . . , 1) ,

where × has been used to better indicate that α is an element of Gm × Gm. By direct
computation using the boundary map, it follows that α is indeed a 2-cycle. Consider
also the 2-cocycle:

φ : Gm ×Gm −→ G

defined by
φ( (a1, . . . , am)× (b1, . . . , bm) ) = bm − am .

Again by direct computation using the coboundary map it can be shown that φ is a
cocycle. Applying φ to α we get φ(α) = x 6= 0. Hence by Lemma 3.6 φ is not null-
cohomologus, and we obtain H2

C(G
m, G) 6= 0. �

Note that a constant map φ in Γn(X,A) is the zero map for n > 1.

Proposition 3.8. Let X = (Rn, S) and A = (Rm, T ) be Alexander quandles, where
S ∈ GLn(R) and T ∈ GLm(R), respectively. Then H2

TC(X,A) 6= 0 if one of the following
conditions hold.

(i) There is a nonzero vector v and m×n matrix C such that S2−S+1 = T 2−T+1 =
0 and C − TCS 6= 0.

(ii) T = −I and S has eigenvalue −1.
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Proof. Consider the matrixM :=

(

S 0
C T

)

∈ GLm+n(R). ThenX×A can be considered

as an Alexander quandle with operation
(

x1
a1

)

∗

(

x2
a2

)

:= M

(

x1
a1

)

+ (Im+n −M)

(

x2
a2

)

.

A direct computation shows that

(

x1
a1

)

∗

(

x2
a2

)

=

(

x1 ∗ x2
a1 ∗ a2 + φ(x1, x2)

)

and thus the

quandle X ×A is a topological twisted extension of the topological quandle X with the
continuous 2-cocycle φ : Rn × R

n → R
m given explicitly by the formula

φ(x1, x2) = C(x1 − x2).

We find a 2-cycle w ∈ ZT
2 (X,A) such that φ(w) 6= 0 under each of the conditions (i) and

(ii), then Lemma 3.6 implies H2
TC(X,A) 6= 0. Let w = (u0, v0) + T (u1, v1). This is an

element of the free module over A generated by pairs of elements of X as in [3]. Then
one computes

∂w = [T (u0) + (I − T )(v0)− (Su1 + (I − S)v0))]

+ T [T (u1) + (I − T )(v1)− (Su1 + (I − S)v1))

= [(v0)− (Su1 + (I − S)v0)]

+T [(u0)− (v0) + (v1)− (Su1 + (I − S)v1)] + T 2[(u1)− (v1)]. (∗)

where (v1) is a 1-chain, and not an element of X.
(i) Set u1 = v0 and v1 = Su0 + (I − S)v0. Then the expression (∗) vanishes if

(S2 − S + 1)(u0 − v0) = (T 2 − T + 1)(u0 − v0) = 0.

Hence the assumption S2 − S + 1 = 0 = T 2 − T + 1 implies ∂w = 0.
One computes φ(w) = (C − TCS)(u0 − v0). One can choose nonzero vectors u0

and v0 satisfying this condition under the assumption C − TCS 6= 0. Hence φ(w) =
(C − TCS)(u0 − v0) 6= 0 follows from the assumption. From Lemma 3.6 we obtain that
φ is not null cohomologous.

(ii) Set T = −I. Further, set v0 = 0, u1 = −u0, and v1 = 0. Then (∗) vanishes if
there exists u0 such that Su0 = −u0, and this condition is satisfied by the assumption.
Then one computes φ(w) = C(u0 − 0) + C(−u0 − 0) = C(2u0). By choosing C and u0
such that Cu0 6= 0, one obtains a non-trivial 2-cocycle φ. �

Example 3.9. Let n = 4, m = 2, S = T ⊕T , and T =

(

0 −1
1 1

)

. Then S2−S +1 = 0 =

T 2−T+1. Let C = (I, I) where I is 2×2 identity matrix. Then C−TCS = (I−S2, I−S2)
is not the zero matrix, and conditions in (i) in Proposition 3.8 are satisfied, and we obtain
H2

TC(X,A) 6= 0 for this specific example.

Remark 3.10. The conditions of Proposition 3.8 (i) can be extended to those for higher
degree alternating polynomials. Since the idea of proof is the same but the computations
are lengthy, we delay its statement and proof to Appendix A.

3.3. Continuous Cohomology with Quandle Modules. The goal of this subsection
is to introduce a topological version of the cohomology theory generalized in [1] and
exhibit explicit examples with non-trivial continuous cohomology. Before defining the
generalized cohomology theory of topological quandles we present a few preliminary
concepts.

Let X be a topological quandle. Recall [1, 10] that an X-module is a triple (A, η, τ)
where A is a topological abelian group, η is a family of continuous group automorphisms
ηx,y : A→ A and τ is a family of continuous group morphisms τx,y : A→ A such that
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(1) ηx∗y,z ηx,y = ηx∗z,y∗z ηx,z,
(2) ηx∗y,z τx,y = τx∗z,y∗z ηy,z,
(3) τx∗y,z = ηx∗z,y∗zτx,z + τx∗z,y∗zτy,z, and
(4) τx,x + ηx,x = idA.

We consider the abelian groups Γn(X,A), δi0 and δi1 as defined above in Section 3.
Define the differentials by the following formula

δn :=

n+1
∑

i=2

(−1)i
(

η[x1,··· ,x̂i,··· ,xn+1],[xi,··· ,xn+1]δ
i
0 − δ

i
1

)

+ τ[x2,x3,...,xn+1],[x1,x3,...,xn+1]δ
1
0

where
[x1, x2, x3, . . . , xn] = ((· · · (x1 ∗ x2) ∗ x3) · · · ) ∗ xn.

The resulting cohomology groups are denoted by Hn
GC(X,A).

As in the discrete case, it is easy to see that we obtain a cochain complex

· · · → Γn(X,A)
δ
−→ Γn+1(X,A)→ · · ·

Following [1], if X is a topological quandle and (A, η, τ) is a topological quandle module,
we can define a topological quandle structure on X ×A by:

(x, a) ∗ (y, b) = (x ∗ y, ηx,y(a) + τx,y(b) + κx,y),

for all x, y ∈ X and a, b ∈ A, where X ×A is given the product topology. This formula
defines a topological quandle structure if and only if κx,y is a 2-cocycle of this cohomology
theory.

We have that the projection onto the first factor is an epimorphism of topological
quandles.

Let G be the subgroup of GL(2n,R) for a positive integer n, consisting of block
matrices of the form

G =

{

E =

(

S O
C T

)
∣

∣

∣

∣

S, T ∈ GL(n,R), C ∈ M(n,R)

}

,

where O denotes the zero matrix, and consider X = G× R
n with quandle operation

(E0, x0) ∗ (E1, x1) = (E1E0E
−1
1 , S1x0 + (I − S1)x1),

where Ei =

(

Si O
Ci Ti

)

for i = 0, 1. Let A = R
n and consider endomorphisms of A

defined by η(E0,x0),(E1,x1)(a) = T1a and τ(E0,x0),(E1,x1)(a) = (I − T1)a. It is checked by
computation that these define a X-module structure on A.

Theorem 3.11. H2
GC(X,A) 6= 0.

Proof. The quandle operation on X ×A = G× R
2n defined by

(E0, u0) ∗ (E1, u1) = (E1E0E
−1
1 , E1u0 + (I − E1)u1),

where ui = (xi, ai) and ai ∈ A for i = 0, 1 are computed as operation on X ×A as

[ (E0, x0), a0 ] ∗ [ (E1, x1), a1 ]

= [ E1E0E
−1
1 , S1x0 + (I − S1)x1, T1a0 + (I − T1)a1 + C1(x0 − x1))].

Let p : X×A→ X by p( [(E, x), a)] ) = (E, x). Then we find that p defines the extension
of X by the X-module A, with the 2-cocycle κ(E0,x0),(E1,x1) = C1(x0 − x1).

We show that κ is not a coboundary. Let E =

(

−I O
C −I

)

, and w = [(E, x), (E, 0)]−

[(E,−x), (E, 0)] be a 2-chain. Since ∂( (x, y) ) = ηx,y(x)+ τx,y(y)− (x ∗ y), one computes

∂(w) = (−I)(E, x) + (2I)(E, 0) − (E, (−I)x + (2I)0)



CONTINUOUS COHOMOLOGY OF TOPOLOGICAL QUANDLES 9

− [(−I)(E,−x) + (2I)(E, 0) − (E, (−I)(−x) + (2I)0) = 0.

Hence w is a 2-cycle. One also computes

κ(E,x),(E,0) − κ(E,−x),(E,0) = C1(x− 0)− C1(−x− 0)

= C1(2x)

and by choosing x,C1 such that C1x 6= 0, we obtain that κ is not a coboundary by the
argument similar to Lemma 3.6. �

The construction of X × A in Theorem 3.11 is similar to the notion of G-family of
quandles defined in [13].

3.4. Principal Bundles as Quandle Extensions. In this section we describe quandle
extensions of topological quandles that are not defined by continuous 2-cocycles but can
be described by principal bundles in a natural manner with discontinuous 2-cocycles. As
a consequence we observe the difference between continuous and algebraic cohomology
theories.

Let A be a topological abelian group and p : E → X be a principal A-bundle; a fiber
bundle with a fiber preserving right action of A on E that acts freely and transitively.

Definition 3.12 (cf. [9]). Let E,X be connected topological quandles and A be a
topological abelian group. A principal (abelian) quandle extension by A is a continuous
surjective quandle homomorphism p : E → X that is a principal A-bundle such that for
all x, y ∈ X and a ∈ A, the following conditions hold: (i) (x ∗ y) · a = (x · a) ∗ (y · a), (ii)
(x · a) ∗ y = (x ∗ y) · a.

The quandle homomorphism in Example 2.2 is a principal abelian quandle extension
by Z2.

Lemma 3.13. Let A be a topological abelian group and p : E → X be a principal abelian
quandle extension by A. Let s : X → E be a set-theoretic section; p ◦ s = idX . Then for
all x, y ∈ X, there exists a unique element a ∈ A such that s(x) ∗ s(y) = s(x ∗ y) · a.

Proof. Since p is a quandle homomorphism, we have

p(s(x) ∗ s(y)) = (ps)(x) ∗ (ps)(y) = x ∗ y = (ps)(x ∗ y).

Since A acts freely and transitively, there is a unique a such that s(x) ∗ s(y) =
s(x ∗ y) · a. �

In the preceding lemma, the unique element a is determined by x, y ∈ X, so that we
denote it by a = φ(x, y). Then we obtain a function φ : X ×X → A.

Lemma 3.14. Let φ : X ×X → A be defined as above. Then φ is a quandle (abelian)
2-cocycle.

Proof. We perform the following computations analogous to those in [5] and [9]:

(s(x) ∗ s(y)) ∗ s(z) = [ s(x ∗ y) · φ(x, y) ] ∗ s(z)

= [ s(x ∗ y) ∗ s(z) ] · φ(x, y)

= s((x ∗ y) ∗ z) · [φ(x ∗ y, z)φ(x, y)],

(s(x) ∗ s(z)) ∗ (s(y) ∗ s(z)) = [ s(x ∗ z) · φ(x, z) ] ∗ [ s(y ∗ z) · φ(y, z) ]

= ([ s(x ∗ z) · φ(x, z)φ(y, z)−1 ] ∗ s(y ∗ z)) · φ(y, z)

= (s(x ∗ z) ∗ s(y ∗ z)) · [(φ(x, z)φ(y, z)−1)φ(y, z)]

= s((x ∗ z) ∗ (y ∗ z)) · [(φ(x ∗ z, y ∗ z)φ(x, z)],

and s(x) ∗ s(x) = s(x ∗ x) · φ(x, x) gives φ(x, x) = 0. Hence φ satisfies the 2-cocycle
condition. �
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Nosaka pointed out to us that the argument works also for non-abelian groups A. See
[1] for non-abelian 2-cocycles.

Example 3.15. Consider p : S2 → RP
2 in Example 2.2. Let

P+ := {(x, y, z) ∈ S2 : z > 0 or z = 0, y > 0 or y = z = 0, x > 0}

and P− := S2 \ P+. Let s : RP2 → S2 be a set-theoretic section defined by s([x]) = x
where x ∈ P+. Then the map φ of the preceding lemma provides a non-zero 2-cocycle.
For example, φ([1, 0, 0], [0, 1, 0]) = 1 ∈ Z2. In this case, as a set S2 is regarded as
RP

2 × Z2.

Remark 3.16. Let p : E → X be a principal abelian quandle extension by A, and fix
a set-theoretic section s : X → E. For any given u ∈ E, let x = p(u), then there is a
unique a = as(u) such that u = s(x) ·a. Similarly for v ∈ E let y = p(v) and v = s(y) · b.
Then one computes

u∗v = (s(x) ·a)∗(s(y) ·b) = [(s(x) ·(ab−1))∗s(y)] ·b = [s(x)∗s(y)] ·a = s(x∗y) ·(aφ(x, y)).

Note that this equality (s(x) ·a)∗(s(y) ·b) = s(x∗y) ·(aφ(x, y)) compares to the equality
(x, a) ∗ (y, b) = (x ∗ y, a+ φ(x, y)) for E = X ×φ A in the case T = 1.

Lemma 3.17. Let p : E → X be a principal abelian quandle extension by A. If A is
discrete and φ is a continuous 2-cocycle, then φ(x, y) = 0 for all x, y ∈ X.

Proof. From the assumptions φ is a constant map. From the quandle condition φ(x, x) =
0 for all x ∈ X, it follows that φ(x, y) = 0 for all x, y ∈ X. �

Note that in this case it follows that s is a quandle homomorphism.
For p : S2 → RP

2 in Example 2.2 we have the following proposition.

Proposition 3.18. H2
Q(RP

2,Z2) 6= 0, yet H2
C(RP

2,Z2) = 0.

Proof. Let φ be the quandle 2-cocycle constructed in Example 3.15. By Lemma 3.14 and
Example 3.15, φ is a (discrete) quandle 2-cocycle, that yields a non-trivial extension,
and therefore, φ is non-trivial in H2

Q(RP
2,Z2).

By Lemma 3.17, any continuous 2-cocycle gives rise to the trivial extension, and hence
H2
C(RP

2,Z2) = 0. �

4. Inverse Limits of Quandles and their Cohomologies

In this section we apply a method of computing cohomology of inverse limits to de-
termine continuous cohomology of quandles.

4.1. Basic Construction of Inverse and Direct Limits. Suppose we are given a
projective system of quandles (Xn, ψn)n∈N:

X1
ψ1
←− X2

ψ2
←− · · · ←− Xn

ψn
←− · · ·

where each ψn is a quandle morphism. We define the inverse limit of the projective
system, lim

←−
Xn, as the subset of

∏

n∈NXn of sequences (x0, x1, . . . , xn, . . .) satisfying

ψn(xn+1) = xn for all n ≥ 1. We give lim
←−

Xn the ∗ operation induced componentwise
by the operations of the Xn. This construction together with the canonical projection
maps lim

←−
Xn → Xi, for each i ∈ N, satisfies the usual universal property for an inverse

limit of a projective system indexed by the natural numbers, see Remark 4.2 below.
The same construction can be defined for a projective system of topological quandles,

where each morphism is now required to be continuous, and lim
←−

Xn is endowed with the
initial topology with respect to the projection maps. The initial topology is the coarsest
topology that makes projections pi : lim←−

Xn → Xi continuous, and in our case, it is the
same topology as the subspace topology of the product space.
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A particular case is to start with a projective system of discrete (possibly finite)
quandles. The topology on lim

←−
Xn will be the subspace topology of the product

∏

n∈NXn,
where the latter space has the product topology of discrete spaces. Thus taking the
inverse limit provides a method to build topological quandles from discrete quandles.
The following example is of central importance.

Example 4.1. Fix a prime p ∈ N. Put Xn = Z/pnZ together with the standard dihedral
quandle operation x ∗ y = 2y − x. There are canonical projections ψn : Xn+1 → Xn

obtained by reducing mod pn a representative of a class modulo pn+1. These maps
are ring homomorphisms and, as a consequence, quandle morphisms, since the quandle
structure on Xn is obtained from the ring operations. By definition, the inverse limit
of this projective system is the ring of p -adic integers Zp and it inherits a topological
quandle structure from the dihedral quandles Xn. To be precise, the same quandle
operation would be obtained on Zp defining the Alexander quandle structure with T =
−1, via the ring operations on Zp. That is, (lim←−

Xn, ∗) is isomorphic to (Zp,−1).

Remark 4.2. More generally, if we start with a directed set I and a projective system
of (topological) quandles (Xi, ψi,j), where the morphisms ψi,j satisfy the usual compat-
ibility relations, we can define lim

←−
Xn = {x ∈

∏

n∈I Xn | ψi,jπj(x) = πi(x) for all i, j

with j ≥ i} where πi is the canonical projection onto the ith factor. They satisfy the
universal property depicted below.

Y

lim
←−

Xn

Xj Xi

∃!

ψi,j

Then we can endow it again with the ∗ operation induced pointwise by the quandle
operations in each Xi and get an inverse limit for the projective system we started with.
If we start with topological quandles, the topology of lim

←−
Xi will be again the initial

topology with respect to the projections. By definition it follows that the inverse limit
of (topological) quandles, is the usual inverse limit in the category of topological spaces,
equipped with a continuous binary operation that turns it into a topological quandle.

We recall the following results from point-set topology, proofs of which can be found
in [23]:

Lemma 4.3. Let (Xi, ψi,j)be a projective system of topological spaces. Then the follow-
ing results hold:

(a) If each Xi is compact and Hausdorff, so is lim
←−

Xi;

(b) If each Xi is totally disconnected, so is lim
←−

Xi;

(c) If each Xi is a nonempty compact Hausdorff, then lim
←−

Xi is nonempty.

Lemma 4.4. Let (Xi, ψi,j) be a projective system of nonempty compact Hausdorff spaces
and let Y be a discrete space. Then any continuous map f : lim

←−
Xi → Y factors through

Xi for some i ∈ I.

Observe also that taking inverse limits in the category of topological spaces commutes
with the operation of taking cartesian products, (lim

←−
Xi)

• = lim
←−

(X•
i ).

A similar construction applies to an inductive system of quandles

X1
φ1
−→ X2

φ2
−→ · · ·

φk−1
−−−→ Xk

φk−→ · · ·
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to obtain a quandle structure on the direct limit lim
−→

Xk. In this case φk are continuous

quandle morphisms. The direct limit is endowed with the final topology (or inductive
topology), the finest topology which makes the functions Xk → lim

−→
X continuous. In

particular, if Xk are discrete, then lim
−→

Xk is discrete.

4.2. Cohomology of Inverse Limits. The purpose of this section is to apply the tools
from the continuous cohomology groups of the inverse limit of a projective system to
finite discrete quandles (Xn, ψn)n∈N, to obtain the cohomology groups of lim

←−
Xn. The

tools used here depend only on the functoriality of twisted cohomology of quandles, the
universal property of colimits and the factorization property of continuous maps between
an inverse limit and a discrete space. Suppose we are given a projective system (Xn, ψn)
of discrete quandles:

X1
ψ1
←− X2

ψ2
←− · · ·

ψn−1

←−−− Xn
ψn
←−− · · ·

We also consider an inductive system of Alexander quandles (Ak, φk), where (Ak, Tk) are
topological Alexander quandles (Ak is a topological abelian groups and Tk are continuous
automorphisms of Ak):

A1
φ1
−→ A2

φ2
−→ · · ·

φk−1
−−−→ Ak

φk−→ · · ·

From the data above we can construct an inductive system of cohomology groups.
Below we suppress subscripts of cochain groups for simplicity. Define cochain maps
C•(Xn, An) −→ C•(Xn+1, An+1) by the following diagram:

C•(Xn, An) C•(Xn+1, An)

C•(Xn+1, An+1)

ψ∗

n

τn
φn◦−

where the vertical map is the change of coefficients induced by φn and the horizontal
map is the dual map of the projection ψn. We obtain consequently an inductive system
in the category of groups. Consider now the following diagram:

...
...

· · · C•(Xn, An) C•(Xn+1, An+1) · · ·

· · · C•+1(Xn, An) C•+1(Xn+1, An+1) · · ·

...
...

δ•−1 δ•−1

τn

δ• δ•

τn

δ•+1 δ•+1

where δ indicates the cohomology differentials and the maps τ are defined above. Since
ψ∗
n and φn ◦ − commute with differentials, the diagram is commutative, so that each τn

induces a map on cohomology (which we will still denote by τn). Thus we obtain the
inductive systems of cohomology groups:

H•
T (X0, A0)

τ0−→ H•
T (X1, A1)

τ1−→ · · ·
τn−1

−−−→ H•
T (Xn, An)

τn−→ · · ·

from which we derive their inductive limits: lim
−→

H•
T (Xn, An).

Our next goal is to relate H•(Xn, An) to H•
TC(lim←−

Xk, lim−→
Al). More precisely we

will show that lim
−→

H•(Xn, An) is isomorphic to the continuous cohomology group
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H•
TC(lim←−

Xk, lim−→
Al) when each Al is a discrete group and the topologies on lim

←−
Xk and

lim
−→

Al are the projective and inductive limit topologies.

Let us construct first a morphism from lim
−→

H•
T (Xn, An) to H

•
TC(lim←−

Xk, lim−→
Al) using

the universal property of direct limits. Consider the following diagram, corresponding
to any representative f of a class [f ] ∈ H•

T (Xn, An):

(lim
←−

Xk)
• lim

−→
Al

X•
n An

π•

n

f

ιn

where π•n is the canonical projection (lim
←−

Xk)
• → X•

n and ιn : An → lim
−→

Al is the natural
morphism of An into the direct limit. Observe that if ιnfπ

•
n is as above, then it factors

through X•
n by definition and, in particular, any preimage of a subset in lim

−→
Al is a

basis element of the topology of lim
←−

X•
k since each Xk is a discrete topological space

and lim
←−

Xk is endowed with the projective limit topology. Since lim
−→

Al is discrete, being
a direct limit of discrete spaces; it follows then that ιnfπ

•
n is continuous. Also, the

correspondence {f : X•
n → An}

ιnfπ
•

n−→ {(lim
←−

Xk)
• → lim

−→
Al} respects equivalence classes,

so it induces a well defined map σn : H•
T (Xn, An) → H•

TC(lim←−
Xk, lim−→

Al). We obtain
therefore the following diagram:

· · · H•
T (Xn−1, An−1) H•

T (Xn, An) H•
T (Xn+1, An+1) · · ·

H•
TC(lim←−

Xk, lim−→
Al)

σn−1
σn

σn+1

which can be seen to be commutative by a direct computation. By the universal property

of colimits we obtain a unique morphism lim
−→

H•
T (Xn, An)

Ψ
−→ H•

TC(lim←−
Xk, lim−→

Al). In
fact, Ψ is an isomorphism. We include a proof to illustrate the computations that will
be given in corollaries below for specific quandles.

Proposition 4.5. Suppose (Xn, ψn) is a projective system of discrete quandles and
(Am, φm) is a direct system of discrete abelian groups. Then the map Ψ defined above is
an isomorphism.

Proof. Suppose α ∈ lim
−→

H•
T (Xn, An) is mapped to zero by Ψ. By construction of

Ψ, it means that there exists some i ∈ N such that [ιifπ
•
i ] is the zero class in

H•
TC(lim←−

Xk, lim−→
Al), where f is a representative of a class [f ] ∈ H•

T (Xi, Ai), π
•
i is

the projection on the ith factor and ιi is the natural map Ai → lim
−→

Al. So ιifπ
•
i is

a coboundary of some continuous g : (lim
←−

Xk)
•−1 → lim

−→
Al which factors through some

X•−1
j , j ∈ N. Choosing t ∈ N large enough it follows that [ιtfπ

•
t ] = 0 in H•

T (Xt, At).

Since [ιifπ
•
i ] ∼ [ιtfπ

•
t ] in lim

−→
H•
T (Xn, An) it follows that α is the zero class.

Suppose now we are given a class [β] ∈ H•
TC(lim←−

Xk, lim−→
Al). Since β is continuous

and lim
−→

Al is discrete, it factors through some X•
i . Therefore its image in lim

−→
Al is finite

and it will be contained in some Aj . Choosing t ∈ N large enough, we get that [β] is

the image T [h], for some [h] ∈ H•
T (Xt, At), where the bar symbol indicates that we are

considering a representative class in lim
−→

H•
T (Xn, An). �

See [23] for an analogous statement for group cohomology.
Observe that the construction of the morphism Ψ and the proof above are still valid

if we consider topological compact Hausdorff quandles Xn and replace each H•
T (Xn, An)

by their continuous counterparts, in virtue of Lemma 4.4.



14 MOHAMED ELHAMDADI, MASAHICO SAITO, AND EMANUELE ZAPPALA

Fix an odd prime p ∈ Z and choose u ∈ Z such that (u, p) = 1. Then multiplications
by u and by 1 − u define automorphisms of Z/pnZ, for any n ∈ N. Thus we obtain
an Alexander quandle structure on Z/pnZ, which will be denoted by Xu

n . Also recall
that there are natural maps Z/pnZ −→ Z/pn+1

Z given by multiplication by p, which
commute with the action by Z and consequently a direct system, whose direct limit is
the Prüfer group Z(p∞). Thus we have an Alexander quandle (Z(p∞), u), denoted also
by Z(p∞)u.

Corollary 4.6. H1
TC(lim←−

Xu
n ,Z(p

∞)u) ∼= Z(p∞)u × Z(p∞)u for any u ∈ Z such that

(u, p) = 1.

Proof. As in Section 4.1 it is possible to show that the first twisted (discrete) coho-
mology group H1

T (X
u
n ,Z/p

n
Z) is the abelian group of affine maps {fα,β : Z/pnZ →

Z/pnZ | f(x) = αx + β, α, β ∈ Z/pnZ} which can be seen to be isomorphic to
Z/pnZ × Z/pnZ for all n ∈ N, via the isomorphism fα,β 7→ α × β. Using the definition
of σn : H1

T (X
u
n ,Z/p

n
Z) → H1

T (X
u
n+1,Z/p

n+1
Z) we have that (σnf)(x) = (pfπn)[x] =

pα[x] + pβ, from which we obtain the direct limit

Z/pZ× Z/pZ→ · · · → Z/pnZ× Z/pnZ→ · · ·

where each map is just multiplication by p on each coordinate.
It follows that lim

−→
H1
T (X

u
n ,Z/p

n
Z) = Z(p∞)u × Z(p∞)u and the result follows. �

Corollary 4.7. H3
C(lim←−

Rpn ,Z/pZ) = 0, where Rpn denotes the dihedral quandle on pn

elements and the cohomology group is meant to be untwisted.

Proof. For a given odd prime, it has been computed by Mochizuki [16], that
H3(Rpn ,Z/pZ) = Z/pZ, where Rpn . Directly from the proof in [16] it also follows
that the map H3(Rpn ,Z/pZ) → H3(Rpn+1 ,Z/pZ) induced by the canonical projection
Rpn+1 → Rpn is the trivial map. We obtain the inductive system:

Z/pZ
0
−→ Z/pZ

0
−→ · · ·

0
−→ Z/pZ

0
−→ · · ·

whose direct limit is the trivial group. �

Appendix A. Further Non-trivial Cohomology

In this section we present a generalization of Proposition 3.8 that provides further
examples of non-trivial cohomology groups.

Proposition A.1. Let X = (Rn, S) and A = (Rm, T ) be Alexander quandles, where
S ∈ GLn(R) and T ∈ GLm(R), respectively. Then H2

TC(X,A) 6= 0 if the following

conditions hold for k > 1:
∑k+1

i=0 (−S)
i = 0 =

∑k+1
i=0 (−T )

i, and there exists an n × m

matrix C such that
∑k

ℓ=0(−T )
ℓC(

∑k−ℓ+1
j=1 (−S)j) 6= 0.

Proof. Let w =
∑k

i=0 T
i(ui, vi). One computes

∂w =

k
∑

i=0

T i[T (ui) + (1− T )(vi)− (Sui + (1− S)vi)]

= [(v0)− (Su0 + (1− S)v0)]

+
k−1
∑

i=1

T i[(ui−1)− (vi−1) + (vi)− (Sui + (1− S)vi)]

+T k+1[(uk)− (vk)].

By setting

v1 = Su0 + (1− S)v0, ui−1 = Sui + (1− S)vi, vj = vj−2, and uk = vk−1 (1)
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for i = 1, . . . , k and j = 2, . . . , k, we obtain

∂w = (

k+1
∑

ℓ=0

(−T )ℓ)[(v0)− (v1)].

Hence the condition (1) and the assumption
∑k+1

ℓ=0 (−T )
ℓ = 0 implies ∂w = 0.

For k odd, set

uk−2i = (
2i+1
∑

j=2

(−S)j)u0 + (1−
2i+1
∑

j=2

(−S)j)v0

uk−(2i+1) = (−
2i+2
∑

j=1

(−S)j)u0 + (
2i+2
∑

j=0

(−S)j)v0

and for even k, set

uk−2i = (−

2i+1
∑

j=1

(−S)j)u0 + (

2i+1
∑

j=0

(−S)j)v0

uk−(2i+1) = (

2i+2
∑

j=2

(−S)j)u0 + (1−

2i+2
∑

j=2

(−S)j)v0.

Then it is checked by induction that these satisfy Equations (1).
For φ(x1, x2) = C(x1 − x2) as in Proposition 3.8, one computes

φ(w) =

k
∑

ℓ=0

φ(T ℓ(uℓ, vℓ)) =

k
∑

ℓ=0

T ℓC(uℓ − vℓ) =

k
∑

ℓ=0

(−T )ℓC(

k−ℓ+1
∑

j=1

(−S)j)(u0 − v0)

as desired. The last equality is obtained by substituting the formulas for uk−2i and
uk−(2i+1) for each case of k odd and even. �

Appendix B. Continuous Isomorphisms of Topological Quandles

In this section we point out that continuous isomorphism classes differ from algebraic
isomorphism classes for topological quandles. The results of this section were obtained
by W. Edwin Clark.

Lemma B.1. [19] If T : Rn → R
m is additive and continuous, then T is linear.

We recall [17] that a generalized Alexander quandle (Rn, T ) is indecomposable if and
only if (I − T ) is invertible.

Lemma B.2. Let (Rn, S) and (Rm, T ) be topological Alexander quandles, such that I−S
and I − T are invertible. Let F : Rn → R

m be a continuous quandle homomorphism
such that F (0) = 0. Then S, T, F are linear and the condition FS = TF holds.

Proof. First from Lemma B.1, S and T are linear. Since F is a quandle homomorphism,

F (Sx+ (I − S)y) = TF (x) + (I − T )F (y) (2)

holds for all x, y ∈ R
n. By setting x = 0 and y = 0 respectively in Equation(2) and

using the assumption F (0) = 0, we obtain

F ((I − S)y) = (I − T )F (y), (3)

and
F (Sx) = TF (x), (4)

which is the condition FS = TF . These Equations (3) and (4) also imply

F (Sx+ (I − TS)y) = F (Sx) + F ((I − S)y). (5)
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By the invertibility assumptions, we have {Sx | x ∈ R
n} = R

n and {(I − S)y | y ∈
R
n} = R

n. Hence Equation (5) implies that F (a + b) = F (a) + F (b) for all a, b ∈ R
n.

Since F is additive and continuous, Lemma B.1 implies that F is linear. �

Solving the matrix equation FS = TF can be found, for example, in [2]. A direct
calculation gives the following lemma.

Lemma B.3. Let (Rn, S) and (Rm, T ) be Alexander quandles. Let F : Rn → R
m be a

quandle homomorphism. Let a ∈ R
m. Then F + a : Rn → R

m defined by (F + a)(x) =
F (x) + a for x ∈ R

n is a quandle homomorphism.

Proposition B.4. Let (Rn, S) and (Rn, T ) be indecomposable topological Alexander
quandles. If F : Rn → R

n is a continuous quandle isomorphism such that F (0) = 0,
then S, T, F are linear and S and T are similar: T = FSF−1.

Proof. By Lemma B.1, S, T, F are linear. By Lemma B.2, S and T are similar via F . �

Proposition B.5. There is a family with continuum cardinality of topological quandle
structures on R

n for all n > 0, such that its elements are pairwise non-isomorphic as
topological quandles but are isomorphic as algebraic quandles.

Proof. Let Q(u) be the field of rational functions over R with variable u. Let s ∈ R

be a transcendental. Let Q(u) act on R
n by the scalar multiple f(u) · x = f(s)x. Let

s, t be distinct transcendentals. Then there are two vector space structures on R
n over

Q(u) by multiples by s and t. They have the same dimension as vector spaces, and
therefore, there is a vector space isomorphism F : Rn → R

n over Q(u), and it satisfies
F (sx) = tF (x). Hence F is a quandle isomorphism. If F is continuous, then F is linear
over R by Lemma B.2, and Fs = sF = tF and s = t, a contradiction. Hence F is a
quandle isomorphism that is not continuous. �
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