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Abstract

We consider quantum integrable models solvable by the nested algebraic Bethe ansatz
and possessing gl

3
-invariant R-matrix. We study a new recently proposed approach to

construct on-shell Bethe vectors of these models. We prove that the vectors constructed by
this method are semi-on-shell Bethe vectors for arbitrary values of Bethe parameters. They
thus do become on-shell vectors provided the system of Bethe equations is fulfilled.

1 Introduction

Recently, a new method to construct Bethe vectors in glN -invariant quantum spin chains was
proposed in [1]. In the present paper we study this method by the nested algebraic Bethe ansatz
(NABA) in the case of quantum integrable models with gl3-invariant R-matrix.

There exist several ways to study quantum integrable models with a high rank of symmetry.
A nested version of the Bethe ansatz [2] was proposed in [3–5]. In the context of the Quantum
Inverse Scattering Method (QISM) [6–9], an algebraic version of this method (NABA) was
developed in [10–12]. One more approach based on the qKZ equation and Jackson integrals
was proposed in [13–15] and generalized to the superalgebras in [16]. We should also mention
a method to construct Bethe vectors via certain projection of Drinfel’d currents, that was
developed in a series of works [17–21]. The Separation of Variables (SoV) method [22, 23] was
applied to the study of gl3-invariant quantum spin chains in [24].

The main task of the methods listed above is to construct the eigenfunctions of the quantum
Hamiltonians. Traditionally they are called on-shell Bethe vectors. In distinction of the gl2

1 a.liashyk@gmail.com, nslavnov@mi.ras.ru

1

http://arxiv.org/abs/1803.07628v1


based models, a form of these eigenfunctions for the models with higher rank of symmetry is
quite involved. This is due to the fact that these models describe physical systems with several
types of particles. Respectively, one has to consider several creation operators corresponding to
each type of excitations.

For instance, within the framework of QISM, we deal with a quantum monodromy matrix
T (u), whose trace plays the role of generating functional of the integrals of motion. The upper-
triangular entries of the monodromy matrix Tij(u) with i < j are creation operators, and a
physical space of states can be generated by successive action of these operators on a referent
state |0〉. In the case of the gl2 based models, there exits only one creation operator T12(u).
Respectively, the eigenvectors of the quantum Hamiltonians have the form of products of these
operators acting onto a referent state |0〉. However, already in the case of the gl3 based models,
we deal with three creation operators, and the form of on-shell Bethe vectors immediately
becomes much more complex (see e.g. [25] and (2.14) for explicit formulas).

It was observed in [1] that an operator used for constructing the SoV basis of the gl2-
invariant spin chain can be also used for generating the basis of the on-shell Bethe vectors. It
was conjectured in [1] that a similar effect might take place in the spin chains with higher rank
of symmetry. In particular, in the gl3-invariant spin chain one should consider an operator2

Bg(u) = T23(u)T12(u− i)T23(u)− T23(u)T22(u− i)T13(u)

+ T13(u)T11(u− i)T23(u)− T13(u)T21(u− i)T13(u) (1.1)

for constructing the SoV basis [24]. Here Tij(u) are entries of a twisted monodromy matrix
(see section 3 for more details). Then, in complete analogy with the case of gl2 based models,
on-shell Bethe vectors can be presented as a successive action of Bg(ui) onto the referent state

Bg(u1) . . . B
g(ua)|0〉. (1.2)

This conjecture was justified by the computer calculation, however, an analytical proof is lacking
so far. The goal of this paper is to find such the proof.

Our proof of representation (1.2) is given within the framework of NABA. We show that
representation (1.2) for on-shell Bethe vectors holds not only for spin chains, but for a more
wide class of integrable models possessing gl3-invariant R-matrix. In particular, we do not use
the SoV method.

The paper is organized as follows. We recall basic notions of NABA in section 2. There we
also give a standard description of Bethe vectors within this method. Section 3 is devoted to
special NABA-solvable models that usually are applied to the systems of physical interest. The
main results of our paper are gathered in section 4. There we give explicit representation of
the states (1.2) in terms of the monodromy matrix entries acting on the pseudovacuum vector.
We also describe a relationship between the states (1.2) and the Bethe vectors obtained by the
standard NABA approach. In the rest of the paper we give the proofs of the results of section 4.
We identify the state (1.2) with a Bethe vector in section 5. In section 6 we compute the action
of the operator Bg(u) on a generic Bethe vector. Finally, in section 7 we express the state (1.2)
in terms of the monodromy matrix entries acting on the pseudovacuum vector. Several auxiliary

2In [1] this operator was denoted as Bgood(u). We find this notation too heavy and reduce it to B
g(u).
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identities for rational functions are gathered in appendix A. Appendix B contains a proof of
connection between two types of Bethe vectors considered in the paper. Finally, the formulas
of the action of the monodromy matrix entries onto the Bethe vectors are given in appendix C.

2 Basic notions of NABA

We consider quantum integrable models solvable by NABA and possessing the gl3-invariant
R-matrix

R(u, v) = I⊗ I+ g(u, v)P, g(u, v) =
c

u− v
. (2.1)

Here I is the identity matrix inC3, P is the permutation matrix in C3⊗C3, and c is a constant3.
The monodromy matrix T (u) is a 3× 3 matrix with operator-valued entries Tij(u) acting in

a Hilbert space H. Their commutation relations are give by an RTT -relation

R(u, v)
(
T (u)⊗ I

)(
I⊗ T (v)

)
=

(
I⊗ T (v)

)(
T (u)⊗ I

)
R(u, v). (2.2)

It follows from (2.2) that an operator

T (u) = trT (u) =
3∑

i=1

Tii(u) (2.3)

has the following property: [T (u),T (v)] = 0 for arbitrary u and v. This operator is called
a transfer matrix. It plays the role of a generating functional of the integrals of motion of a
quantum model under consideration. One of the main tasks of NABA is to find eigenvectors of
this operator.

If a 3 × 3 c-number matrix K is such that [R(x, y),K ⊗K] = 0, then the matrices KT (u)
and T (u)K also satisfy the RTT -relation (2.2). A peculiarity of the R-matrix (2.1) is that
[R(x, y),K ⊗ K] = 0 holds for arbitrary K ∈ gl3. In particular, if K is invertible, then one
can consider a transformation T (u) → T (K)(u) = KT (u)K−1. Obviously, this transformation
preserves the transfer matrix.

Besides the monodromy matrix T (u), we also will consider a matrix T̂ (u) that is closely
associated to a quantum comatrix [26, 27]. First, we introduce quantum minors

tj1,j2k1,k2
(u) = Tj1,k1(u)Tj2,k2(u− c)− Tj2,k1(u)Tj1,k2(u− c). (2.4)

The entries of the quantum comatrix T̃jk(u) then are given by

T̃jk(u) = (−1)j+ktk̄j̄ (u), (2.5)

where j̄ = {1, 2, 3} \ j. The quantum comatrix plays the role of the inverse monodromy matrix
due to

T̃ (u− c)T (u) = qdetT (u) I, (2.6)

where qdetT (u) is a quantum determinant of T (u) [26–29].

3To compare our presentation with the results of [1] one should set c = i.
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The matrix T̂ (u) is defined as the transposition of T̃ (u) with respect to the secondary
diagonal:

T̂jk(u) = T̃4−k,4−j(u). (2.7)

It is known [25–27, 30] that a mapping φ : T (u) 7→ T̂ (u) is an automorphism of the RTT -algebra
(2.2). Thus, the matrix T̂ (u) satisfies the RTT -relation with the same R-matrix (2.1).

Using the matrix T̂ (u) we can write down the operator Bg(u) (1.1) in a more compact form

Bg(u) = T23(u)T̂13(u)− T13(u)T̂12(u). (2.8)

Similar representation for Bg was used in [24].

2.1 Notation

Besides the function g(u, v) we also introduce two new functions

f(u, v) = 1 + g(u, v) =
u− v + c

u− v
, h(u, v) =

f(u, v)

g(u, v)
=

u− v + c

c
. (2.9)

The following obvious properties of the functions introduced above are useful:

g(u, v) = −g(v, u), h(u− c, v) =
1

g(u, v)
, g(u + c, v) =

1

h(u, v)
, f(u− c, v) =

1

f(v, u)
.

(2.10)
Before giving a description of the Bethe vectors we formulate a convention on the notation.

We denote sets of variables by a bar: ū, v̄, and so on. Individual elements of the sets are denoted
by subscripts: uj , vk, and so on. Notation ū+ c means that the constant c is added to all the
elements of the set ū. Subsets of variables are denoted by roman indices: ūI, ūII, v̄ii, and so
on. In particular, we consider partitions of sets into subsets. Then the notation ū ⇒ {ūI, ūII}
means that the set ū is divided into two disjoint subsets ūI and ūII. The order of the elements
in each subset is not essential. A special notation ūj is used for subsets complementary to the
element uj , that is, ūj = ū \ uj, v̄k = v̄ \ vk and so on.

In order to avoid too cumbersome formulas we use shorthand notation for products of
functions depending on one or two variables. Namely, if the functions g, f , and h depend on
sets of variables, this means that one should take the product over the corresponding set. For
example,

h(ū, v) =
∏

uj∈ū

h(uj , v); g(zi, z̄i) =
∏

zj∈z̄
zj 6=zi

g(zi, zj); f(ūII, ūI) =
∏

uj∈ūII

∏

uk∈ūI

f(uj , uk). (2.11)

In the last equation of (2.11) the set ū is divided into two subsets ūI, ūII, and the double
product is taken with respect to all uk belonging to ūI and all uj belonging to ūII. We use the
same prescription for the products of commuting operators and their vacuum eigenvalues λi

(see (2.13))

λi(ū) =
∏

uj∈ū

λi(uj); Tij(v̄I) =
∏

vk∈v̄I

Tij(vk). (2.12)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if
at least one of the sets is empty.
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2.2 Bethe vectors

Now we pass to the description of Bethe vectors. They belong to a Hilbert space H, in which
the operators Tij(u) act. We assume that this space contains a referent state (pseudovacuum
vector) |0〉 such that

Tjj(u)|0〉 = λj(u)|0〉,

Tij(u)|0〉 = 0, i > j,
(2.13)

where λj(u) are some scalar functions. Generically, they are free functional parameters.
The action of the operators Tij(u) with i < j onto pseudovacuum is free. Within the

framework of NABA, it is assumed that successive action of these operators onto |0〉 generates
vectors of the space H. Bethe vectors are special polynomials in Tij(u) with i < j acting on |0〉.
Their explicit form will be given later. Here we would like to mention that in the models with
gl3-invariant R-matrix Bethe vectors depend on two sets of complex parameters ū = {u1, . . . , ua}
and v̄ = {v1, . . . , vb} called Bethe parameters. We denote these vectors by Ba,b(ū; v̄), where a
and b respectively are the cardinalities of the sets ū and v̄. A characteristic property of the
Bethe vectors is that they become eigenvectors of the transfer matrix T (z) = trT (z) provided
ū and v̄ enjoy ceratin constraint. In this case they are called on-shell Bethe vectors. Otherwise,
if ū and v̄ are generic complex numbers, then the corresponding vector is called off-shell Bethe

vector.
In physical models, vectors of the space H describe states with quasiparticles (excitations) of

two different types (colors). We say that a state has coloring {a, b}, if it contains a quasiparticles
of the color 1 and b quasiparticles of the color 2. The vector |0〉 has zero coloring. The
operator T12 is the creation operator of quasiparticles of the first color, while the operator T23

creates quasiparticles of the second color. The operator T13 creates one quasiparticle of the
first color and one quasiparticle of the second color. The diagonal operators Tii are neutral,
the matrix elements Tij with i > j play the role of annihilation operators. Generally, there are
no restrictions on the coloring {a, b}, thus, the parameters a and b are arbitrary non-negative
integers. In specific models, some restrictions may appear.

Different methods to construct Bethe vectors were developed in [12, 15–17]. Several equiv-
alent explicit representations were found in [25]. One of this representations reads

Ba,b(ū; v̄) =

min(a,b)∑

n=0

∑

#ūI=#v̄I=n

Kn(v̄I|ūI)f(ūI, ūII)f(v̄II, v̄I)

λ2(v̄II)λ2(ū)g(v̄, ū)
T13(ūI)T12(ūII)T23(v̄II)|0〉. (2.14)

Recall that here we use the shorthand notation (2.11), (2.12) for the products of the operators
Tij and the functions λ2, f , and g. The sum in (2.14) is taken over partitions of the sets
ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} such that #ūI = #v̄I = n, where n = 0, 1, . . . ,min(a, b). It is
easy to see that each term of this sum has a fixed coloring {a, b}, and thus, Bethe vector Ba,b(ū; v̄)
has coloring that coincides with the cardinalities of the Bethe parameters. We would like to
stress that generically there is no any restriction on the cardinalities of the Bethe parameters ū
and v̄. In particular, one might have a < b, that is #ū < #v̄.

The function Kn(v̄I|ūI) in (2.14) is a partition function of the six-vertex model with domain
wall boundary condition (DWPF) [31, 32]. It depends on two sets of variables v̄ and ū; the sub-
script shows that #v̄ = #ū = n. The function Kn has the following determinant representation
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[32]:

Kn(v̄|ū) = h(v̄, ū)




n∏

j<k

g(vj , vk)g(uk, uj)


 det

n

(
g(vj , uk)

h(vj , uk)

)
. (2.15)

Some properties of Kn are gathered in appendix A.
Observe that the normalization in (2.14) differs from the normalization of Bethe vectors used

in [25]. The present normalization is chosen so that the Bethe vector does not have singularities
for vj = uk and vj − c = uk.

We also consider Bethe vectors B̂a,b(ū; v̄) which correspond to the monodromy matrix T̂ (u).
They have the form

B̂a,b(ū; v̄) =

min(a,b)∑

n=0

∑

#ūI=#v̄I=n

Kn(v̄I|ūI)f(ūI, ūII)f(v̄II, v̄I)

λ̂2(v̄II)λ̂2(ū)g(v̄, ū)
T̂13(ūI)T̂12(ūII)T̂23(v̄II)|0〉, (2.16)

where λ̂2(z) = λ1(z)λ3(z − c).
The automorphism T (u) 7→ T̂ (u) generates a connection between the Bethe vectors B and

B̂:

B̂b,a(v̄ + c; ū) = (−1)a+b+abλ2(ū)λ2(v̄)

λ1(ū)λ3(v̄)
Ba,b(ū; v̄). (2.17)

The proof is given in appendix B.
We have mentioned already that a generic Bethe vector becomes an on-shell Bethe vector,

if the parameters ū and v̄ satisfy a special constraint. This constraint is known as a system of
Bethe equations and has the following form:

λ1(uj)

λ2(uj)
=

f(uj, ūj)

f(ūj, uj)
f(v̄, uj), j = 1, . . . , a,

λ2(vk)

λ3(vk)
=

f(vk, v̄k)

f(v̄k, vk)

1

f(vk, ū)
, k = 1, . . . , b.

(2.18)

If the system (2.18) is fulfilled, then

T (z)Ba,b(ū; v̄) = τ(z|ū, v̄)Ba,b(ū; v̄), (2.19)

where
τ(z) ≡ τ(z|ū, v̄) = λ1(z)f(ū, z) + λ2(z)f(z, ū)f(v̄, z) + λ3(z)f(z, v̄). (2.20)

Below we will need the action formulas of the operators Tij(z) and T̂ij(z) on the generic
Bethe vectors. They were obtained in [25]. We give the list of necessary formulas in appendix C.

3 Special NABA-solvable models

At the first sight, a method to construct on-shell Bethe vectors by means of the operator Bg(u)
(1.1) contradicts to the content of the previous section. Indeed, according to the general scheme,
the on-shell Bethe vector depends on two sets of variables subject to the equations (2.18). At the
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same time, vector (1.2) depends on only one set of variables. The solution of this contradiction
lies in the fact that in some models there is a kind of hierarchy between the variables ū and
v̄: the set ū plays a basic role, while the variables v̄ are auxiliary. In particular, the system of
Bethe equations can be reformulated as a constraint on the Bethe parameters ū only (see (3.4)
below).

This class of models includes the XXX SU(3)-invariant Heisenberg chain, for which the
operator Bg(u) was originally constructed in [1]. A characteristic property of these models is
that only the operators T12(u) and T13(u) are true creation operators, while T23(u)|0〉 = 0. In
spite of these models are a particular case of the models considered above, they find a wide
application in physics4.

Consider a monodromy matrix T 0(u) such that T 0
23(u)|0〉 = 0. This condition immediately

implies a restriction on the vacuum eigenvalues λj(u). Indeed, it follows from the RTT -relation
that

[T 0
32(u), T

0
23(v)] = g(u, v)

(
T 0
22(v)T

0
33(u)− T 0

22(u)T
0
33(v)

)
. (3.1)

Acting with this equation onto |0〉 we obtain

0 =
(
λ2(v)λ3(u)− λ2(u)λ3(v)

)
|0〉, (3.2)

leading to λ2(u) = κλ3(u), where κ is a constant. Without loss of generality we can set λ2(z) = κ
and λ3(z) = 1. At the same time, the vacuum eigenvalue λ1(z) still remains a free functional
parameter. Below we omit the subscript and denote it λ1(z) = λ(z).

Bethe equations (2.18) take the form

λ(uj) = κ
f(uj , ūj)

f(ūj , uj)
f(v̄, uj), j = 1, . . . , a, (3.3a)

κf(vk, ū) =
f(vk, v̄k)

f(v̄k, vk)
, k = 1, . . . , b. (3.3b)

One can show (see e.g. [33]) that this system implies

det
a

(
δjk + αλ(uj)

f(ūj , uj)

h(uk, uj)

)
= (1 + α)b(1 + ακ)a−b. (3.4)

Here α is a complex number. Equation (3.4) should be valid for an arbitrary value of this
parameter. As both sides of (3.4) are polynomials in α of degree a, this condition is equivalent
to a set of a equations for a variables ū = {u1, . . . , ua} (the free terms in both sides obviously
are equal to 1). We see that the set of auxiliary variables v̄ is eliminated.

According to the coloring prescriptions, quasiparticles of the second color now can be cre-
ated by the action of the operator T 0

13(u) only. Since this operator simultaneously creates a
quasiparticle of the first color, we conclude that the coloring of any state in these models has a

4One can also consider models, in which T12(u)|0〉 = 0, while T23(u) and T13(u) are true creation operators.
This case is equivalent to the one considered in this paper, due to an automorphism of the RTT -algebra (2.2)
with respect to the replacement Tij(u) → T4−j,4−i(−u).
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property b ≤ a. In particular, Bethe vectors B
0
a,b(ū; v̄) for such the monodromy matrix possess

this property. Their explicit form also simplifies:

B
0
a,b(ū; v̄) =

∑

#ūI=b

Kb(v̄|ūI)f(ūI, ūII)

κag(v̄, ū)
T 0
13(ūI)T

0
12(ūII)|0〉. (3.5)

In distinction of (2.14), here the sum is taken over partitions of the set ū ⇒ {ūI, ūII} such that
#ūI = b, while the set v̄ is not divided into subsets. We see that a generic off-shell Bethe vector
B
0
a,b(ū; v̄) still depends on the set of auxiliary Bethe parameters v̄. We will show, however, that

the auxiliary parameters can be eliminated from on-shell Bethe vectors, as it was done for the
system of Bethe equations.

Thus, for the models with the monodromy matrix T 0(u), one can actually restrict himself
with a one set of the Bethe parameters only. However, if we substitute the operators T 0

ij(u)
into equation (1.1) for Bg(u), then we see that Bg(u)|0〉 = 0. This is due to the fact that
T 0
23(u)|0〉 = 0. Thus, the operator (1.1) cannot be used as a creation operator in these models.
A nontrivial action of Bg(u) onto the pseudovacuum vector can be provided by an appro-

priate twist transformation
T (u) = KT 0(u)K−1. (3.6)

In paper [1], a generic twist matrix K was considered. We restrict ourselves with a ‘mini-
mal’ twist, which provides a condition T23(u)|0〉 6= 0, but does not change the action of other
operators Tij onto |0〉. Let

K = I +
β

1− κ
E23, (3.7)

where β 6= 0 is a complex number and E23 is an elementary unit matrix (E23)ij = δi2δj3. It
is easy to see that the matrix T (u) has the same vacuum eigenvalues λ1(z) = λ(z), λ2(z) = κ,
and λ3(z) = 1. However, now we have T23(u)|0〉 = β|0〉 provided κ 6= 1.

Of course, the twist matrix (3.7) is not the only matrix, ensuring the condition T23(u)|0〉 6= 0.
We discuss more general twists in Conclusion.

4 Main results

We are now in position to formulate our main results.

Proposition 4.1. Let the vacuum eigenvalues of the monodromy matrix T (u) be given be equa-

tions

T11(u)|0〉 = λ(u)|0〉, T22(u)|0〉 = κ|0〉, T33(u)|0〉 = |0〉, (4.1)

and T23(u)|0〉 = β|0〉. Let ū and v̄ be two sets of complex numbers such that #ū = a, #v̄ = b, and
the constraint (3.3a) is fulfilled. Then Bethe vector Ba,b(ū, v̄) has the following representation:

Ba,b(ū, v̄) =

a∑

n=0

βb−n

κa+bg(v̄, ū)

n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sλ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII)

× T13(ūI)T13(ūII)T12(ūIII)|0〉. (4.2)

8



Here the sum is taken over partitions of the set ū into three subsets ū ⇒ {ūI, ūII, ūIII}. The

cardinalities of the subsets are shown explicitly by the subscripts of the sum symbol in (4.2).

The proof of proposition 4.1 is based on the explicit representation for the Bethe vectors
(2.14). This is done in section 5. Here we give several comments on this proposition.

The condition (3.3a) is a part of Bethe equations, therefore, the corresponding Bethe vector
can be called a semi-on-shell Bethe vector [34]. The constraint (3.3a) is a system of a equations
for a+b variables. In particular, if 5 b ≥ a, then we can consider (3.3a) as the system of equations
for the parameters vk, k = 1, . . . , b. At the same time the parameters ū remain generic complex
numbers, and one can easily show that the system is solvable. Furthermore, it follows from
representation (4.2) that if vk, k = 1, . . . , b and v′k, k = 1, . . . , b′ are two different solutions to
the system (3.3a), then

κb
′−bg(v̄′, ū)Ba,b′(ū, v̄

′) = βb′−bg(v̄, ū)Ba,b(ū, v̄). (4.3)

This property is due to the very specific action of the operator T23(z) onto the pseudovacuum
vector: T23(z)|0〉 = β|0〉. Thus, two semi-on-shell Bethe vectors with different sets of the
Bethe parameters v̄ and v̄′ actually are proportional to each other. In fact, for an appropriate
normalization, semi-on-shell Bethe vectors (4.2) do not depend on the parameters of the set v̄.

Proposition 4.1 implies that on-shell Bethe vectors also have representation (4.2). In this
case the parameters ū and v̄ enjoy the additional set of equations (3.3b). We see, however, that
the condition (3.3a) is already sufficient to eliminate the parameters v̄ from the representation
for the Bethe vector. They are only included in the normalization factor.

Now we give an explicit representation for the multiple action of the operator Bg onto
pseudovacuum vector |0〉. It was shown in [1] that [Bg(u), Bg(v)] = 0 for arbitrary u and v.
Thus, given a set ū = {u1, . . . , ua}, then the notation

Bg(ū) =

a∏

j=1

Bg(uj) (4.4)

is well defined.

Proposition 4.2. Let the vacuum eigenvalues of the monodromy matrix T (u) be as in propo-

sition 4.1 and T23(u)|0〉 = β|0〉. Let a set ū consist of generic complex numbers and #ū = a.
Then

Bg(ū)|0〉 =
a∑

n=0

β2a−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sλ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII)

× T13(ūI)T13(ūII)T12(ūIII)|0〉. (4.5)

Here the sum over partitions of ū is taken as in proposition 4.1.

5Recall that due to T23(z)|0〉 6= 0 we have no restriction b ≤ a.
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This proposition gives the result of multiple action of the operator Bg onto |0〉 in terms of
multiple actions of the creation operators T12 and T13. The proof of proposition 4.2 is given in
section 7.

Comparing (4.5) and (4.2) we immediately arrive at

Corollary 4.1. Under the conditions of propositions 4.1 and 4.2

Bg(ū)|0〉 = β2a−bκa+bg(v̄, ū)Ba,b(ū, v̄). (4.6)

Thus, if the Bethe parameters ū and v̄ satisfy Bethe equations (3.3a), (3.3b), then the vector
Bg(ū)|0〉 is on-shell Bethe vector, as it is proportional to the on-shell Bethe vector Ba,b(ū, v̄).
One can also consider the vector Bg(ū)|0〉 for generic complex ū. Equation (4.6) remains true
in this case, if the set v̄ satisfies the system (3.3a). Due to the property (4.3) one can always
provide the solvability of this system for generic complex ū.

5 Proof of proposition 4.1

We begin with an explicit form of Bethe vectors corresponding to the twisted monodromy matrix
T (u) (3.6). This form follows from the general representation (2.14), where one should take into
account the condition T23(u)|0〉 = β|0〉. Then

Ba,b(ū; v̄) =

min(a,b)∑

n=0

∑

#ūI=#v̄I=n

βb−nKn(v̄I|ūI)f(ūI, ūII)f(v̄II, v̄I)

κa+b−ng(v̄, ū)
T13(ūI)T12(ūII)|0〉. (5.1)

Here, like in (2.14), the sum is taken over partitions of the sets ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II}.
The subscripts of the sums show that the partitions satisfy restrictions #ūI = #v̄I = n, where
n = 0, 1, . . . ,min(a, b).

The sum over partitions v̄ ⇒ {v̄I, v̄II} can be transformed into a sum over additional parti-
tions of the subset ūI via (A.2), in which one should set x̄ = v̄ and ȳ = ūI. Then

∑

#v̄I=n

Kn(v̄I|ūI)f(v̄II, v̄I) =
n∑

s=0

∑

#ūi=s

(−1)n−sf(ūi, ūii)f(v̄, ūi). (5.2)

Here in the lhs, the sum is taken over partitions v̄ ⇒ {v̄I, v̄II} so that #v̄I = n. In the rhs, the
sum is taken over all possible partitions ūI ⇒ {ūi, ūii}. Substituting this into (5.1) we find

Ba,b(ū, v̄) =

a∑

n=0

βb−n

κa+b−ng(v̄, ū)

n∑

s=0

∑

#ūi=s
#ūii=n−s

(−1)n−sf(ūi, ūii)f(v̄, ūi)f(ūi, ūII)f(ūii, ūII)

× T13(ūi)T13(ūii)T12(ūII)|0〉. (5.3)

In (5.3), the sum is taken over partitions of the set ū into three subsets ū ⇒ {ūi, ūii, ūII}. The
cardinalities of subsets are shown explicitly by the subscripts of the sum.
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Note that we have replaced the upper summation limit min(a, b) with a in the sum over n.
If a ≤ b, then this replacement certainly is possible. If a > b, then all the terms in the sum over
n with n > b vanish due to proposition A.2. Indeed, due to this proposition the sum in the rhs
of (5.2) gives a determinant (A.14). The latter vanishes for n > b. Thus, if a > b, then the sum
in (5.3) actually breaks at n = b.

Suppose that Ba,b(ū, v̄) is a semi-on-shell Bethe vector whose Bethe parameters satisfy the
condition (3.3a). Then taking the product of equations (3.3a) over subset ūi we find

f(v̄, ūi) = κ−sλ(ūi)
f(ūII, ūi)f(ūii, ūi)

f(ūi, ūii)f(ūi, ūII)
. (5.4)

Substituting this into (5.3) we arrive at

Ba,b(ū, v̄) =
a∑

n=0

βb−n

κa+bg(v̄, ū)

n∑

s=0

∑

#ūi=s
#ūii=n−s

(−κ)n−sλ(ūi)f(ūii, ūi)f(ūII, ūi)f(ūii, ūII)

× T13(ūi)T13(ūii)T12(ūII)|0〉. (5.5)

This representation coincides with (4.2) up to the labels of the subsets. Thus, proposition 4.1
is proved.

6 Action of Bg(z) on Bethe vectors

We use induction over a in order to prove proposition 4.2. However, before doing this, we find
the action of the operator Bg(z) on an arbitrary Bethe vector Ba,b(ū, v̄). This will give us a
necessary tool for the proof.

Below, for some time, we do not use restrictions T23(z)|0〉 = β|0〉, λ2(z) = κ, and λ3(z) = 1.
Instead, we consider the most general case of the monodromy matrix. In order to avoid new
notation, we still denote this monodromy matrix by T (z). However, we do not assume that
the action of T23(z) has some peculiarity, nor do we impose any restrictions on the eigenvalues
λj(z). We simply consider the action of the operator Bg(z) (2.8) on an arbitrary Bethe vector
Ba,b(ū; v̄) using (2.17) and action formulas (C.2)–(C.4). We also replace the expression for

Bg(z) (2.8) by T23(z2)T̂13(z1) − T13(z2)T̂12(z1) and consider the limit zk → z (k = 1, 2) in the
end of the calculations. Then we specify the obtained result to the semi-on-shell Bethe vectors
described in section 4.

6.1 Action of T23(z2)T̂13(z1)

In this section we study the action of T23(z2)T̂13(z1):

Λ1 = T23(z2)T̂13(z1)Ba,b(ū; v̄). (6.1)

Using (2.17) we have

Λ1 = (−1)a+b+ab λ1(ū)λ3(v̄)

λ2(ū)λ2(v̄)
T23(z2)T̂13(z1)B̂b,a(v̄ + c; ū). (6.2)
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Then due to (C.2) we obtain

Λ1 =
(−1)a+b+abλ1(ū)λ3(v̄)λ̂2(z1)

h(z1, v̄ + c)h(ū, z1)λ2(ū)λ2(v̄)
T23(z2)B̂b+1,a+1({v̄ + c, z1}; {ū, z1}). (6.3)

Turning back from B̂ to B and using λ̂2(z) = λ1(z)λ3(z − c) we arrive at

Λ1 =
(−1)a+b+1λ2(z1)λ2(z1 − c)g(z1, v̄)

h(ū, z1)
T23(z2)Ba+1,b+1({ū, z1}; {v̄, z1 − c}). (6.4)

It remains to act with T23(z2) onto the obtained vector via (C.4):

Λ1 =
(−1)a+b+1λ2(z1)λ2(z2)λ2(z1 − c)g(z1, v̄)g(z1, z2)

h(ū, z1)h(z2, ū)h(z2, z1)h(v̄, z2)

×
∑

#η̄I=1

f(η̄I, η̄II)h(v̄, η̄I)h(z2, η̄I)

h(η̄I, z2)g(z1, η̄I)
Ba+1,b+2(η̄II; {v̄, z1 − c, z2}), (6.5)

where η̄ = {ū, z1, z2} and the sum is taken over partitions η̄ ⇒ {η̄I, η̄II} so that #η̄I = 1.
We see that η̄I 6= z1 due to the function g(z1, η̄I) in the denominator of (6.5). Thus, either

η̄I = z2 or η̄I = uj , where j = 1, . . . , a. Respectively, we can present Λ1 in the following form

Λ1 = Λ
(0)
1 +

a∑

j=1

Λ
(j)
1 . (6.6)

Here Λ
(0)
1 corresponds to the case η̄I = z2:

Λ
(0)
1 =

λ2(z1)λ2(z2)λ2(z1 − c)g(v̄, z1)g(ū, z2)g(z1, z2)

h(ū, z1)
Ba+1,b+2({ū, z1}; {v̄, z1 − c, z2}). (6.7)

The contributions Λ
(j)
1 correspond to the case η̄I = uj and have the form:

Λ
(j)
1 =

(−1)a+b+1λ2(z1)λ2(z2)λ2(z1 − c)g(z1, v̄)g(z1, z2)

h(ū, z1)h(z2, ū)h(z2, z1)h(v̄, z2)

× f(uj, ūj)h(uj , z1)h(v̄, uj)f(z2, uj)Ba+1,b+2({ūj , z1, z2}; {v̄, z1 − c, z2}). (6.8)

Due to (C.2) we can present the vector Ba+1,b+2({ūj , z1, z2}; {v̄, z1− c, z2}) as a result of the
T13(z2) action:

Ba+1,b+2({ūj , z1, z2}; {v̄, z1 − c, z2}) =
h(z2, ūj)h(z2, z1)h(v̄, z2)

λ2(z2)g(z1, z2)

× T13(z2)Ba,b+1({ūj , z1}; {v̄, z1 − c}). (6.9)

Then

Λ
(j)
1 =

(−1)a+b+1λ2(z1)λ2(z1 − c)g(z1, v̄)

h(ū, z1)
h(uj , z1)g(z2, uj)f(uj , ūj)h(v̄, uj)

× T13(z2)Ba,b+1({ūj , z1}; {v̄, z1 − c}). (6.10)
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Observe that here we can take the limit z1 = z2 = z:

Λ
(j)
1

∣∣∣
z1=z2=z

=
(−1)aλ2(z)λ2(z − c)g(v̄, z)

h(ū, z)
f(uj, z)f(uj , ūj)h(v̄, uj)

× T13(z)Ba,b+1({ūj , z}; {v̄, z − c}). (6.11)

6.2 Action of T13(z2)T̂12(z1)

Now we study the action of T13(z2)T̂12(z1):

Λ2 = T13(z2)T̂12(z1)Ba,b(ū; v̄). (6.12)

Using again (2.17) we have

Λ2 = (−1)a+b+ab λ1(ū)λ3(v̄)

λ2(ū)λ2(v̄)
T13(z2)T̂12(z1)B̂b,a(v̄ + c; ū), (6.13)

and due to (C.3) we obtain

Λ2 =
(−1)a+b+abλ̂2(z1)λ1(ū)λ3(v̄)g(z1, v̄)

λ2(ū)λ2(v̄)h(ū, z1)
T13(z2)

×
∑

#ξ̄I=1

f(ξ̄II, ξ̄I)h(ξ̄I, z1)

g(ξ̄I, v̄)h(z1, ξ̄I)
B̂b+1,a({v̄ + c, z1}; ξ̄II), (6.14)

where ξ̄ = {ū, z1} and the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} so that #ξ̄I = 1. Turning
back to the vector B we find

Λ2 =
(−1)a+1λ2(z1)λ2(z1 − c)g(z1, v̄)

h(ū, z1)
T13(z2)

×
∑

#ξ̄I=1

λ1(ξ̄I)f(ξ̄II, ξ̄I)h(ξ̄I, z1)

λ2(ξ̄I)g(ξ̄I, v̄)h(z1, ξ̄I)
Ba,b+1(ξ̄II; {v̄, z1 − c}). (6.15)

There is no problem to compute the action of T13(z2), however, we do not do this. Instead
we present the obtained result in the form similar to (6.6)

Λ2 = Λ
(0)
2 +

a∑

j=1

Λ
(j)
2 . (6.16)

Here Λ
(0)
2 corresponds to the partition ξ̄I = z1:

Λ
(0)
2 = (−1)a+1λ1(z1)λ2(z1 − c)g(ū, z1)T13(z2)Ba,b+1(ū; {v̄, z1 − c}). (6.17)

Observe that here we can take the limit z1 = z2 = z:

Λ
(0)
2

∣∣∣
z1=z2=z

= (−1)a+1λ1(z)λ2(z − c)g(ū, z)T13(z)Ba,b+1(ū; {v̄, z − c}). (6.18)

13



The contributions Λ
(j)
2 correspond to the partitions ξ̄I = uj and have the following form:

Λ
(j)
2 =

(−1)aλ2(z1)λ2(z1 − c)g(z1, v̄)

h(ū, z1)
T13(z2)

×
λ1(uj)f(ūj , uj)f(uj, z1)

λ2(uj)g(uj , v̄)
Ba,b+1({ūj , z1}; {v̄, z1 − c}). (6.19)

Here we also can take the limit

Λ
(j)
2

∣∣∣
z1=z2=z

=
(−1)aλ2(z)λ2(z − c)g(z, v̄)

h(ū, z)
T13(z)

×
λ1(uj)f(ūj, uj)f(uj , z)

λ2(uj)g(uj , v̄)
Ba,b+1({ūj , z}; {v̄, z − c}). (6.20)

6.3 Action of Bg(z) on semi-on-shell Bethe vectors

Consider the difference of the contributions Λ
(j)
1 and Λ

(j)
2 at z1 = z2 = z. Using (6.11) and

(6.20) we find

(
Λ
(j)
1 − Λ

(j)
2

)∣∣∣
z1=z2=z

= (−1)aλ2(z)λ2(z − c)
f(uj , z)g(v̄, z)

g(v̄, uj)h(ū, z)

×
{
f(uj, ūj)f(v̄, uj)−

λ1(uj)

λ2(uj)
f(ūj, uj)

}
T13(z)Ba,b+1({ūj , z}; {v̄, z − c}). (6.21)

If Ba,b(ū; v̄) is a semi-on-shell Bethe vector such that

λ1(uj)

λ2(uj)
f(ūj, uj) = f(uj, ūj)f(v̄, uj), (6.22)

then this difference vanishes. In particular, if we impose the constraint (3.3a) (setting λ1(uj) =

λ(uj) and λ2(uj) = κ), then the contributions Λ
(j)
1 and Λ

(j)
2 cancel each other. It is remarkable,

however, that the cancellation of these terms takes place in the most general case of the semi-
on-shell Bethe vectors, for which λ1(z) and λ2(z) are free functional parameters.

7 Proof of proposition 4.2

Now we are able to prove proposition 4.2 via induction over a. For this, we specify the action
formulas of section 6 to the case λ1(z) = λ(z) and λ2(z) = κ.

7.1 Inductive basis

Consider the action of Bg(z) onto |0〉 = B0,0(∅; ∅). Then due to (6.7), (6.18) we have

Λ
(0)
1 = κ3g(z1, z2) B1,2(z1; {z1 − c, z2})

∣∣∣
z1=z2=z

,

Λ
(0)
2 = −κλ(z)T13(z)B0,1(∅; z − c).

(7.1)
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Using (5.3) we easily find B0,1(∅; z− c) = βκ−1|0〉. In the case a = 1, b = 2, equation (5.3) gives

B1,2(u; {v1, v2}) =
β2

κ3g(v̄, u)

(
T12(u)|0〉 +

κ

β
(f(v̄, u)− 1)T13(u)|0〉

)
. (7.2)

Setting here u = z1, v1 = z1 − c, and v2 = z2 we obtain

B1,2(z1; {z1 − c, z2}) =
β2

κ3g(z1, z2)

(
T12(z1)|0〉 −

κ

β
T13(z1)|0〉

)
, (7.3)

leading to

Λ
(0)
1 = β2T12(z)|0〉 − κβT13(z)|0〉. (7.4)

Thus, we arrive at

Bg(z)|0〉 = Λ
(0)
1 − Λ

(0)
2 = β2T12(z)|0〉 + β(λ(z) − κ)T13(z)|0〉. (7.5)

It is easy to see that representation (4.5) gives the same result for a = 1:

Bg(z)|0〉 =
1∑

n=0

β2−n
n∑

s=0

∑

#z̄I=s
#z̄II=n−s

(−κ)n−sλ(z̄I)T13(z̄I)T13(z̄II)T12(z̄III)|0〉. (7.6)

Here the sum is taken over partitions of the set z̄ (consisting on one element z) into three subsets
z̄I, z̄II, and z̄III. Clearly, two of these subsets are empty. Because of this reason we did not write
the product of the f -functions in (7.6) (see (4.5)), as these products are taken at least over one
empty set. Setting successively in (7.6) z̄I = z, z̄II = z, and z̄III = z we obtain three contributions
coinciding with (7.5). Thus, the induction basis is checked.

It is interesting to write down this result in terms of the entries of the original monodromy
matrix T 0(u). Using (3.6) and (3.7) we find

T13(u) = T 0
13(u)−

β

1− κ
T 0
12(u), T12(u) = T 0

12(u). (7.7)

Then replacing z with u in representation (7.5) we obtain

Bg(u)|0〉 = β(λ(u)− κ)T 0
13(u)|0〉 + β2

(
1− λ(u)

1− κ

)
T 0
12(u)|0〉. (7.8)

The monodromy matrix T 0(u) has two on-shell Bethe vectors in the case a = 1: B0
1,0(u, ∅)

and B0
1,1(u, v). In the first case, there is only one Bethe equation λ(u) = κ, and hence, (7.8)

yields
Bg(u)|0〉 = β2T 0

12(u)|0〉. (7.9)

In the second case we have a system of two Bethe equations

λ(u) = κf(v, u), κf(v, u) = 1, (7.10)

what implies λ(u) = 1. Then (7.8) yields

Bg(u)|0〉 = β(1− κ)T 0
13(u)|0〉. (7.11)

Both vectors T 0
12(u)|0〉 and T 0

13(u)|0〉 indeed are on-shell Bethe vectors respectively for λ(u) = κ
and λ(u) = 1. Thus, the action of Bg(u) onto the pseudovacuum vector does give the on-shell
Bethe vectors, if u is a root of Bethe equations.
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7.2 Inductive step

We assume that (4.5) holds for some a ≥ 1. Then due to corollary 4.1 the action Bg(ū)|0〉 with
ū = {u1, . . . , ua} is proportional to the semi-on-shell Bethe vector Ba,b(ū, v̄) (4.2), where the set
v̄ enjoys the constraint (3.3a). Hence, we have

Bg(z)Bg(ū)|0〉 = β2a−bκa+bg(v̄, ū)Bg(z)Ba,b(ū, v̄). (7.12)

The action of Bg(z) onto Ba,b(ū, v̄) is given by the terms Λ
(0)
2 (6.18) and Λ

(0)
1 (6.7) (in the limit

z1 = z2 = z). Thus,

Bg(z)Bg(ū)|0〉 = β2a−bκa+bg(v̄, ū)
(
Λ
(0)
1 − Λ

(0)
2

)∣∣∣
z1=z2=z

. (7.13)

Now we should set λ1(z) = λ(z) and λ2(z) = κ in (6.7) and (6.18) for Λ
(0)
k and substitute these

expressions into (7.13). We obtain

Bg(z)Bg(ū)|0〉 = M1 +M2, (7.14)

where
M1 = β2a−bκa+b+1g(v̄, ū)λ(z)g(z, ū)T13(z)Ba,b+1(ū; {v̄, z − c}), (7.15)

and

M2 = β2a−bκa+b+3g(v̄, ū)
g(v̄, z1)g(ū, z2)g(z1, z2)

h(ū, z1)
Ba+1,b+2({ū, z1}; {v̄, z1 − c, z2})

∣∣∣
z1=z2=z

.

(7.16)
It remains to substitute explicit expression (5.3) for the Bethe vectors Ba,b+1(ū; {v̄, z − c})
and Ba+1,b+2({ū, z1}; {v̄, z1 − c, z2}) into (7.15) and (7.16). However, before doing this, it is
convenient to describe an expected form of the result.

We expect that multiple action Bg(z)Bg(ū)|0〉 is given by (4.5), in which one should replace
ū with η̄ = {ū, z} and a → a+ 1. That is,

Bg(z)Bg(ū)|0〉 =
a+1∑

n=0

β2a+2−n

n∑

s=0

∑

#η̄I=s
#η̄II=n−s

(−κ)n−sλ(η̄I)f(η̄II, η̄I)f(η̄III, η̄I)f(η̄II, η̄III)

× T13(η̄I)T13(η̄II)T12(η̄III)|0〉. (7.17)

Let us give more details on the expected form of the result (7.17).
There are three possibilities in the sum over partitions in the rhs of (7.17): z ∈ η̄I; z ∈ η̄II;

z ∈ η̄III. Respectively, there are three contributions

Bg(z)Bg(ū)|0〉 = W1 +W2 +W3. (7.18)

In the first case we have

W1 = λ(z)T13(z)

a∑

n=0

β2a+1−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sλ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII)

× f(ūII, z)f(ūIII, z)T13(ūI)T13(ūII)T12(ūIII)|0〉. (7.19)
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Indeed, we can set η̄I = {z, ūI}, η̄II = ūII, and η̄III = ūIII. The set η̄I is not empty, thus,
s ∈ [1, . . . , n]. This implies n ∈ [1, . . . , a + 1]. Shifting n → n + 1 and s → s + 1 in (7.17) we
arrive at (7.19).

In the second case η̄II = {z, ūII}, η̄I = ūI, and η̄III = ūIII. The set η̄II is not empty, thus,
s ∈ [0, . . . , n − 1]. We also have n ∈ [1, . . . , a + 1], because the union {η̄I, η̄II} is not empty.
Shifting n → n+ 1 in (7.17) we arrive at

W2 = −κT13(z)

a∑

n=0

β2a+1−n

n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sλ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII)

× f(z, ūI)f(z, ūIII)T13(ūI)T13(ūII)T12(ūIII)|0〉. (7.20)

Finally, in the third case η̄I = ūI, η̄II = ūII, and η̄III = {z, ūIII}. The set η̄III is not empty, thus,
n ∈ [0, . . . , a]. We obtain

W3 =
a∑

n=0

β2a+2−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sλ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII)

× f(z, ūI)f(ūII, z)T13(ūI)T13(ūII)T12(ūIII)T12(z)|0〉. (7.21)

Thus, our goal is to check that equations (7.14)–(7.16) give all three contributions Wj,
j = 1, 2, 3.

7.2.1 Contribution W1

Consider the term M1. Using (5.3) for Ba,b+1(ū; {v̄, z − c}) we obtain

M1 = λ(z)f(ū, z)T13(z)
a∑

n=0

κnβ2a+1−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−1)n−s

× f(ūI, ūII)
f(v̄, ūI)

f(ūI, z)
f(ūI, ūIII)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)|0〉. (7.22)

Taking into account (3.3a) we arrive at

M1 = λ(z)T13(z)

a∑

n=0

β2a+1−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sf(ūII, z)f(ūIII, z)

× λ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)|0〉. (7.23)

We see that this is exactly W1 (7.19).
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7.2.2 Contributions W2 and W3

Consider the term M2. Using (5.3) for Ba+1,b+2({ū, z1}; {v̄, z1 − c, z2}) and setting {z1, ū} = η̄
we obtain

M2 =

a+1∑

n=0

κnβ2a+2−n
n∑

s=0

∑

#η̄I=s
#η̄II=n−s

(−1)n−s f(v̄, η̄I)f(z2, η̄I)

f(η̄I, z1)

× f(η̄I, η̄II)f(η̄I, η̄III)f(η̄II, η̄III) T13(η̄I)T13(η̄II)T12(η̄III)|0〉. (7.24)

We see that z1 /∈ η̄I, otherwise 1/f(η̄I, z1) = 0. Thus, either z1 ∈ η̄II or z1 ∈ η̄III. Respectively, M2

consists of two contributions: M
(1)
2 corresponding to the case z1 ∈ η̄II and M

(2)
2 corresponding

to the case z1 ∈ η̄III.
Let z1 ∈ η̄II. Then we can set η̄I = ūI, η̄III = ūIII, and η̄II = {z1, ūII}. We also have n− s > 0,

and thus, s ∈ [0, . . . , n − 1] and n ∈ [1, . . . , a + 1]. Shifting n → n + 1 and setting z1 = z2 = z
we obtain

M
(1)
2 = −κT13(z)

a∑

n=0

κnβ2a+1−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−1)n−sf(z, ūI)f(z, ūIII)

× f(ūI, ūII)f(v̄, ūI)f(ūI, ūIII)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)|0〉. (7.25)

Using (3.3a) we arrive at

M
(1)
2 = −κT13(z)

a∑

n=0

β2a+1−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sf(z, ūI)f(z, ūIII)

× λ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)|0〉, (7.26)

and we see that this is exactly W2 (7.20).
Let now z1 ∈ η̄III. Then we can set η̄I = ūI, η̄II = ūII, and η̄III = {z1, ūIII}. We also have

n ∈ [0, . . . , a]. Setting z1 = z2 = z we obtain

M
(2)
2 =

a∑

n=0

κnβ2a+2−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−1)n−sf(z, ūI)f(ūII, z)

× f(ūI, ūII)f(v̄, ūI)f(ūI, ūIII)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)T12(z)|0〉. (7.27)

Using (3.3a) we arrive at

M
(2)
2 =

a∑

n=0

β2a+2−n
n∑

s=0

∑

#ūI=s
#ūII=n−s

(−κ)n−sf(z, ūI)f(ūII, z)

× λ(ūI)f(ūII, ūI)f(ūIII, ūI)f(ūII, ūIII) T13(ūI)T13(ūII)T12(ūIII)T12(z)|0〉. (7.28)

We see that this is exactly W3 (7.21). Thus, the multiple action Bg(z)Bg(ū)|0〉 is given by the
formulas (7.19)–(7.21), leading to (7.17). Hence, proposition 4.2 is proved.
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Conclusion

In this paper we have proved one of conjectures of [1]. Namely we have shown that the successive
action of the operator Bg (1.1) on the pseudovacuum vector generates on-shell Bethe vectors in
gl3-invariant models, provided the arguments of these operators satisfy Bethe equations. Fur-
thermore, if the arguments of the Bg operators are generic complex numbers, then the successive
action of Bg gives a semi-on-shell Bethe vector. This property holds not only for gl3-invariant
spin chains, but for a wider class of models, for instance, for the two-component generalization
of the Lieb–Liniger model [3, 35–37]. At the same time, we would like to emphasize that the op-
erator Bg can not be used to construct on-shell Bethe vectors in generic NABA-solvable models.
The restriction T 0

23(u)|0〉 = 0 is crucial. On the other hand, the existence of this restriction was
clear from the outset, since within the framework of the new approach Bethe vectors depend
only on one set of variables by construction, rather than two sets, as is the case of the Bethe
vectors of the general form.

In this paper, we considered the minimal twist (3.7). A general twist Kgen can be treated as
further twisting of the matrix T (u). It is quite natural to expect that the effect of the general
twist must be similar to what one has in the case of gl2 based models [38]. Namely, we saw that
for the minimal twist, the multiple action of Bg was equivalent to the one semi-on-shell Bethe
vector Ba,b(ū, v̄). Most probably, that the multiple action of Bg in the case of the general twist
is equivalent to a linear combination of semi-on-shell Bethe vectors with different sets of the
Bethe parameters. However, as soon as we impose Bethe equations, only one term in this linear
combination should survive. The proof of this property in the case of gl2-invariant models is
very simple (see [38]). However, a generalization of this proof to the models with gl3-invariant
R-matrix meats certain technical difficulties. Therefore, we did not consider the case of the
general twist.

Despite the fact that we have proved the property of Bg(u) to generate on-shell Bethe
vectors, we still do not have a clear understanding of why this is happening. In this context, the
most intrigues looks the cancellation of ‘unwanted’ terms (6.21). Recall that this cancellation
takes place for a general semi-on-shell Bethe vector. We do not need to assume any specific form
of λj(u) and specific action of T23(u) onto |0〉. Perhaps this is due to some hidden structure of
the operator Bg(u), which is not yet clear. It would be very interesting to find this structure.

Finally it is worth mentioning that a generalization of the operator Bg(u) to the glN -
invariant spin chains (N > 3) was also proposed in [1]. It was conjectured that this operator
also generates on-shell Bethe vectors, similarly to the gl3 case. Basing on the results of this
paper we can assume that the successive action of Bg(u) is equivalent to a semi-on-shell Bethe
vector of a certain glN -invariant integrable model. However, the method that we used in this
paper hardly can be applied to the case N > 3, as it becomes very bulky.
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A Properties of DWPF

The DWPF Kn(x̄|ȳ) defined by (2.15) is a rational function of x̄ and ȳ. It is symmetric over
x̄ and symmetric over ȳ. If xj → ∞ (or yj → ∞) and all other variables are fixed, then
Kn(x̄|ȳ) → 0. This function has simple poles at xj = yk, j, k = 1, . . . , n. The residues in these
poles can be expressed in terms of Kn−1. Due to the symmetry of Kn over x̄ and over ȳ, it is
enough to consider the residue at xn = yn:

Kn(x̄|ȳ)
∣∣∣
xn→yn

= g(xn, yn)f(x̄n, xn)f(yn, ȳn)Kn−1(x̄n|ȳn) + reg, (A.1)

where reg means regular part.
The properties listed above, together with the initial condition K1(x|y) = g(x, y) fix the

function Kn(x̄|ȳ) unambiguously [31, 32].

Proposition A.1. Let #x̄ = m and #ȳ = n so that m ≥ n. Then

∑

#x̄I=n

Kn(x̄I|ȳ)f(x̄II, x̄I) =

n∑

k=0

∑

#ȳI=k

(−1)n−kf(ȳI, ȳII)f(x̄, ȳI). (A.2)

Here in the lhs, the sum is taken over partitions x̄ ⇒ {x̄I, x̄II} so that #x̄I = n. In the rhs, the

sum is taken over all possible partitions ȳ ⇒ {ȳI, ȳII}.

Proof. We use induction over n. For n = 1, equation (A.2) takes the form

m∑

j=1

g(xj , y)f(x̄j, xj) = f(x̄, y)− 1. (A.3)

Obviously, the lhs of (A.3) is partial fraction decomposition of the rhs. Thus, identity (A.2) is
valid for n = 1 and arbitrary m ≥ 1.

Assume that (A.2) holds for some n− 1 and arbitrary m ≥ n− 1. Let

Hℓ
n,m(x̄; ȳ) =

∑

#x̄I=n

Kn(x̄I|ȳ)f(x̄II, x̄I),

Hr
n,m(x̄; ȳ) =

n∑

k=0

∑

#ȳI=k

(−1)n−kf(ȳI, ȳII)f(x̄, ȳI).

(A.4)

Consider properties of Hℓ
n,m and Hr

n,m as functions of yn at other variables fixed. Both functions

are rational functions of yn. Due to the properties of Kn(x̄I|ȳ), the function Hℓ
n,m(x̄; ȳ) vanishes

as yn → ∞. Let us show that Hr
n,m(x̄; ȳ) has the same property. We use the fact that for

arbitrary finite z the functions f(z, yn) and f(yn, z) go to 1 as yn → ∞.
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Clearly, we have either yn ∈ ȳI or yn ∈ ȳII in the sum over partitions over ȳ. Consider the
first case. Then k > 0 and we can set ȳI = {yn, ȳi}. We obtain

lim
yn→∞

n∑

k=1

∑

#ȳi=k−1

(−1)n−kf(yn, ȳII)f(ȳi, ȳII)f(x̄, yn)f(x̄, ȳi) =

n−1∑

k=0

∑

#ȳi=k

(−1)n−k−1f(ȳi, ȳII)f(x̄, ȳi).

(A.5)
In the second case k < n and we can set ȳII = {yn, ȳii}. We obtain

lim
yn→∞

n−1∑

k=0

∑

#ȳI=k

(−1)n−kf(ȳI, yn)f(ȳI, ȳii)f(x̄, ȳI) =
n−1∑

k=0

∑

#ȳI=k

(−1)n−kf(ȳI, ȳii)f(x̄, ȳI). (A.6)

Relabeling ȳi → ȳI in (A.5) and ȳii → ȳII in (A.6) we see that the obtained sums over partitions
cancel each other. Thus Hr

n,m(x̄; ȳ) → 0 as yn → ∞.
It remains to compare the residues of two rational functions in the poles yn = xj , j =

1, . . . ,m. Let yn → xj in the function Hℓ
n,m(x̄; ȳ). The pole occurs if and only if xj ∈ x̄I.

Setting x̄I = {xj , x̄I′} and using (A.1) we find

Hℓ
n,m(x̄; ȳ)

∣∣∣
yn→xj

=
∑

#x̄
I′
=n−1

g(xj , yn)f(x̄I′ , xj)f(yn, ȳn)Kn−1(x̄I′ |ȳn)f(x̄II, x̄I′)f(x̄II, xj) + reg,

(A.7)
where reg means regular part. Obviously f(x̄I′ , xj)f(x̄II, xj) = f(x̄j, xj). Hence,

Hℓ
n,m(x̄; ȳ)

∣∣∣
yn→xj

= g(xj , yn)f(x̄j, xj)f(yn, ȳn)
∑

#x̄
I′
=n−1

Kn−1(x̄I′ |ȳn)f(x̄II, x̄I′) + reg. (A.8)

The remaining sum over partitions gives Hℓ
n−1,m−1(x̄j; ȳn), and we finally arrive at

Hℓ
n,m(x̄; ȳ)

∣∣∣
yn→xj

= g(xj , yn)f(x̄j , xj)f(yn, ȳn)H
ℓ
n−1,m−1(x̄j ; ȳn) + reg. (A.9)

Consider now the behavior of Hr
n,m(x̄; ȳ) at yn → xj. The pole occurs if and only if yn ∈ ȳI.

Setting ȳI = {yn, ȳI′} we obtain

Hr
n,m(x̄; ȳ)

∣∣∣
yn→xj

=

n∑

k=1

∑

#ȳ
I′
=k−1

(−1)n−kf(yn, ȳII)f(ȳI′ , ȳII)

× f(x̄j, ȳI′)g(xj , yn)f(x̄j , xj)f(yn, ȳI′) + reg. (A.10)

Using f(yn, ȳI′)f(yn, ȳII) = f(yn, ȳn) and changing k → k + 1 we find

Hr
n,m(x̄; ȳ)

∣∣∣
yn→xj

= g(xj , yn)f(x̄j, xj)f(yn, ȳn)

n−1∑

k=0

∑

#ȳ
I′
=k

(−1)n−1−kf(ȳI′ , ȳII)f(x̄j , ȳI′) + reg.

(A.11)
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The remaining sum over partitions gives Hr
n−1,m−1(x̄j; ȳn), and we finally arrive at

Hr
n,m(x̄; ȳ)

∣∣∣
yn→xj

= g(xj , yn)f(x̄j, xj)f(yn, ȳn)H
r
n−1,m−1(x̄j ; ȳn) + reg. (A.12)

Due to the induction assumption Hr
n−1,m−1(x̄j ; ȳn) = Hℓ

n−1,m−1(x̄j; ȳn). Hence, the residues

of Hr
n,m(x̄; ȳ) and Hℓ

n,m(x̄; ȳ) in the poles at yn = xj coincide. Since both functions vanish at

yn → ∞ we conclude that Hr
n,m(x̄; ȳ) = Hℓ

n,m(x̄; ȳ).

Proposition A.2. Let #x̄ = m and #ȳ = n. Then

n∑

k=0

∑

#ȳI=k

(−1)n−kf(ȳI, ȳII)f(x̄, ȳI) = det
n

(
f(yj, ȳj)f(x̄, yj)

h(yj , yk)
− δjk

)
. (A.13)

Here the sum is taken over all possible partitions ȳ ⇒ {ȳI, ȳII}. If m < n, then

det
n

(
f(yj, ȳj)f(x̄, yj)

h(yj , yk)
− δjk

)
= 0. (A.14)

Proof. Expanding the determinant in the rhs of (A.13) over diagonal minors we find

det
n

(
f(yj, ȳj)f(x̄, yj)

h(yj , yk)
− δjk

)

= (−1)n +

n∑

s=1

(−1)n−s
∑

1≤j1<···<js≤n




s∏

p=1

f(yjp, ȳjp)f(x̄, yjp)


 det

s

1

h(yji , yjk)
. (A.15)

The determinant in the rhs is the Cauchy determinant, hence,

det
s

1

h(yji , yjk)
=

s∏

p,q=1
p 6=q

1

f(yjp, yjq)
. (A.16)

Thus, we obtain

det
n

(
f(yj, ȳj)f(x̄, yj)

h(yj , yk)
− δjk

)

= (−1)n +

n∑

s=1

(−1)n−s
∑

1≤j1<···<js≤n




s∏

p=1

f(yjp, ȳjp)f(x̄, yjp)




s∏

p,q=1
p 6=q

1

f(yjp, yjq)
. (A.17)

This is exactly the sum over partitions in the lhs of (A.13).
Let now m < n. Obviously,

det
n

(
f(yj, ȳj)f(x̄, yj)

h(yj , yk)
− δjk

)
= det

n

(
f(yj, ȳj)f(x̄, yk)

h(yj , yk)
− δjk

)
, (A.18)
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because both matrices are related by a similarity transformation. It is easy to see that the
matrix in the rhs of (A.18) has an eigenvector with zero eigenvalue:

n∑

k=1

f(yj, ȳj)f(x̄, yk)

h(yj , yk)
νk − νj = 0, (A.19)

where

νk =
g(yk, ȳk)

g(x̄, yk)
. (A.20)

Indeed, consider a function

1

h(z, ȳ)g(x̄, z)
=

cn−m
∏m

p=1(xp − z)
∏n

q=1(z − yq + c)
. (A.21)

Due to the condition m < n this function vanishes as z → ∞. Hence, it has the following partial
fraction decomposition

cn−m
∏m

p=1(xp − z)
∏n

q=1(z − yq + c)
=

n∑

k=1

cn−m
∏m

p=1(xp − yk + c)

(z − yk + c)
∏n

q=1,q 6=k(yk − yq)
=

n∑

k=1

g(yk, ȳk)h(x̄, yk)

h(z, yk)
. (A.22)

Setting here z = yj we arrive at

n∑

k=1

g(yk, ȳk)h(x̄, yk)

h(yj, yk)
−

1

h(yj , ȳ)g(x̄, yj)
= 0. (A.23)

On the other hand, substituting νj from (A.20) into (A.19) we immediately obtain the lhs of
(A.23).

B Proof of the connection between two types of Bethe vectors

The proof of (2.17) is based on the double induction, first on a, and then on b.

B.1 First step of induction

We first assume that b = 0. Then (2.17) takes the form

B̂0,a(∅; ū) = (−1)a
λ2(ū)

λ1(ū)
Ba,0(ū; ∅). (B.1)

For a = 0, (B.1) turns into a trivial identity: |0〉 = |0〉. It is easy to see that (B.1) also holds
for a = 1:

B̂0,1(∅;u) =
T̂23(u)|0〉

λ̂2(u)
= −

T12(u)|0〉

λ1(u)
= −

λ2(u)

λ1(u)
B1,0(ū; ∅), (B.2)

where we used (C.8) for T̂23(u).
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Assume now that (B.1) holds for some a ≥ 1. Then we have for #ū = a

B̂0,a+1(∅; {ū, z}) = T̂23(z)
T̂23(ū)|0〉

λ̂2(z)λ̂2(ū)
= (−1)aT̂23(z)

T12(ū)|0〉

λ̂2(z)λ1(ū)
. (B.3)

Substituting here T̂23(z) from (C.8) we find

B̂0,a+1(∅; {ū, z}) = (−1)a
(
T13(z)T32(z − c)− T12(z)T33(z − c)

) T12(ū)|0〉

λ̂2(z)λ1(ū)
. (B.4)

To calculate the obtained action we use commutation relations of the monodromy matrix entries.
The RTT -relation (2.2) implies

[Tij(u), Tkl(v)] = g(u, v)
(
Tkj(v)Til(u)− Tkj(u)Til(v)

)
. (B.5)

In particular, we have

T32(u)T12(v) = T12(v)T32(u)f(u, v) − T12(u)T32(v)g(u, v). (B.6)

We see that permuting the operators T32 and T12 we obtain the annihilation operator T32 on
the right. Eventually, this operator approaches the vector |0〉 and annihilates it. Thus, the
contribution from the term T13(z)T32(z − c) vanishes.

The commutation relations (B.5) also imply

T33(u)T12(v) = T12(v)T33(u) + g(u, v)
(
T13(v)T32(u)− T13(u)T32(v)

)
. (B.7)

We see that when the operator T33 is permuted with the operator T12, it either commutes or
generates the operator T32. As we have already seen, the latter annihilates the state T12(ū)|0〉.
Thus, the operator T33(z − c) acts on the state T12(ū)|0〉 as

T33(z − c)T12(ū)|0〉 = λ3(z − c)T12(ū)|0〉. (B.8)

Substituting this into (B.4), we arrive at

B̂0,a+1(∅; {ū, z}) = (−1)a+1λ3(z − c)
T12(z)T12(ū)|0〉

λ1(ū)λ̂2(z)
= (−1)a+1λ2(ū)λ2(z)

λ1(ū)λ1(z)
Ba+1,0({ū, z}; ∅),

(B.9)
what completes the first step of the induction. Thus, equation (2.17) holds for b = 0 and a
arbitrary non-negative.

B.2 Second step of induction

We pass to the second step of induction. This time we use a recursion for the Bethe vectors B̂

[25]

λ̂2(z)g(ū, z)B̂b+1,a({v̄ + c, z}; ū) = T̂12(z)B̂b,a(v̄ + c; ū)

+

a∑

j=1

g(uj , z)
f(ūj , uj)

g(uj , v̄)
T̂13(z)B̂b,a−1(v̄ + c; ūj). (B.10)
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This recursion allows us to uniquely construct the Bethe vector B̂b+1,a, knowing the Bethe

vectors6 B̂b,a and B̂b,a−1.
Assume that (2.17) holds for some b ≥ 0 and a arbitrary. Then we can replace the Bethe

vectors B̂ by B in the rhs of (B.10). We obtain

λ̂2(z)g(ū, z)B̂b+1,a({v̄ + c, z}; ū) = (−1)a+b+abλ2(ū)λ2(v̄)

λ1(ū)λ3(v̄)

{
T̂12(z) Ba,b(ū; v̄)

+ (−1)b+1
a∑

j=1

λ1(uj)g(uj , z)f(ūj , uj)

λ2(uj)g(uj , v̄)
T̂13(z) Ba−1,b(ūj ; v̄)

}
. (B.11)

We should compute the action of the operator T̂12(z) on Ba,b(ū; v̄) and the action of the operator

T̂13(z) on Ba−1,b(ūj ; v̄). This is done in sections C.2.2 and C.2.1 respectively. The results have
the following form:

T̂13(z)Ba−1,b(ūj ; v̄) = (−1)a+bλ2(z)λ2(z − c)
g(z, v̄)

h(ūj , z)
Ba,b+1({ūj , z}; {v̄, z − c}), (B.12)

and

T̂12(z)Ba,b(ū; v̄) = (−1)a+1λ2(z − c)
{
λ1(z)g(ū, z)Ba,b+1(ū; {v̄, z − c})

+ λ2(z)g(v̄, z)

a∑

j=1

λ1(uj)g(z, uj)f(ūj , uj)

λ2(uj)g(v̄, uj)h(ūj , z)
Ba,b+1({ūj , z}; {v̄, z − c})

}
. (B.13)

Substituting these formulas into (B.11) we immediately arrive at

λ̂2(z)B̂b+1,a({v̄ + c, z}; ū) = (−1)1+b+abλ2(ū)λ2(v̄)

λ1(ū)λ3(v̄)
λ1(z)λ2(z − c)Ba,b+1(ū; {v̄, z − c}). (B.14)

Finally, using λ̂2(z) = λ1(z)λ3(z − c) we obtain

B̂b+1,a({v̄ + c, z}; ū) = (−1)a+(b+1)+a(b+1) λ2(ū)λ2(v̄)λ2(z − c)

λ1(ū)λ3(v̄)λ3(z − c)
Ba,b+1(ū; {v̄, z − c}). (B.15)

This completes the second step of the induction.

C Action formulas

C.1 Actions of the operators Tij on Bethe vectors Ba,b

In this section we give a list of formulas for the actions of the operators Tij(z) on the Bethe
vectors Ba,b(ū; v̄). These formulas were obtained in [25]. Here they are adopted to the new
normalization of the Bethe vectors. In all action formulas η̄ = {z, ū} and ξ̄ = {z, v̄}. We also
set

Λ(z) =
λ2(z)

h(v̄, z)h(z, ū)
. (C.1)

6We set by definition B̂b,−1 = 0.
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• Action of T13(z):
T13(z)Ba,b(ū; v̄) = Λ(z)Ba+1,b+1(η̄; ξ̄). (C.2)

• Action of T12(z):

T12(z)Ba,b(ū; v̄) = Λ(z)
∑

#ξ̄I=1

f(ξ̄II, ξ̄I)h(ξ̄I, η̄)

h(z, ξ̄I)
Ba+1,b(η̄; ξ̄II). (C.3)

The sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} so that #ξ̄I = 1.

• Action of T23(z):

T23(z)Ba,b(ū; v̄) = Λ(z)
∑

#η̄I=1

f(η̄I, η̄II)h(ξ̄, η̄I)

h(η̄I, z)
Ba,b+1(η̄II; ξ̄). (C.4)

The sum is taken over partitions η̄ ⇒ {η̄I, η̄II} so that #η̄I = 1.

• Action of T22(z):

T22(z)Ba,b(ū; v̄) = Λ(z)
∑

#ξ̄I=#η̄I=1

f(η̄I, η̄II)f(ξ̄II, ξ̄I)h(ξ̄I, η̄)h(ξ̄II, η̄I)

h(z, ξ̄I)h(η̄I, z)
Ba,b(η̄II; ξ̄II). (C.5)

The sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II} so that #ξ̄I = #η̄I = 1.

• Action of T11(z):

T11(z)Ba,b(ū; v̄) = Λ(z)
∑

#ξ̄I=#η̄I=1

λ1(η̄I)f(η̄II, η̄I)f(ξ̄II, ξ̄I)h(ξ̄I, η̄II)

λ2(η̄I)g(ξ̄II, η̄I)h(z, ξ̄I)
Ba,b(η̄II; ξ̄II). (C.6)

The sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II} so that #ξ̄I = #η̄I = 1.

• Action of T21(z):

T21(z)Ba−1,b(ū; v̄) = Λ(z)
∑

#η̄I=#η̄II=1
#ξ̄I=1

λ1(η̄I)f(η̄II, η̄I)f(η̄II, η̄III)f(η̄III, η̄I)f(ξ̄II, ξ̄I)

λ2(η̄I)g(ξ̄II, η̄I)h(η̄II, z)h(z, ξ̄I)

× h(ξ̄I, η̄II)h(ξ̄I, η̄III)h(ξ̄II, η̄II)Ba−1,b(η̄III; ξ̄II). (C.7)

The sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II, η̄III} so that #ξ̄I = #η̄I =
#η̄II = 1.

The actions of T̂ij onto B̂a,b(ū; v̄) are given by the same formulas, where we should put hats for
the operators, the vacuum eigenvalues λk(z), and the Bethe vectors.
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C.2 Actions of the operators T̂ij on Bethe vectors Ba,b

The action formulas (C.2)–(C.7) allow us to derive the actions of the operators T̂ij onto the

Bethe vectors Ba,b(ū; v̄). For this we should express T̂ij in terms of the original entries Tij via
(2.5)–(2.7). In particular, we have

T̂12(z) = T21(z)T13(z − c)− T23(z)T11(z − c),

T̂23(z) = T13(z)T32(z − c)− T12(z)T33(z − c),

T̂13(z) = T12(z)T23(z − c)− T13(z)T22(z − c).

(C.8)

Then the actions of T̂ij onto Ba,b(ū; v̄) can be obtained via successive application of the formulas

(C.2)–(C.7). Below we give some details of this derivation for the action of T̂13 and T̂12.

C.2.1 Action of T̂13

The operator T̂13(z) is given by the last equation (C.8). It is convenient to consider the following
combination

T12(x)T23(y)− T13(x)T22(y) (C.9)

and set x = z, y = z − c in the end. Such the replacement of T̂13(z) allows us to avoid singular
expressions in the intermediate computations.

Applying successively, first (C.5) and (C.2), and then (C.4) and (C.3) we obtain

T13(x)T22(y)Ba,b(ū; v̄) =
Λ(x, y)

h(y, x)

∑

#ξ̄I=1
#η̄I=1

f(η̄I, η̄II)f(ξ̄II, ξ̄I) h(ξ̄I, η̄)h(ξ̄II, η̄I)

h(y, ξ̄I)h(η̄I, y)f(x, ξ̄I)f(η̄I, x)
Ba+1,b+1(η̄II; ξ̄II),

(C.10)
and

T12(x)T23(y)Ba,b(ū; v̄) =
Λ(x, y)

h(y, x)

∑

#ξ̄I=1
#η̄I=1

f(η̄I, η̄II)f(ξ̄II, ξ̄I)h(ξ̄I, η̄)h(ξ̄II, η̄I)

h(η̄I, y)h(x, ξ̄I)f(η̄I, x)
Ba+1,b+1(η̄II; ξ̄II). (C.11)

Here η̄ = {ū, x, y} and ξ̄ = {v̄, x, y}. The sum is taken over partitions η̄ ⇒ {η̄I, η̄II} and
ξ̄ ⇒ {ξ̄I, ξ̄II} so that #η̄I = #ξ̄I = 1. Here we also introduced

Λ(x, y) =
λ2(x)λ2(y)

h(x, y)h(v̄, x)h(v̄, y)h(x, ū)h(y, ū)
. (C.12)

Taking the difference of (C.10) and (C.11) we arrive at

T̂13(z)Ba,b(ū; v̄) = Λ(x, y)
∑

#ξ̄I=1
#η̄I=1

f(η̄I, η̄II)f(ξ̄II, ξ̄I)h(ξ̄I, η̄)h(ξ̄II, η̄I)

h(η̄I, y)h(x, ξ̄I)h(y, ξ̄I)f(η̄I, x)
Ba+1,b+1(η̄II; ξ̄II)

∣∣∣ x=z
y=z−c

. (C.13)
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Now we should consider several cases. First of all, we see that η̄I 6= x, because otherwise
the factor 1/f(η̄I, x) in (C.13) is equal to zero. Thus, either η̄I = y or η̄I = uj , j = 1, . . . , a.
Consider the first case η̄I = y and denote this contribution by G. Then

G = Λ(x, y)f(y, ū)h(v̄, y)h(x, y)
∑

#ξ̄I=1

f(ξ̄II, ξ̄I)h(ξ̄I, x)h(ξ̄I, ū)

h(x, ξ̄I)h(y, ξ̄I)
Ba+1,b+1({ū, x}; ξ̄II)

∣∣∣ x=z
y=z−c

.

(C.14)
This case respectively should be divided into subcases.

• ξ̄I = x, hence, ξ̄II = {v̄, y}. Then, substituting (C.12) in (C.14) we find

G1 = (−1)a+b+1λ2(z)λ2(z − c)
g(z, v̄)

h(ū, z)
Ba+1,b+1({ū, z}; {v̄, z − c}). (C.15)

• ξ̄I = y, hence, ξ̄II = {v̄, x}. Then h(ξ̄I, x) = h(y, x) → 0, as x → z and y → z − c. Thus,
this contribution vanishes.

• ξ̄I = vj , j = 1, . . . , b, hence, ξ̄II = {v̄j , x, y}. Then

G
(2)
1 =

λ2(x)λ2(y)g(y, ū)f(v̄j , vj)g(x, vj)g(y, vj)h(vj , ū)

h(v̄j , x)h(x, ū)
Ba+1,b+1({ū, x}; {v̄j , x, y})

∣∣∣ x=z
y=z−c

.

(C.16)
In this case the Bethe vector Ba,b({ū, x}; {v̄j , x, y}) vanishes in the limit x = z and y =
z − c. Indeed, we have due to (C.2)

Ba+1,b+1({ū, x}; {v̄j , x, y}) =
1

λ2(x)
h(y, x)h(v̄j , x)h(x, ū)T13(x)Ba,b(ū; {v̄j , y}), (C.17)

and the rhs of (C.17) vanishes, because h(z − c, z) = 0.

Similarly, one should consider the case η̄I = uj, j = 1, . . . , a. The analysis of this case shows

that all the corresponding contributions vanish. Thus, the action of T̂13(z) on the Bethe vector
Ba,b(ū; v̄) is given by (C.15):

T̂13(z)Ba,b(ū; v̄) = (−1)a+b+1λ2(z)λ2(z − c)
g(z, v̄)

h(ū, z)
Ba+1,b+1({ū, z}; {v̄, z − c}). (C.18)

C.2.2 Action of T̂12

The action of T̂12(z) can be considered exactly in the same manner. Using (C.8) and the action
formulas (C.2)–(C.7) we obtain

T̂12(z)Ba,b(ū; v̄) = Λ(x, y)
∑

#η̄I=#η̄II=1
#ξ̄I=1

λ1(η̄I)f(η̄II, η̄I)f(η̄II, η̄III)f(η̄III, η̄I)f(ξ̄II, ξ̄I)

λ2(η̄I)g(ξ̄II, η̄I)h(η̄II, x)h(x, ξ̄I)h(y, ξ̄I)

× h(ξ̄, η̄II)h(ξ̄I, η̄III)Ba,b+1(η̄III; ξ̄II)
∣∣∣ x=z
y=z−c

. (C.19)
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Here η̄ = {ū, x, y} and ξ̄ = {v̄, x, y}. The sum is taken over partitions η̄ ⇒ {η̄I, η̄II, η̄III} and
ξ̄ ⇒ {ξ̄I, ξ̄II} so that #η̄I = #η̄II = #ξ̄I = 1.

Again one should consider several cases. The analysis shows that non-vanishing contribu-
tions arise if and only if ξ̄I = x and η̄II = y. Then

T̂12(z)Ba,b(ū; v̄) =
λ2(x)λ2(y)g(y, ū)g(v̄, x)

h(x, ū)

×
∑

#η̄I=1

λ1(η̄I)f(η̄III, η̄I)h(x, η̄III)

λ2(η̄I)g(v̄, η̄I)g(y, η̄I)
Ba,b+1(η̄III; {v̄, y})

∣∣∣ x=z
y=z−c

, (C.20)

where η̄ = {ū, x} and the sum is taken over partitions η̄ ⇒ {η̄I, η̄III} so that #η̄I = 1. Then
we should consider two cases. First, we can set η̄I = x and η̄III = ū. Then we obtain the first
term in (B.13). The second case is η̄I = uj and η̄III = {ūj , x}, j = 1, . . . , a. Then we obtain the
second term in (B.13).
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