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INSTABILITY OF THE SOLITARY WAVE SOLUTIONS FOR THE
GENENALIZED DERIVATIVE NONLINEAR SCHRODINGER
EQUATION IN THE CRITICAL FREQUENCY CASE

ZIHUA GUO, CUI NING, AND YIFEI WU

ABSTRACT. We study the stability theory of solitary wave solutions for the gener-
alized derivative nonlinear Schrodinger equation

i0pu + 0%u + i|u|*7pu = 0.

The equation has a two-parameter family of solitary wave solutions of the form

.c i Ty
buele) = pucle)exp {iso - 5 [ 2y},

Here ¢y, is some real-valued function. It was proved in [29] that the solitary wave
solutions are stable if —2\/w < ¢ < 2z0y/w, and unstable if 2zpy/w < ¢ < 2y/w for
some zg € (0,1). We prove the instability at the borderline case ¢ = 2zpy/w for
1 < 0 < 2, improving the previous results in [7] where 3/2 < o < 2.

1. INTRODUCTION

In this paper, we study the stability theory of the solitary wave solutions for the
genenalized derivative nonlinear Schrodinger equation:

i0yu + 02w + i|ul* Opu = 0, teR, z€R (1.1)

for o > 0. It describes an Alfvén wave and appears in plasma physics, nonlinear optics,
and so on (see [33] [34]). In the case of 0 = 1, by a suitable gauge transformation,
(LT is transformed to the standard derivative nonlinear Schrodinger equation:

i0pu + 02w + 10, (|ul*u) = 0. (1.2)

This equation (L2]) was widely studied. The local well-posedness was proved by
Hayashi and Ozawa [I8][19] in the energy space H'(R) and by Guo and Tan [I1] in the
smooth space. In the paper of [I§], the authors proved the global well-posedness in
the energy space when the initial data ug satisfies the mass condition |lug|z2 < v/27.
This condition seems natural for global well-posedness in view of the mass critical
nonlinear Schrodinger equation and generalized KdV equation, as it ensures a priori
estimate of H'-norm from mass and energy conservations. However, recently, the
third author extended the condition to ||ugl|z2 < 2/7 in [45], [46], in which the key
ingredient in the proof is the use of the momentum conservation. A simplified proof
was later given by the first and third authors in their paper [15], where the global well-

posedness in H %(]R) was also proved under the same mass constraint. The problems
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for large mass are still unclear at the moment. In [6], Fukaya, Hayashi and Inui
constructed a class of large global solution with high oscillation. In the papers of
Cher, Simpson and Sulem [3], Jenkins, Liu, Perry, Sulem [22, 27 25| 26], Pelinovsky
and Shimabukuro [38],[39], the authors constructed a class of global solution by using
the inverse scattering method. On the long-time behavior and modified scattering
theory, see [§] and references therein. On the low regularity theory, see [11 41 [5], 9] [10]
(141, 211, 351 36}, 30, 41], 42] and the reference therein.

In the case of ¢ # 1, the Cauchy problems of (II)) have been investigated by
many researchers. In the case of ¢ > 1, local well-posedness in energy spaces H'(R)
was studied by Hayashi and Ozawa [20] for any ¢ > 1, by Hao [16] in H 2(R) for
any o > 2, and by Santos [40] in Hz(R) for any o > 1 and small data. In the
case of % < o < 1, local well-posedness in energy spaces H?(R) was studied by
Hayashi and Ozawa [20], see also Santos [40] in the weight Sobolev spaces. In the
case of 0 < 0 < %, local well-posedness in the some weighted spaces was studied by
Linares, Ponce and Santos [28]. Note that in this case, the nonlinear term is not
regular enough, appropriate construction of the working space is needed to handle
nonlinearity. Global well-posedness was studied in [6, 20, B2]. In particular, in the
case of 0 < o < 1 the global existence (without uniqueness) of the solution in H*(R)
was shown by Hayashi and Ozawa [20]; while in the case of o > 1, the global well-
posedness of the solution in H'(R) was shown by Hayashi and Ozawa [6] [32] with
some suitable size restriction on the initial datum.

Also, the stability theory was widely studied. The equation (II]) has a two-
parameter family of solitary waves,

Uy (t) = ewgb%c(at —ct),

where ¢, . is the solution of

bunle) = pucla)exp (Sin = s [ )y, (13)

and

(0 +1)(4w — ?) 5
Pucl®) = {Q@COSIT(U\/me’) - C} ‘

Note that ¢, . is the solution of
—020 + wo + iy — i| ¢[00 = 0. (1.4)

When o = 1, Colin and Ohta [2] proved the stability of the soliton waves when
? < 4w, see also Guo and Wu [12] for previous result in the case of ¢ > 0. The
endpoint case ¢> = 4w,c > 0 was studied in [23]. Further, Le Coz and Wu [24],
Miao, Tang and Xu [3I] proved the stability of the multi-solitary wave solutions. A
consequence of these results are a class of the arbitrary large global solutions. Note
that the equation (I3)) can be solved when 4w < ¢?,¢ € R or 4w = ¢*,¢ > 0.

In the case of 0 < o < 1, Liu, Simpson and Sulem [29] proved that the solitary
wave solution u,, . is stable for any —2\/w < ¢ < 2y/w, Guo [13] further proved the
stability of the solitary wave solutions in the endpoint case 0 < ¢ = 24/w. In the case
of o > 2, the solitary wave solution u,, . is unstable for any —2/w < ¢ < 24/w.
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The case 1 < ¢ < 2 is more complicated. It was proved by Liu, Simpson and
Sulem [29] that there exists zy(o) € (0, 1), which solves the equation F,(z) = 0 with

F,(z) = (0 — 1)2[/Ooo(coshy - z)_éaly}2 - [/Ooo(coshy - z)_%_l(z coshy — 1)dy]2,

such that when —2/w < ¢ < 2z94/w, the solitary wave solution u,, . is unstable and
when 2zpy/w < ¢ < 2y/w. See also Tang and Xu [43] for the stability of the sum
of two solitary waves. Further, Fukaya [7] proved that the solitary waves solution is
unstable when % < 0 < 2, ¢ = 2zpy/w. After the work, the stability theory of the
solitary waves solution when 1 < o < %, ¢ = 2zgy/w is the only unknown case. In this
paper, we aim to solve this left case.

Before stating our theorem, we adopt some notations. For ¢ > 0, we define

U€(¢w,c) = {u € Hl(R) : inf ||u - elegbw,c(' - y)HHl < 5}'
(0,y)ER?
Definition 1. We say that the solitary wave solution u,, . of (1)) is stable if for any
e > 0 there exists 6 > 0 such that if ug € Us(¢,.c), then the solution u(t) of (L))
with w(0) = ug exists for all t > 0, and u(t) € U.(¢u,c) for allt > 0. Otherwise, u,, .
s said to be unstable.

The main result in the present paper is

Theorem 1. Let 1 < 0 < 2 and zy = 29(0) € (—1,1) satisfy Fy(20) = 0. Then the
solitary wave solutions e“*¢,, .(x — ct) of (LI is unstable if ¢ = 2z9y/w.

In this paper, we use the same ideas as in [47]. It relies on the modulation
theory and construction of the virial identities. Compared to [7], the idea is to utilize
virial identities to replace the Lyapunov functional, to obtain the lower bound on
modulations. This can be used to avoid the requirement of the high-order regularities
of the energy. However, the construction in the present paper is much more delicate,
due to the complicated structure of the equation.

This paper is organized as follows. In Section 2, we give the definitions of some
important functionals and some useful lemmas. In Section 3, we obtain the modula-
tion result and show the coercivity for the second variation. In Section 4, we prove
the main theorem.

Remark 1. We note that the same result in Theorem [ was obtained independently
by Miao-Tang-Xu in [44] (appear on arXiv on March 20, 2018) by different method.
They used the third derivative of the energy around the solitary wave.

2. PRELIMINARIES

2.1. Notations. We use A < B or A = O(B) to denote an estimate of the form
A < CB for some constant C' > 0. Similarly, we will write A ~ B to mean A < B
and B < A. And we denote f = 0,f.

For u,v € L*(R) = L*(R, C), we define

(1, v) = Re /R w(z)o(@) dx
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and regard L*(R) as a real Hilbert space.

1

For a function f(z), its L%norm || f|p« = (/ \f(x)\qd:c)q and its H'-norm
R

1f L = (1F 1172 + 1192 £172) 2

wn

2.2. Conservation laws. The solution u(t) of (LI]) satisfies three conservation laws,
E(u(t)) = E(u),  P(u(t)) = P(uog), M (u(t)) = M(uo)

for all t € [0, Thnax), where Ti,ax denotes the maximal existence time of u(t), and

1 1 J—
E(u) :§||0xu||%2 - mlm/R |u|*u Opu do,
1 1 S
P(u) ==(i0,u,u) 2 = —Im/ uyudr,
2 2™ J,
1
M) =l

2.3. Some functionals. From the definitions of F, P and M, we have
E'(u) = — 0%u — ilu|*0,u,
P'(u) =i0,u,
M'(u) =u.
Let
Swe(u) = E(u) + wM(u) 4+ cP(u),
then we have
Sire(w) =E"(u) + wM'(u) + cP'(u)
= — 0%u — i|u|* Opu + wu + icO,u. (2.1)
Hence, (I4) is equivalent to S/, .(¢) = 0. Hence for the solution ¢, . to (L4}, we have
Se(6) = 0. (22)
Moreover, by (2.1]), we obtain
St (Gue)f = — Pf +wf +icOf — i0]bu el 2Ge Ortue f
— 10 Gu.c| " GO [ — |Gl On f (2.3)
2.4. Useful Lemma. In this subsection, we give some lemmas which are useful in
the following sections. First, we have following formulas.
Lemma 1. Let 1 < 0 <2 and (w,c) € R? satisfy ¢* < 4w, we have
St e(Bue) Bue = = 20| G o Ou B, (2.4)
S G, e) (100 e) = = 200]hue|* e
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Proof. First, using (22) and (Z3]), we get
S (D) e = = e + Whise - icDsue — 101610/ Gl Duhure
— 10 G e[* P e *On e — 1| buse] T O e
== 0yue — (20 4+ 1)i|Gu e 0pPue + Wi e + icDpue
= — 20|y o[* Or P c-
Similarly, using (2.2)) and (2.3]), we obtain

Sx,c(gbw,c) (iam¢w,c) :Zam [ - 8§¢w,c + W¢w7c + icam@,,c — ia‘¢w,c‘2g am¢w,c]
- 20|¢w,c|20_2 ¢w,c‘am¢w,c|2
== 20w‘¢w,c|2o¢w,c-

This concludes the proof of Lemma [II O
Let
J(u) = Im/ |u|*7u O udz.
Then we have R
J'(u) = 2(0 + 1)i|u*?0,u. (2.5)
Moreover, we have the following lemma.

Lemma 2. Let 1 < 0 <2 and (w,c) € R? satisfy ¢ < 4w, then

Haxgbw,CH%,? :w||¢w,0||%2' (2'6)

Moreover,
J(¢w,c) - 4WM(¢UJ7C) + 20P(¢w,c>> (27)
o1 = 9P AE 2.8
LT (0ue) = 20P(6u) + 4B ), (28)

and
1

Jl(¢w70> = _J(—: Sx,c(¢w,0)¢w,c- (2-9>

Proof. From the equation S, .(¢..) = 0, by producting with 20,¢,,. and @, . respec-
tively, and taking the real part, we obtain

Haxgbwcn%? = WHﬁbw,cH%%

and
||ax¢w7c||%2 + WHQSUJ,CH%? + CIHI/ ¢w,c axQSw,cdz - J(¢w,c) - O
R

Therefore, we have
J(¢w,c) - 4WM(¢UJ,C) + 20P(¢w,c>-
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Combining the definiton of F and (2.6]), we have

1
E(¢w,6) 25 ||ar¢w70||2L2 -

Im/ |u|*7u O,u dx
R

2(0+1)
1
=wM(bu,c) — mﬂ%;)-
Then, we get
1
M(¢w,6) = E(¢w,6) + mj(¢w,0)'
Hence, we obtain
1
J(¢w,6) :4[E(¢w,6) + WJ(¢w,C)] + QCP(wa,c)
=20P(¢u,c) + 4E(Puc) + ?J(@, o)
That is,
-1
Z +1 J(¢w,c) = 20P(¢w,c) + 4E(¢w,c)~

Moreover, from ([2.4]) and (2.5), we have

T (due) =2(0 + 1)i|Gu el Ore

o+l
= S/ (¢w,c)¢w,c-

This completes the proof. O

Lemma 3. Let 1 < 0 <2 and (w,c) € R? satisfy ¢* < 4w, then

H(bw,CHi%jf? = 4(0 + 1) [ (¢w 0> + P(¢w C)} (2’10)
and
8CM(¢LU,C) = 8wp(¢w,c)7 8CP(¢M,C) = wawM(¢w,c)-
Proof. The details are given in Appendix. O

For any (w, c) € R? satisfying ¢* < 4w, we define a function d(w, ¢) by

d(w, ) = Suc(Pw.c)-

Thus, we have

and the Hessian matrix d”

d'(w,c) ( Dd(w, ), O.d(w, c)) = (M(gbw,c),P(gbw,c)),

(w, ) of d(w, c) is given by

Pl = | Lol Bl | 2M0.) 0P
’ Oued(w, ) Oced(w, c) 0cM(¢uc) 0P (u)

For general exponents 1 < ¢ < 2, Liu, Simpson and Sulem [29] proved that z; is
the unique solution of det[d”(w, ¢)] = 0.
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Let (i, v) to be the eigenvector associated to zero eigenvalue of the Hessian matrix
d"(w, c). Since zero is the simple eigenvalue, (i, v) is unique up to a constant. That
is,

{u(?wM(%,c) + 1V 0uP(due) =0, (2.11)
1 OM (duse) + v 0P (Guye) = 0.
Together with .M (¢, ) = 00 P(¢w.), 211 is equivalent to
{ 10 M (¢ue) + v O M(du,c) =0, (2.12)
1 0uP(Gu,c) + v 0P (¢ue) = 0.
Now we have the following lemma.
Lemma 4. Let 1 < 0 <2 and (w,c) € R? satisfy ¢ = 2z9\/w, then
P(0uc) = aM(duc), &= Vo,
where ag = (0 — 1)y/w > 0. Moreover, there exists ko > 0, such that
12000 M(Bus.c) + 2000 M (due) + V2 0cc M (o) =Ho20, (2.13)
1200 P(B) + 2i00ueP(D) + 1P P(b0e) = — ko, (2.14)
Proof. The proof of Lemma @ is postponed to Appendix. O
For convinience, we denote the quality @, to be:
Quu(f) = pM(f) +vP(f).
Moreover, we denote 1), ¢ as
Y =0\Owiap,ctxw|r=0= 0w Puwc + VOO
1& :%8)2\¢w+)\p,c+)\u|>\=0-
Lemma 5. Let 1 < 0 < 2. If ¢ = 2zpy/w, then
(M'(¢ue)s ¥) = (P(ue), ) =0, (2.15)
and
Socbue)h = =Q(Pue),  (Shclbue)t¥) = 0. (2.16)

Proof. By [2.12), we get

(M (¢ur.c) s 1Ouusc + VDo) = 0,

<P/(¢w,c)7 M8w¢w,c + V80¢w,c)> = 07
that is,

<M/(¢w,c)>w> = <Pl(¢w,c),'¢> = 0.
From (2.11]), we have

<,UM/(¢UJ,C) + VP,(¢W7C)) aw¢w,c> - 07

(UM (Gu.c) + VP (fuc)s Oetuse) = 0.
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Therefore, we have
<Q,/u,y(¢w,c)7 ¢> = 0

On the other hand, differentiating S, , .11, (Putapctan) = 0 with respect to A = 0,
we have

L/t:—l-)\,u,c—l—)\y (¢w+>\u,c+>\u)8>\ ¢w+>\u,c+>\u ‘ A=0

- |:/“’LM,(¢0J+)\M7C+)\V) + VP,(gbw-i-)\u,c—i-)\u)} })\:(y
That is
Sx,c((ﬁw,c)d} = _Q,/u,u(gbwﬁ)‘

Thus, we have

<Sc/‘:c ¢WC ¢ ¢> ,uy(qsw,c),w) = O

This proves the lemma. U
Lemma 6. Let 1 < 0 < 2. If ¢ = 2z5y/w, then
(S (Bue), V) = 4uM (¢ue) + 20 P (@) # 0.

Proof. Note that ¢ = O\@urpctrv|r=0, using [21), we can write
(S (¢uc), V) =00J (Puwapc+20) |a=o
=0\ [4(W + MM (Gwirperan) + 2(c + )‘V>P(¢w+)\u,c+)\u):| })\:0
=4ApUM (Pue) + 20 P (Gusc) + (M (Gusc)s OrPuot Apserv|r=0)
+ (P (Puse) s OrPust Apsetaw| r=0) -
When ¢ = 2zy/w, together with (2I5), we obtain
(S (Bue), ) =AM (G ) + 20 P (due) + (M (Pue), ¥) + (P (Pue)s ¥)
=4uM (¢uw.c) + 2UP(¢yc).
Using Lemma 4], we find
ApM (Gu,c) + 20 P () = V(4\/a + QGO)M(¢w,c) #0
Hence, (J'(¢w.), ) # 0. This finishes the proof. O

3. MODULATION AND THE COERCIVITY PROPERTY

Proposition 1. There exists §o > 0, such that for any 6 € (0,0¢), u € Us(¢y.c), the
following properties is verified. There exist C'-functions
(97'3/7 )\) : U6(¢w,c) — R xR x R+,
such that if we define £(t) by
e(t) = e Dult, -+ y(t) = durr@merrty (3.1)
then e satisfies the following orthogonality conditions for any t € R,
<57 i(bw—l—)\,u,c—l—)u/) = <57 8:B¢w+)\,u,c+)\u> - <57 J/(¢w+)\u,c+)\u)> =0.

Moreover,

<S//+)\uc+)\1/ ¢w+)\uc+)\u € 5> ~ ||6||H1(R (32)
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Proof. The proof of the proposition can be split into the following three steps.
Step 1, modulation for fixed time. Fixing ¢ € R, let ?(H,y, Xu) = (Fy, Fy, F3)
with
Fi(0,y, Ay u) =(e, iduirpcrav),
F2(9> Y, A; U) :<€a 0x¢w+)\u,c+)\u>a
F5(0,y, A u) =(e, ' (Guwrrpeirn))-
Note that

8"5‘(0,0,0;%,6) = —1Qu.c; ay‘g}(o,o,om,c) = Opuc; aAg‘(o,o,o;m,c) ==

Then, the Jacobian matrix of the derivative of the function (0,y, \;u) — ? with
respect to (6,y, \) is as follows.

BF O,F OWF
D?‘ —|aE 0, R
(0.0.0:6s,¢) OpF3 OyF3 O3/ 1(0,0,0:60.0)

_||¢w76||%2 _2P(¢w,0) —<¢,i¢w,c>
- 2P(¢w,c) ||0x¢w,c”%2 _<¢78x¢w,c>

0 0 —(J'(Gue) V)
Thus, we can get
et (DF)| | = 40(2 = 0)w[M(0u )l ( (60).¥).
From Lemma [0, we have |
det(l)?ﬁ)hQuowwﬂ)yéO.

Therefore, the implicit function theorem implies that there exists 0o > 0, such that
for any 6 € (0,60), u € Us(dw,), the following properties is verified. There exist
continuity functions
(evyv >\) : U5(¢w,6> — R xR X R+7
such that F;(6,y, \;u) =0, j =1,2,3.
Step 2, the regularity of the parameters in time. The parameters (6,y,\) € C!}
can be followed from the regularization arguments.

Step 3, the coercivity property of S .(d,.). From [29] Theorem 3.1, we obtain
that S!] .(d.,.) has exactly one negative eigenvalue. Hence there exists only one A\_; <
0, such that,

Sz,c(%,c)g—l =Aag-1, lgaallze = 1.
Moreover, we have the following decomposition,
€=a_19-1+ a'lz.gbw,c + a'2ax¢w,c + hla
with
<h1,9—1> - <h17i¢w,c> - <h178x¢w,c> = 07

and
(S2 o(Pw.c)hrs ba) 2 1Pl -
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Since (g,i¢y.c) = (€,0:0u.c) = 0, we have a; = ag = 0. Then, we can write
E=a_19_1+ hy.

Next, using (2.9), we have

oc+1

J/(st,C) = SZ,C(%,C)(— pu gbw,C)'
For convenience, we put
1
h = _U il ¢w,c-
o

Note that (h,i¢y,) = (h, Oxpun,) = 0, we can also write that

h=0_19-1+hy
with

<h2,g_1> - <h2>i¢w,c> - <h2>8x¢w,c> - 07

and

(S (Gue)ha, ha) 2 || holl3 )
For simplicity, we denote

3= —Slbw ) = (o)) = 2T .
Then, from ([27) and Lemma @ we know ~ > 0.
Moreover, we have
<SZ,C(¢W,C)€,€> =A_ia’, + (S5 (Pue)hr, ha), (3.3)
(S0 (Pue)hy by =X_10% 1 + (S0 (Pu.e)ha, ha) = —y < 0. (3.4)

According to the orthogonality condition (e, J'(¢,..)) = 0 and some direct computa-
tions, we have

)\_1a_1b_1 -+ <S¢Z7c(¢w,c)h17 h2> = 0. (35)
Together with (B3], B.4), (B.3) and the Cauchy-Schwartz inequlity, we obtain that
>\2_1a2_1b2_1 <SZ,C(¢w,C)h1, h2>2

—Aaal; = 2, L,
(S0 (bue)h, he)? - (S5 (Pus,e) 1y ha) (S (@u,e) P2, ha) (3.6)
+ (Sl (Duc)has ha) — Y+ (S (Pu )2, ha) '
Thus, we get

<S¢Z7c(¢w,0)h17 h’l) <Sx,c(¢w,c)h27 h2>
Y+ (S0 o(Pu,c) ha, ha)

i "
- S (Bwe)ha, b
v + <S¢Z,c(¢w,0)h2, hg) < W’C(¢ ) ) 1 1>

Zhall7n )
By (B.6) and Hoélder’s inequality, we have

(Sie(Pucle,e) > — + (S5 .e(Pu)hn, )

a’y S Hh1||%11(11@)-
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Hence, by ¢ = a_19_1 + hy, we have
lellze < a2y + lhallne) < Mallin @
Since,
(85 (bl e) 2 Ihlln 2 lellze-
From the definition of S (¢u.) in ([2.3)), we have
el S (S0 c(bue)e,e) + llellza.
Therefore, we get that

<Sg,c(¢w,c)575> Z H5H§{1(R)
This finishes the proof of the proposition. U

Lemma 7. There exists C,, . € R, such that

a0¢w c + Zax¢w c

y—c—)\V—chk+<S” qbwc)( M (0w

e) + Oellm + llelling)).

and
0 —w— A= O(llellm)): A= O(llellm w))- (3.8)

Here the parameters 0, y, \ are given by Proposition [1.

Proof. Now, we consider the dynamic of the parameters. From (B1), we have
u =" (¢, rueray + () (@ — y(1)).
Using (I.]), we obtain
i€ — (9 — W = M) (Pt rpetre +€) = (1 — ¢ = AV) (103 Pusgapc4r0 + 10,€)
+ A 103G rpetaw = St o(Puc)e + O(Ne +€2), (3.9)
where O(e) is a functional of € with the order equal or more than one.
First, the equation ([B9) producting with —ag@wiauctrv + 102 Pwtapctan, We get
— (0 —w = M) [ = 200M (b retar) + 2P(Buirperrn) + Olllel mm)]
— (1 — ¢ = W) [ = 200 P(dwirpcrnw) + 10ubuirperrwliz + Ol mm))]
+A [<ia)\¢w+)\,u cxvs —A0Puwirpetaw T 105Puirperaw) — (€, 100N Puapetrw + ONOuPurtrpctrv)]
= (S (Dure) (0P rperrw + 10burrpcirn) €) + ONlellmmy + el 7 m))
By a direct expansion, we have
Duwirpetrv = Guwe + M+ O(N?), (3.10)
and
N Pusrperw =0+ O(N).
Moreover, together with (2.13]), we have
M (Guirpetn) =M(Gue) + MM (Gue), ) + O(X) = M(¢ue) + O(N?),
P(Guirpctn) =P(Gue) + MP (Gue), ) + O(N) = P(due) + O(N).
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From (Z.4), we get

||8x¢w+>\u,c+)\u||2L2 :(w + )‘:u) ||¢w+)\u,c+)\u||%2
=2wM (Pu.c) + O(N).

We collect the above computations and obtain
— (0 —w—Ap) [ = 2a0M(¢uc) + 2P (¢ue) + ON + el )]
— (= ¢ = W) [ = 200P(duc) + 2wM (du.c) + OA + el mw))]
+ }\[<i¢> —A0Pue + 1030uc) + O(N + ||5||H1(R )]
= (S0.e(Pwc)(—A0Puec + 10abuc + ON)) ) + ONllell ) + el w)-
By Lemma [l we know that
—aoM (be) + P(fue) =0, —agP(ue) +wM(Pue) = (w — ag) M(du.e) # 0
Then, we get
= (0 = w = M) [0 + el )]
— (== W) [2(w = ag) M(du,c) + O+ e mm))]
+ M (i, —ao¢w et 10:00.c) + ON+ el mm))]
= (St o(Puc) (—a0ue +1000uc),€) + ONellmnm) + el F))- (3.11)

Next, producting with ¢, auc+a0 i the equation (39) and treating as above,
= (0 = w = A)2M () + OO + [lellmm))]
—(§ = = W)[2P(¢ue) + ON + [lellmm))]
+ A1, Gue) + O+ el (@)]
= O(llellm@): (3.12)

Finally, producting with 7J'(¢u4auc+a0) in the equation ([B.9) and treating as
above, we obtain

= (0 = w = M) (Gwc), —iue) + O+ [lellmiw)]

— (§ = ¢ = AW)[(J (D) OrPu,e) + O+ el 1 (w))]

+ AT (Do) ) + O el mm)]

= O(lell s ey)- (3.13)
Using (B.1100), (312), (BI3) and Lemma [6, we obtain

/) —Q ¢wc+lax¢wc
y—C—)\V—ch)\+<S/ ¢wc) ( 0 ) ((b ) >—|—O(>\||€||H1(R)+ ’|€’|?;11(R)),
and ‘ ‘
b —w =M= Ollelmm), = O(llme)
Here

~1
2(ag — w)M(du,c)

Cw,c = <“/}7 _a0¢w,c + i8x¢w,c>-

This completes the proof.
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4. INSTABILITY OF THE SOLITARY WAVE SOLUTIONS

4.1. Virial Estimates. To prove the main theorem, first, we need the localized virial
idetities.

Lemma 8. Let ¢ € C*(R), then

d
dt 80|u|2dx——2]m/gpua udl’+—/gp|u|20+2dx

d 1 —
gp]m(u@ u) = /ap'|8xu|2dx + = / ¢ lu|*dz + Im/ o |[ul*7u Oyu.
dt R 2 Jr R

Proof. Combining the eqution (II]) and integration by parts, we have

p @\uﬁdm 2Re/<p8tuﬂ
:2Re/<p(i8§u— |u|? Opu )
R
1
:—QRe/igolﬁxuﬂdij—Re/go|u|2"+2dx
R oc+1 R

— 1
:—QIm/¢’u8xudx+—/<p'|u|2"+2d:):.
R o+ 1 R

By the same way, we obtain

d
pr <pIm(u8 U —Im/ 0O O, udx+hn/g0u Orpudx
:21m/ cp@tuﬂdx%—lm/ ' Opuudx
R R
:2Im/ @(i0%u — |u|* 0pu)Opudz + Im/ ¢ (i10%u — |u|*? O u)udx
R R
1 _
=— 2/ ¢'|0,ulPdx + —/ap”/\u\2dx+1m/ ¢ |ul*u d,u.
R 2 Jr R
This proves the lemma. 0

Now we define pr € C*(R) satisfying
z, |z| <R,
PR = o, o] > 2m,

and 0 < |p%| <1 for any x € R. Moreover, we denote

L(t) = [ (e —y(t))|udz,

Lt) = | er(z —y(t)Im(udyu)dz.

J
J
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To prove the main theorem, we define the key functional (t) as
I(t) = —Vwh(t) + (1) + Cuch,

where C,, o = 2C, (M (Gue) + P(due)).

Hence, by Lemma [§ we can obtain the following localized virial estimates.

Lemma 9. Assume that

u =" (Guirpuerrny + 1)) (@ —y(t)), (4.1)

with the parameters obey the estimates in Lemma [ Then the following estimates
hold:

Ii (t) = - 2Cw c)\M((ﬁw c) - [M( 0) - M(¢w,c)] - 4[P(u0> - P(¢w,c)]

" . 1 2 d2 20+-2
wC w,c Tryw,c)s A w C v 020 2
1

R

0(A||€||H1<R> +lellEn ) + 5) + o(X),

and

Ié(t) - QCUJ cj\P(QSw C) - Q[P( ) - P(¢w c)] - 4[E(u0) - E(¢w c)]

" —1 d?
(2 \/,<S ¢wc \/_¢wc Za:c¢wc 5>+ 1))\2d)\2 (¢w+)\u,c+>\u) _
1
O el ey + Ielingey + ) + o(V?).

Proof. By Lemma [8 and some direct computation, we have the following formulas.

I(t) = — y/ Prle —y(t))u® — 21m/ ¢r(r —y(t))udyudx Pr(@ —y(t))|ul**dz,
R R

Lt) =— y/ Pl — y(t)Im(u dyu)dr — / Yz — y(t))[2lf9xUI2 — Im(|ul*"u d,u)]dz
R R

1
+3 [ wie -yl
R

First, with the definitions of M and P yields

1i(0) = = 2M(w) =29 [ [l = y(0) = 1] ulds = 4P(0) =21 [ [ghto = y(6) = 1JuBlda

1
——lull55E + —— [ [¢rlz —y(t) = 1]|u*"*dx
(I + i [ |

1
=—2(g—c—A)M(u) —2(c+ \w)M(u) — 4P(u) + U—HHUH%ZZFEQ

+ 0</R [l —y(8)) — 1] (glul* + Im(u Opu) + |u|2"+2)da:>. (4.2)

In fact, supp[¢pr(x —y(t)) — 1] C {z : |z —y(t) > R}, 0 < |¢R| < 1. From Lemma
[ we know that |y| < 1. Then, after using (41l and the exponential decaying of
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OutAp,c+rvs We have

/R [z — 1] (g]ul® + Im(u dpu) + [u*™?)da
S . |¢w+xu era]? + |52¢w+xu el T e* + |0ue]* + |5|2U+2]
0(||6||H1(R )- (4.3)
Mergering ([B.1) and (£3]) into (£2), we obtain
Ii(t) = - 2[C., A+ (S0 (Dure) (ao{bm —)F Za(iz}wc; e) + O(N|ell mm) + ||5||§11(R))}M(U)

1
R

1
= 2(e+ W)M(u) = 4P(u) + —— [ull 3572 + O(lellip e +

Now, using (2.15), (B10) and (A1), we get

M(u) =M ($u.c) + (M (bu.c),€) + ONlellmrm) + el Fng), (4.4)
and
P(u) =P(du.e) + (P'(bue),€) + ONlellmm) + el my)- (4.5)
Moreover,
lull 7522, = chw 7552+ 2(0 + DX @u el Puer ) + 2(0 + 1){|Gure* buvses €)
d2
4 Tl wrmennd B+ O(lelling + ell) + o0%), (46)
and
/ 2 d2
J(u) :J(¢w,c) + )‘<'] (¢w,c)7 ¢> + 2>‘ d)\2 (¢w+)\p,c+>\u>})\:0
c—1,,
o T (Gue) € + O(Mlellmr@ + llelln) +o(X?). (4.7)

Combinig (£4) and (£6) yields
‘ 1
I (t) = = 2C, AM (¢ ) — 2¢M (u) — 2M0 M (¢, ) — 4P (u) + J—HHQSW’CH%ZL%
a0¢w ct 18x¢w c

+ (= 8 (due) 5 C 4 2|00 o7 Puer €) + 2| bu e Poer V)
T— 2 4 | fwirmermwlionze)  +ONlellmam +lleline +l) +o(\%).
20 +1)" d)2 erA LA |y g ® TR

From the conservation laws and (ZI0), we get

I(t) = — 2Cw,c}\M(¢w,c) —2cM (ug) — 4P (ug) — 2AvM (g, ) + 2¢M (g, ) + 4P (00

—0Puw,c + 10:Pw ¢ . ;
+ (= 8L (Poe) — + 20 e Puves €) + 20| G| B, V)
1 5 d 2042 O\ 9 1 \2
+ 2(0_ T 1) )2 ||¢w+)\u,c+)\u| L2z, o + ( ||5||H1(]R) + ||€||H1(R) —+ E) + O( )
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Observe that

a 1 ag
<|¢w,c|2 %,aﬂﬂ) = ma)\<”¢w+)\u,c+)\u| izjfz) —o
Moreover, using the equality ([2.10) again yields
" 1 c+ v
(160G 0 =5 303 (400 + D5 M Gurerns) + POusuenn) )|,
Using Lemma [B] again, we obtain that
<|¢w,c|2o¢w,07 1/}> - VM(¢w,c>-
By Lemma [I we have
" _a0¢w c + 71890¢w c 20 o—1 17 .

- w,c 7 ’ 2 w,c we = T 5 N w,c w,c xPw,c)-

S0 ) IO 9l [0 = e E S () (Vi = 0,60

Finally, we collect the above equalities and obtain
lﬂﬂZ—QQMMWWWJ—ZWW@®—AHQWH—MPWM—PWMM

<9/@MXJ}@ci&@M%@+2 1 -

o — 2
T 1) A W||¢w+>\u,c+Au||L20+2 A=D

a 0(2—0)

1
E) + O()\z).
Similarly, from the definitions of P, E and J, we have

+OMlellm @ + ||5||%11(R) +

oc—1

I(t) = — 29P(u) — AB(u) + J(u)

o-+1
y / (e — y(t)) — 1Im(uTym) — 200puf?* + In(|u*u Ty)]dz

=~ 205~ e~ M)P(u) — e + M) P(w) — 4B(w) + T 7(0) + Ol + 5)-
Using [B.7), we get

L(t) = = 2[CuA + (S0, (Puc)5

a0¢w c + 18x¢w c

2(af — w)M(¢u,c)’
—2(c+ \v)P(u) — 4E(u) + U—_I_lJ(u) + O(||€||%11(R) +

e) + OWllellmwy + el )] P(w)

1
)
Combining (4.3 and ([@T), we obtain

]é(t) = - 2Cw.c}\P(¢w,c) - QCP( ) - 2)\I/P(¢w c) - 4E( ) + —J(¢w c)

o+1
P(¢w,c) " _a0¢w,c + i8x¢w,c -1
- (¢w C) w,c(¢w,c) ag W , € o+ 1 < (¢w c) >
-1 d?
+ - o+ 1 < ((bw c) ¢> 2(0(;_ + 1) 2WJ(¢w+Au,c+)\u)‘>\:0

+OMellm@ + llelling + 5) + o(A\).

7
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Using (27), (238), (23), Lemma [ and the conservation laws, we have

Ié(t) - QCw.cj\P(QSw,c) - QC[P(UO) - P(¢w,c)] - 4[E(u0) - E(¢w,c)]
o—1 o—1 _, d

e — // J— ) —_—
0_(2 . 0_)\/@<Sw,c(¢w,c>(\/(;¢w,c Zﬁx(bw,c)v €> + 2(0_ + 1) d>\2 J(¢w+)\u,c+)\u) A=D
1
+ OWlell i + llelln @ + ) + o).
This completes the proof of the lemma. O

According to Lemma [9) we have following result.

Lemma 10. Under the assumptions of Lemmald, we have

) 1
I'(t) = A(uo) + BOA) + O(Mlellm@ + lelfnm + &) +o(X%),

R
with A(ug), B(\) verifying
A(uo) =(2cvw + 4w) [(M(ug) — M(¢u0))] + (4v/w — 2¢) [P(uo) — P(¢uc)]
- 4[Sw,c(u0) - Sw,c(¢w,c)]a

and
B()\) = b1 )\?,
for some by > 0.

Remark 2. The form of I1(t) removes the linear term of € in I'(t).

Proof of LemmalIll. From the definiton of I(t), we have
I'(t) = =@l (t) + I5(t) + C, e\
By Lemma [9 we obtain
I'(t) =vw[2e(M (uo) = M(¢ue)) +4(Puo) = P(du))]
= 2¢[P(up) = P(du.c)] —4[E(uo) — E(du,c)]

1 d?
e Vel e B + = D G|
1

+O(Mellan + el + 5) + o).

We denote
A(UO) :\/a[QC(M(u()) - M((bw,c)) + 4(P(u0) - P((bw,c))]
— 2c [P(Uo) - P(wa,cﬂ - 4[E(u0) - E(gbw,c)L
and
1 d2 2042
B()\) :mw |: - \/E||¢w+)\u,c+)\u| [20+2 + (U - I)J(¢w+)\ﬂvc+)"/)] ’)\:0'

Then, we have

1
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By the definiton of S, ., we have
A(uo) =(2ev/w + 4w) [(M (ug) — M(due))] + (4v/w — 2¢) [P(uo) — P(uc)]
— 4[Sue(t0) = Sue(Pue)]-
Now we consider B()). Observe, from (2.7) and (2.10), that
_\/5||¢w+)\u,c+)\u||2LZjEZ + (0 = 1) J(Pwsrmetrv)

= VB 40+ DI M (Gurien) + PGurpern)
+ (0 = 1)[4(w + AN)M(¢w+Au,C+Au) +2(c + )\V)P(QSUJ+)\M7C+)\V)]
(o — 1) = 26v/i(0 + DM (Gusrernn) + 260 — 1) = 4/(0 + 1] (Gupesr)
+ [4p(o —1) — 2vy/w(o + DJAM (¢wsapetav) + 200 P(Gwsapetav)-
Next, using (ZI3) and (2.I4]), we calculate the terms above separately:
2

WM(QSUJ'F)\/LC-F)\V) 0 :,U2awwM(¢w,c) + 2,Uyawa(¢w,c) + V28CCM(¢UJ,C) = Koo,
d2
RP((ﬁw—F)\u,c—l—)\u) 0 :Mzawwp(¢w,c> + Quygwcp(¢w,c) + V2accp(¢w,c> = _HO\/a’

Finally, together with (ZI%]), and the three estimates above, we get

1 d? .
el Ve lermenlBEE + (@ = DTG |,
L (o — 1) — Vo + DI M (Gurauein)
o1 AT Dl pa T \Perneral|
1 d?
+ o+1 [C(U - 1) - 2\/5(0- + 1)]WP(¢w+)\u,c+)\u) 520
1
= [2w(o — 1) — Vwe(o +1)] - Koz
1
] [c(c —1) = 2y/w(o +1)] - —kovw
=2row(1 — 23).
Let by = 2kow(1 — 22), then b; > 0. Hence, we obtain that
B()\) = b )2
This concludes the proof of Lemma O

4.2. Proof of Theorem [Il Now we give the proof of Theorem [II Suppose that
e“td,, (x — ct) of (L)) is stable. Choose

Ug = (bw,c + 61(_a0¢w,c + iam¢w,c)7 51 > 0.
Here 6, is small enough such that uy € Us(¢, ) which is given by Proposition [l

Let u be the corresponding solution of (ILI]) with the initial data uo. Then, we
can write

U = ez’@ (¢w+)\u,c+)\u + 5) (ZE - y)>
with (0, y, \) obtained in Proposition [Il and |\| < 1.
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Lemma 11. There exists by > 0, such that
A(Uo) 2 b251.

Proof. Recalling that ¢ = 2z¢9y/w, ag = (¢ — 1)y/w and the choose of g, we have

M(UO) - M(¢w,0) :51 <M,(¢w,0)a _a0¢w,c + i8x¢w,c> + 0(51)
=01[=2a0 M (¢u,c) + 2P(¢uc)] + 0(01)
:0(51), (48)

and

P(ug) = P(Bue) =01(P (Buc), —0Pu,c + 10phuc) + 0(01)
=2(w — ag) M (,c)01 + 0(81)
=2wo (2 — o) M ()01 + 0(61). (4.9)
Moreover, using S, .(¢w.c) = 0, we get

Sw,c(UO) - Sw,c(¢w,c) :61 <SL,C(¢w,c)7 _a0¢w,c + i8w¢w,c> + 0(51)
Now, we collect the above computations and obtain
A(ug) =(2cv/w + 4w) - 0(81) + (4v/w — 2¢) - 2w (2 — o) M (¢, )01 + 0(61) — 4 - 0(d7)

=8w\/w (2 — )M (¢,.)01 + o(dy)
Zb2517

where choose by = dwy/wo (2 — 0)M(py,) > 0. This proves the lemma. O

We further give the estimate on ||]|%,, ®)
Lemma 12. Let ¢ be defined in [B1)), there exists by > 0, then

el gy < b3AGL-

Proof. Without loss of generality, we may assume that v > 0. From the conservation
laws, we have

Sw—i—)\u,c-‘,-)\u (UO) :Sw—l—)\u,c—i-)\l/ (U)

1
- w+)\u,c+)\u(¢w+)\u,c+)\u) + §< Z+)\M7c+)\u(¢w+)\u,c+)\u)€> 8> + 0(||€||%{1(R))

Combining (Z2]) and Lemma [l yields
Seapeir (Puirpeirw) =Swirameraw(Puwe) + AShiaesr(Pue), V)
VS i Bl ) + 0(V)
=Sutamerr (Gue) + AMS, (Bue), V) + Au(M' (Pus,e), 1)
F AP (800, ) + NS0 0) + o)

= w+)\,u,,c+)\z/(¢w,c> + O()‘z)'
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Then, we have

1
Sw—}—)\u,c-i-)\u(uo) = Sw+)\u,c+)\u(¢w,c) + §< :‘:+)\p,c+)\y(¢w+)\u,c+)\u)€> €> + 0()‘2 + ||€||§{1(]R))

Together with (8]), (£9) and (£I0), we have

Sw-i-)\u,c-i-)\u(uO)_Sw+)\u,c+)\u(¢w,c)
=Su.e(to) = Sue(Pu,e) + (M (o) = M(due)) + Av(P(uo) = P(gu,c))
=2vw0o (2 — o) M (¢, )A61 + 0(d7). (4.11)

Therefore, by (32), (B:8) and ([£II), there exists C' > 0, such that

||5||%{1(R) §C< Z+,\u,c+>\u(¢w+/\u,c+/\u)5a 5>
=C[Surrpern (o) = Surrpern(Pue)] + 0N + |lellin @)
=2Cvwa (2 — o) M (P, )A01 + 0(61) + o(A* + ||5||%{1(R))
<2b3A01 + o([lell 3 )
where by = 2Cvwo (2 — o) M(pw,) > 0. Then we obtain
el ) < bsAdr.

This completes the proof. 0

Proof of Theorem [l On the one hand, we note that from the definition of I(¢), we
have the time uniform boundedness of I(¢). That is, if |A\| < 1, then

i‘elﬂg I(t) 5 R(H(?w,c”?ql(ug) +1). (4.12)

On the other hand, using ([B.8)) and Lemmas [I0] [T}, we get

1
I'(t) =A(uo) + BO) + O (el mm + leling + 5) +o(V)

1
26251 + bl)\z + O(Hé‘“%{l(ﬂ@ + E) + O(>\2>

1 1
255251 + 551)\2 + O(HEH?{l(R)%

where choosing R > 10(bed;) .

Moreover, combining Lemme [12] yields
/ 1 [
I (t) > szél + 5()1)\ > 0,

when |\ < 1.

This implies that I(¢) — +oo when ¢ — +o0, which is contradicted with ([{.12).
Hence we prove the instablility of the solitary wave solutions e*¢,, .(x — ct) of (LI)).
This completes the proof of Theorem [Il O
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APPENDIX: PROOF OF LEMMA Bl AND LEMMA [4]

Throughout this section, let 1 < 0 < 2 and zg = 29(0) € (—1, 1) satisfy F,(zq) =

Now we adopt some notations from [29]. More precisely, for any (w,c) € R?
satisfying ¢? < 4w, we denote

1 1 1 2
K=Viw—c2>0, k= 2l_2a_1(1 + U)Fff%_%_%_?, flw,c) = %>
w

h(z;0;w,c) = cosh(okx) — a, = / h~e"dx, n € L.
0

Proof of Lemmal3. For any (w,c) € R? satisfy ¢? < 4w, by (L3)), we have

ior: ¢ ¢
ax¢wyc(z) =e [(25 2 ‘I‘ 2(pw C)SOw c + a:c@w,c] .
Therefore, we have
1 -
P(¢w,6> :§Im/ ¢w,08x¢w,cdx
9 20_ +2 w,c w,c

1 2042
4H90w,c||L2 + 4(0_ + 1) HQOw,CHL20+2-

Finally, we obtain
1w el 72 = 4(0 + 1)[ M(Gue) + P(¢ue)].
According to [29] Appendix Lemma A.3, we have that
OcM(bue) = 0uP(bue)s  OcP(Pue) = w0 M (Puc).
This completes the proof. O

Now, we focus on the critical case ¢ = 2z9/w.

Proof of Lemmal[j From [29] Lemma 4.2, det[d”(w, ¢)] = 0 is equivalent to

[(0 = D)VoM(60)]* = P¢e).

When ¢ = 2z5y/w, we have P(¢,.) > 0. Indeed, if P(¢,..) < 0, since AZ((‘Z“;Z)) — 400,

where ¢ — —24/w. Then there exist two solutions ¢; = ¢1(y/w), ¢2 = c2(y/w), such
that

s = = ve

This contradicts the fact that zy is the unique solution of det[d”(w, ¢)] = 0. Hence,
P(¢w,c) >0, P(¢w,c) = (U - 1)\/5M(¢w,c)
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1

From [29] Appendix (A.2) Lemmas A.1 and A.2, we know that M (¢, .) = fag
and P(¢,.) = ﬁf%(—%}%cao + K%aq). Since P(¢,,) > 0, then we have

1
K2y > 2w coy.

Together with [29] Appendix Lemma A.3, we obtain
B M (¢0) =Fw ' [=8(c — Dwiag + c(2wzeag — k2ay)] < 0,
0w P(doe) =2R[2cwiag(c — 1) — 2cw?ag + k2ay] > 0.
On the one hand, by 0.P(¢, ) = wO,M(¢.) and 0,P(Puw.) = M (¢y.c), we have

I acM(¢w,0> _ &‘,P(gf)w,c)

v T OMn.) . M(buy)

On the other hand,
H _ aCP(¢w,c) o _wawM(¢w,c)

v 0uP(bue) 0uP(0ue)

Hence, combining with above, we get

(H)2 _ 8wp(¢w,c) . _wawM(¢w7C> _
14 8wM(¢w,c) awP((bw,C)

Then we obtain

kG

v
Differentiating M (¢, ) and P(¢,, ) with respect to w and ¢, we have the following
relations:

awwM(¢w,c) :%(awcP(QSw,c) - 8wM(¢w,c)>> awa(¢w,c) - awwp(¢w,c)a

8ch(¢w,c) :awcp(¢w,c)> accp(¢w,c) - wawwp(¢w,c)-

Since Oy, P(dyc) = Vwd,M(d,.), we obtain (23 — 1)y = (1 — 29 — o). From [T7]
Appendix Lemma 10, we have

OuM (@) = 8Vwkag (2 — 0 + 1) + 8y/wkay2o(25 — 1) = 8y/wkag(1 — o)(1 + ),

D0 P(Du) 20 P(s) — 50M () = ~ Ve = 1)(1 = 20),
and
,u28wP(¢w,c) + 2uv0ye P(Pu ) + V2800P(¢w70) = 81wk ,ap(o — 1).
Moreover, we have
120 M (Gus.c) + 20000 M (Gs.0) + V° 0cc M (¢ )
=1 (W0 M (hus.c) + 2v/@De M (Gre) + OccM ()]
=12[ = QoM (Pue) + 20ueP(bue) + 200 (o))

:V2 [Qﬁawwp(gbw,c) + 2awcp(¢w,c) - %awM(gbw,c) - %agM(QSw,c)]

=1 [—4vwkag(o — 1)(1 — z) + 4v/wk,ae(1 — o) (20 + 1)]
=8V Vwkag(o — 1)z.



SOLITARY WAVE SOLUTIONS FOR DNLS 23

Take ko = 8v%\/wk,ap(o—1), then kg > 0. This concludes the proof of Lemmafl [
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