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SYMMETRY OF ENTROPY IN HIGHER RANK

DIAGONALIZABLE ACTIONS AND MEASURE

CLASSIFICATION

MANFRED EINSIEDLER AND ELON LINDENSTRAUSS

In memory of Roy Adler

Abstract. An important consequence of the theory of entropy of Z-actions
is that the events measurable with respect to the far future coincide (modulo
null sets) with those measurable with respect to the distant past, and that
measuring the entropy using the past will give the same value as measuring
it using the future. In this paper we show that for measures invariant under
multiparameter algebraic actions if the entropy attached to coarse Lyapunov
foliations fail to display a stronger symmetry property of a similar type this
forces the measure to be invariant under non-trivial unipotent groups. Some
consequences of this phenomenon are noted.

1. Introduction

Let M =
∏m
ℓ=1 SL(d, kℓ) with kℓ local fields of either zero or positive character-

istic (not necessarily the same for all ℓ). Let G be a closed subgroup of M , Γ a
lattice in G and a1, a2, . . . , ar be r elements in G so that for every i, all of the com-
ponents of ai in SL(d, kℓ) are diagonal matrices; in particular all the ai commute.
For n ∈ Zr we denote an = an1

1 . . . anr
r .

Suppose 1 ≤ ℓ ≤ m and for distinct 1 ≤ i, j ≤ d let Eℓij denote the elementary

unipotent subgroup of SL(d, kℓ) with one on the diagonal, arbitrary element of kℓ on
the i, j entry and zero elsewhere. Then there is some linear functional α : Zr → R

so that for every h ∈ Eℓij
∣

∣an(h− 1)a−n

∣

∣ = eα(n) |h− 1| .

These functionals will be called the Lyapunov exponents of the action of a on M ,
and the set of such functionals will be denoted by Φ. Two Lyapunov exponents
α, α′ ∈ Φ will be said to correspond to the same coarse exponent if α = cα′ for
some c > 0. The equivalence class of a Lyapunov exponent α under this equivalence
relation will be denoted by [α], and the set of equivalence classes, a.k.a. the coarse
Lyapunov exponents will be denoted by [Φ].

For every n ∈ Zr we define the corresponding expanding horospherical subgroup
G+

n
of G by

G+
n
=
{

g ∈ G : a−jngajn → 1 as j → ∞
}

.
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2 M. EINSIEDLER AND E. LINDENSTRAUSS

We can attach a subgroup U[α] to every coarse Lyapunov exponent [α] ∈ [Φ] as
follows:

U[α] =
⋂

n:α(n)>0

G+
n
.

Somewhat more explicitly, let M[α] denote the subgroup of M generated by all

elementary one parameter unipotent groups Eℓij for which the corresponding Lya-

punov exponent is in [α]. Then it can be shown that U[α] = G∩M[α]. Note that our
definitions imply that if α ∈ Φ so is −α, but it may well happen for some G that
U[α] is nontirivial but U[−α] = {1}. We will say that a coarse Lyapunov exponent
[α] is a coarse Lyapunov exponent for G (or appears in G) if U[α] 6= {1}.

Let µ be an A-invariant and ergodic probability measure on G/Γ. To each

coarse Lyapunov exponent [α] ∈ [Φ], we attach a system of leafwise measures µ
[α]
x .

Formally, x 7→ µ
[α]
x is a Borel measurable map from G/Γ to the space of equivalence

classes up to a positive multiplicative constant of locally finite measures on U[α]

satisfying a suitable growth condition (enforcing such a growth condition makes
the space of locally finite measures up to a multiplicative constants into a compact
metrizable space).

Let I
[α]
x be the group of u ∈ U[α] satisfying that µ

[α]
x u = µ

[α]
x . As a locally

compact nilpotent group, I
[α]
x is unimodular. It would be convenient to have also

a notation for the Haar measure on I
[α]
x considered as a locally finite measure up

to multiplicative constant — we denote this measure by µ
[α]
inv,x. Using Poincare

recurrence and ergodicity one can easily show that if I
[α]
x is nontrivial on a set

of positive µ-measure then it is nontrivial a.s. and moreover contains arbitrarily

small and arbitrary large elements of U[α], i.e. the group I
[α]
x is neither discrete nor

bounded.
We define for n ∈ Zr and α ∈ Φ with α(n) > 0 the entropy contribution of α for

n, denoted by Dµ(n, [α]), and the entropy contribution from the invariance group
Dinv
µ (n, [α]) by

(1.1)

Dµ(n, [α]) = lim
ℓ→∞

− logµ
[α]
x (a−ℓnΩ0a

ℓn)

ℓ

Dinv
µ (n, [α]) = lim

ℓ→∞

− logµ
[α]
inv,x(a

−ℓnΩ0a
ℓn)

ℓ
,

where Ω0 is a relatively compact open neighborhood of 1 in U[α]. For notational

convenience, we set Dµ(n, [α]) = Dinv
µ (n, [α]) = 0 if α(n) ≤ 0. Formally, these

quantities depend on the choice of x ∈ G/Γ and strictly speaking to make sense of
the expressions inside the limits above one needs to choose a particular measure in

the proportionallity class µ
[α]
x and µ

[α]
inv,x. Both limits in (1.1) are known to exist

and moreover

Dµ(n, [α])

α(n)
=
Dµ(m, [α])

α(m)

for every n,m ∈ Zr with α(n), α(m) > 0 (and similarly for Dinv
µ (•, [α])) — see

e.g. [EL1]. We will write a• for the group {an : n ∈ Zr}.
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Theorem 1.1. Let µ be an a•-invariant and ergodic measure on G/Γ, with a•, G
and Γ as above. Let [α] ∈ [Φ] and n ∈ Zr satisfy α(n) > 0. Then

Dinv
µ (n, [α]) ≥ Dµ(n, [α])−Dµ(−n, [−α]).

In particular, if Dµ(n, [α]) > Dµ(−n, [−α]) the invariance group I
[α]
x contains ar-

bitrarily small and arbitrary large elements. Moreover, if Dµ(n, [−α]) = 0, and in

particular if U[−α] = {1}, then µ
[α]
x = µ

[α]
inv,x a.s.

For α for which U[−α] = {1}, Theorem 1.1 essentially reduces to the main tech-
nical result of Katok and Spatzier’s paper [KS] (see also [KK]). The symmetry
of the entropy contribution has been an important component in the classifica-
tion of measures invariant under a maximal split torus in semisimple groups, e.g.
[EKL, Cor. 3.4], [EL2, Thm. 5.1]. In those papers, this symmetry was derived from
more detailed analysis and using additional structure; the main point of this paper
is that this symmetry is a rather general feature of higher rank diagonal actions.
Thus one can view Theorem 1.1 as a common generalization of both the techniques
of [KS] and the above auxiliary results from [EKL,EL2].

Specializing further, we obtain a sharper result in the same vein. Suppose now
all the local fields kℓ are either R or Qp (of course, more than one prime p may
be used). Suppose further that a1, a2, . . . , ar are not only diagonal but satisfy the
following further assumption:

Class-A′:
The components of all ai over R are positive diagonal matrices, and for every Qp
there is some θp ∈ Q×

p with |θp| > 1 so that all the entries in the diagonal of the
Qp-components of all the ai are powers of θp.

Theorem 1.2. Let G be as above, Γ < G a discrete subgroup, and assume that
a1, . . . , ar satisfy the Class-A′ assumption. Let µ be an a•-invariant and ergodic
measure on G/Γ. Then there is a closed subgroup L < G containing the group {a•},
an element g0 ∈ G and a closed normal subgroup (possibly trivial) H ⊳L so that µ
is H-invariant and supported on the single L-orbit L.[g0]Γ, g−1

0 Hg0 ∩Γ is a lattice

in g−1
0 Hg0, and if π : L → L/H is the natural projection Λ = π(g0Γg

−1
0 ∩ L) is a

discrete subgroup of L/H. Moreover, the corresponding ā1 = π(a1), . . . , ā1 = π(a1)
invariant probability measure µ̄ on (L/H)/Λ satisfies that for each coarse Lyapunov
exponent [α] ∈ [Φ] and for every n ∈ Zr,

(1.2) Dµ̄(n, [α]) = Dµ̄(−n, [−α]).

In (1.2), the entropy contributions Dµ̄(n, [α]) are defined as above using the
leafwise measures for the action of π(U[α]) on (L/H)/Λ.

To illustrate better the implications of Theorems 1.1 and 1.2 we consider the
action of the full diagonal group A < SL(n,R) on SL(n,R)⋉Rn/ SL(n,Z)⋉ Zn.

Theorem 1.3. Let G = SL(n,R) ⋉ Rn and Γ = SL(n,Z) ⋉ Zn, and let A be
the maximal diagonalizable subgroup of SL(n,R) < G for n ≥ 3. Let µ be an A-
invariant and ergodic measure on G/Γ such that for some a ∈ A the ergodic theoretic
entropy hµ(a) is positive. Then either µ is homogeneous or µ is an extension of a
zero entropy A-invariant measure µ̄ on SL(n,R)/ SL(n,Z) (i.e. hµ̄(a) = 0 for any
a ∈ A) with Haar measure on the fibers of the extension G/Γ → SL(n,R)/ SL(n,Z).

In addition to Theorem 1.1, the proof of this theorem uses a measure classification
results by A. Katok and the two authors of this paper [EKL] and a result from our
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paper [EL3]. We note that the proof of Theorem 1.2 also uses a previous measure
classification result — the classification of invariant measure under groups generated
by one-parameter unipotent subgroups in the setting of products of real and p-adic
linear algebraic groups by Ratner [R4] and Margulis and Tomanov [MT1], extending
Ratner’s measure classification theorem in the real case [R3].

2. Preliminaries on leafwise measures

We recall some basic facts about the construction of leafwise measures. These are
defined in [EL1, §6] in the following general setup: letX be a locally compact second
countable metric space, and U a unimodular locally compact second countable
group equipped with a proper right invariant metric. Let BUr (u) denotes the open
ball of radius r around u ∈ U , and BUr = BUr (1). We assume U acts continuously
on X (i.e. the map (u, x) 7→ u.x is a continuous map U ×X → X) which is locally
free, i.e. for every compact K ⊂ X there is a δ > 0 so that for all x ∈ K the map
u 7→ u.x is injective on BUδ . Let λU denote the Haar measure on U normalized so
that λU (B

U
1 ) = 1.

Given a strictly positive function ρ on U we can consider the space PM∗
∞(U)

of equivalence classes under proportionality of Radon measures ϑ on U for which
∫

U
ρ(u) dϑ(u) < ∞. For a locally compact second countable group U one can

introduce a metric on this space under which it is relatively compact. Indeed, one
may take a sequence fi ∈ Cc(U) spanning a dense subset of Cc(U), and define

d(ν, ν′) =
∑

i

2−i
∣

∣

∣

∣

∫

U
fiρ dν(u)

∫

U
ρ dν(u)

−

∫

U
fiρ dν

′(u)
∫

U
ρ dν′(u)

∣

∣

∣

∣

.

The space PM∗
∞(U) depends implicitly on the choice of ρ, but we shall keep this

dependence implicit in our notation. We say that a countably generated σ-algebra
A of subsets of X is subordinate to U on Y ⊂ X if for every x ∈ Y there is some
δ > 0 so that

(2.1) BUδ .x ⊂ [x]A ⊂ BUδ−1 .x.

If x satisfies (2.1), we say that [x]A is a U -plaque for x.

Proposition 2.1 ([EL1, Thm. 6.3 and Thm. 6.29]). Let X, U be as above. Then
there is a strictly positive function ρ on U so that for every probability measure µ
on X such that the action of U on (X,µ) is a.e. free, we have a Borel measurable
map x 7→ µUx from X to the space of proportionality classes of Radon measures
PM∗

∞(U) with the following properties:

(1) there is a co-null set X ′ so that for every x ∈ X ′ and u ∈ U for which
u.x ∈ X ′ we have that µUx = µUu.xu, with µ

U
u.xu denoting the push forward

of µUu.x under right multiplication by u.
(2) for a.e. x ∈ X, we have that 1 ∈ suppµUx (i.e. the identity is a.s. in the

support of µUx ).
(3) suppose A is a countably generated σ-algebra subordinate to U on Y ⊂ X.

For x ∈ Y , let Vx := {u ∈ U : u.x ∈ [x]A}. Then for µ-a.e. x ∈ Y , the
conditional measure (µ|U )Ax on [x]A is proportional to (µUx |Vx

).x, i.e. the
pushforward of µUx |Vx

under the map u 7→ u.x.
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(4) for any rn ↑ ∞ and bn > 0 such that
∑

n b
−1
n <∞ we have that

lim
n→∞

µUx (B
U
rn)

bnλU (BUrn+2)
= 0.

for µ-a.e. x.

For proof, see [EL1, §6]. Part (3) is stated in a slightly different but equivalent way
in [EL1, §6], see [EL1, §7.24] for a brief discussion. Note that by (4), every choice
of rn ↑ ∞ and bn > 0 such that

∑

n b
−1
n <∞ it follows that the function

ρ(u) =
∑

n

1

b2nλU (B
U
rn+2)

1BU
rn
(u)

is in L1(µUx ), hence can be used as the ρ defining PM∗
∞(U). Moreover, the proof

actually gives that for any sequence of measurable subsets Bn ⊂ U

(2.2) lim
n→∞

µUx (Bn)

bnλU (BU1 BnB
U
1 )

= 0 For µ-a.e. x.

Constructing σ-algebras which are subordinate to U on a set Y of large measure
is not difficult. For instance, it follows from [EL1, Cor. 6.15] that for any ǫ > 0,
one can find a countably generated σ-algebra A which is subordinate to U on Y
with µ(Y ) > 1−ǫ. The following proposition gives under some extra assumptions a
countably generated σ-algebra A subordinate to U on a large subset Y ⊂ X which
plays nicely with that a-action:

Proposition 2.2 ([EL1, Prop. 7.36]). Let G, Γ, be as above a ∈ G diagonalizable,
and U < G+ = {g ∈ G : a−ngan → 1} closed and normalized by a. Let µ be an
a-invariant probability measure on X = G/Γ (not necessarily ergodic). Then for
every ǫ > 0 there is a a-invariant subset Y ⊂ X with µ(Y ) > 1− ǫ and a countably
generated σ-algebra A which is subordinate to U on Y and which is monotonic
under a in the sense that aB ∈ A for every B ∈ A.

Note that a-invariance of Y is not explicitly stated in [EL1, Prop. 7.36], but if
A is a-monotone and subordinate to U on Y then it is also subordinate to U on

Y ′ =





⋃

k≥0

akY



 ∩





⋃

k≤0

akY



 .

Indeed, by monotonicity of A, we have that if ℓ ≤ 0 ≤ k,

a−k[akx]A ⊆ [x]A ⊆ a−ℓ[aℓx]A.

Thus, if x ∈ aℓY ∩akY , then as [akx]A contains a small neighborhood of the U -orbit
around akx, the atom [x]A also contains a small neighborhood of x in its U -orbit,
and since [aℓx]A is a subset of a compact subset of U acting on aℓx, the atom [x]A
is bounded. This shows that indeed A is subordinate to U on Y ′. The set Y ′

contains Y and is clearly a-invariant up to null sets.
We also note in this context the following:

Proposition 2.3 ([EL1, Lem. 7.16]). Suppose 〈a〉 ⋉ U acts on X with the action
by a preserving a probability measure µ on X. Then for µ-a.e. x

µUa.x = aµUx a
−1.
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Sometimes it will be convenient to work with countably generated σ-algebras
whose atoms are a bit more general subsets of U -orbits. We say that a countably
generated σ-algebra A of subsets of X is weakly subordinate to U on Y ⊂ X relative
to µ if for every x ∈ Y we have that [x]A ⊂ U.x and that

(2.3) Vx = {u ∈ U : u.x ∈ [x]A}

is a bounded subset of U with µUx (Vx) > 0.

Lemma 2.4. Let C be a countably generated σ-algebra that is weakly subordinate
to U on a set Y ⊂ X. Let Vx be as in (2.3). Then for µ-a.e. x ∈ Y ,

(2.4) µC
x =

1

µUx (Vx)

(

µUx
∣

∣

Vx
.x
)

.

To prove this, one verifies that the right-hand side of (2.4) satsifies the defining
properties of the system of conditional measures µC

x; we leave the details to the
reader.

We will mostly be focusing our attention on the special case where we have a
closed subgroup G < M =

∏m
i=1 SL(d, ki) with ki local fields of either zero or

positive characteristic, X = G/Γ, J < Zr a finite set, and

(2.5) U = UJ =
⋂

n∈J

G+
n
.

Clearly the coarse Lyapunov groups U [α] are of this form. Moreover if J̃ denotes
the set of triplets (ℓ, i, j) with 1 ≤ ℓ ≤ m and 1 ≤ i, j ≤ d with i 6= j so that the
elementary one parameter unipotent subgroups Eℓij < SL(d, kℓ) is contracted by

a−n under conjugation for every n ∈ J then UJ = G ∩MJ with

(2.6) MJ = 〈Eℓi,j : (ℓ, i, j) ∈ J̃〉

(note that MJ is not just generated by Eℓi,j but is in fact equal to the image of the

product set
∏

(ℓ,i,j)∈J̃ E
ℓ
i,j under the multiplication map.)

We recall from [EL1, §7] that the measure theoretic entropy hµ(n) can be easily
obtained from the entropy contributions Dµ(n, [α]) for [α] ∈ [Φ] as follows:

(2.7) hµ(n) =
∑

[α]:α(n)>0

Dµ(n, [α]).

By the symmetry of entropy we know that hµ(−n) = hµ(n) for every n ∈ Zr, hence
equation (2.7) implies that the entropy contributions satisfy the identity

(2.8)
∑

[α]:α(n)>0

Dµ(n, [α]) =
∑

[α]:α(n)>0

Dµ(−n, [−α]).

A relative version of this identity also holds and can be proved along the same
lines. Explicitly, let A be a countably generated a•-invariant σ-algebra (i.e. a σ-
algebra so that for every B ∈ A we have that anB ∈ A for every n ∈ Zr). We
decompose µ as µ =

∫

µA
ξ dµ(ξ) with each µA

ξ a probability measure supported on

the atom [ξ]A. Given [α] ∈ [Φ] and ξ ∈ G/Γ, we can construct a new system of

leafwise measures (µA
ξ )

[α]
x (the construction of leafwise measures along U[α] works

for any probability measure on G/Γ, not necessarily a a•-invariant one). Since the
measure µA

ξ is supported on [ξ]A, for µ
A
ξ -a.e. x ∈ G/Γ we have that µA

ξ = µA
x hence
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we may define a new system of equivalence classes of up to proportionality of locally

finite measures on U[α], to be denoted by µ
A,[α]
x , so that for µ-a.e. ξ, for µA

ξ -a.e. x,

µA,[α]
x = (µA

ξ )
[α]
x .

For n such that α(n) > 0 we define the entropy contributions of [α] relative to
A by

(2.9) DA
µ (n, [α]) = lim

ℓ→∞

− logµ
A,[α]
x (a−ℓnΩ0a

ℓn)

ℓ

as above we set DA
µ (n, [α]) = 0 for n such that α(n) ≤ 0. These relative entropy

contributions are related to the conditional entropy hµ(n|A) in the same way that
the ordinary entropy contributions relate to the usual ergodic theoretic entropy:

(2.10) hµ(n|A) =
∑

[α]:α(n)>0

DA
µ (n, [α])

and satisfy a similar identity to (2.8) because of the identity hµ(n|A) = hµ(−n|A).
For properies of conditional entropy, see e.g. [ELW, §2].

We note the following observation regarding relative leafwise measures:

Proposition 2.5. Let [α] be a coarse Lyapunov exponent and A a countably gen-
erated σ-algebra of U[α]-invariant sets. Then µ-a.s.,

(2.11) µ[α]
x = µA,[α]

x

Proof. Let Y ⊂ X and C be as in Proposition 2.2 for some a = an expanding U[α]

and some ǫ > 0. By assumption on A, for every x ∈ Y we have that [x]A ⊂ [x]C .
This implies that (µA

x )
C
x = µC

x for a.e. x ∈ Y (see e.g. [EW, Prop. 5.20]). By
Proposition 2.1(3) (applied to µ and µA

x ) and Proposition 2.2 it follows from this
that for a.e. x ∈ Y there exists some r = r(x) > 0 such that

µ[α]
x |

BU[α]
r

∝ µA,[α]
x |

BU[α]
r

.

By Poincaré recurrence applied to a−1 we have this equation for infinitely many
points of the form a−nx ∈ Y and such that the corresponding radii r(a−nx) do not
converge to zero. Applying an to a−nx and using Proposition 2.3 this implies (2.11)
on increasingly larger subsets of U for a.e. x ∈ Y , and the proposition follows. �

2.1. Product structure of leafwise measures. An important property of how
leafwise measures on different course Lyapunov exponents interact is a product
structures that is due to A. Katok and the first named author [EK1,EK2].

Consider a group UJ < G constructed from a finite subset J ⊂ Zr as in (2.5).
Let [Φ]J be the collection of course Lyapunov exponents [α] for which U[α] ≤ U ;
clearly

[Φ]J = {[α] ∈ [Φ] : α(n) > 0 for all n ∈ J}.

A coarse Lyapunov exponent [α] ∈ [Φ]J is said to be exposed in UJ if there is an
element jα ∈ Zr so that α(jα) ≤ 0 while β(jα) > 0 for all other [β] ∈ [Φ]J .

Lemma 2.6. Set J ′ = J ∪ {jα}. Then U[α] ∩ UJ′ = 1 and

UJ = U[α]UJ′ = UJ′U[α].
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Proof. Since α is exposed in UJ clearly U[α] ∩UJ′ = {1}. This also implies that we

can find a sequence ni ∈ Zd so that α(ni) is bounded but β(ni) → −∞ as i→ ∞.

Recall that UJ = G ∩MJ with MJ <
∏m
ℓ=1 SL(d, kℓ) as in (2.6). Let J̃ , J̃ ′, J̃[α]

denote the set of triplets (ℓ, i, j) so that

MJ =
∏

(ℓ,i,j)∈J̃

Eℓij ,

MJ′ =
∏

(ℓ,i,j)∈J̃′

Eℓij ,

M[α] =
∏

(ℓ,i,j)∈J̃[α]

Eℓij .

Then as [α] is exposed, J̃ = J̃ ′ ⊔ J̃[α] and MJ = MJ′M[α]. In particular, we may
write any u ∈ UJ as u = m′m[α] with m′ ∈ MJ′ and m[α] ∈ M[α]. To prove the
lemma one only needs to show m[α] (and hence m′) is in G. For the sequence ni
described above, anim′a−ni → 1, while anim[α]a

−ni is a sequence of elements ofM
which can be obtained from m[α] by conjugating with bounded diagonal matrices
(in M). Without loss of generality, by passing to a subsequence, we can assume

(2.12) anim[α]a
−ni → m1.

Then aniua−ni → m1, so m1 ∈ G. However, by equation (2.12) and the fact that
while a−ni is an unbounded sequence, on U[α] conjugation by these elements is
equivalent to conjugation by bounded elements of the diagonal subgroup of M

a−nim1a
ni → m[α].

Since G is closed, and both m1 and the ani are in G we conclude that m[α] ∈ G,
and the lemma follows. �

The basic phenomena underlying the product structure, which is a slight varia-
tion on [EK1, Prop. 5.1] and [EL1, Prop. 8.5], is the following:

Theorem 2.7. Let J ⊂ Zr, UJ , and [Φ]J be as above. Suppose [α] ∈ [Φ]J is
exposed in UJ , and set J ′ as above. Then there is a set of full measure X ′ ⊂ X so
that if x, u.x ∈ X ′ for u = u[α]u

′ ∈ UJ (with u[a] ∈ U[α] and u
′ ∈ UJ′) one has that

µ[α]
x = µ[α]

u.xu[α].

In particular, for any [β] ∈ [Φ]J r {[α]}, if x, u.x ∈ X ′ for u ∈ U[β] then

µ[α]
x = µ[α]

u.x.

In order to prove Theorem 2.7, we should make use of the system FT,R of subsets
of Zr defined as follows:

(2.13) FT,R = {n ∈ Zr : |n| < T, |α(n)| < R, and β(n) > 0 for all β ∈ [Φ]J′} .

We recall from [L1] that a systems of subsets {FT }T≥T0
of a discrete group Λ is

said to be tempered if there is some C so that for every T

(2.14)

∣

∣

∣

∣

∣

(

⋃

T ′<T

F−1
T ′

)

FT

∣

∣

∣

∣

∣

< C |FT | .

We leave the verification of the following easy lemma to the reader:
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Lemma 2.8. For any fixed R > 0, if T0 is large enough:

(1) The collection {FT,R}T≥T0
defined in (2.13) is tempered.

(2) There is a cR > 0 so that for T ≥ T0

cRT
r−1 ≤ |FT,R| ≤ 1.01cRT

r−1.

We will make use of the following maximal ergodic theorem:

Theorem 2.9 ([L1, Thm. 3.2]). Let Λ be a countable amenable group acting in a
measure preserving way on a measure space (X,µ), and let {FT }T≥T0

be a tempered

sequence of subsets of Λ. Let M [f ](x) denotes the maximal function

(2.15) M [f ](x) = sup
T≥T0

1

|FT |

∑

h∈FT

|f(hx)| .

Then there is a constant C1 depending only on the constant C in (2.14) so that for
any f ∈ L1

µ(X),

(2.16) µ {x :M [f ](x) > λ} ≤ C1λ
−1 ‖f‖1 .

Note that {FT } does not need to be a Følner sequence for Theorem 2.9 to hold.

Proof of Theorem 2.7. Let ǫ > 0 be arbitrary. By Lusin’s Theorem, there is a

compact subset Xǫ ⊂ X with µ(Xǫ) > 1− ǫ so that the map x 7→ µ
[α]
x is continuous

on Xǫ. We may also assume that the subset Xǫ satisfy that if x, u.x ∈ Xǫ for

u ∈ U[α] then µ
[α]
x = µ

[α]
u.xu and that moreover for every n

µ
[α]
anx = anµ[α]

x a−n.

Fix some R > 0, and let M [f ] denote, for f ∈ L1(µ), the maximal function for
f with respect to averaging on the subsets {FT,R}T≥T0

as in Lemma 2.8. Let C1

be as in (2.16) for this sequence. Let

X ′
ǫ = Xǫ ∩ {x :M [1XrXǫ

](x) ≤ 1/8} .

By Theorem 2.9, it follows that µ(X ′
ǫ) ≥ 1− (8C1+1)ǫ. Suppose now that x, u.x ∈

X ′
ǫ with u = u[α]u

′ ∈ UJ . Then for every T > 2T0, we have that the cardinality
of n ∈ FT,R for which at least one of anx, an(ux) is not in Xǫ is at most |FT,R| /4.
Recall that by (2) of Lemma 2.8, the cardinality of FT,R ∩ {|n| < T/2} = FT/2,R is

≤ 1.01 · 2−r+1 |FT,R|. Hence for any T large enough there is a nT ∈ Zr for which

(1) |α(nT )| < R
(2) anT x, anT (ux) ∈ Xǫ

(3) for every β ∈ Φ for which [β] ∈ [Φ]J r {[α]} we have that β(nT ) < −cT for
some c independent of T .

Set xT = anT x, x′T = anT ux, and suppose Tj → ∞ is such that (xTj
, x′Tj

) con-

verges to say (x∞, x
′
∞). Then as Xǫ is compact, x∞, x

′
∞ ∈ Xǫ. By assumption,

conjugation by both a±nT on U[α] is an equicontinuous sequence of maps, and on the

other hand conjugation by anT contracts UJ′ . It follows that w.l.o.g. anT u[α]a
−nT

converges along the subsequence Tj to some nontrivial element ũ[α] ∈ U[α] while

anT u′a−nT → 1, hence x′∞ = ũ[α]x∞. Since x′∞, x∞ ∈ Xǫ we may conclude that

µ
[α]
x∞

= µ
[α]
x′

∞

ũ[α]. By continuity of the map µ 7→ µ
[α]
µ on XU it follows that as j → ∞

the pairs of proportionality class of measures

µ
[α]

anTj x
, µ

[α]

anTj x

(

anTju[α]a
−nTj

)
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becomes increasingly similar, hence by equicontinuity of the conjugation by a±nT x
on U[α]

µ[α]
x = a−nTjµ

[α]

anTj x
anTj ≈

(

a−nTjµ
[α]

anTj ux
anTj

)

u[α] = µ[α]
uxu[α]

with the approximation in the middle of the above displayed equation becoming

increasingly better as j → ∞. It follows that µ
[α]
x = µ

[α]
uxu[α]. Taking X ′ =

⋃

ǫX
′
ǫ

we obtain the theorem as µ(X ′) = 1. �

2.2. Behavior of leafwise measures under finite-to-one extensions. The
main result of this subsection is the following:

Proposition 2.10. Let X,X ′ be locally compact, π : X → X ′ finite-to-one, with a
semi-direct product 〈a〉⋉U acting on both X and X ′. We assume that U is equipped
with a metric d(·, ·) inducing the topology on U such that

cd(u1, u2) ≤ d(au1a
−1, au2a

−1) ≤ Cd(u1, u2)

for some fixed c, C > 1 and all u1, u2 ∈ U . Furthermore we assume that π inter-
twines the action of 〈a〉⋉U on X and X ′. Let µ be an a-invariant measure on X,
and let µ′ = π∗µ. Then for µ-a.e. x ∈ X

µUx = (µ′)Uπ(x).

For simplicity, we assume that the cardinality of the fibers π−1(x′) are the same,
say p, for all x′ ∈ X ′. This proposition can also be viewed as a special case of
the product structure of leafwise measures (cf. §2.1): in this case between the
conditional measure µ induces on inverse images π−1(x′) and the leafwise orbits on
U -orbits.

Proof. Let B denote the Borel σ-algebra on X , and B′ the Borel σ-algebra on
X ′ which we identify with the corresponding sub σ-algebra of B. The system
of conditional measures µB′

x can be considered as a measurable map from X ′ to
probability measures on finite subsets of cardinality p of X .

Let ǫ > 0 be arbitrary, and let X ′
ǫ ⊂ X ′ be a compact subset with µ′(X ′

ǫ) > 1− ǫ

on which the map x 7→ µB′

x is continuous. Let

X̄ ′
ǫ =

{

x′ ∈ X ′
ǫ : inf

N≥1

1

N

N−1
∑

n=0

1Xǫ
(a−n.x′) ≥ 0.9

}

;

by the maximal ergodic theorem, µ′(X̄ ′
ǫ) ≥ 1− 10ǫ.

Let x′ ∈ X ′ and choose δ > 0 and a small open set B′ around x′ so that:

(1) π−1(B′) =
⊔p
i=1Bi, and for each y′ ∈ B′ we have that

∣

∣π−1(y′) ∩Bi
∣

∣ = 1.

(2) if {xi} = Bi ∩ π−1(x′), BUδ .xi ⊂ Bi
(3) if yi ∈ Bi, and u.yi ∈ Bj for u ∈ U, i 6= j then d(u, 1) > 100δ.

It would be convenient to denote by φi(y
′) the unique point in π−1(y′) ∩ Bi for

y′ ∈ B′. We claim that if both y′, u.y′ ∈ B′ ∩ X̄ ′
ǫ for u ∈ BUδ then

(2.17) µB′

y′ ({φi(y
′)}) = µB′

u.y′({φi(u.y
′)}) i = 1, . . . , p.

Indeed, since y′, u.y′ ∈ B′ ∩ X̄ ′
ǫ it follows that there is a subsequence nj → ∞ so

that both a−nj .y′ ∈ X ′
ǫ and a−nj .(u.y) ∈ X ′

ǫ; moreover since X ′
ǫ is compact we
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may assume that y′′ = limj→∞ a−nj .y′ = limj→∞ a−nj .(u.y′) exists. By continuity

of µB′

• on X ′
ǫ it follows that

µB′

a−nj .y′
, µB′

a−nj .(u.y′)
→ µB′

y′′ .

However, by a-invariance of µ, the probability vector on the p-preimages of a point
z′ ∈ X ′ given by µB′

z′ is the same as the probability vector given by µB′

a.y′ on the

preimages of a.z′. This implies that up to permuting the indices on the right-hand
side of (2.17), this equation holds; in view of property (3) of B′ necessarily this
permutation has to be the identity permutation.

Let A′
1 be a σ-algebra on X ′ subordinate to U on a set Y ′ of measure ≥ 1 −

ǫ1. Refining A′
1 with a finite algebra of sets generated by open balls with µ-null

boundaries, we may assume that for every y′ ∈ B′∩Y ′ we have that [y′]A′

1
⊂ BUδ .y

′.
Now set

A′ = {X ′ rB′} ∪ {C′ ∩B′ : C′ ∈ A′
1}

A = {X rB } ∪
{

π−1(C′) ∩Bi : C
′ ∈ A′, 1 ≤ i ≤ p

}

.

For y′ ∈ B′, we have that [y′]A′ = [y′]A′

1
∩ B′, hence since B′ is open, A′ is

subordinate to U on Y ′ ∩B′, and by the assumption we made on the atoms [y′]A′

1

and property (3) of B′ we have that if y′ ∈ B′ ∩ Y ′ and if we define C ⊂ U by
[y′]A′ = C.y then

[φi(y
′)]A = C.φi(y

′) ⊂ Bi

hence A is subordinate to U on π−1(Y ′ ∩B′).
Letting ǫ → 0 we see that (2.17) holds a.e. on X ′, hence for y′ ∈ Y ′ ∩B′ if ρ is

the probability measure on BUδ defined by

(µ′)A
′

y′ = ρ.y′

then
µA
φi(y′)

= ρ.φi(y
′) 1 ≤ i ≤ p.

By Proposition 2.1 part (3), it follows that for a sufficiently small δ′ (possibly
depending on y′),

(µ′)Uy′
∣

∣

BU
δ′

= µUφi(y′)

∣

∣

∣

BU
δ′

1 ≤ i ≤ p

and hence since a expands U and preserves µ the proposition follows by Poincaré
recurrence (cf. Proposition 2.3). �

3. Proof of Theorem 1.1

Let [α] be a coarse Lyapunov exponent, considered fixed in this section. The key
to the proof of Theorem 1.1 is a careful comparison between the entropy contri-
butions Dµ(n, [β]) and the relative entropy contributions DA

µ (n, [β]) for a specific

choice of A, namely the σ-algebra A corresponding to the Borel map x 7→ µ
[α]
x .

To be precise, we take A to be the preimage of the Borel σ-algebra under the

map x ∈ X 7→ µ
[α]
x , where the leafwise measure is considered as an element of

the space of measures PM∗
∞(U[α]) up to proportionality. We will fix this σ-algebra

throughout the section.
By Theorem 2.7, if β is linearly independent from α there is a setX ′ ⊂ G/Γ of full

µ-measure so that for every x, x′ ∈ X ′ with x ∈ U[β].x
′ we have that µ

[α]
x = µ

[α]
x′ . It

follows that there is a countably generated σ-algebra A′ equivalent to A consisting
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of U[β]-invariant sets, and hence by Proposition 2.5, for every β linearly independent
from α, we have that

µ[β]
x = µA,[β]

x a.e.

It follows from the definition of entropy contribution of coarse Lyapunov ex-
ponents (1.1) and the definition of relative entropy contribution (2.9) that for β
linearly independent from α and n ∈ Zr,

Dµ(n, [β]) = DA
µ (n, [β]).

Recall that

I [α]x = {u ∈ U[α] : µ
[α]
x u = µ[α]

x }.

Lemma 3.1. With the notations above we have suppµ
A,[α]
x ⊂ I

[α]
x .

Proof. By Proposition 2.1, there is a set X ′ ⊂ G/Γ of full µ-measure, so that if

x, u.x ∈ X ′ for u ∈ U[α] then µ
[α]
x = µ

[α]
u.xu. Since A is the σ-algebra generated

by the map x 7→ µ
[α]
x , we may also assume that for every ξ ∈ G/Γ, the leafwise

measure µ
[α]
x is constant on [ξ]A ∩X ′. It follows from µ(X ′) = 1 that for µ-a.e. ξ

we have that µA
ξ (X

′) = 1, and also that for µA
ξ -a.e. x

(3.1) µA,[α]
x

({

u ∈ U[α] : u.x 6∈ X ′ ∩ [x]A
})

= 0;

recall here that by definition

µA,[α]
x = (µA

ξ )
[α]
x µA

ξ -a.s.

hence for µ-a.e. ξ, equation (3.1) follows for µA
ξ -a.e. x from the fact that X ′ is

a conull set with respect to µA
ξ . Fix x ∈ X ′ for which (3.1) holds, and suppose

u ∈ suppµ
A,[α]
x . Then there exist ui ∈ U[α] tending to u so that ui.x ∈ X ′.

By definition of X ′ it follows that µA
ui.x is simultaneously equal to µA

x and to

µA
x u

−1
i , hence ui ∈ I

[α]
x . Since the latter is a closed subgroup of U[α], it follows that

u ∈ I
[α]
x . �

Lemma 3.2. Let ξ ∈ G/Γ and consider the system of leafwise measures along

Iξ := I
[α]
ξ for the probability measure µA

ξ , i.e. µ
A,Iξ
x :=

(

µA
ξ

)Iξ

x
. Then they are a.e.

equal to µ
A,[α]
x in the sense that for every V1, V2 ⊂ U[α] and µ

A
ξ -a.e. x

µ
A,[α]
x (V1)

µ
A,[α]
x (V2)

=
µ
A,Iξ
x (V1 ∩ Iξ)

µ
A,Iξ
x (V2 ∩ Iξ)

.

Proof. Let a1 = an be such that conjugation by a1 expands U[α], i.e. α(n) > 0. Let
ǫ > 0. By Proposition 2.2 there is an a1-invariant Y ⊂ X with µ(Y ) > 1 − ǫ and
an a1-monotone countably generated σ-algebra C subordinate to U[α] on Y .

Consider the σ-algebra C̃

C̃ = C ∨ A ∨ {X ′, X rX ′} ,

with X ′ as in the proof of Lemma 3.1 and fix ξ ∈ Y for which µA
ξ (X

′) = 1. We

claim that C̃ is weakly subordinate to Iξ on Y relative to µA
ξ . Note that µ

A
ξ (X

′) = 1

implies that for µA
ξ -a.e. x,

(3.2) µ
A,Iξ
x {u ∈ Iξ : u.x ∈ X ′} = 0.
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We first show that for such ξ, for µA
ξ -a.e. x ∈ Y ,

(3.3) [x]C̃ = [x]C ∩ Iξ.x ∩X ′.

Indeed, for µA
ξ -a.e. x we have that x ∈ X ′ and hence [x]C̃ ⊂ X ′. Moreover, for

x ∈ Y we have that [x]C is a U -plaque, hence every z ∈ [x]C̃ is of the form u.x, and

since such z are in particular in [x]A, we know that µ
[α]
z = µ

[α]
x . As in the proof of

Lemma 3.1, this implies that u ∈ I
[α]
x = Iξ. Thus [x]C̃ ⊂ [x]C ∩ Iξ.x. On the other

hand, Iξ.x ∩X ′ ⊂ [x]A, so Iξ.x ∩X ′ ∩ [x]C ⊂ [x]C̃ . This implies (3.3).

Let Vx = {u ∈ U : u.x ∈ [x]C}, Ṽx = {u ∈ U : u.x ∈ [x]C̃}. If x ∈ Y , then Vx
contains an open neighbourhood B of 1 in U[α], and by (2) of Proposition 2.1

a.s. µ
Iξ
x (B ∩ Iξ) > 0. Assuming x also satisfies (3.2) (which again happens a.s.), we

have that

µ
Iξ
x ((B ∩ Iξ)r Ṽx) = 0

hence µ
Iξ
x (Ṽx) > 0 so C̃ is indeed weakly subordinate to Iξ relative to µ

A
ξ on a subset

of full µA
x of Y . Thus by Lemma 2.4, for any bounded V1, V2 ⊂ U[α]

(

µA
ξ

)Iξ

x
(V1 ∩ Vx ∩ Iξ)

(

µA
ξ

)Iξ

x
(V2 ∩ Vx ∩ Iξ)

=

(

µA
ξ

)C̃

x
(V1.x)

(

µA
ξ

)C̃

x
(V2.x)

.

However, since {X ′, X rX ′} is a trivial σ-algebra C̃ is equivalent to the σ-algebra
C ∨ A hence

(

µA
ξ

)C̃

x
=
(

µA
ξ

)C

x
a.e.

By Proposition 2.1 it follows that
(

µA
ξ

)[α]

x
(V1 ∩ Vx)

(

µA
ξ

)[α]

x
(V2 ∩ Vx)

=

(

µA
ξ

)C

x
(V1.x)

(

µA
ξ

)C

x
(V2.x)

hence
(

µA
ξ

)[α]

x
(V1 ∩ Vx)

(

µA
ξ

)[α]

x
(V2 ∩ Vx)

=

(

µA
ξ

)Iξ

x
(V1 ∩ Vx ∩ Iξ)

(

µA
ξ

)Iξ

x
(V2 ∩ Vx ∩ Iξ)

.

Replacing C by ak1C the sets Vx will contain (for any fixed x ∈ Y ) an arbitrary large
ball around 1 ∈ U[α], and the lemma follows. �

Lemma 3.3. Let ψ be a Borel measurable map from the space of closed subgroups
of U[α] to a symmetric compact subset Ω ⊂ U[α] so that ψ(I) ∈ I for every closed
I ≤ U[α]. Then

(1) for every f ∈ L∞(µ) we have that
∫

f(x) dµ =

∫

f(ψ(I [α]x ).x) dµ.

(2) for µ-a.e. x it holds that ψ(I
[α]
x ).x ∈ [x]A.

(3) for µ-a.e. x the measure µA
x is ψ(I

[α]
x )-invariant.
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Proof. We start by showing (1). Let a1 = an be such that conjugation by a1
expands U[α], i.e. α(n) > 0, ǫ > 0 arbitrary and apply Proposition 2.2 to get an
a1-invariant Y ⊂ X with µ(Y ) > 1 − ǫ and an a1-monotone countably generated
σ-algebra C subordinate to U[α] on Y .

For any k,
(3.4)
∫

X

f(x) dµ−

∫

X

f(ψ(I [α]x ).x) dµ =

∫

X

Ex

(

f(x)− f(ψ(I [α]x ).x)
∣

∣

∣ak1C
)

(ξ) dµ(ξ).

For ξ ∈ Y we have that [ξ]ak1C has the form V (k, ξ).ξ for some V (k, ξ) ⊂ U[α], and

moreover by (3) of Proposition 2.1
(3.5)

Ex

(

f(x)− f(ψ(I [α]x ).x)
∣

∣

∣ak1C
)

(ξ) =

∫

V (k,ξ)

(

f(u.ξ)− f(ψ(I
[α]
u.ξ)u.ξ)

)

dµ
[α]
ξ (u)

µ
[α]
ξ (V (k, ξ))

=

∫

V (k,ξ)

(

f(u.ξ)− f(ψ(uI
[α]
ξ u−1)u.ξ)

)

dµ
[α]
ξ (u)

µ
[α]
ξ (V (k, ξ))

=

∫

V (k,ξ)

(f(u.ξ)− f(uψ′(ξ, u).ξ)) dµ
[α]
ξ (u)

µ
[α]
ξ (V (k, ξ))

,

with ψ′(ξ, •) some measurable, right I
[α]
ξ -invariant function V (k, ξ) → I

[α]
ξ ∩ Ω.

Define
V ′(k, ξ) = {uψ′(ξ, u) : u ∈ V (k, ξ)} .

Then since I
[α]
ξ fixes µ

[α]
ξ

(3.6)

∫

V (k,ξ)

f(uψ′(ξ, u).ξ) dµ
[α]
ξ (u) =

∫

V ′(k,ξ)

f(u.ξ) dµ
[α]
ξ (u).

Set

∂(Ω, k) =
{

x ∈ Y : Ω.x 6⊂ [x]ak1C

}

;

as a1 expands U[α] and since C is subordinate to U[α] on Y , it follows that µ(∂(Ω, k)) →
0 as k → ∞. On the other hand, by (3.6), (3.4) and (3.5) we obtain
∣

∣

∣

∣

∫

X

f(x) dµ−

∫

X

f(ψ(I [α]x ).x) dµ

∣

∣

∣

∣

≤ ‖f‖∞ (µ(X r Y ) + 2µ(∂(Ω, k)) ≤ 2ǫ ‖f‖∞

for k large enough. Since ǫ is arbitrary this proves (1).
Let X ′ be as in (1) of Proposition 2.1 applied to U[α]. Then by (1) we have that

X ′′ =
{

x ∈ X ′ : ψ(I [α]x ).x ∈ X ′
}

also has full measure. For x ∈ X ′′, we have that

µ[α]
x ψ(I [α]x )−1 = µ

[α]

ψ(I
[α]
x ).x

.

But ψ(I
[α]
x ) ∈ I

[α]
x , the groups stabilizing from the right µ

[α]
x . Hence µ

[α]
x = µ

[α]

ψ(I
[α]
x ).x

,

or equivalently

ψ(I [α]x ).x ∈ [x]A.
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This proves (2).
By (1) we have that

(3.7)

∫

f(x) dµ
[α]
ξ (x) dµ(ξ) =

∫

f(ψ(I
[α]
ξ ).x) dµ

[α]
ξ (x) dµ(ξ).

By (2) we see that for a.e. ξ, the measure ψ(I
[α]
ξ ).µ

[α]
ξ is a probability measure on

X giving full measure to [x]A. But then (3.7) shows that the system of measures

ψ(I
[α]
ξ ).µ

[α]
ξ satisfies the defining properties of the conditional measures µ

[α]
ξ . By

uniqueness of conditional measures, it follows that a.s.

ψ(I
[α]
ξ ).µ

[α]
ξ = µ

[α]
ξ ,

establishing (3). �

Corollary 3.4. The leafwise conditional measures µ
A,[α]
x are a.s. the proportion-

ality class of the Haar measure on I
[α]
x .

Proof. For simplicity, we again denote Ix = I
[α]
x . On each item of A the leafwise

measure µ
[α]
x is fixed, hence also Ix. We claim that for µ-almost every x, the

conditional measures µA
x is invariant under Ix. Indeed, let B be an arbitrary open

subset of U[α] with compact closure.
By the Borel selector theorem (e.g. [K, Thm 12.16]) there is a Borel measurable

map ψB from the space of closed subgroups of U[α] to U[α] so that for subgroups
I which are disjoint from B we have that ψB(I) = 1 whereas for subgroups I
intersecting B we have that ψB(I) ∈ B. It follows from (3) of Lemma 3.3 that for

µ-almost every x for which B ∩ Ix 6= ∅, left multiplication by ψB(I
[α]
x ) preserves

µA
x . Thus, by letting B vary under a countable base of the topology of U[α], we

get that for a.e. x, the set of g ∈ Ix preserving µA
x is dense in Ix. Thus, a.s., µA

x

is Ix-invariant, hence for µA
x -a.e. ξ, the leafwise conditional measure µA,Ix

ξ is Haar

(cf. [EL1, Prob. 6.27]). By Lemma 3.2, it follows that µ
A,[α]
x is a.s. Haar measure

on Ix. �

Corollary 3.5.

DA
µ (n, [α]) = Dinv

µ (n, [α])

Proof. This follows immediately from the definitions and Corollary 3.4. �

We can now prove Theorem 1.1:

Proof of Theorem 1.1. Let n be so that α(n) > 0. By (2.8),
∑

[β]:β(n)>0

Dµ(n, [β]) =
∑

[β]:β(n)>0

Dµ(−n, [−β]).

Using hµ(n|A) = hµ(−n|A) we get a similar identity
∑

[β]:β(n)>0

DA
µ (n, [β]) =

∑

[β]:β(n)>0

DA
µ (−n, [−β]).

But for [β] 6= [±α], we have that Dµ(n, [β]) = DA
µ (n[β]) hence by combining the

above two displayed equations we obtain

Dµ(n, [α])−DA
µ (n, [α]) = Dµ(−n, [−α])−DA

µ (−n, [−α]),
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hence

DA
µ (n, [α]) = Dµ(n, [α])−Dµ(−n, [−α]) +DA

µ (−n, [−α])

≥ Dµ(n, [α])−Dµ(−n, [−α])

By Corollary 3.5, we may conclude that

Dinv
µ (n, [α]) ≥ Dµ(n, [α])−Dµ(−n, [−α]).

�

We concludes this section with a slight extension of Theorem 1.1 that will be
useful for us in the sequel.

Theorem 3.6. Suppose G and a• are as in Theorem 1.1. Let H < F be closed
subgroups of G with H ⊳ G and F/H discrete. Assume furthermore that for any
[α] ∈ [Φ], the coarse Lyapunov subgroup U[α] intersects H trivially. Let µ be an a•-
invariant and ergodic probability measure on G/F . Then for [α] ∈ [Φ] and n ∈ Zr

satisfying α(n) > 0 it holds that

Dinv
µ (n, [α]) ≥ Dµ(n, [α])−Dµ(−n, [−α]).

Note that under the assumptions of Theorem 3.6, for any [α] ∈ [Φ] we have that
U[α] acts locally freely on G/F so that if µ is an a•-invariant and ergodic probability

measure on G/F we can define µ
[α]
x , Dµ(n, [α]) and D

inv
µ (n, [α]) just as in the case

of G/Γ with Γ-discrete. Essentially this amounts to extending slightly the class
of groups we consider: not just closed subgroups of linear groups but quotients of
such groups by closed normal subgroups. The proof of the theorem in this case is
identical to that of Theorem 1.1. Adapting the results of [EL1, §7] to this setting,
in particular the proof of (2.7) also poses no difficulty. We leave the details to the
reader.

4. Proof of Theorem 1.2

A key difference between the positive characteristic and the zero characteristic
case is that in zero characteristic unipotent groups have very few subgroups (see
[ELM] for more details).

Recall that our group G is embedded in M =
∏m
ℓ=1 SL(d, kℓ), and that U[α] =

G ∩M[α] with M[α] a product of unipotent algebraic subgroups of kℓ. Enlarging d
if necessary, we may (and will) assumes that all the kℓ are distinct (recall that we
have already assumed that they are all either R or Qp for appropriate p).

The invariance groups I
[α]
x are closed subgroup ofM[α]. Moreover, since the map

x 7→ µ
[α]
x is measurable (cf. Proposition 2.1) and since the map taking a measure to

its right invariance group is also Borel measurable, we have that the map x 7→ I
[α]
x

is measurable. It follows from Proposition 2.3 that for every n ∈ Zr,

(4.1) I
[α]
an.x = anI [α]x a−n

a.e., hence by ergodicity of µ these invariance groups are either a.e. trivial (i.e. =
{1}) or a.e. non-trivial. In [EK2] the following has been shown using Poincare
recurrence and the properties of unipotent groups over R and Qp:
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Lemma 4.1 ([EK2, §6]). Under the assumptions of Theorem 1.2, for any coarse

Lyapunov exponent [α] ∈ [Φ], for a.e. x, the group I
[α]
x can be written as

∏

I(x,ℓ)
with each I(x,ℓ) a connected algebraic subgroup of SL(d, kℓ) ∩M[α].

We exploit this to show that under the assumptions of Theorem 1.2 the invariance
groups of the leafwise measures on the coarse Lyapunov foliations have to be almost
everywhere constant:

Lemma 4.2. Under the assumptions of Theorem 1.2, for any coarse Lyapunov

exponent [α] ∈ [Φ], there is a closed subgroup I [α] ≤ U[α] so that I
[α]
x = I [α] a.e.

Moreover, this group is normalized by the group a•, and µ is I [α]-invariant.

Proof. Fix 1 ≤ ℓ ≤ m. To the unipotent algebraic subgroup I(x,ℓ) of SL(d, kℓ) there
corresponds a Lie subalgebra in sl(d, kℓ). By ergodicity and (4.1) it is clear that
dim(I(x,ℓ)) is a.e. constant, say k. Therefore on a set of full measure there is a 1:1
correspondence between I(x,ℓ) and a corresponding homethety class of pure wedge

vector v̄(x,ℓ) ∈ P (∧ksl(d, kℓ)). The equation (4.1) implies that for every n ∈ Zr

v̄(an.x,ℓ) = (∧qAd)(an).v̄(x,ℓ).

By ergodicity of µ, and since A locally compact, to show that I
[α]
x is a.e. constant,

it is enough to show that for every a ∈ A,

I [α]x = I [α]ax .

Recall that for every n, the element an is of class-A′. This implies that (∧qAd)(an)
is of class- A′. A basic property of elements g of class-A′ is that for any action of
the ambient group on a projective space, for any vector v̄ in the project to space,
gkv̄ tends to a g invariant point in the projective space (cf.1 [MT1, Prop. 2.2]).
In particular, (∧qAd)(akn)v̄(x,ℓ) = v̄(akn.x,ℓ) converges to a (∧qAd)(akn)-invariant
point in the appropriate projective space. But then Poincare recurrence for the
Z-action generated by an implies that v̄(x,ℓ) was fixed by (∧qAd)(an) to begin with.
Since v̄(x,ℓ) uniquely determines the algebraic group I(x,ℓ) it follows that

I(x,ℓ) = I(an.x,ℓ)

and since this is true for every ℓ it follows that I
[α]
x = I

[α]
an.x and the first claim of

the lemma follows.
To show invariance of µ under I [α] we apply Corollary 3.4. Let A be a σ-algebra

corresponding to the Borel map x 7→ µ
[α]
x . According to the lemma, for µ-almost

every x, the conditional measure µA
x is a probability measure with the properties

that for µA
x -a.e. ξ the leafwise measure µ

A,[α]
ξ =

(

µA
x

)[α]

ξ
is the Haar measure on

I [α]. By Lemma 3.2 and [L2, Prop. 4.3] (or [EL1, Prob. 6.27]) it follows that µA
x is

I [α]-invariant, hence so is µ =
∫

µA
x dµ(x). �

Remark: We note that the same argument will work also in the slightly more
general setup of µ an a•-invariant and ergodic probability measure on G/F where
F is as in Theorem 3.6, as long as kℓ are all R or Qp (for possibly more than one
choice of p) and a• satisfies the class-A′ assumption.

1That proposition deals with a slightly different class of elements that Margulis and Tomanov
calls class-A, but the proof carries out without any modifications, and indeed whether one uses
class-A or class-A′ is purely a matter of taste.
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Let Ju be the closed group generated by all one-parameter unipotent groups
preserving µ. Let J be the group generated by Ju and a•. Note that by Lemma 4.1
for all [α] ∈ [Φ] the group I [α] is generated by unipotent one parameter groups,
hence by Lemma 4.2 we have that I [α] ≤ Ju.

Lemma 4.3. Under the assumptions of Theorem 1.2, there are closed subgroups
H,L of G with H ⊳ L, Ju ≤ H and J ≤ L so that

(1) µ is H-invariant
(2) every x ∈ suppµ has a periodic H-orbit
(3) µ is supported on a single L-orbit.

Proof. By definition, the measure µ is J-invariant. Since µ is a•-ergodic and a• ≤ J ,
it follows that µ is J-ergodic. The statement now follows from the main result of
Margulis and Tomanov’s paper [MT2]. �

We note that the main ingredient used by Margulis and Tomanov in [MT2] is a
measure classification result [MT1,R4] extending Ratner’s Measure Classification
Theorem [R3,R2] to the S-arithmetic setting.

Proof of Theorem 1.2. Without loss of generality we may (and will for the remain-
der of this section) assume [1]Γ ∈ suppµ, and since µ is supported on a single
L-orbit we may as well assume L = G and L > Γ. Also, by Theorem 1.1 we have
that if Ju is trivial, equation (1.2) holds for H = {1}, hence we may assume that Ju
is non-trivial. By Lemma 4.3 we know that H.[1]Γ is periodic, i.e. that H ∩ Γ is a
lattice in H . By [R1, Thm. 1.13] we have that HΓ is closed, hence if π : L→ L/H
is the natural projection, Λ = π(HΓ) = π(Γ) is a discrete subgroup of L/H .

Let Hu denote the subgroup of H generated by one parameter unipotent groups.
It is clear from the definition that sinceH⊳L conjugation by elements of L preserves
the class of unipotent one parameter subgroups of H , hence Hu ⊳ L. Recall that
Ju ≤ Hu, in particular by assumption Hu is nontrivial. From the definition it is
clear Hu has the form of a product of (possibly trivial) subgroups Hu,ℓ < SL(d, kℓ)
for 1 ≤ ℓ ≤ m, with each Hu,ℓ generated by one parameter unipotent groups. These
Hu,ℓ are essentially algebraic: if Mℓ is the Zariski closure of Hu,ℓ, then the radical
ofMℓ equals its unipotent radical (otherwiseMℓ would have contained an algebraic
proper subgroup that contain all the unipotent elements of Mℓ — in contradiction
to the definition of Mℓ). Moreover this also implies that the Lie algebras of Hu,ℓ

and Mℓ coincide, hence we have that Hu,ℓ = M+
ℓ — the closed subgroup of Mℓ

generated by one parameter unipotent subgroups2. It follows from [M, Thm. I.2.3.1]
that Hu,ℓ has finite index in Mℓ.

Let M =
∏

ℓMℓ. Since L normalizes Hu it also normalizes its Zariski closure
M , hence L is a subgroup of the normalizer N =

∏

ℓNℓ of M in
∏m
ℓ=1 SL(d, kℓ).

As quotients of algebraic groups we can embed for every ℓ the group Nℓ/Mℓ into
some SL(dℓ, kℓ), and taking d′ = max(dℓ) we can therefor view L/M as a closed
subgroup of

∏

ℓ SL(d
′, kℓ). Let πu denote the natural projection map L → L/Hu

and πM the natural projectionN → N/M . Then the induced a•-action on (L/H)/Λ
is isomorphic to the induced a•-action on (L/Hu)/Λ

′ with Λ′ the closed subgroup
of L/Hu given by πu(ΓH). The group Λ′ is not necessarily discrete, but is discrete
modulo the normal subgroup H/Hu of L/Hu.

2We use the notation M+ only for algebraic groups M .
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Since Hu has finite index in M , the space (L/Hu)/Λ
′ is in turn a finite exten-

sion of (L/M)/Λ′′ with Λ′′ = πM (ΓH). The induced action of a• on (L/M)/Λ′′,
equipped with the measure µ′′ = (πM )∗µ satisfies the condition of Theorem 3.6,
and the coarse Lyapunov subgroups of L/M coincide with the images of the coarse
Lyapunov subgroups U[α] of L under πM .

The measure µ′′ cannot be invariant under any one parameter unipotent sub-
group of L/M , for if u′t = exp(u′t) were such a subgroup with u′ ∈ Lie(L/M)
nilpotent then in view of the fact that M is algebraic we can find a nilpotent u so
that dπM (u) = u′. The invariance of µ′′ under u′t implies the same for µ′ = (πu)∗µ
on (L/Hu)/Λ

′. Since µ is Hu-invariant, it follows that µ will be invariant under
the one parameter unipotent subgroup ut of L. But if this were so, u• would have
been contained in Ju, hence in Hu, hence u′ would be zero — in contradiction.

Therefore applying Theorem 3.6, we conclude that for every coarse Lyapunov
exponent [α]

Dµ′′(n, [α]) = Dµ′′(−n, [−α]).

By Proposition 2.10 this property is preserved by finite-to-one extensions, hence

Dµ′(n, [α]) = Dµ′(−n, [−α]).

This identity implies the theorem in view of the isomorphism between the π ◦ a•-
action on (L/H)/Λ and the πu ◦ a•-action on (L/Hu)/Λ

′. �

5. Proof of Theorem 1.3

Recall the notations in Theorem 1.3; in particular, G = SL(n,R) ⋉ Rn, Γ =
SL(n,Z)⋉

∏

Zn, A is the maximal diagonalizable subgroup of SL(n,R) < G, and
µ is an A-invariant and ergodic measure on G/Γ. Let π denote the natural map
G→ SL(n,R) as well as the induced map G/Γ → SL(n,R)/ SL(n,Z). Let µ̄ = π∗µ.
There are two cases:

• Positive base entropy: there is some a ∈ A for which hµ̄(a) > 0
• Zero base entropy: hµ̄(a) = 0 for every a ∈ A.

The first case has essentially been already been taken care of in [EKL] and [EL3].
Indeed, by [EKL] in this case the measure µ̄ is homogeneous. Moreover one can
explicitly list the possible A-invariant and ergodic homogeneous measures ([LW, §6];
cf. also [ELMV] for a related discussion): when n is a prime, the only possibility is
that µ̄ is Haar measure on SL(n,R)/ SL(n,Z). When n is not a prime, there can
be additional intermediate cases, corresponding to degree d totally real extensions
K of Q for d | n. More explicitly, it follows from the results of [LW, §6], that such
measures are supported on an orbit L.[g1] of the reductive group

L =

(

n
∏

i=1

GL(n/d,R)

)

∩ SL(n,R)

with g1Z
d homothetic to a finite index sublattice of the lattice OK ⊗ Zn/d, where

OK is the ring of integers of the totally real field K, and we view OK as a lattice
in Rd in the usual way — i.e. if τ1, . . . , τd are the d distinct field embeddings of K
in R, we identify OK with the lattice

{(τ1(n), . . . , τd(n)) : n ∈ OK} .
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Note that the case d = n is also meaningful, but corresponds to the case of µ̄
being the natural measure on an A-periodic orbit which is excluded according to
our entropy assumption.

Let L1 = [L,L] =
∏n/d
i=1 SL(n/d,R), and let A1 = A ∩ U1 and A2 = A ∩ CG(L)

(with CG(L) the centralizer of L in G). Then for every x ∈ L.[g1] = supp µ̄, we
have that A2.x is periodic. The stabilizer ∆ of x in A2 does not depend on x —
indeed, it is given by g−1

1 A2g1∩SL(n,Z) and is commensurable to the image of O×
K

under the map n 7→ diag(τ1(n), . . . , τd(n)). Moreover µ̄ has a very simple ergodic
decomposition with respect to A1: if µ̄1 is the uniform measure on the periodic
orbit L1[g1] then µ̄ =

∫

A2/∆
h.µ̄1 dh; by the Howe-Moore ergodicity theorem µ̄1 is

A1-ergodic.
Since the case of d = n has been excluded, the group L̃1 = g−1

1 L1g1 ⋉ Rn is a
perfect algebraic group. Since L1[g1] was periodic in SL(n,R)/ SL(n,Z), the group

L̃1 is also defined overQ, and Γ∩L1 is an arithmetic lattice in it. Letting µ =
∫

µξ dξ
denote the ergodic decomposition of µ with respect to A1, it is clear that for a.e. ξ
there would be some h ∈ A2 (unique up to ∆) so that π∗(µξ) = h.µ̄1. We can
now apply [EL3, Thm. 1.6] to conclude that the measures µξ are all homogeneous,
i.e. supported on a single orbit of a group M ≤ SL(n,R) ⋉ Rn with π(M) = L1.
Moreover e.g. by Poincaré recurrence (or by noting that g−1

1 L1g1 acts irreducibly
on Rn/Zn, hence either π is injective on M or M = SL(n,R)⋉Rn) the group M is
normalized by A2, so µ̄ is a homogeneous measure supported on a single A2M -orbit.
Note that we have essentially classified which homogeneous measures may occur in
the positive base entropy case.

There remains the zero base entropy case. We will parameterize the acting group
by vectors m ∈ Zn with

∑

imi = 0, and set

am =











em1

em2

. . .

emn











.

There are exactly n2 coarse Lyapunov exponents [α] that play a role for the action
of a• on G/Γ (i.e. for which U[α] is nontrivial), for each of which dim(U[α]) = 1:
n(n − 1) coarse Lyapunov exponents for which U[α] < SL(n,R), corresponding to
the functionals φi,j : m 7→ mi −mj for i 6= j, and n coarse Lyapunov exponents
for which U[α] is a subgroup of the unipotent radical of G corresponding to the
functionals φi : m 7→ mi.

By [EL3, Prop. 6.4], if Dµ(m, [φi,j ]) 6= 0 for some i 6= j then Dµ̄(m, [φi,j ]) 6= 0
and hence we have positive base entropy. Therefore we may assume Dµ(m, [φi,j ]) =
0 for all i, j.

It follows that only Dµ(m, [φi]) for i = 1, . . . , n can be nonzero, and since
for some m we have that hµ(m) > 0, by (2.7) for at least one i we have that
Dµ(m, [φi]) > 0. However, the only way to satisfy (2.8) for all relevant3 parameters
m is if for all i we have Dµ(m, [φi]) > 0 (indeed these contributions must equal
to one another, though we will not need to make use of that). The key point is
that unlike the [φi,j ], for [φi] the opposite coarse Lyapunov exponent [−φi] does

3Recall that for convenience we take m ∈ Zn with
∑

mi = 0.
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not appear in G (in other words, U[−φi] is trivial), hence by Theorem 1.1 the in-

variance group I
[φi]
µ is nontrivial4. In this case the only nontrivial closed subgroup

of U[φi] with arbitrarily small and arbitrarily large elements is U[φi] itself, hence as
in the proof of Theorem 1.2 the measure µ is invariant under the group generated
by all the U[φi], i.e. by the unipotent radical of G, which implies the second case of
Theorem 1.3.
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