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FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER
THE YAMABE FLOW

PAK TUNG HO

ABSTRACT. Suppose (M, go) is a compact Riemannian manifold without bound-
ary of dimension n > 3. Using the Yamabe flow, we obtain estimate for the

first nonzero eigenvalue of the Laplacian of gg with negative scalar curvature

in terms of the Yamabe metric in its conformal class. On the other hand, we

prove that the first eigenvalue of some geometric operators on a compact Rie-

mannian manifold is nondecreasing along the unnormalized Yamabe flow under

suitable curvature assumption. Similar results are obtained for manifolds with

boundary and for CR manifold.

1. INTRODUCTION

Suppose (M, go) is a compact n-dimensional manifold without boundary where
n > 3. As a generalization of Uniformization theorem, the Yamabe problem is
to find a metric g conformal to gy such that its scalar curvature R, is constant.
The Yamabe problem was first studied by Yamabe in [50]. Note that if we write
g= une go where u is a positive smooth function in M, then the scalar curvature
R, of g can be written as

(1.1) R, =y <—mAgou+Rgou) .
n—2
Therefore, the Yamabe problem is to solve (LI]) such that R, is constant. This was
solved by Trudinger [48], Aubin [I], and Schoen [45]. See the survey article [34] of
Lee and Parker for more details.
Yamabe flow was introduced by Hamilton in [21I] to study the Yamabe problem,
which is defined as the evolution of the metric g = g(t):

0 —
Erid —(Rg — Rg)g for t 2 0, gli=0 = go,
= _ Ju RedVy . :
where R, = fT is the average of the scalar curvature R, of the Riemannian
MYy

metric g. In [I5], Chow proved that the Yamabe flow approaches a metric of
constant scalar curvature provided that the initial metric is locally conformally
flat and has positive Ricci curvature. In [5I], Ye proved the convergence of the
Yamabe flow by assuming only that the initial metric is locally conformally flat.
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Later, Schwetlick and Struwe [46] proved the convergence of the Yamabe flow for
the case when 3 < n < 5 under the assumption that the initial metric has large
energy. Finally Brendle [4, 5] showed that the Yamabe flow converges to a metric of
constant scalar curvature by using positive mass theorem. See also [2, [16] [4T], 42} [47]
for results related to the Yamabe flow.

In this paper, we prove the following theorem by using the Yamabe flow.

Theorem 1.1. Suppose (M, go) is a compact Riemannian manifold of dimension
n > 3 without boundary such that mA%XRgo < 0, and gy ts the Yamabe metric

conformal to go which has same volume as go. Then the first nonzero eigenvalues
of the Laplacian of go and gy satisfy

(1.2) e “A(gy) < Ailgo) < e“Ailgy)
where ¢ = 2(n — 1) (% - 1> .
maxps Rgo

Recall that gy is a Yamabe metric in the conformal class of gy if gy is a Rie-
mannian metric conformal to g such that its scalar curvature is constant. Theorem
[LTlcan be applied to estimate the first nonzero eigenvalue of a metric with negative
scalar curvature in terms of the Yamabe metric in its conformal class. See Theorem
2. 10

The Yamabe problem was also studied in the context of manifolds with boundary.
Suppose (M, go) is a compact n-dimensional manifold with smooth boundary O M
where n > 3. The Yamabe problem is to find a metric g conformal to gy such
that its scalar curvature R, is constant in M and its mean curvature H, is zero
on JM. This has been studied by Escobar in [I8]. See also [6] 22] for results in
this direction. In particular, the Yamabe flow was introduced on manifolds with
boundary by Brendle in [3]: given a metric go with vanishing mean curvature on
the boundary, i.e. Hy, =0 on OM, we can define the Yamabe flow as follows:

0
ot?
Using the Yamabe flow, we obtain estimate for the first nonzero eigenvalue of
the Laplacian with Dirichlet boundary condition when (M, go) has negative scalar
curvature. See Theorem L4
One can consider the following CR analogue of the Yamabe problem, the CR
Yamabe problem. Suppose (M, 6y) is a compact strictly pseudoconvex CR manifold
of real dimension 2n + 1 with a contact form 6y. The CR Yamabe problem is to
find a contact form 6 conformal to 6y such that its Webster scalar curvature is
constant. Jerison and Lee [28| [29] [30] solved the CR Yamabe problem when n > 2
and M is not locally CR equivalent to the sphere. The remaining cases, namely
when n =1 or M is locally CR equivalent to the sphere, were studied respectively
by Gamara and Yacoub in [20] and by Gamara in [I9]. See also the recent work of
Cheng-Chiu-Yang in [13] and Cheng-Malchiodi-Yang in [I4].
The CR Yamabe flow was introduced to study the CR Yamabe problem, which
is defined as:

=—(Ry— Ry)gin M and Hy; = 0 on OM for t >0, gli—o = go.

0
ot
where Ry is the Webster scalar curvature of the contact form 6, and Ry is the
average of the Webster scalar curvature. See [10] [111 241 25| 26} 27, [52] for results

0 = —(Rg — Rg)f for t >0, 04— = 6o,
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related to the CR Yamabe flow. Using the CR Yamabe flow, we obtain estimate for
the first nonzero eigenvalue of the sub-Laplacian of a contact form 6y with negative
Webster scalar curvature. See Theorem

In another direction, we consider eigenvalues of some geometric operators under
the unnormalized Yamabe flow. In recent years, there has been increasing atten-
tions on the study of eigenvalues of geometric operators under different kinds of
geometric flow. In [43], Perelman proved that the first eigenvalue of —4A, + R, is
nondecreasing along the Ricci flow

—g = —2Ric,,
b tg g
where Ric, and R, are the Ricci curvature and scalar curvature of g respectively. As
an application, he showed that there is no nontrivial steady or expanding breathers

1
on closed manifolds. In [7], Cao showed that the eigenvalues of —A, + §Rg on Rie-

mannian manifolds with nonnegative curvature operator are nondecreasing under
the Ricci flow. See [35] 36] (40, 53] for related results.

In [8], Cao proved that the first eigenvalue of —A, + aR, on a closed manifold
M, where a > 1/4, is nondecreasing along the Ricci flow. In [9], Cao-Hou-Ling
showed that the first eigenvalue of —Ay + aRy, where 0 < a < 1/2, on a closed
surface with nonnegative scalar curvature is nondecreasing under the Ricci flow.
Combining these results, we have the following: (see Theorem 2.2 in [9])

Theorem 1.2. On a closed surface with nonnegative scalar curvature, for all a > 0,
the first eigenvalue of —Ag + aRy is nondecreasing under the Ricci flow.

1
Note that when the dimension n = 2, we have Ric, = §Rgg. Therefore, the

Ricci flow becomes the unnormalized Yamabe flow

—g=—Ryg.
6tg gg

We would like to generalize Theorem to higher dimension by considering the
unnormalized Yamabe flow. In particular, we prove the following:

Theorem 1.3. Along the unnormalized Yamabe flow, the first eigenvalue of —Ag+
aR, is nondecreasing

n—2 n—2
)0 < n-2 . L -2 >0
(i) Zf()_a<4(n_1) andnjl\}[nRg_ - H}\?[JXR!]_O,
n —
1) 1 > —_— i > 0.
(i) if a > =) andn]l\}[nRg_O

Corresponding results are also obtained for manifolds with boundary and for CR
manifolds. See Theorem [£.2] Theorem [5.3] and Theorem [.3] Note that Theorem

[[3 was proved in [25] for the cases when a = 0 and a = ﬁ (c.f. Theorem 6.1
n—

and Theorem 6.2 in [25]). Note also that the condition m]\}[n Ry > 0 is preserved by

the Yamabe flow (see Proposition 6.2 in [25]). Therefore, Theorem [[L3] implies that
following corollary, which can be considered as a generalization of Theorem [1.2] in
higher dimensions.
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Corollary 1.4. On a closed Riemannian manifold with nonnegative scalar curva-
n—

ture, the first eigenvalue of —Ag+aRgy, where a > 4(717—1)’

is nondecreasing along
the unnormalized Yamabe flow.

We would like to point out the following main difference between the proof
of Theorem [[1] and Theorem By the eigenvalue perturbation theory (c.f.
[8, B1, 33| [44]), we know that there is a family of the first eigenvalue and its
corresponding eigenfunction of the geometric operator, which is C! in t along the
flow in Theorem[I.3] However, in Theorem [I.1l we only know that the first nonzero
eigenvalue (that is, the second eigenvalue since the first eigenvalue is always zero)
of the Laplacian is Lipschitz continuous in ¢t. But we are able to overcome the
difficulty by following the ideas of Wu-Wang-Zheng in [49].

2. THE YAMABE FLOW ON MANIFOLDS WITHOUT BOUNDARY

In this section, we let (M, go) be a compact Riemannian manifold of dimension
n > 3 without boundary. We consider the Yamabe flow, which is defined as

0
a7
Here R, is the scalar curvature of g and R, is the average of the scalar curvature
given by

(2.1) = —(Ry — Ry)g for t > 0, gli—o = go-

B _ Jor RgdVg
! JudVe
where dV} is the volume form of g. Since the Yamabe flow preserves the conformal

(2.2)

structure, we can write g = un—2 gy for some positive function u, where u satisfies
the following evolution equation:

0 -2 —
(2.3) 8_1; - = 1 (Ry — Ry)u for t >0, ul=o = 1.
Hence, the volume form dVj of g satisfies
0 0, _on 2n 2w _0u n —
(2.4) &(dvg) = &(unﬁ dVg,) = n ot ladvgo = _E(Rg — Rg)dVy.

On the other hand, the scalar curvature R, of g satisfies the following evolution
equation: (see [4])

9 _
(2.5) ER.«J = (n—=1)AgRy + Ry(Ry — Ry).

We have the following proposition, which is inspired by Proposition 3.1 in [49].

Proposition 2.1. Let g = g(t) be the solution of the the Yamabe flow ZI)) and
A1(t) be the corresponding first nonzero eigenvalue of the Laplacian. Then for any
to > t1, there exists a C™ function f on M X [t1,t2] satisfying

(2.6) / f2dv, =1 and / fdVy =0 for all t € [t1, 1],
M M

and

-2 (" —= 29
Mt =0t =52 [ [ (R = R)Varviae—2 [ [ S, raviae
t1 t1

such that at time to, f(t2) is the corresponding eigenfunction of A1(tz).




FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW 5

Proof. At time t2, we let fo = f(t2) be the eigenfunction for the first nonzero
eigenvalue A (t2) of g(t2). We define the following smooth function on M:

2n
u(ta) \ "2
h(t) =
where wu(t) is the solution of ([23)). We normalize this smooth function on M by
h(t
f(t) = (2 ) I
(Jar h(£)2dVr)) 2

Then we can easily check that f(t) satisfies (2.6)).
Set

Gla(t). 1)) = [ 1V f0)PdVigo.
Note that G(g(t), f(t)) is a smooth function in ¢. Since g = w7 gy, we have
(2.7) (Vgf1,Vgfa)g = u7%<vgoflvvgof2>go
for any functions f1, fo in M, which implies that
Gla(t) £) = [ w1V, 3,V

Differentiating it with respect to ¢, we get

Glo(t), 1(1)) = 5 Glo(0), 7(0)

ou of
= /M 2“E|vgof|§oquo +2 /M u2<vgofa VQO(E)>goqu0
(2.8) n—9 - 9
=22 [ By - BB, +2 [ (9,09, (G,
M M
n—2 — 0
= - / (Rg - Rg)|vgf|;2;qu -2 _ngdeq

where the second last equality follows from (Z3]) and (2.7, the last equality follows
from integration by parts. It follows from the definition of G(g(t), f(¢)) in (Z8)
that

ta

(2.9) Glg(t2), f(t2)) = Glg(t), f(t2)) = [ G(g(D), f(t))dL.

ty

Since f(t2) is the corresponding eigenfunction of A;(t2), we have

(2.10) G(g(t2), f(t2)) = A (t2) /M F(t2)*dVy(ea) = Ma(t2)

by ([24). On the other hand, it follows from (2.6) and the definition of G(g(t), f(t))
that

(2.11) G(g(tr), f(t1)) = Ai(t1) - Ft1)2 AV, = Mi(t).

Now the result follows from (2.8])-(211). O

Hence, we have the following:
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Proposition 2.2. The first nonzero eigenvalue A1 of the Laplacian along the Yam-
abe flow 1)) satisfies
d 2 —
Elog)\1>—T(maxR R) Z(mj\/ijnRg—Rg).
Here the derivative on the left hand side is in the sense of the liminf of backward
difference quotients.

Proof. Differentiate the first equation in (28) with respect to t, we have

(2.12) /f av, == /f (R, — Ry)dV,

by (24). On the other hand, since f(t2) is the corresponding eigenfunction of
A1(t2), we have

of (¢t f(ta
e13) - [ A eV = ) [ ) 2L v
Combining (2.12]) and 2.13]), we get
af(t n
@ 14) —/M f(xa(tz)Ag(tz)f(tZ)qu(tz) = Z)\l t2) / f( t2 t2) tz))dv (t2)

> Z>\1 (t2) (m]\}[n Ryty) = Rg(tz)) ’

where we have used (2.0)) in the last inequality. Since A(t2) is positive, we have for
any € > 0

of (t2) n . =
(2.15) _ /M 8t2 Ag(t2)f(t2)dvg(t2) > Z)\l(tg) (mj\}[n Rg(t2) — Rg(t2) — 6) ,

o(s) [ (8)dVy(s) 18

continuous in s. On the other hand, the function s +— (mj\}[n Ry —Rg(s)) is

0
by @2I4). By the definition of f, the function s /
M

continuous in s. Hence, it follows from (210 that for any € > 0

of ) _
(2.16) - | GrAafav, 2 Al(tg) (I%n R,— R, — e)
when t is sufficiently closed to ta. On the other hand, we have

(2.17)
- /M(Rg(tz) — Ryta)|V g(02) 150 Vi)

_ , _
2 - (m;}x Ry(1z) = Rg<t2>) /M Vg(2) flye) WVottz) = —(H}\%X Ry(tz) = Rg(tz))/\l(tZ)

by ([2:6)) and the fact that f(t2) is the corresponding eigenfunction of A (t2). Since
A(t2) is positive, we have for any € > 0
(2.18)

- /M(Rg(tg) Ryts) |V g(t2) 112y WVa(t2) > — (mﬁx Ryt,) — Ry(ts) + 6) A1 (tz)

By the definition of f, the function s +— / Rysy — Ry(5))|Vy S)f|g(S 9(s) 18

continuous in s. On the other hand, the function s — (mﬂ%x Ry —Eg(s)> is



FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW 7

continuous in s. Hence, it follows from (ZI8)) that for any € > 0
@19)  — [ (R =R = ) (magx Ry -y +c)
M

when ¢ is sufficiently closed to t2. Substituting [2I6]) and (ZTI9) into the inequality
in Proposition 2] we obtain

A1(ta) — A1(tr)

n—2 t2 — n t2 . —
> — 5 A1(t2) /tl (m]\%XRg - Ry + e)dt + 5)\1(152) /tl (H]l&nRg - R, — e)dt
for t; < t2 and t; sufficiently closed to t5. Dividing t2 — ¢; in the above inequality
and letting t; go to t2, we obtain
(2.20)

t1—12 to — 11

n—2 — n . —
> 5 Al(tg)(mj\?x Rg(t2) — Rg(t2) + 6) + 5)\1 (tg)(m]\}[n Rg(t2) — Rg(t2) — 6).

Note that

(2.21) liming 28A1(t2) Zloghi(ty) o i inf 2(02) = A1 ()
t1=t2 lo — 1 A(ta) ti—ts to — 1

To see this, note that

log M (t2)—log A1 (t1) = log <(ii$?§ - 1) + 1) - @1%‘1)” <(i£j§ - 1)2)

for t1 < to.

which implies that
lim inf log )\1 (fg) — log )\1 (tl)
t1—t2 to — 11
1 to) — t 1 t 2
> lim inf Ault2) = M) | o (Al(z) -1)).
t1—tz A\q (tl) to — 11 t1—t2 to —t1 \ )\ (tl)

Note that

lim in 1(1151) (Al(“) _Al(t1)> > <liminf 1(1151)) (liminfM)

t1—t2 to —t1 t1—t2 t1—t2 to — 11

= —1 lim in —Al(tQ) —(t)
A1 (fg) t1—t2 to — 11

and

1 ()\1(f2) _1)2 —0

im

t1i—ta to — t1 Al(tl)
since A1 (¢) is Lipschitz continuous in ¢, (22I) follows from combining all these.
Now, combining (2.20) and ([Z.21]), we have

log A1 (t2) — log A1 (t1)

lim inf
t1—t2 to — 11
n—2 — n . —
2 -5 (mj\gx Ry(ta) = Byees) + 6) + 5(%1 Ry(ta) = Ry(ea) = 6)-
Since € > 0 is arbitrary, Proposition [Z.2] follows from letting ¢ — 0. O

Similarly, we can prove the following:
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Proposition 2.3. Let g = g(t) be the solution of the the Yamabe flow (ZI)) and

A1(t) be the corresponding first nonzero eigenvalue of the Laplacian. Then for any
to > t1, there exists a C° function f on M X [t1,ts] satisfying

(2.22) / f2dV,=1 and / fdVy =0 for allt € [t1,t2],
M M

and

n—2 " — t2 0
M(ta) < M () — / / (Ry — By Vo f2dVydt — 2 / / LN
2 Jy Ju 4, Ju Ot

such that at time t1, f(t1) is the corresponding eigenfunction of A1 (t1).

Proof. We only sketch the proof since it is almost the same as the proof of Propo-
sition 211 At time ¢, we let f; = f(¢1) be the eigenfunction for the first nonzero
eigenvalue A\;(t1) of g(t1). We define

where u(t) is the solution of (233). Then

_ h(t)

- (Jar h(t)deg(t))%
satisfies (2.22)). As in the proof of Proposition 21} we define

f(t)

Gla(t), F(1)) = /M V0 FOPdVy0.

Then it is clear that (2.8) and ([2.9)) are still true. Since f(t1) is the corresponding
eigenfunction of A;(t1), we have

Gla(t). £(1)) = M(t) [ F(0)P V) = Ma(t)

by ([2:22)). On the other hand, it follows from (2.22]) and the definition of G(g(t), f(t))
that

G(g(t2), f(t2)) = Ai(t2) - f(t2)2dV(1y) = Mi(t2).

Now Lemma follows from combining all these. O

We also have the following;:

Proposition 2.4. The first nonzero eigenvalue A1 of the Laplacian along the Yam-

abe flow 1)) satisfies
d -2 — -
log s < —nT(mIVi[nRg - Ry + g(mﬂz}ng - R,).

Here the derivative on the left hand side is in the sense of the limsup of forward
difference quotients.
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Proof. Again we only sketch the proof since it is almost the same as the proof of
Proposition As in the proof of Proposition 2.2 by (2.22)) and the fact that
f(t1) is the corresponding eigenfunction of A;(t1), we have

9f(t1) of(t1)
—/ 9 Ay f(t1)dVy,) = )\l(tl)/ f(t2) a0 Wanr)
M M
n J—
= Z)\l (t1) /M f(tl)Q(Rg(tl) — Ry1))dVy(1)
n —
S Z)\l (tl) (Hl]\é}x Rg(tl) — Rg(tl)) .
By continuity and the fact that A(t1) > 0, we can conclude that for any ¢ > 0
af n —=
(2.23) - /M SEA, fdV, < Thi(h) (mﬁXRg ~R,+ e)
when t is sufficiently closed to t;. Similarly,
e2) = [ (R =FIVusav, < Ni(tn) (min R, ~F, o)

when ¢t is sufficiently closed to ¢;. Now putting (Z23]) and (Z24) into the inequality
in Proposition 23] we obtain

)\1 (tg) — )\1 (tl)
n—2 t2 — n
< — 1 — — —
S B Al(tl)/ (%DRQ Rg E)dt—f' 2)\1(t1)/

t1 t1

ta

(mA%XRg - R, —l—e)dt

for to > t; and to sufficiently closed to ¢;. Dividing the last inequality by to — t1
and letting to go to t1, we get
(2.25)
A(ta) — A (t
lim sup —1( 2) 1(t)
ta—ty ta —t1

. = n —
) (3 Bt T )+ 00 (g P~ ),

n—2
S_

Replacing lim inf by lim sup and reversing the sign of the inequality, one can follow
t1—t2 to—t1

the arguments of proving ([2.21]) to prove that

log )\1 (t2) — log )\1 (tl) < )\1 (tz) — )\1 (tl)

2.26) limsu lim su for to > 4.
(2.26) P to — 1 ~ () PR — 2
Combining (2:25) and ([2:26]), we have

log A1(t2) — log A1 (t
T sup 128 1(t2) —log A1 (t1)
ta—ty to —t
n—2 . — n —
= - (%ﬂ Ry(t) = Rg(en) = 6) t3 ( max Rg,) = Rgee) + 6)-
Since € > 0 is arbitrary, Proposition 2.4] follows from letting ¢ — 0. O

Using the maximum principle, we can prove the following:

Proposition 2.5. Ifm]\z}x Ry, <0, then max Ry <0 for allt > 0 under the Yamabe

flow 2.1).
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Proof. Consider the function F on M x [0, 00) given by
1
F(z,t) =Ry — 3 mA%XRgo.
We claim that F' < 0. By contradiction, we suppose that
(2.27) F(z9,t0) > 0 for some (zg,tg) € M x [0, 00).
Since g = gp at t =0 and
1 1
F(z,0) = Ry, — 3 mﬁngo < 3 mj\z/}ngo <0

by assumption, we must have {5 > 0. We assume that ¢y is the smallest time

satisfying (227), i.e.

(2.28) F(z,t) <0 for all t € [0, ).
By continuity, we have

(2.29) F(z,tp) <0 for all x € M.
Combining (2:27) and ([2:29]), we have

(2.30) 0= F(xg,tp) = max F(z,tg),

which implies
(231) RQ('I()vtO) = %%Rg(xvto)

by the definition of F'.
Therefore, at (xg,to), we have

OF OR,

0< = (n = 1)AgRy + Ry(Ry — Ry)

(2.32) = ot ot ”
S R!](RQ - RQ))

where the first inequality follows from the fact that F(zg,t) is increasing at ¢y by

E29)-(Z30), and the second equality follows from (23], and the last inequality

follows from (231). But this is a contradiction, since the last term of (Z32) is
negative. To see this, it follows from (230) and the definition of F' that

1
(2.33) Ry (zo,t0) = 5 max Ry,
which implies together with (231)) that at (zg, to)
— 1 — 1 —
(2.34) Ry(Ry — Ry) = 3 mI\%XRgo (Ry — Ry) = 3 mI\%XRgo <£Ig\)4{Rg(x,t0) - Rg>

Since max Ry, < 0 by assumption, ([2.34)) is nonpositive and is equal to zero if and

only if max Ry(z,t0) = Ry, or equivalently, g(to) has constant scalar curvature.
max fr, ‘
Hence, it follows from (233)) that

_ R dv, 1 =
R!](to) = M -5 mﬁ‘XRgo > mj\?‘[XRgo > Rgo?

f m WVy(to) 2
which is a contradiction, since t — }_%g(t) is nonincreasing along the Yamabe flow
(see (9) in []). This shows that ([234) must be negative, as we claimed.
This contradiction shows that ([2.27) is impossible. This proves that F' < 0, or
equivalently, R, < %maxM Ry, < 0, which proves the assertion. O
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Similarly, we have the following:

Proposition 2.6. If max Ry, <0, then max R, < max Ry, for allt > 0 under the
Yamabe flow 2.1]).

Proof. The proof is similar to Proposition For € > 0, we define the function
F(z,t) = Ry(z,t) —e(t +1) on M x [0,00). We claim that mA%XF < max R,, on

[0,00). By contradiction, we suppose that

(2.35) F(xo,t0) > mj\z}ngo for some (xq,t9) € M x [0, 00).

Since g = go at t = 0, we have m]\%xF = max Ry —e< max Rgy,. Therefore, we
must have tp > 0. We may assume that ¢ is the smallest time satisfying (2.35)), i.e.
(2.36) F(z,t) < m]\z/}ngo for all (x,t) € M x [0,t0).

By continuity, we have

(2.37) F(z,t9) < HlI\E/}XRgD for all x € M.

Combining (235) and ([237)), we have
(2.38) F(xzo,t0) = max F(z,tg),

which implies

(239) Rg(3307t0) = I;é%\)/[(Rg(.I,to),

by the definition of F'.
Therefore, at (xg,to), we have

OS%—1;—‘2—64—%=—6+(”_1)A9R9+R9(R9_Rq)

IN

—e+ Ry(Ry — Rg)

—e + max Ry(z, to) (majt\); Ry(z,t0) — }_%g) < —¢,
S

xeM

where the first inequality follows from (236)-(238), the second equality follows
from (23], the second inequality and the third equality follows from (2.39)), and
the last inequality follows from the fact that max R, < 0 by Proposition 2.5 This

contradicts the assumption that e > 0, which proves the claim.
By the claim, for any ¢ > 0, we have mj\z}xF < max R,, on [0,00). By letting

€ — 0, we get the required estimate. (Il
We can also prove the following:

Proposition 2.7. If max Ry, <0, then mz\/i[n Ry > Irjlvi[n Ry, for allt > 0 under the

Yamabe flow 2.T)).

Proof. For € > 0, we define the function F(x,t) = Rg(x,t)+¢e(t+1) on M x [0, c0).
We claim that Irjlvi[nF > Hjlvi[n Ry, on [0,00). By contradiction, we suppose that

(2.40) F(zo,t0) < ml\%ngo for some (xo,to) € M x [0, 00).
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Since g = go at t = 0, we have mA/i[nF = mIVi[n Ry +e> mIVi[n Rgy,. Therefore, we must
have to > 0. We may assume that ty is the smallest time satisfying (Z40), i.e.
(2.41) F(z,t) > In]vi[n Ry, for all (x,t) € M x [0,to).

By continuity, we have

(2.42) F(z,ty) > HlI\E/}XRgD for all x € M.

Combining (2:40) and [2:42)), we have
(2.43) F(zo,t0) = min F(x,tg),

which implies
(244) Rg(Io,to) = mHéi]\I/l[Rg(I,to),

by the definition of F.
Therefore, at (xg,to), we have

F —
02%—t:e—l—%:e+(n—1)AgRg+Rg(Rg—Rg)

> e+ Ry(Ry — Ry)
=€+ ;Iél]\r}[ Ry(x,t0) (;r;lj\r{l{ Ry (z,to) — Rq) > e,

where the first inequality follows from (241)-([2.43), the second equality follows
from (2], the second inequality and the third equality follows from (244]), and
the last inequality follows from the fact that H}Vi[n R, < max R, < 0 by Proposition

This contradicts the assumption that e > 0, which proves the claim.
By the claim, for any ¢ > 0, we have mA}[nF > m]\}[n Ry, on [0,00). By letting

e — 0, we get the required estimate. O
Using the maximum principle, we can also prove the following:

Lemma 2.8. If max Ry, <0, then

t
Ryt < Ry + (m]\%x Ry, — mIVi[n Rgo) + (m]\%x Rgo) /0 (m]\%x Ry — Rg(s)) ds.
for all t > 0 under the Yamabe flow 2.1)).
Proof. For € > 0, we let
F(z,t) =Ry(x,t) — (ml\%x Ry, — mIVi[n Rgo)
t
_ (mj\z}xR%) /o (mj\z}xRQ(s) - Rg(s)) ds —e(t+1)

be a function defined on M x [0, 00). We claim that F(z,t) < R,,. By contradiction,
we suppose that

(2.45) F(z0,t0) > Ry, for some (xo,ty) € M x [0,00).
Since g = go at t = 0, we have

—Ry + F(2,0) = =Ry, + Ry, — (m]\z}[ngo - Irjlvi[nRgO) —e<—e<0.
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Therefore, we must have tg > 0. We may assume that ¢y is the smallest time

satisfying (2.49), i.e.
(2.46) F(x,t) < Ry, for all (z,t) € M x [0,10).

By continuity, we have

(2.47) F(z,ty) < Ry, for all z € M.
Combining (245)-(241), we have
(248) F(.Io,to) = ;%%\Z(F(.I,to),

which implies
(249) Rg(.fo,to) = Iz%%\);Rg(.I,to)

by the definition of F.
Therefore, at (xo, %), we have

0< %—ZZ = %RQ — (max Ry, ) (max Ryq,) — R
= (n = 1)ARy + Ry(Ry — By) — (max Ry, )
< Ry(Ry — Ry) — (max Ry, ) (max Ry — Ry ) — €
= (ma Ry ) (g Roto) = Roten) = (mgix B ) (mx Rote = Py ) =
< —e

3

where the first inequality follows from (2.46)-(2.48), the second equality follows
from (2], the second inequality and the third equality follows from (Z49), and
the last inequality follows from Proposition[2.6l This contradicts to the assumption
that € > 0. This contradiction shows that F(x,t) < Ry,. Letting € — 0, we get the
desired result. O

Similarly, we can prove the following:

Lemma 2.9. If max Ry, <0, then

t
Ryt = Ry, — (max Ry, — min Ry, ) + (max Ry, ) /0 (min Ry(s) — Ry(e) ) ds.
for all t > 0 under the Yamabe flow (21

Proof. We only sketch the proof since it is essentially the same as the proof of
Lemma 2.8 For € > 0, we define the function

F(z,t) =Ry(x,t) + (m]\%XRgO - mj\j{nRgO)

~ (maxRy,) /Ot (min Ry = Ro(s)) ds + et +1)
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on M x [0,00). We claim that F(z,t) > R,,. If it were not true, then we could
find (.Io,to) such that at (Io, to)

0> ‘?;Z gt s — (max Ry, ) (min Ryy) — Ryun)) +e
= (n = DA Ry + Ry(Ry — Fy) — (max Ry, ) (min Ryqry) — Fyiu)) + e
> Ry(Ry — Ry) — (max Ry, ) (min Ryqy) — Ryt ) +
= (min Ryqr) ) (min Ry — Ry ) — (max Ry, ) (min Ry — Ty ) + ¢

2 €

where the last inequality follows from Proposition This contradicts to the
assumption that € > 0. This contradiction shows that F'(z,t) > R,,. Letting
€ — 0, we get the desired result. ([l

Now we are ready to prove Theorem [[11

Proof of Theorem [l Tt was proved by Ye (see Theorem 2 in [51]) that ¢ = geo
as t — oo under the Yamabe flow (ZI)) such that g is conformal to go and has
constant negative scalar curvature. Along the Yamabe flow ([21), we have

Z(/ dV) | @ ==5 [ (#-Riv, =0

by 22) and ([24), which implies that / dVy = / dVy, for all t > 0. In particular,
M M

we have

(2.50) / v, = / AV,
M M

On the other hand, note that R = cﬁR for some constant ¢ > 0. Indeed, one
can take c to be (R, / Rgm) . This together with (II]) implies that the metric

4
c»—2 gy has scalar curvature being equal to

__4
4 =c nszgY :Rq

Cmgy Goo *
Hence, we can conclude that
_a_
(2.51) C" 20y = §oo

using the result of Kazdan-Warner in [32] (see also [39]), which says that if g; and go
are two metrics conformal to g such that Ry, = Ry, < 0, then g; = g2. Therefore,

by (Z350) and (Z5]), we have

/ dVy, :/ dVy.. :/ dv 4, :C"Qilz/ dVgy =i dVy,
M M M € gy M M

where the last equality follows from the assumption that gy and gg have the same
volume. This implies that ¢ = 1, or equivalently,

(2.52) gy = goo-
Note that by Proposition and Proposition 2.7, we have
(2.53) mIVi[n Ry, < Ryy < max Ry, for all t > 0.
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It follows from (Z53) and Lemma [Z8] that

(m]\z}x Rgo) /Ot (m]\%x Ry(s) — Rq(s)) ds

(2.54) > (Rg(t) — Ego) + (m]\E}X Ry — Eg(t)) — (Hl]\%x Ry, — H]l\}n Rgo)
> (mj\%x Ry — Rg(t)> -2 (mﬁx Ry, — In]vi[n Rgo) .

Therefore, as t — oo, by ([254) and Ye’s result stated above that g(t) — goo as
t — 00, we get

minas Ry, /OO ( _ )
2.55 —o(1- M e ) Ry(s) — Ro(s) ) ds.
(2.55) ( - Rgo) = | \max B = By ) ds

Similarly, we obtain from (253) and Lemma [2.9] that

— (mj\z}x Rgo) /Ot (m]\/iln Ry — Rq(s)> ds

> (Rgo - Rg(t)) + (Rq(t) - mj\j{n Rg(t)) — (mﬁx Ry, — mj\}{n Rgo)
> }_%g(t) - Hjlvi[n Rg(t)) -2 (ml\%x Ry, — mIVi[n Rgo) .

Letting t — oo, we obtain

p - B
(2.56) —92 (1 = M) > —/ (min Ry(s) — Rygo) ) ds.
0

maxys Ry,
Integrating the inequality in Proposition 22l and using (252)), (Z55]) and (Z354), we
get

M(gy) _ o A(geo)

EXl0) B N(g0)

(n—=2) [ = n (< . -
ZT g (mﬁmes)—Rg(s))ng | (mA;Dng)—Rg(s))dS

>2(n —1) (1 _ iy Ry, )

maxys Ry,
which gives the upper bound for A;(go) in (IL2). We remark that the integration
holds since the Dini derivative is finite (see [23] for example). Similarly, integrating
the inequality in Proposition 2.4 and using (2.52)), 255) and ([2356]), we obtain

M(gy) _ o A(geo)
%N (90) =log A1(g0)

(n—2) [ . - n [ T
I (min Ry = oo ) ds + 5 0 (mx Ryt = Ry )

<-2(n-1) (1 _ MR‘JO)
maxys Ry,
which gives the lower bound for A1(go) in (I2). This proves the assertion. O

One can apply Theorem [[L1] to obtain estimate of the first eigenvalue. It was
proved by Li and Yau (see Theorem 7 in [37]) that if (M, g) is an n-dimensional com-
pact Riemannian manifold without boundary such that its Ricci curvature satisfies
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Ricg > (n — 1)kg where k < 0, then its first eigenvalue satisfies

Mlg) > —711%-12 exp{—1 — /11 4(n — 12|}

(n
where d is the diameter of (M, g).

Theorem 2.10. Suppose M is an n-dimensional compact manifold without bound-
ary, and gg is an Einstein metric on M with Ricg, = (n — 1)k gg where k < 0.
If go is a Riemannian metric conformal to gg which has negative scalar curvature
and same volume as gg, then the first eigenvalue of (M, go) satisfies

1 -
A > nc € _1_ 1+4 _1 2 md M, 2
1(00) 2 oo o { = 1= L D26 TdM, go P}

iny R
where ¢ = 2(n — 1) (HI;LRQO - 1) .
maxps Lig,

Proof. As in the proof of Theorem [Tl we can show that g = goo = gg as t = oo
under the Yamabe flow (2. We claim that

(2557) e (M, gp) < d(M, go) < T T d(M, i),
where ¢ = 2(n—1) (M — 1) as in Theorem [[T] d(M, go) and d(M, gg) are
maxys Ry,

the diameter of M with respect to the initial metric go and the Einstein metric gg
respectively. To see this, we let v : [sg, s1] — M be a differentiable curve joining x
and y in M. Consider the solution g of the Yamabe flow (2I) with go as the initial
metric. Then the length of v with respect to the metric g is given by

dy d
9NN s
Differentiate it with respect ¢, we obtain
dL( / d1 d1 ds
dt T 9o
2 ou dy dy
1
= d
(2.58) /SD n—2u ot V%0 (ds ds> y
1 [ — dy dry
== Ry — R, d
2/50( g ) (ds ds) s

< % (Rq — mj\i4n Rg) Ly(v)

where we have used (2.3) and the fact that g = uve go. Similarly, we can get

dLg(”Y) 1 /=
5 2 5 (B — xRy L)

Integrating (2.58) and ([2359) from 0 to oo, we obtain

L [% 5 () _ 1 [T 5 :
5/0 (Rg(t) — HlAE}X Rg(t)) dt < log qu( ) < 5/0 (Rg(t) — m]\}[n Rg(t)) dt.

(2.59)
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Combining this with ([2355) and ([2356]), we obtain
<1 B minas Ry, ) < log Ly, () <_ <1 B minys Ry, ) '
max s R!]o Lgo (7) maxps Rgo
This implies
1— minM R.(IO < log d(M7 gE) < (1= minM Rgo
maxps Rg, d(M, go) maxps Rg,

which proves the claim (Z57).
By the assumption and the result of Li and Yau mentioned above, we have

M(gr) > (n = 1)d1(M, e exp{ —1—/1+4(n—1)2d(M, goo)2|,‘$|}.

Combining this with ([2357) and Theorem [[IT] we obtain

1 c
e\ > - ex {—1— 1+4(n—1)2e"1d(M, 2/{}.
1(00) 2 oo o { L L 12, o)l
This proves the assertion. (I

3. THE UNNORMALIZED YAMABE FLOW ON MANIFOLDS WITHOUT BOUNDARY

Now we consider the unnormalized Yamabe flow on an n-dimensional compact
Riemannian manifold (M, go) without boundary, which is defined as

0
(3.1) Eg = —Ryg for t >0, gli=0 = go.

If we write g = uﬁgo for some 0 < u € C*°(M), then u satisfies the following
evolution equation:

ou n—2

(3.2) i —TRgu for t >0, uli=o =1.

Hence, the volume form dV, and the scalar curvature R, of g satisfy (see [15])
0 n

(3.3) &dVg = —§Rngg,
0

(3.4) 51t = (n—1)AgRy + R..

Let A be the first eigenvalue of —Ay + aR, where a is a constant, i.e.
(3.5) —Agf+aRyf =M f

for some function f. By the eigenvalue perturbation theory (see [44] and also
[8) B1L B3]), we may assume that there is a family of the first eigenvalue and the
corresponding eigenfunction which is C'! in ¢. By rescaling, we may assume that
the eigenfunction f satisfies

(3.6) / f2dv, = 1.
u .
Proposition 3.1. Along the unnormalized Yamabe flow (31)), we have

dA n—2
= (200- 0= 232) [ ROV + ary 07,

_ (2(n —1a— g) A1 /M R, f2dV,.
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Proof. Differentiate (3.6 with respect to ¢, we have

af n
(37) | a5 [ Ry,

by B3). Multiply B5) by f and integrate it over M, we obtain
(3.8) A = /M(|vgf|§ +aR,f)dv,

by ([B.6) and integration by parts. Since g = uns go, 27) holds. Combining (2.7
and ([B.8), we have

)‘1 :/ u2|vgof|g270dvgo +a/ Rgfzdvg
M M

Differentiate it with respect to t, we obtain

T | GV Ve +2 [ (T Vo (G hwdVe,

OR of 0
20l agj 20
+a/Mf v dVg+2a/M R, f ot dVg—i—a/MRgf (,%(dVg)

n—2 0
=-— /Rg|vgf|§dvg+2/ <ng,Vg(a—{>>ngg
M M

0
+a/ fQ((n—l)AgRg+R§)dVg+2a/ Rgfa_{dvg_ga/ R2f2dv,
M o .

n—2 0
=73 / Rg|vgf|§qu + 2/ —f ( —Agf + aRgf)qu
M M

ot

+(n— 1)a/ RgAg(fz)qu . ; 2“/ R;2zf2qu
M M

n—2

)

= <z(n_1)a— >/MRg|vgf|§dVg+2A1 /Mfa—{dvg

_2(n—1)a/ Rgf(—Agf—l—aRgf)qu

M

+ <2(n —1)a - ”;Qa) /M R2f2dV,
— (20— 1)a—"=2 /R(|v P+ aRy f2)dV,
- 2 M 9 gJlg ) g

- (20— 1)a- g) A /M R, f2dvV,

where the second equality follows from (7)) and B2)-B4), the third equality
follows from integration by parts, and the last two equalities follow from B3] and
BX0). This proves the assertion. O

Proposition 3.2. If 0 < a < -

d
% > 0, and equality holds if and only if Ry is constant.

2
and min R, > max R, > 0, then
M M

n—2
4(n—1)
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-2 -2
Proof. If a < h, then g —2(n—1)a > nT —2(n — 1)a > 0. Combining

this with Proposition [3.I] we obtain

d\ -2
Lz (” — —2(n— 1>a) (max R, ) /M(IngIE +aRy f2)dV,

+ (g —2(n — 1)a) (mj\}[n Rg)/\1 /M f2av,

n . n—
=X\ (5 min Ry — —— mj\z}[ng>
where we have used [B:6]) and B8] in the last equality. From this, the assertion
follows. g
-2 A
Proposition 3.3. If 4&7_1) <a< 4(+_1) and m]\/iInRg >0, then d—tl >0 and

equality holds if and only if Ry = 0.

n—2 o< n
4(n—1) _a_4(n—1)

Combining this with Proposition Bl we get

Proof. 1f

-2
, then 2(n—1)a—nT >0 and g—Q(n—l)a > 0.

d\ n—2 :
d_tlz(Q(”—U“_ 2 >(%HRQ)/M('WEHRW)M

+ (g —2(n — 1)a> (mj&{nRg>/\1 /M fdeg

=\ ( min Rg)
M
where we have used (.0) and (88). From this, the assertion follows. O
Proposition 3.4. Ifa > " and minR, > 0, then & > 0 and equalit
P I T he = at = Hanty

holds if and only if Ry = 0.

-2
Proof. If a > ﬁ, then 2(n — 1)a — nT >2(n—1)a— g > 0. Combining
this with Proposition [3.1, we obtain

e (“” ~a—"3 2) (min 2s) /M“qu 2+ aRyf?)av,

_ P 2

(2(n 1a 2) (mj\z}xRQ)/\l /Mf vy
n n—2 .

=\ <§ mﬁng -5 mjv},nRg>

where the last equality follows from ([B.6]) and (B.8). From this, the assertion follows.
O

Proof of Theorem[1.3. This follows from Proposition B.213.4 O
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4. THE YAMABE FLOW ON MANIFOLDS WITH BOUNDARY

Throughout this section, we assume that (M, go) is a compact Riemannian man-
ifold of dimension n > 3 with smooth boundary OM. Up to a conformal change,
we may assume that the mean curvature of gg on 0M vanishes. See Lemma 2.1 in
[3] for the proof. We consider the Yamabe flow, which is defined as

0 —
(4.1) 59 = —(Ry — Ry)gin M and Hy = 0 on OM for ¢t > 0, gli=0 = go-
Here H, is the mean curvature of g with respect to the outward unit normal v,. If
we write g = unse go, then u satisfies

ou n—2
4.2 — =-

(42) ot 4
Under the Yamabe flow (@I]), the volume form dV, and the scalar curvature R, of
g satisfy (see [3])

(Ry — Ry)u in M for t > 0.

0 n —
(4.3) E(dvg) = _E(Rg — Rg)dVy,
0 —
(4.4) ERg = (n—1)AgRy — Ry(Ry — Ry).

We have the following;:
Lemma 4.1. Let g = g(t) be the solution of the the Yamabe flow [@I)) and A (t)

be the corresponding first nonzero Dirichlet eigenvalue of the Laplacian. Then for
any to > t1, there exists a C°° function f on M X [t1,t2] satisfying

(4.5) f=0o0ondM and / f2dVy =1 for all t,
M
and

_9 [l o to 9
M) = ) - 202 [ [ (- wargavde -z [ [ Sa,ravi
2 t1 M ’ t1 M at

such that at time ta, f(t2) is the corresponding eigenfunction of Ai(tz).

Proof. As in the proof of Lemma 2] we choose fa = f(t2) to be the eigenfunction
for the first nonzero Dirichlet eigenvalue Ai(t2) of g(t2). Then fo satisfies the
Dirichlet boundary condition, i.e. fo =0 on @M. Thus if we define

o= () 5

where u(t) is the solution of ({2, then the normalized function

h(t
f(t) = (2 ) I
(fM h(t) qu(t)) 2
satisfies (£5]). Now we can follow the same proof of Lemma 2] to finish the proof,
except we have to use the fact that f = 0 on M when we do the integration by
parts in the last equality in ([2.8]). This proves the assertion. ([l

Once Lemma [4.1] is proved, we can follow the same proof of Proposition to
prove the following:
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Proposition 4.2. The first nonzero Dirichlet eigenvalue A1 of g along the Yamabe
flow @) satisfies

d n—2 = n =
— > — — i — .
7 log A\ > 5 (mang Rg) + 5 (mln R, Rg)

Here the derivative on the left hand side is in the sense of the liminf of backward
difference quotients.

Similar to the case when the manifold has no boundary, we can prove the corre-
sponding version of Lemma Il Then we can follow the same proof of Proposition
2.4 to prove the following:

Proposition 4.3. The first nonzero Dirichlet eigenvalue A1 of g along the Yamabe
flow @) satisfies

d n—2 . — n _

T log A\ < —T(m]\}[nRg — Rg) + 5 (mj\z}ng — Rg).
Here the derivative on the left hand side is in the sense of the limsup of forward
difference quotients.

On the other hand, one can apply the maximum principle to prove Proposi-
tion and Lemma for the Yamabe flow (LI when the manifold has
boundary.

Therefore, if (M, go) is a compact Riemannian manifold of dimension n > 3 with
smooth boundary such that max Ry, < 0, and gy is the Yamabe metric in the

conformal class of gg, i.e. gy is the Riemannian metric conformal to gg such that
its scalar curvature is constant in M and its mean curvature is zero on dM, then
we have the following;:

Theorem 4.4. Suppose (M, go) is a compact Riemannian manifold of dimension
n > 3 with smooth boundary OM which has negative scalar curvature in M and
vanishing mean curvature on OM, and gy is the Yamabe metric conformal to go
which has same volume as go. Then the first nonzero Dirichlet eigenvalue of go and
gy satisfy

e “A(gy) < Ailgo) < e“Ailgy)

where ¢ is the constant in Theorem [I1l.

Proof. We only sketch the proof since it is essentially the same as the proof of
Theorem [Tl Brendle has proved in [3] that ¢ — goo as t — oo under the Yamabe
flow (@I) such that g, has constant scalar curvature in M and vanishing mean
curvature on OM (c.f. Theorem 1.1 in [3]). As in the proof of Theorem [[T], we can
prove that goo = gy by using the result of Escobar (see Corollary in [I7]), which
says that if g; and go are two metrics conformal to gg such that Ry, = Ry, <0 in
M and Hy = Hy, = 0 on OM, then g1 = g2. On the other hand, we can follow
the same arguments as in the case without boundary to get (Z53) and (Z56]). The
remaining arguments are the same as the proof of Theorem [[LTl This proves the
assertion. O

One can apply Theorem 44 to obtain estimate of the first nonzero Dirichlet
eigenvalue. In [38], Ling proved the following: Let (M,go) be an n-dimensional
compact Riemannian manifold with boundary. Suppose that the boundary M
has nonnegative mean curvature with respect to the outward normal and that the
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Ricei curvature of M has lower bound Ric(M) > (n — 1)k. Then the first nonzero
Dirichlet eigenvalue A; of the Laplacian of M satisfies

2

1 T
)\1 Z 5(77,— 1)/4}-'— ﬁ,

where d is the diameter of the largest interior ball in M.

Theorem 4.5. Suppose M is an n-dimensional compact manifold with smooth
boundary OM, and gg is an Einstein metric on M with Ricy, = (n— 1)k gg where
k < 0 and vanishing mean curvature on OM . If go is a Riemannian metric confor-
mal to gg which has negative scalar curvature in M, vanishing mean curvature on
OM, and same volume as gg, then the first nonzero Dirichlet eigenvalue of (M, go)

satisfies
2

1
A > n—1k+
0] 2 e = R i, o

minys Ry,

where ¢ = 2(n — 1) < - 1) and d(M, go) is the diameter of the largest

maxys Ry,
interior ball in M.

Proof. As in the proof of Theorem 210, we can prove that

(4.6) e” 200 d(M, gg) < d(M, go) < e2-0d(M, g),
iny R
where ¢ =2(n — 1) (1 - m), and d(M, go) and d(M, gg) are respectively
maxys Ry,

the diameter of the largest interior ball in M with respect to the initial metric go
and the Einstein metric go.. On the other hand, by the assumptions and the above
result of Ling, we have

1 2
A >—-(n-1 —_—.
1(QE) = 2(” )H+ d(M,gE)2
Combining this with (£6) and Theorem 4 we obtain

2

em1d(M, go)?

This proves the assertion. (I

1
e“A(go) > E(n - e+

5. THE UNNORMALIZED YAMABE FLOW ON MANIFOLDS WITH BOUNDARY

In this section, we study the unnormalized Yamabe flow on a compact Riemann-
ian manifold (M, go) with smooth boundary M, which is defined as

(5.1) 529~ —R,g in M and Hy, =0 on OM for t >0, gli=o0 = go-
If we write g = = go, then
-2
(5.2) % = —nTRgu in M for t > 0.
Note that the volume form dV, and the scalar curvature R, of g satisfy
0 n
(5.3) 7 (@Ve) = —5 RydVy,
0

(5.4) 5o = (n—1)AyR, + R
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along the unnormalized Yamabe flow ([&.1).
Let A1 be the first eigenvalue of —A, 4+ aR, with Dirichlet boundary condition,
ie.

(5.5) —Ayf+aR,f=Mfin M and f=0on oM

for some function f. Again we assume that there is a family of the first eigenvalue
and the corresponding eigenfunction which is C' in t. By rescaling, we may assume
that the eigenfunction f satisfies

(5.6) /M f2dvy, = 1.

Proposition 5.1. Along the unnormalized Yamabe flow (BII), we have

= (2000 "52) [ RV + ey v

- (20— 1)a- _) A /M R, f2dvV,.

Proof. The proof is almost identical to the proof of Proposition Bl except we have
to take care of the boundary term when we integrate by parts. More precisely, we
multiply the first equation in (B3] by f and integrate it over M, we obtain

h= [ 180+ aBy Y, = [ (918 Ry v, - [ p5lay
(5.7) M M ‘ 8”9
— [ (91 + aros?)av,
M
by (&A). On the other hand, we have
(5.8)
of B of of of .. _ f A

[ oS Goneav, == [ Sagav« [ GZlav,—— [ Zagay,
since % =0 on M by (&3], and
(5.9)

R, 0
/M f2AgRngg - /M RgAg(fz)dVg = o f2 (91/(] dV /6 Rga_yq(f2)dvg

= f2 "dv /Rffdv_o
oM

om” Ovg

by (3). Except these, all the other steps are the same as the proof of Proposition
Bl This proves the assertion. O

Now, by the same proof of Proposition B.213.4] we have the following:
Theorem 5.2. Along the unnormalized Yamabe flow (BI)), the first eigenvalue of
—Ag + aRgy with Dirichlet boundary condition is nondecreasing

-2 -2
(i) if0<a< h and mA}[nRg > nij\%ng >0;

-2
(i) if a > _n=e and mA}[nRg > 0.

4(n—1)
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5.1. Neumann boundary condition. Let p; be the first eigenvalue of —Agy+aR,
with Neumann boundary condition, i.e.

(5.10) —Agf+aRyf=mfin M andg—f:OonaM.

Vg
Again we may assume that there is a family of the first eigenvalue and the corre-
sponding eigenfunction which is C! in ¢. By rescaling, we may further assume that

the eigenfunction f satisfies
/ f2dv, = 1.
M

Note that (@.7)-(E3) are still true thanks to (BI0). Thus, following the proof of
Proposition B.1], we get

dpy n—2

el (2(n —1)a—
- (2(77, —1)a— g) 1 /M R, f?dV,.

along the unnormalized Yamabe flow (B.]). As for the Dirichlet boundary condition,
we have the following:

) | RV + oy,
M

Theorem 5.3. Along the unnormalized Yamabe flow (B)), the first eigenvalue of
—Ag + aRy with Neumann boundary condition is nondecreasing

n—2 n—2
)0 < n-2 . L -2 >0
(i) zf()_a<4(n_1) andnjl\}[nRg_ - HlI\%XRg_O,
n —
1) 1 > — i > 0.
(i) if a > =) andmA}[nRg_O

6. THE CR YAMABE FLOW

Throughout this section, we suppose that (M, 6) is a compact strictly pseudo-
convex CR manifold of real dimension 2n + 1. We consider the CR Yamabe flow,
which is defined as

9
ot
Here Ry is the Webster scalar curvature of the contact form 6, and Ry is the average
of the Webster scalar curvature given by

— S RedVy

0=~
JudVe
where dVy = A (df)™ is the volume form of 6. Since the CR Yamabe flow preserves

the conformal structure, we can write 6 = un 0y for some positive function u, and
u satisfies the following evolution equation:

(6.1) 0 = —(Ry — Rg)0 for t >0, 0|i—o = 6o.

(6.2)

0 _
(6.3) 8—1; = —g(Rg — Rg)u for t > 0, ul—o = 1.
Hence, the volume form dVy of 0 satisfies
(6.4)
9 9, 2tz 2n+2 2ni2_, Ou _
57 (@V0) = gy (w7 dVay) = = =™ AV, = —(n -+ 1) (R — Ro)dVa
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On the other hand, the Webster scalar curvature Ry of 6 satisfies the following
evolution equation: (see Proposition 3.2 in [25] or Lemma 2.4 in [24])

0 _
(6.5) gRg (n+1)ApgRy — R@(Rg — Ryp).

Here Ay is the sub-Laplacian of the contact form 6.
We have the following lemma, which is again inspired by the Proposition 3.1 in
[49)].

Lemma 6.1. Let 6 = 0(t) be the solution of the the CR Yamabe flow [G.1l) and
A1(t) be the corresponding first nonzero eigenvalue of the sub-Laplacian. Then for
any to > t1, there exists a C° function f on M X [t1,ts] satisfying

(6.6) / f2dVy =1 and / fdVy =0 for all t,
M M

and

to . to 6
Ai(t2) > Ai(t) —n/ / (Ry —R9)|v9f|3dv'9dt—2/ / —ngdegdt
t JM 4 Ja Ot

such that at time to, f(t2) is the corresponding eigenfunction of A1(tz2).

Proof. At time ta, we let fo = f(t2) be the eigenfunction for the first nonzero
eigenvalue A (t2) of 6(t2). We define the following smooth function on M:

h(t) = (u(m)ﬂi f2

u(t)
where u(t) is the solution of (6:3). We normalize this smooth function on M by
h(t
() = —— 0

fM 2d‘/:9 t))% .
Then we can easily check that f(¢) satisfies (6.6).

Set
G(0 / Vo f( |0(t dVo(1)-
Note that G(A(t), f(t)) is a smooth function in ¢. Since 6 = u= g, we have
(6.7) (Vo f1,Vefo)e = u™ % (Va, f1, Vo, f2)s,

for any functions f1, fo in M, which implies that

Gla(t). 10)) = [ 1011 V0,

Differentiating it with respect to ¢, we get
d
G(0(0), 1(1)) = 5-G(00). /(1))
0 0
(6. = [ 2T Vi, +2 [ (T, V(i

== [ (Ro=To)Vosfavi—2 [ SEassavy

M
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where we have used integration by parts, [@3)) and (€7). It follows from the
definition of G(0(¢), f(¢)) in (G.8]) that

to

(6.9) G(0(t2), f(t2)) = G(O(t1), f(t1)) = [ G(O(2), f(t))dt.

t1

Since f(t2) is the corresponding eigenfunction of A;(t2), we have

(6.10) G(0(t2), f(t2)) = Ai(t2) /M f(t2)2dVaiy) = M (ta)

by (68). On the other hand, it follows from (66) and the definition of G(6(t), f(t))
that

(6.11) G(0(t1), f(t1)) = M (ta) . F(t1)2dVy(r,) = Mi(ta).

Now the result follows from (G.8))-([6.1T)). O

Hence, we have the following:

Proposition 6.2. The first nonzero eigenvalue A1 of the sub-Laplacian along the
CR Yamabe flow (@) satisfies

%bg/\l > —n(mﬁng —§9> +(n+ 1)(m]\/iInR9 —}_%9).

Here the derivative on the left hand side is in the sense of the liminf of backward
difference quotients.

Proof. Differentiate the first equation in (6.6]) with respect to ¢, we have

(6.12) /f AV = "“/ *(Ro — Ro) Vi

by (€4). On the other hand, since f(t2) is the corresponding eigenfunction of
A1(t2), we have

of(t OF(t
(6:13) _/ fgtz)A‘g(tQ)f(tQ)d%(tz) = /\1(t2)/ f(t2) fa( 2)dV9(t2)
M M
Combining (612) and (E13), we get
of(t n+1 o
_/ f§t2)A0(t2)f(t2)d%(t2) = 2 Al(t2)/ f(t2)2(R9(t2) - RG(tz))dV@(tz)
M M
n+1

> A1 (t2) (mj\}[n Rots) — Re(tz)) ;

where we have used (6.0)) in the last inequality. Since A (t2) > 0, we have for any
e>0

of(t . | -
_/ f;ﬁ)m@)f(tg)d%(m) > T)q (t2) (mlnRg(t2) — Rogu) — 6) _
M M

Hence, by continuity, we can conclude that for any € > 0

of
um Ot

(6.14) I Nof(ta)dVy > 1)\1 (t2) (mj&n Ry — Ry — e)
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when ¢ is sufficiently closed to 3. On the other hand,
/M(Re(t2) — Rot2))[Vot2) £ 15 (00)WVat2)

> —(mj\z}ng(t2) - Eg(t2)) /M |v0(t2)f|§(t2)d‘/0(t2) = —Al(tQ)(mj\an Ro1,) _Re(tz))

by (6.6)) and the fact that f(t2) is the corresponding eigenfunction of A (t2). Since
A1 (t2) > 0, we have for any € > 0

/M(RO(tg) — Rot))[Vo(a) 150y WVo(en) > —Al(t2)(mﬁx Ro(,) — Ro(ra) + 6)'
Hence, by continuity, we can conclude that for any € > 0
(6.15) / (Ro = Ro)|Vo I3V > = (tz) (max Ry — Ry +e)
M

when ¢ is sufficiently closed to t2. Substituting (6-I4]) and ([GI5]) into the inequality
in Lemma [6.1, we obtain

A (t2) — A1 (t1)

> nd(ta) /t2 (e Ry — g + €)dt + (n + 1>A1(t2)/

t1 M tl

to

min Ry — Ry — € ) dt
(i )

for t1 <t and t; sufficiently closed to ta. Now the assertion follows from dividing
the last inequality by t5 — t1, letting t1 go to t2, and then letting ¢ — 0, as we have
done in the proof of Proposition O

Similar to Proposition [6.2] we can prove the following;:

Proposition 6.3. The first nonzero eigenvalue A1 of the sub-Laplacian along the
CR Yamabe flow (@) satisfies

%log)\l < —n(mj\}{nRe —Rg) +(n+ 1)(mj\%xR9 —Rg).

Here the derivative on the left hand side is in the sense of the limsup of forward
difference quotients.

To prove Proposition[6.3] we first prove the corresponding version of Lemma 2.3]
for the CR Yamabe flow. Then we can prove Proposition as we have done in
the proof of Proposition 2.4l We omit the proof and leave it to the readers.

We will omit the proof of the following proposition, since the idea is the same as
the proof of Proposition Z.BHZ7l More precisely, one can use the fact that ¢ — Ry
is nonincreasing along the CR Yamebe flow (c.f. see Proposition 3.3 in [25]) and
apply the maximum principle to ([6.3) to prove the following:

Proposition 6.4. If max Ry, <0, then
i < mi < < >
Irjl\}[nR.gO < Irjl\}[nR.g < mAz/a[Lng < mj\f}ngo <0 forallt>0

under the CR Yamabe flow ([G.1]).

We will also omit the proof of the following lemma, which is to apply the the
maximum principle to (G.5]) and is the same as the proof of Lemma[2.8 and Lemma

29
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Lemma 6.5. If max Ry, <0, then

t
Roy < Rgo + (ml\%x Ry, — mj\}[n R90> + (mj\z}x R90> /0 (ml\%x Rgsy — Eg(s)) ds.
and
— t —
Roy > Re, — (mﬁx Ry, — mj&{n R90> + (mﬁx R90> /0 (m]viln Rgsy — Rg(s)) ds.
for all t > 0 under the CR Yamabe flow (6.1))

Given a contact form 6, we let A1(6) be the first nonzero eigenvalue of the sub-
Laplacian of §. We have the following:

Theorem 6.6. Suppose (M, 6y) is a compact strictly pseudoconver manifold of real
dimension 2n + 1 such that max Ry, <0, and By is the contact form conformal to

0o such that its Webster scalar curvature is constant and

(6.16) / dvgyz/ AV,
M M

Then we have

(617) e_c)\l (ey) S )\1(6‘0) S ec)\l (ey)
where ¢ = 2(2n + 1) (M - 1) .
maxys Reo

Proof. Tt was proved by Zhang in [52] that § — 6, as t — oo under the CR
Yamabe flow (6.I]) such that 6. has constant Webster scalar curvature. Along the
CR Yamabe flow ([@1]), we have

d 13} —
d / avy :/ 9 (avi) = —(n—|—1)/ (Ro — Ro)dVy = 0
by (€2) and ([6.4]), which implies that /

dVy = / dVy, for all t > 0. In particular,
M M

we have

(6.18) / dngz/ AV,
M M

On the other hand, note that Rg, = i Ry, for some constant ¢ > 0. Indeed,
one can take ¢ to be (Rg, /Rp_)?. This implies that the metric ¢afy has scalar
curvature being equal to

R: =c "Ry, =Ry

2 0o *
C’ﬂ9y

Hence, we can conclude that
(6.19) cn 0y = 0s

using the result of Jerison and Lee (see Theorem 7.1 in [30] and also Theorem 1.3 in
[24]), which says that if 6, and 03 are two contact forms conformal to 6 such that
their Webster scalar curvatures satisfy Rg, = Rp, < 0, then ; = 05. Therefore, by

EI]) and ([6I9), we have

/dVGOZ/ dv;gm:/ dV%e :c%nﬂ/ dVGY:C%W/ Wi,
M M Mo Y M M
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where the last equality follows from (6.16). This implies that ¢ = 1, or equivalently,

(6.20) Oy = 0.
Note that
(6.21) mj\}[n Ry, < Rg(t) < m]\%ngo forallt >0

by Proposition Therefore, it follows from (G.2I) and the first inequality of
Lemma [6.5] that

(HlI\%XRQO) /Ot (mj\é}x Ry(s) — }_%9(8)) ds

(6.22) > (E@(t) — R%) + (mﬂ%x Ry — Eg(t)) — (mﬂ%x Rg, — Irjlvi[n R@U)
> (mﬁx Roy — Rg@) -2 (mﬁx Rg, — In]vi[n R@U) ,

and it follows from (62I]) and the second inequality of Lemma [6.5] that
— (ml\%x Rgo) /Ot (mlvi[n Ro(s) —§9(3)> ds

(6.23) > (E@O — Rg(t)) + (Re(t) - In]vi[n Rg(t)) — (mj\%x Ry, — mj\}[n R90>
> (Eg(t) — mj\i4n Rg@) -2 (mﬁx Ro, — mj\}[n R90> .

Since 0(t) — 0 ast — oo by Zhang’s result stated above, by letting ¢ go to infinity,
we obtain from (6.22) and (6:23) respectively that

minj; R o —
6.24 — 21— > R, — R d
( ) ( maxpyy Reo) - /0 (ml\%x 0(s) 9(5)) 5
and
minys Ry, e . -
6.25 21— — | > - R —R ds.
( ) ( maxpys R90> - /0 (m]\}n 0(s) 0(5)) 5

Integrating the inequality in Proposition 6.3 and using ([620)), ([624]) and (E25]), we
get

MOy) - M(6)
%8 ) 8 2 (0y)

< — i -R -R
< n/o (mA}[nRg(S) Rg(s))ds—i— (n+ 1)/0 (mﬂ%ng(S) Rg(s))ds

minys Ry,
maxps Ry, )’

< -202n+1) (1 -

which gives the lower bound for A;(6y) in (@IT). On the other hand, integrating
the inequality in Proposition [6.2] and using (€20, (624) and ([6.25]), we get

My) | Ma(0)
%8 ) 8 2 0y)

> — -R i -R
> n/o (mj\f}ng(s) R9(5)>ds—|— (n+1)/0 (ml\}[nRg(S) Rg(s))ds

minys Ry,
maxys Ry, )’

> 9(2n + 1) <1_
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which gives the upper bound for A1 (6p) in (6I7). This proves the assertion. O

7. THE UNNORMALIZED CR YAMABE FLOW

In this section, we consider the unnormalized CR Yamabe flow:

9
(7.1) 5,0 = —Ro fort >0, 1= = b.

If we write 6 = u= 0o, then

ou n
(7.2) Fri —§R9u for t >0, uli—o =1.
Hence, the volume form dVy and the Webster scalar curvature Ry of 6 satisfy (see
(6.3) in [24])

0

(7.3) 5;(@Ve) = —(n +1)Re dVs,
(7.4) %Re = (n+1)AgRy + Rj.

Let A1 be the first eigenvalue of —Ay 4+ aRy where a is a constant, i.e.
(7.5) —Aof taRef =M f

for some function f. Again we assume that there is a family of the first eigenvalue
and the corresponding eigenfunction which is C* in t. By rescaling, we may assume
that the eigenfunction f satisfies

(7.6) /M f2dVy = 1.

Proposition 7.1. Along the unnormalized CR Yamabe flow (G1I), we have

d\

= (2(n +1)a —n) /MR9(|V9f|§+aR9f2)dV9—(n+1)(2a—1))\1 /M Ry f2dVy.

Proof. Differentiate (Z.6]) with respect to t, we have

af ~n+1
(7.7) /M fEdVg = /M Rof?dVy

by (T3). Multiply (ZH) by f and integrate it over M, we obtain

(7.8) A\ = /M(|V9f|§ +aRyf*)dV,

by (Z8) and integration by parts. Since § = un 6y, (B2) holds. Combining (6.7)
and (Z.8), we have

A\ :/ u2|v90f|§0dvgo+a/ Rof?dVy.
M M
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Differentiate it with respect to t, we obtain

of

dA 0
L / 205 (Vau Ve, +2 [ 03(T0, 8. Vo, at»eodveo
M
2 RG of 2 0
| Prdvera | Refgravota | Ref 5 (dvh)
o1
- / RolV, £V +2 / (Vof, Va(Z))adVs

+a/ f2((n+1)AeR9+R§)dV9+2a/ Ref—dee—(n+1)a/ R2 24V,
M M 8t M

o1
—I—(n—l—l)a/ Rolo(f2)dVy —na/ R2f24V,
M M

)
:_n/ R9|v9f|§d1/9+2/ —f(—Agf—i-aRgf)dVe
M M

0
— @+ Va—n) [ RalSofBave+2n [ 1S av,

—2(n+ 1)a/ Rof(—Aof +aRgf)dVy + (2(n+ 1)a® — na) / R2f2dV,
M M

— (2(n+1)a—n) /MR9(|V9f|§+aR9f2)dV9—(n+1)(2a—1))\1 /MRgfdeg

where the second equality follows from (G7) and (C2)-({C4), the third equality
follows from integration by parts, and the last two equalities follow from (Z.H]) and
([T). This proves the assertion. O

Now, by the same proof of Proposition B.213.4] we have the following:

Proposition 7.2. Along the unnormalized CR Yamabe flow (1),

d\
(i) if0<a< 2nT—L|— 5 and m]\/iInRg > HL—H mj\%ng >0, then d_tl > 0, and equality
holds if and only if Rg is constant;

1 dA
(i) if 27;:_ 5 < a < 3 and m]\/iInRg > 0, then d_tl > 0 and equality holds if and
only if Rg = 0; and
1 dA
(i) if a > 3 and m]\/iInRg > 0, then d_tl > 0 and equality holds if and only if
R9 =0.

Proposition [(.2] implies the following:

Theorem 7.3. Along the unnormalized CR Yamabe flow (1), the first eigenvalue
of —Ag + aRy is nondecreasing

n

) if0<a< d min Ry > —— max Ry > 0;
(i) if a 2 2an min 9_n+1m]\2/3;x 0 >
(i) if a > > 3 and mA/i[nRg > 0.

Note that Theorem was obtained in [25] for the cases when a = 0 and
= omia See Theorem 1.4 and Theorem 1.5 in [25]. Note also that Chang-Lin-
n

Wu [12] has obtained a result similar to Theorem [Z.3] for the case when n = 1.
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