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HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY: GEOMETRIC
CHARACTERIZATION OF THE L? SOLVABILITY OF THE DIRICHLET PROBLEM.
PART 1I

JONAS AZZAM, MIHALIS MOURGOGLOU, AND XAVIER TOLSA

ABSTRACT. Let  C R™"! be an open set with n-AD-regular boundary. In this paper we prove that
if the harmonic measure for €2 satisfies the so-called weak-A., condition, then ) satisfies a suitable
connectivity condition, namely the weak local John condition. Together with other previous results by
Hofmann and Martell, this implies that the weak- A, condition for harmonic measure holds if and only if
OS2 is uniformly n-rectifiable and the weak local John condition is satisfied. This yields the first geometric
characterization of the weak-A, condition for harmonic measure, which is important because of its
connection with the Dirichlet problem for the Laplace equation.
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1. INTRODUCTION

The weak- A, condition for harmonic measure of an open set Q C R"*! is a quantitative version of
absolute continuity of harmonic measure with respect to the surface measure. In this paper we complete
one of the fundamental steps for the characterization of the weak- A, condition for harmonic measure
in terms of quantitative rectifiability of the boundary 02 and a quantitative connectivity property of 2.
More precisely, we show that if the weak-A, condition holds, then the so-called local John condition
is satisfied. Together with previous results by Hofmann and Martell, this yields the aforementioned
characterization.

The fact that rectifiability plays a fundamental role in the characterization of absolute continuity
of harmonic measure with respect to surface measure has been well known since 1916 by the classical
theorem of F. and M. Riesz [RR]. Recall that this asserts that, given a simply connected domain 2 C C,
the rectifiability of 92 implies that harmonic measure for € is absolutely continuous with respect to
arc-length measure of the boundary. A local version of this theorem was obtained much later, in 1990,
by Bishop and Jones [BiJo]. For related results in higher dimensions see [AAM]. On the other hand,
in the converse direction, it was shown recently in [AHM?TV] that, for arbitrary open sets {2 C R+
n > 1, the mutual absolute continuity of harmonic measure and surface measure (i.e. n-dimensional
Hausdorff measure, which we will denote by ") in a subset £ C 02 implies the n-rectifiability of E.

To describe other results of more quantitative nature we need now to introduce some notation and
definitions. A set E C R™*! is called n-AD-regular if there exists some constant Cy > 0 such that

Co " <HMEN B(x,r)) < Cor™  forallz € Eand 0 < r < diam(E).

The set E C R™*! is uniformly n-rectifiable if it is n-AD-regular and there exist constants §, M > 0
such that for all x € F' and all 0 < r < diam(FE) there is a Lipschitz mapping ¢ from the ball B,, (0, )
in R” to R with Lip(g) < M such that

H"(EN B(x,r)Ng(Bp(0,7))) > 0r™.

Uniform n-rectifiability is a quantitative version of n-rectifiability introduced by David and Semmes
(see [DS1] and [DS2)).

Let 2 € R™*! be open. One says that this satisfies the corkscrew condition if for every € 9 and
0 < p < diam(€2) there exists a ball B C B(x, p) N with radius (B) > ¢ p, for some fixed ¢ > 0.

Given p € 2, we denote by wP the harmonic measure for {2 with pole at p. Assume that OS2 has
locally finite {"-measure. We say that the harmonic measure for € satisfies the weak- Ao condition if
for every ¢ € (0, 1) there exists g € (0, 1) such that for every ball B centered at 92 and all p € Q\4B
the following holds: for any subset £ C B N 012,

(1.1) if H'E)<H" (BN, then wP(E)<eowl(2B).
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In the case when the harmonic measure is doubling, that is, there is some constant C' > 0 such that
wP(2B) < CwP(B) for any ball B centered at 2 and all p € €,

the weak-A, condition coincides with the more familiar A, condition for w? (uniform on p). Both
the A, and weak-A ., condition should be understood as quantitative versions of the notion of absolute
continuity. We will write w € Ao (H!|sq) and w € weak-A(H1|gq) to indicate that the harmonic
measure satisfies the A, and weak-A, conditions, respectively.

The weak-A, condition is particularly important from a PDE perspective. In fact, Hofmann and
Le showed in [HLe] that, if we assume £ to satisfy the corkscrew condition and 92 to be n-AD-
regular, then the Dirichlet problem is BMO-solvable for the Laplace equation if and only if the harmonic
measure is in weak-A.,. So a geometric description of the domains €2 such that w € weak-A is
particularly desirable.

The first result of quantitative nature involving harmonic measure and rectifiability was obtained by
Lavrentiev [Lav] in 1936 for planar domains. He showed that if 2 C C is a simply connected domain
which is bounded by a chord-arc curve, then w € A, (H!|sq). A fundamental result in arbitrary
dimensions was obtained much later by Dahlberg [Dah]. He showed that if Q@ C R"*! is a bounded
Lipschitz domain, then the harmonic measure satisfies the reverse Holder condition By and thus it
belongs to Ao (H!|sq). This result was extended to chord-arc domains by David and Jerison [DJ], and
independently by Semmes [Se]. They proved that chord-arc domains in R"*! (i.e., NTA domains with
n-AD regular boundaries) have interior big pieces of Lipschitz, implying that w € Ao (H"|9q)-

In connection with harmonic measure, the weak-A., condition first appeared in the work by Ben-
newitz and Lewis in [BL], where it was shown that if the boundary of Q C R™*! is n-AD-regular and
(2 has interior big pieces of Lipschitz domains, then w € weak-A.(H"|sq). They also showed that
this is the best one can expect under these assumptions on the geometry of the domain. One can also
show by the arugments in [DJ] that this still holds if we replace Lipschitz with chord-arc subdomains.

Later, Hofmann and Martell [HM 1], and in collaboration with Uriarte-Tuero [HMU], showed that for
a uniform domain with n-AD regular boundary, w € weak- A~ (H"|sq) if and only if 92 is uniformly
n-rectifiable. This was further improved in [AHMNT] where it was shown that any uniform domain
with uniformly n-rectifiable boundary is in fact NTA and thus w € A (H"|9q). In [HM2]' Hofmann
and Martell removed the uniformity assumption entirely by showing that for a domain with n-AD-
regular boundary that satisfies the corkscrew condition, if w € weak- A, (H"|aq), then OF2 is uniformly
n-rectifiable. This result was later extended to the case when the surface measure is non-doubling in
[MT].

Also note that according to Bishop and Jones’ example in [BiJo], there exists an infinitely connected
planar domain whose boundary is uniformly 1-rectifiable but w is not absolutely continuous to arc-
length. In fact, by [GMT] and [HMM], the uniform rectifiability of 2 is equivalent to the existence
of a suitable corona type decomposition of 92 in terms of harmonic measure (and also equivalent to
a Carleson type condition for the gradient of bounded harmonic functions). So uniform rectifiability
alone cannot characterize the weak-A., condition for harmonic measure.

The first named author of the current manuscript recently showed in [Azz2] that if a domain is semi-
uniform and has uniformly rectifiable boundary, then harmonic measure is in A,. Aikawa and Hirata
had shown previously in [AH] that a domain is semi-uniform if and only if the harmonic measure is
doubling, which happens, in particular, if harmonic measure is in A, (they also assumed the domains
were John but this assumption was removed in [Azz2]). This and [HM2] show that the A, condition

I This result was published in [HLMN].
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implies semi-uniformity of the domain and uniform rectifiability of the boundary. Thus, the combina-
tion of these works yields a geometric characterization of the A, property.

Hofmann and Martell, however, introduced an a priori weaker connectivity condition than interior
big pieces of chord-arc domains that is sufficient for the weak-A, condition. Given z € Q, y € 91,
and A\ > 0, a A-carrot curve (or just carrot curve) from x to y is a curve v C Q U {y} with end-points
z and y such that dq(2) := dist(z,09Q) > kH(y(y, 2)) for all z € , where (y, 2) is the arc in v
between y and z.

One says that € satisfies the weak local John condition (with parameters A, 6, A) if there are constants
A0 € (0,1) and A > 2 such that for every x € ) there is a Borel subset I’ C B(x, Adq(z)) N ON)
with H"(F) > 0 H"(B(x, Adq(x)) N ON) such that every y € F can be joined to x by a A-carrot
curve. Note that the weak local John condition is weaker than semi-uniformity: rather than requiring
nice carrot curves to every point on the boundary, there are only nice curves to points in a big piece.

In [HM3] Hofmann and Martell showed that if R™*! is open (not necessarily connected), with
a uniformly rectifiable boundary, and (2 satisfies the weak local John condition, then harmonic measure
is in weak-A,,. In the same work they conjectured that, conversely, if the harmonic measure is in
weak- A, then the weak local John condition holds.

Our main result confirms this conjecture:

Theorem 1.1. Ler Q C R™L n > 2, be an open set with n-AD-regular boundary. If the harmonic
measure for ) satisfies the weak- A, condition, then () satisfies the weak local John condition.

After the publication of a first version of our paper in Arxiv, Hofmann and Martell also updated
their paper [HM3] to show that the weak local John condition implies interior big pieces of chord-arc
domains. See [HM3] for the precise definition of “interior big pieces of chord-arc domains”. Thus,
combining our results with the main result of [HM3], we can conclude the following.

Corollary 1.2. Let Q C R, n > 2, be an open set with n-AD-regular boundary satisfying the
corkscrew condition. The harmonic measure for € is in weak-A if and only if OS) is uniformly n-
rectifiable and Q) satisfies the weak local John condition, if and only if ) has interior big pieces of
chord-arc domains.

Some of the difficulties that we have to overcome to prove Theorem 1.1 arise from the fact that the
weak- A -condition does not imply any doubling condition on harmonic measure. Roughly speaking,
given a ball B centered at in 02 and = € €2, if w§(B) is large, then = should be well connected to a
big piece of 92 N B (though not necessarily any point in B). If we knew that the doubling property
holds for each ball and also for different choices of x, then we would be able to piece together nice
Harnack chains between different base points and the boundary. The weak A.-condition, however, at
best implies that wg, is doubling on balls centered on some large subset of the boundary, and this large
subset may change as one changes the pole. So it is difficult to compare harmonic measure with respect
to different poles in €2 (in fact, they may be mutually singular when €2 is not connected).

Because of the reasons above, to prove Theorem 1.1 we cannot use arguments similar to the ones
in [AH] or [Azz2]. In fact, we have to prove a local result which involves only one pole and one ball
which has its own interest. See the Main Lemma 2.13 for more details. Two essential ingredients of the
proof are a corona type decomposition (whose existence is ensured by the uniform n-rectifiability of the
boundary) and the Alt-Caffarelli-Friedman monotonicity formula [ACF]. This formula is used in some
of the connectivity arguments in this paper. This allows to connect by carrot curves corkscrew points
where the Green function is not too small to other corkscrews at a larger distance from the boundary
where the Green function is still not too small (see Lemma 3.2 for the precise statement). See also
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the work [AGMT] for another related application of the Alt-Caffarelli-Friedman formula in connection
with elliptic measure.

Two important steps of the proof of the Main Lemma 2.13 (and so of Theorem 1.1) are the Geometric
Lemma 6.3 and the Key Lemma 7.1. An essential idea consists of distinguishing cubes with “two well
separated big corkscrews” (see Subsection 5.4 for the precise definition). In the Geometric Lemma
2.13 we construct two disjoint open sets satisfying a John condition associated to trees involving this
type of cubes, so that the boundaries of the open sets are located in places where the Green function is
very small. This construction is only possible because the associated tree involves only cubes with two
well separated big corkscrews. The existence of these cubes is an obstacle for the construction of carrot
curves. However, in a sense, in the Key Lemma 7.1 we take advantage of their existence to obtain some
delicate estimates for the Green function on some corkscrew points.

We would like to thank José Maria Martell for several comments on a first a version of this paper.

2. PRELIMINARIES

We will write a < b if there is C' > 0 so that a < Cb and a <y b if the constant C' depends on the
parameter t. We write @ =~ b to mean a < b < a and define a ~; b similarly. Sometimes, given a
measure v, we will also use the notation { g dv for the average v(F )t I} pgdv.

In the whole paper, 2 will be an open set in R"*!, with n > 2.

2.1. The dyadic lattice D,,. Given an n-AD-regular measure £ in R"™*! we consider the dyadic lattice
of “cubes” built by David and Semmes in [DS2, Chapter 3 of Part I]. The properties satisfied by D,, are
the following. Assume first, for simplicity, that diam(supp p) = oc). Then for each j € Z there exists
a family D,, ; of Borel subsets of supp y (the dyadic cubes of the j-th generation) such that:

(a) each D, ; is a partition of supp u, i.e. supppu = UQGDM Q and Q N Q' = @ whenever

Q,Q € Dyjand Q # Q';
(b) if @ € Dy jand Q' € Dy, with k < j, then either Q C Q" or QN Q' = @;
c) forall j € Zand Q € D, ;, we have 277 < diam(Q) < 277 and u(Q) ~ 277",
1, ~
d) there exists C > 0 such that, forall j € Z,Q € D, ;,,and 0 < 7 < 1,
M7j

p({z € Q :dist(z,suppp\ Q) < 7277})

2.1 . .
+ ,u({a: esuppp\ Q : dist(z,Q) < 7'2_]}) < Crl/Co-in,
This property is usually called the small boundaries condition. From (2.1), it follows that there
is a point 2g € Q (the center of Q) such that dist(zq,supp u \ Q) = 277 (see [DS2, Lemma
3.5 of Part I]).
We set Dy, := |,z Dy,j» and for Q € Dy, we denote write J(Q) = jif Q € Dy, ;.

In case that diam(supppu) < oo, the families D, ; are only defined for j > jo, with 2770
diam(supp p), and the same properties above hold for D, := J;> ;, Dpj-

Given a cube Q € D, ;, we say that its side length is 277, and we denote it by £(Q). Notice that
diam(Q) < 4(Q). We also denote

2.2) Bg := B(2q,4¢(Q)),
and for A > 1, we write

AQ = {:L' € supp i : dist(z,Q) < (A —1) E(Q)}.
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Given R € Dy, we set Dy (R) := {Q € D, : Q C R}. We also let D, j(R) be the family of cubes
Q € D,(R) such that £(Q) = 2774(R).

2.2. Uniform n-rectifiability. A set £ C R"*! is called n-rectifiable if there are Lipschitz maps
fi :R* > R? §=1,2,..., such that

(2.3) H" <E \ U f,-(R“)) =0.

Recall that the notion of uniform n-rectifiability is a quantitative version of n-rectifiability. It is very
easy to check that uniform n-rectifiability implies n-rectifiability.
Given a ball B ¢ R"*!, we denote

2.4 bBr(B) = inf ———|( sup dist(y, L)+ sup dist(y, F)],
2.4) 5p(B) = int s sup dist(y. L)+ sup dist(y. E))

where the infimum is taken over all the affine n-planes that intersect B. The following result is due to
David and Semmes:

Theorem 2.1. Let E C R" ! be n-AD-regular. Denote ;i = H"|g and let D,, be the associated dyadic
lattice. Then, E is uniformly n-rectifiable if and only if, for any € > 0,

> wQ) <C(e)u(R) forall ReD,
QEDL:QCR,
bB(3Bg)>e

The constant 3 multiplying B in the estimate above can be replaced by any number larger than 1.
For the proof, see [DS2, Chapter II-2].
Recall also the following result (see [HLMN] or [MT]).

Theorem 2.2. Let Q@ C R™"! be an open set with n-AD-regular boundary such that the harmonic
measure in §) belongs to weak-A.. Then 0S) is uniformly n-rectifiable.

2.3. Harmonic measure. From now on we assume that @ C R™*! is an open set with n-AD-regular
boundary such that the harmonic measure in {2 belongs to weak A,,. We denote by pu the surface
measure in 0). That is, ;1 = H"|sn. We also consider the dyadic lattice D,, associated with y.. The
AD-regularity constant of 02 is denoted by Cj.

We denote by wP the harmonic measure with pole at p of €2, and by ¢(-, -) the Green function. We
write 0q(z) = dist(x, 02).

The following well known result is sometimes called “Bourgain’s estimate”:

Lemma 2.3. Let Q C R™*! be open with n-AD-regular boundary, x € 09, and 0 < r < diam(9€)/2.
Then

(2.5) WY(B(z,2r)) > ¢ >0, forally e QN B(z,r)
where c depends on n and the n-AD-regularity constant of 0f).
The following is also well known.

Lemma 2.4. Let p,q € Q2 be such |p — q| > 4q(q). Then,

wP(B(q,400(q)))
¢ da(g)mt

9(p,q) <
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The following lemma is also known. See [HLMN, Lemma 3.14], for example.

Lemma 2.5. Let Q C R"*! be open with n-AD-regular boundary and let p € ). Let B be a ball
centered at OS2 such that p ¢ 8B. Then

Lemma 2.6. Let Q C R be open with n-AD-regular boundary. Let x € 0Q and 0 < r < diam(f2).
Let u be a non-negative harmonic function in B(z,4r) N and continuous in B(x,4r) N Q such that
u = 0in 0Q N B(x,4r). Then extending u by 0 in B(x,4r) \ Q, there exists a constant o > 0 such
that, for all y, z € B(z,r),

wi) —u <€ (L) ap wso (L) [,
r B(xz,2r) r Bl(x,47)

where C' and o depend on n and the AD-regularity of 0S). In particular,

<o (B8) ap wso (UYL

The next result provides a partial converse to Lemma 2.3

Lemma 2.7. Let Q C R"*! be open with n-AD-regular boundary. Let p € Q and let Q € D,, be such
that p & 2Q). Suppose that wP(Q) =~ wP(2Q). Then there exists some q € ) such that

Q) < dalg) ~ dist(q, Q) < 4diam(Q)

and
Z;()%?)l <cg(p,q).

Proof. For a given kg > 2 to be fixed below, let P € D, be a cube contained in @ with {(P) =
27%04(Q) such that

wp(P) ~k, WP (Q)-
Let ¢p be a C™ function supported in Bp which equals 1 on P and such that |Vyp|. S 1/4(P).
Then, choosing kg small enough so that p ¢ 50Bp, say, and applying Caccioppoli’s inequality,

#(2Q) may (P) < [ opd? == [ V,9(0.9) Vir(u) dy

1 / , 1/2
< V,9(p,y)| dy < €(P <][ V,9(p,y d>
aP) I, Vyg(p,y)| dy IVyg(p,y)|~ dy
S

SK(P)"*(][QBP\ (p, y)!2dy>1/2 (P ][Bpg(p,y)dy-

Applying now Lemmas 2.6 and 2.5 and taking kg small enough so that 24Bp N ) C 2@Q, for any
a € (0,1) we get

wP(24Bp) wP(2Q)
gp,ydyiao‘][ 9(p,y)dy < a” — S a” -
][y63Bp:6Q(y)<aé(P) (P ) 6Bp 7.) (pyn—t (pyn—t
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From the estimates above we infer that

WP (20Q) S U(P) ][ o(p,y) dy + a® P (2Q).
y€3Bp:dq(y)>al(P)

Hence, for a small enough, we derive

WP (2Q) S U(P) ][ o(p,y) dy,
y€3Bp:dq(y)>al(P)

which implies the existence of the point g required in the lemma. (]

2.4. Harnack chains and carrots. It will be more convenient for us to work with Harnack chains
instead of curves. The existence of a carrot curve is equivalent to having what we call a good chain
between points.

Let z € Q,y € Q be such that g (y) < da(x), and let C > 1. A C-good chain (or C-good Harnack
chain) from z to y is a sequence of balls By, Bo, ... (finite or infinite) contained in €2 such that x € By
and either

o lim;_, dist(y, Bj) = 0if y € 02, or
e y € By ify € (), where N is the number of elements of the sequence if this is finite,
and moreover the following holds:
B; N B % @ for all j,
C~1ldist(B;,0Q) < r(B;) < Cdist(B;,00) for all j,
T(Bj) SCT(BZ)lfj>Z,
for each ¢ > 0 there are at most C balls B; such that t < r(B;) < 2t.
Abusing language, sometimes we will omit the constant C' and we will just say “good chain” or “good
Harnack chain”.

Observe that in the definitions of carrot curves and good chains, the order of = and y is important:
having a carrot curve from x to y is not equivalent to having one from y to x, and similarly with good
chains.

Lemma 2.8. There is a carrot curve from x € Q to y € Q if and only if there is a good Harnack chain
from x to y.

Proof. Let «y be a carrot curve from x to y. We can assume y € €2, since if y € 0€), we can obtain this
case by taking a limit of points y; € € converging to y. Let {B; };VZI be a Vitali subcovering of the
family {B(z,0q0(2)/10) : z € v} and let 7, stand for the radius and z g, for the center of B;. So the
balls B; are disjoint and 3B; cover . Note that for ¢ > 0, if ¢ < rB; < 2t,

’ij - y‘ < Hl(V(Z'Bj,y)) S 5Q(ij) ~ TBJ' < 2t.
In particular, since the B;’s are disjoint, by volume considerations, there can only be boundedly many
B; of radius between t/2 and t, say. Moreover, we may order the balls B; so that € 5B; and B is
a ball By, such that 5B, N 5B; # & and 5B;, contains the point from N Un.s Bu5B, £ 5B}, which is
maximal in the natural order induced by ~y (so that x is the minimal point in ). Then for j > 1,
rg, & ba(xp,) < |vp, — x| + da(rs,) < H'(v(zs,,y)) + a(zs,) S 75,

This implies 581,585, ... is a C-good chain for a sufficiently big C'.
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Now suppose that we can find a good chain from z to y, call it By, ..., By . Let y be the path obtained
by connecting their centers in order. Let z € ~. Then there is a j such that z € [zp,,7p,,,]. Since
{B;}i is a good chain,

N
IHI('V(Z’Z/)) < |Z - xBj+1| + H1(7($3j+17y)) < TBji1 + Z 2TBi S rB; = 59('2)
1=j

Thus, ~ is a carrot curve from x to . O

2.5. The Alt-Caffarelli-Friedman formula.

Theorem 2.9. Let B(x, R) C R, and let uy,uys € WH?(B(x, R)) N C(B(z, R)) be nonnegative
subharmonic functions. Suppose that uy(x) = uz(x) = 0 and that u - ug = 0. Set

U; 2
Man- [ Tul,

12 Jpa ly — a1
and
(2.6) J(x,r) = Ji(z,r) Jo(x, 7).
Then J(x,r) is a non-decreasing function of r € (0, R) and J(x,r) < oo for all v € (0, R). That is,
2.7 J(x,r1) < J(x,r9) < oo for 0<r; <ry<R.
Further,
8) T, ) S g il ey

In the case of equality we have the following result (see [PSU, Theorem 2.9]).
Theorem 2.10. Let B(xz, R) and ui,uy be as in Theorem 2.9. Suppose that J(xz,rq) = J(x,rp) for
some 0 < roy <1y < R. Then either one or the other of the following holds:
(a) uy = 0in B(x,ry) or ug = 0in B(x,rp);
(b) there exists a unit vector e and constants k1, ko > 0 such that

ur(y) =k ((y—x)-e)7, uz(y) = k2 ((y — ) -e)”, in B(x,ry).

We will also need the following auxiliary lemma.

Lemma 2.11. Let B(z,R) C R""Y, and let {u;};>1 € WH2(B(z, R)) N C(B(x, R)) a sequence
of functions which are nonnegative, subharmonic, such that each u; is harmonic in {y € B(z,R) :
u;(y) > 0} and u;(x) = 0. Suppose also that

[tilloo Ber) <C1 R and ||l Lipe Br) < C1 R'™®

for all i > 1. Then, for every 0 < r < R there exists a subsequence {u;, };>1 which converges
uniformly in B(z,7) and weakly in W2 (B(z,r)) to some function u € WY2(B(x,r)) N C(B(x,r)),
and moreover,

. 2 2
(2.9) Jim Vui WF /B Ve

k=00 B(z,r) ’y - x’n—l a (z,7) ‘y - ‘T‘n_l '
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Proof. The existence of a subsequence {u;, }x>1 converging weakly in W12 (B(z,r)) and uniformly
in B(z,r) to some function u € WhH2(B(x,r)) N C(B(z,r)) is an immediate consequence of the
Arzela-Ascoli and the Banach-Alaoglu theorems. Quite likely, the identity (2.9) is also well known.
However, for completeness, we will show the details.

Consider a non-negative subharmonic function v € W'2(B(z, R))NC(B(z, R)) which is harmonic
in{y € B(z,R) : v(y) > 0} sothat v(z) = 0. For0 < r < Rand 0 < 0 < R —r, let  be a radial
C*° function such that X p(yr) < ¢ < XB(a,r+6)- Let E(y) = c; ' |y|*~™ be the fundamental solution
of the Laplacian. For ¢ > 0, denote v. = max(v, &) — . Then we have

[Vue(y)?
ly — x|n—1

— ¢ / Vue(y) E(x — y) v=(y) Vip(y) dy

- cn/Vva(y) Vy€(x —y)ve(y) p(y) dy = cu(l1 — Iz — I3).

Using the fact that v, is harmonic in {v. > 0} and that £(z — ) v. p € W01’2({v,3 > 0} N B(z, R))

since ¢ is compactly supported in B(z, R), v. = 0 on 9{v. > 0}, and x is far away from {v. > 0}, it
follows easily that I; = 0. On the other hand, we have

213 = /V(vf ©)(y) Vy&(x —y)dy — /va(y)2 Vy€(z —y) Voly) dy

= —u.(2)’ - / v () V,E(x — ) Veoly) dy.

Thus,
Ve 2
IO o)ty = e [ et 800~ ) 0c(0) Vot
— 2 [ ) V,E —y) Vely) dy.

Taking into account that supp V¢ is far away from z, letting € — 0, we obtain

(w12
% o(y)dy = —cp / Vo(y) E(x —y)v(y) Ve(y) dy

=5 | v VyE(z —y) Vep(y) dy.
Using the preceding identity, it follows easily that

T P Ay = Vel

lim W

e o(y) dy.

Indeed, limy o u;, ()% = u(z)?. Also, it is clear that

lim [, (y)* Vy&(x —y) Vo(y) dy = / u(y)? Vy&(x —y) Voly) dy.

k—o0

Further,

/ Vg, (y) E(x — y) ui, (y) Vo(y) dy = / Vg, (y) E(x —y) u(y) Vo(y) dy
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+ / Vi, () £ — ) (ui, (v) — u(y)) Veoly) dy

kg / Vuy) £ — ) uly) Vly) dy,

by the weak convergence of u;, in W12(B(x, R)) and the uniform convergence in B(z,r + §), since
supp V is far away from z.
Let ¢ be a radial ¢ function such that x gz r—s5) < ¥ < XB(s,r)- The same argument as above

shows that
lim |Vu2k( / [Vu(y ¢ ») dy
i [ o e
Consequently,
Yu, 2 Yu, 2 \V4 2
k—oo JB(z,r) |y - $|n_ k=00 |y - x|n— |y - :E|n_
and also
Y, 2 ) 2
k—o00 B(z,r) |y — 33‘|"_ k—00 |y — l’|n_ |y |n
Since § > 0 can be taken arbitrarily small, (2.9) follows. O

Lemma 2.12. Let B(x,2R) C R™*Y, and let uy,us € WY2(B(x,2R))NC(B(x,2R)) be nonnegative
subharmonic functions such that each u; is harmonic in {y € B(x,2R) : u;(y) > 0}. Suppose that
u1(z) = ua(x) = 0 and that uy - ug = 0. Assume also that
[tilloo Bzory < C1 R and  |ui||Lipe Beory < C1 R fori=1,2.
For any € > 0, there exists some § > 0 such that if
J(2,R) < (1+6) J(z, }R),

with J(-,-) defined in (2.6), then either one or the other of the following holds:

(@) |urlloo,B(w,r) < € Ror ||uzllco,Ba,r) < €R;

(b) there exists a unit vector e and constants ki, ko > 0 such that

lur = k1 ((- = 2) - ) oo,y S € R, luz = k2 ((- = 2) - €) 7 lloo, Ba,r) < € R

The constant § depends only on n, o, C1, €.
Proof. Suppose that the conclusion of the lemma fails. By replacing u;(y) by % u;(R(y + x)), we can
assume that z = 0 and R = 1. Let e > 0, and for each § = 1/k and i = 1, 2, consider functions w;
satisfying the assumptions of the lemma and such that neither (a) nor (b) holds for them. By Lemma

2.11, there exist subsequences (which we still denote by {; j }+) which converge uniformly in B(0, %)
and weakly in Wh2(B(0, 2)) to some functions u; € W12(B(0, 2)) N C(B(0, 2)), and moreover,

Vuy; 2 Vui(y)|?
Tusf, [ DO,
B(0,r) ]
both for r = 1 and = 1/2. Clearly, the functions u; are non-negative, subharmonic, and u; - ug = 0.
Hence, by Theorem 2.10, one of the following holds:
(@) up =0in B(0,1) or ug = 0in B(0,1);

klim M=
o0 JB(0,r) Y
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(b*) there exists a unit vector e and constants ki, ko > 0 such that

ui(y) =ki(y-e)",  wy)=ka(y-e)”,  inB(0,1).
However, the fact that neither (a) nor (b) holds for any pair uq g, us x, together with the uniform con-
vergence of {u; 1 } 1, implies that neither (a’) nor (b’) can hold, and thus we get a contradiction. U

2.6. The Main Lemma. Let B C R™"! be a ball centerer at 92 and let p € 2. We say that w? satisfies
the weak- Ao condition in B if for every g9 € (0,1) there exists dp € (0, 1) such that the following
holds: for any subset £ C B N 052,

if H"(E)<JH"(BNON), then wP(E)<eow?(2B).
In the next sections we will prove the following.

Main Lemma 2.13. Let Q C R" ™! have n-AD-regular boundary. Let Ry € D, and let p € Q\ 4Bp,
be a point such that

cl(Ry) < dist(p,d0) < dist(p, Ry) < ¢ 1 4(Rp)
and wP(Ry) > ¢ > 0. Suppose that wP satisfies the weak-A~, condition in Br,. Then there exists
a subset Con(Rgy) C Ry and a constant ¢’ > 0 with u(Con(Rg)) > ¢’ (Ro) such that each point
x € Con(Ry) can be joined to p by a carrot curve. The constant ¢’ and the constants involved in the
carrot condition only depend on c, ', n, the weak- A, condition, and the n-AD-regularity of yu.

The notation Con(-) stands for “connectable”.

It is easy to check that Theorem 1.1 follows from this result. Indeed, given any x € (2, we take a
point £ € 02 such that |z — £| = dq(x). Then we consider the point p in the segment [z, £] such that
lp— €| = £ 6q(x). By Lemma 2.5, we have

WP(B(E 30a(2)) 2 1,

because p € 3 B(€, $0a(x)). Hence, by covering B(¢, £6q(x)) N Q with cubes R € D, contained in
B(¢, $a(x)) N 6 with side length comparable to dq(2) we deduce that at least one these cubes, call
it Ry, satisfies wP(Ry) = 1. Further, by taking the side length small enough, we may also assume that
p & 4BpR,. So by applying Lemma 2.13 above we infer that there exists a subset F' := Con(Rp) C Ry
with u(F) > ¢ u(Rp) Z da(x)™ such that all y € F can be joined to x by a carrot curve, which proves
that 2 satisfies the weak local John condition and concludes the proof of Theorem 1.1.

For simplicity, in the next sections we will assume that 2 = R"*1\ 9€). At the end of the paper we
will sketch the necessary changes for the general case.

3. SHORT PATHS

Letp € Qand A > 1. For x € 09, we write x € WA(p, A) if
e z € B(p,100a(p)) N 0N, and
e forall 0 < r < dq(p),
-1 ,U,(B(I',T)) < WP M(B(.Z’,T))
— 2 < WP (B(x,r) <A——1—.
WB @)~ O =B 0 w)
We will see in Section 4 that, under the assumptions of the Main Lemma 2.13, for some A big enough,

(3.1 w(WA(p, A) N Ro) 2, p(Ro).
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Lemma 3.1. Letp € Q, o € WA(p,A), and r € (0,5q(p)). Then there exists q € B(xo,r) such that,
for some constant . € (0,1/10),
(a) 6a(q) > k1, and
(b)
W (Blao,r))

Tn—l

—1 w"(B(xo,7))
<g(p,q) <k — 1

The constant k. depends only on A, n, and Cy, the AD-regularity constant of 0S).
Proof. This follows easily from Lemmas 2.4 and 2.7. O

Lemma 3.2 (Short paths). Let p € Q, xg € WA(p, A), and for 0 < ro < da(p)/4, 0 < 19, N0 < 1, let
q € Q be such that

da(q)

da(p)"

Then there exist constants A1 > 1 and 0 < a1, A1 < 1 such that for every r € (ro,da(p)/2), there
exists some point ¢’ € ) such that

(32) q € B(ﬂi‘o,’l"o), 59((]) > 7070, g(p7 q) > )\0

(3.3) ¢ € B(zo, A1), ba(d') = klzo—d'| = wr, glp,d) >N

and such that q and q' can be joined by a curve  such that
v C{y € B(xg, Arr) : dist(y, 9Q) > aj ro}.
The parameters A1, A1, a1 depend only on Cy, A, Ao, 19 and the ratio r /r.

Proof. All the parameters in the lemma will be fixed along the proof. We assume that A; > =1 > 1.
First note that we may assume that r < 2A1_1 |zg — p|. Otherwise, we just take a point ¢’ € €2 such that
Ip — ¢'| = da(p)/2, which clear satisfies the properties in (3.3). Further, both ¢ and ¢’ belong to the
open connected set

U:={z€Q:g(p,x)>carodalp)™™}

for a sufficiently small co > 0. The fact that U is connected is well known. This follows from the
fact that, for any A > 0, any connected component of {g(p,-) > A} should contain p. Otherwise there
would be a connected component where g(p, -) — A is positive and harmonic with zero boundary values.
So, by maximum principle, g(p, -) — A should equal \ in the whole component, which is a contradiction.
So there is only one connected component.

We just let v be a curve contained in U. Note that

1
dist(U, 02) > crg 5Q(p)1_é > ary,

for a sufficiently small a > 0 because, by boundary Holder continuity,
da () ) ¢ 1

pr) S -

005 (35) s

if dist(z, 0Q) < dq(p)/2. Further, the fact that g(p, z) < c|z — p|' =" ensures that U C B(p, Cdq(p)),
for a sufficiently big constant C' depending on 7 /ry.
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So from now on we assume that r < 2141_1 |zo — p|. By Lemma 3.1 we know there exists some point
q € Q such that

6a(q)
da(p)™’

(3.4) g€ B(zo,k™'r), 0a(q) >r>klro—ql > k(@) > k1, g(p,q) >c

with ¢ depending on x and A.
Assume that ¢ and ¢ cannot be joined by a curve -y as in the statement of the lemma. Otherwise, we
are done. For ¢ > 0, consider the open set

V' = {a € B(wo, ;A7) : g(p. ) > troda(p) ™"}

We fix t > 0 small enough such that ¢,¢ € V? C V. Such ¢ exists by (3.2) and (3.4), and it may
depend on A, \, /7.
Let V4 and V3 be the respective components of V¢ to which ¢ and ¢ belong. We have

VinVy, = o,

because otherwise there is a curve contained in V* C B(x, %Alr) which connects ¢ and ¢, and further
this is far away from 0. Indeed, we claim that

(3.5) dist(V*, 09) 24, A t.0/r0 T0-
To see this, note that by the Hélder continuity of g(p, -) in B(zo, 5 A17), for all z € V!, we have

do(x)\*
- <gp,r)S sup  g(p,y) < >
do(p) yEB (0,5 A1r) Agr

Ja(x)\*
< 9p.y)dy | —
B(ZCO,%AU”) 1r
Air [(da(z)\“
SALA ;
da(p)® \ Air
where in the last inequality we used Lemma 2.5 and that zy € W A(p, A). This yields our claim.
Next we wish to apply the Alt-Caffarelli-Friedman formula with

ui(2) = xv; (S (p)" 9(p,x) —tro)™,
uz(z) = xv; (o (p)" g(p, ) — tro)™.
It is clear that both satisfy the hypotheses of Theorem 2.9. For i = 1,2 and 0 < s < A;r, we denote
Hans) =% [ V0T,
5% JB(zo,s) |y - 330|
so that J(xq, s) = J1(xo, s) J2(z0, s). We claim that:
() Ji(zo,s) Salfori=1,2and0 < s < %Alr.
(ii) Ji(w0,27) Zazr/r 1fori=1,2.
The condition (i) follows from (2.8) and the fact that

3.6 <_°
(3.6) g(p,y)wéﬂ(p)n

which holds by Lemma 2.5 and subharmonicity, since o € WA(p, A). Concerning (ii), note first that

for all y € B(zo, s),

bl n T
|Vu1<y>|saﬂ<p>"%§’(j)) S Ga(p)" s =1 forally € Blg,7oro/2).
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where we first used Cauchy estimates and then the pointwise bounds of ¢(-, -) in (3.6) with s ~ dq(y).
Thus, using also that ¢ € V2, we infer that u1(y) > 1.5t 7 in some ball B(q, ctrg) with ¢ possibly
depending on A, A, r/ro. Analogously, we deduce that us(y) > 1.5t rg in some ball B(q, ctrg). Let B
be the largest open ball centered at ¢ not intersecting 0V} and let yo € 0V; N IB. Then, by considering
the convex hull H C B of B(q, ctrg) and yg and integrating in spherical coordinates (with the origin in
1J0), one can check that

/ V| dy 2 g™

H

An analogous estimate holds for u9, and then it easily follows that
Ji(z0,2r0) Z¢ 1,

which implies (ii). We leave the details for the reader.
From the conditions (i) and (ii) and the fact that J(z, ) is non-decreasing we infer that

J(w0,8) MA N rme 1 for2r <s< %Alr.
and also
(3.7) Ji(w0,8) AN 1 fori=1,2and 2r <s < %Alr.

Assume that %Al = 2™ for some big m > 1. Since J(zo, s) is non-decreasing we infer that there
exists some h € [1,m — 1] such that

J (20, 2" ) < C(A, N7 /ro) Y™ T (0, 2"7),

because otherwise, by iterating the reverse inequality, we get a contradiction. Now from Lemma 2.12
we deduce that, given any € > 0, for m big enough, there are constant k; x4 ) ,/r, 1 and a unit vector
e such that

(3.8) ”ul — k1 (( - .Z'()) ’ e)+”oo,B(xo,2hr) + ”uQ — ko (( - .Z'()) ’ e)_”oo,B(xOQhr) < €2h T.

Indeed, HuiHoo,B(mo,2hr) SANT/To 2hy by (2.8) and (3.7); HuiHLipa,B(xo,2h+r) 51\,)\,7"/7‘0 (2hr)l—a by
Lemma 2.6; and the option (a) in Lemma 2.12 cannot hold (since [|t;]oo, B(zg,20r) RA /1o 2hr).

In particular, for & small, (3.8) implies that if ¢’ := xq 4 2"~ re, then u;(¢') NA AT 2h=1p and
also that

u1(y) RANT /0 2=l > 0 forall y € B(q’,2h—27»),
Thus B(q’,2"2r) C Q and so ¢’ is at a distance at least 2"~ 27 from 012, and also

/ ul( /) 2"
) > ~ r/To 5 /\n "
9(p,q’) Sa(p)t AN o

Further, since ¢ and ¢ are both in V; by definition, there is a curve  which joins ¢ and ¢’ contained in
V1 satisfying

diSt(/%aQ) 2A1,A,t,r/r0 To,
by (3.5). O
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4. TYPES OF CUBES

From now on we fix By € D, and p € () and we assume that we are under the assumptions of the
Main Lemma 2.13.

We need now to define two families HD and LD of high density and low density cubes, respectively.
Let A > 1 be some fixed constant. We denote by HD (high density) the family of maximal cubes
() € D,, which are contained in Ry and satisfy

wP(2Q) < wP(2Ry)

p2Q) — p(2Ro)
We also denote by LD (low density) the family of maximal cubes ) € D,, which are contained in R
and satisfy
Q) _ 41 @(Ro)
w@) ~ n(Ro)
(notice that wP(Ry) ~ wP(2Ry) ~ 1 by assumption). Observe that the definition of the family HD
involves the density of 2(), while the one of LD involves the density of Q.
We denote

By = U Q and Bp= UQ.

Q€eHD QeLD

Lemma 4.1. We have
1 1
u(By) S 5 n(Ro) and o (Br) < - w”(Ro).

Proof. By Vitali’s covering theorem, there exists a subfamily I C HD so that the cubes 2Q), ) € I, are

pairwise disjoint and
U 20c Jse
QeHD QeI
Then, since w is doubling, we obtain

1 wP(2Q) 1

(B $ 3 n2Q) < = 3 2k 0Ry) £ < p(Ro).
Ocl A Qcl w (2R0) A

Next we turn our attention to the low density cubes. Since the cubes from LD are pairwise disjoint,
we have

1
<
- A

P P 1 Q) » P
wP(Br) = Z WP (Q) < a Z :((RO)) wP(Ry) wP(Ryp).

QELD QELD
U

From the above estimates and the fact that the harmonic measure belongs to weak- A, we infer that
if A is chosen big enough, then

1
w’(Br) < eow"(2BR,) < ; w"(Ro)

and thus

1 1 1
wp(BHUBL) < pr(R()) + pr(Ro) < §wp(R0).
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As a consequence, denoting Gy = Ry \ (By U Br)), we deduce that
1
wp(GQ) 2 5 wp(Ro) ~ wp(QBRO),

which implies that
N(GO) Z N(2BR0) ~ N(Ro)v
again using the fact that w” belongs to weak-A, in Br,. So we have:
Lemma 4.2. Assuming A big enough, the set Gy := Ry \ (By U Bp)) satisfies
wP(Go) =1 and  p(Go) = p(Ro),

with the implicit constants depending on Cy and the weak-A, condition in Bp,.

We denote by G the family of those cubes Q) € D,,(Ry) which are not contained in | pcpyp i p £- In
particular, such cubes () € G do not belong to HD U LD and thus

1P (Ry) _ (@) - WP(2Q) _ , w'(2Ro)

p(Ro) = w(@) ~ p(2Q) T p(2Ro)
From this fact, it follows easily that Gy is contained in the set WA(p, A) defined in Section 3, assuming
A big enough, and so Lemma 4.2 ensures that (3.1) holds.

4.1) A™

The following lemma is an immediate consequence of Lemma 3.1.

Lemma 4.3. For every cube ) € G there exists some point v € 2Bg N such that 6o (zq) > ko l(Q)
and

6Q)
1(Ro)’
for some kg, c3 > 0, which depend on A and on the weak-A, constants in Bp,.

(4.2) g(p,xq) > c3

If g € 2Bg N Q and do(zg) > ko ¢(Q), we say that zg is ko-corkscrew for Q. If (4.2) holds, we
say that z¢) is a c3-good corkscrew for Q. Abusing notation, quite often we will not write “for Q”.

We will need the following auxiliary result:

Lemma 4.4. Let Q € D, and let xq be a \-good cy4-corkscrew, for some \,cy > 0. Suppose that
Q) > c5 L(Ry). Then there exists some C-good Harnack chain that joins x¢q and p, with C depending
on M, cs.

Proof. Consider the open set U = {z € Q : g(p,x) > A(Q)/u(Ro)}. This is connected and thus
there exists a curve v C U that connects z¢ and p. By Holder continuity, any point = € 2 such that

da(z) < da(p)/2, satisfies
da () > ¢ 1
) <c .
o)< (355) ey

Since g(p, ) > M (Q)/1(Ro) Zesx L(Ro)t ™" for all z € U, we deduce that dist(U, 9Q) > ¢ £(Ro)
for some cg > 0 depending on X and c5. Thus,

dist(y,0Q) > ¢ ¢(Rp).

From the fact that g(p, x) < |p — x|*~" for all z € Q, we infer that any = € U satisfies

‘Q) 1
o) =0 = e

A




18 AZZAM, MOURGOGLOU, AND TOLSA

Therefore,

1/(n—1)
ool < (Fey)  Sen R

So U C B(p,C2L(Ry)) for some Cy depending on A and ¢5. Next we consider a Besicovitch covering
of ~ with balls B; of radius c¢(Ry)/2. By volume considerations, it easily follows that the number
of balls B; is bounded above by some constant C'3 depending on A and c5, and thus this is a C-good
Harnack chain, with C' = C'(\, ¢5). O

Lemma 4.5. There exists some constant k1 with 0 < k1 < kg such that the following holds for all
A>0. Let Q € G, Q # Ry, and let xq be a \-good k1-corkscrew. Then there exists some cube R € G
with @ C R C Ry and {(R) < C4(Q) and a X'-good k1-corkscrew x g such that xq and xg can be
joined by a C'(\)-good Harnack chain, with N > 0 and C depending on ).

The proof below yields a constant A’ < A. On the other hand, the lemma ensures that x  is still a
r1-corkscrew, which will be important for the arguments to come.

Proof. This follows easily from Lemma 3.2. For completeness we will show the details.

By choosing A = A(A) > 0 big enough, Gop N Q) C WA(p, A) and thus there exists some zy €
Q NWA(p, A). We let

k1 = min(kg, k),
where kg is defined in Lemma 4.3 and  in Lemma 3.1 (and thus it depends only on A and Cp). We
apply Lemma 3.2 to o, ¢, with 79 = 3r(Bg), Ao = A, and r = 4r(B). To this end, note that
1 1
Sola) 2 1 Q) = w1  Lr(Bq)) = w1 75 70

Hence there exists ¢’ € B(z, A1r) such that

(4.3) ba(d) = klzo—d| = rr,  gp.d) >N\

and such that ¢ and ¢’ can be joined by a curve v such that
4.4) v C {y € B(xg, Arr) : dist(y, 9Q) > a1 ro},
with A1, Ay, a; depending on on Cp, A, A, k1. Now let R € D,, be the cube containing o such that

1
5 7(Br) < |0 — /| < r(Br).

Observe that
r(Br) > |xo — ¢'| >r=4r(Bg) and 7r(Bgr) < 2|zg—¢'| <2417 ) 4(Q).

Also, we may assume that £(R) < ¢(Ry) because otherwise we have ¢(Q) 2 Aj dq(p) and then the
statement in the lemma follows from Lemma 4.4. So we have Q C R C Ry.
From (4.3) we get

1
5a(q") > k|wo — | > 3 kr(Bgr) > k1 {(R)
and
2k 4(R)
1(Ro)
From (4.4) and arguing as in the end of the proof of Lemma 4.4 we infer that x¢ and xr can be
joined by a C'(\)-good Harnack chain. O

9(p,q') = e\
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From now on we will assume that all corkscrew points for cubes () € G are x1-corkscrews, unless
otherwise stated.

5. THE CORONA DECOMPOSITION AND THE KEY LEMMA
5.1. The corona decomposition. Recall that the b3 coefficient of a ball was defined in (2.4). For each
Q) € D, we denote
bB(Q) = bBan(100Bq).
Now we fix a constant 0 < ¢ < min(1,~1). Given R € D,(Ry), we denote by Stop(R) the

maximal family of cubes Q € D, (R) \ {R} satisfying that either Q ¢ G or b3 (@) > &, where Q is
the parent of ). Recall that the family G was defined in (4.1). Note that, by maximality, Stop(R) is a

family of pairwise disjoint cubes.
We define

Tree(R) := {Q € D,(R) : # S € Stop(R) such that @ C S}.
In particular, note that Stop(R) ¢ Tree(R).

We now define the family of the top cubes with respect to Ry as follows: first we define the families
Top;, for k£ > 1 inductively. We set

Top; = {R € D,(Ro) NG : {(R) = 27'%(Ry)}.

Assuming that Top,, has been defined, we set

Topy1 = U (Stop(R) N G),

ReTopy,
and then we define
Top = U Topy,.
k>1

Notice that the family of cubes @ € D, (Ro) with £(Q) < 27'%(Ry) which are not contained in any
cube P € HD U LD is contained in RETop Tree(R), and this union is disjoint. Also, all the cubes in
that union belong to G.

The following lemma is an easy consequence of our construction. Its proof is left for the reader.

Lemma 5.1. We have

Top C G.
Also, for each R € Top,
Tree(R) C G.
Further, for all Q € Tree(R) U Stop(R),
nQ)
wP(2Q) < CA .
B = 4 Ry

Remark that the last inequality holds for any cube (Q € Stop(R) because its parent @ belongs to

Tree(R) and so Q ¢ HD, which implies that w?(2Q) < w?(2Q) < A L’j((go)) ~ A :L‘((}?O)).
Using that 4 is uniformly rectifiable, it is easy to prove that the cubes from Top satisfy a Carleson

packing condition. This is shown in the next lemma.
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Lemma 5.2. We have

> u(R) < M(e) u(Ro).

ReTop
Proof. For each () € Top we have
WQ =Y wp+ upreu(@y U p).
PeStop(Q)NG PeStop(Q)\G PeStop(Q)
Then we get
(5.1) @< > D P
QETop QETop PeStop(Q)NG
Y s Y ou(en U op)
Q€Top PeStop(Q)\G Q€ETop PeStop(Q)

Note now that, because of the stopping conditions, for all Q € Top, if P € Stop(Q) N G, then the
parent P of P satisfies b9 (100B5) > €. Hence, by Theorems 2.1 and 2.2,

YooY wup)< > u(P) < C(e) u(Ro).-
QETop PeStop(Q)NG PeD,(Ro):b850(100Bp)>e

On the other hand, the cubes P € Stop(Q) \ G with Q € Top do not contain any cube from Top, by
construction. Hence, they are disjoint and thus

Y Y )< utko)
Q€Top PeStop(Q)\G
By an analogous reason,

Zu(@\ U P>§u(Ro)-

Q€eTop PeStop(Q)
By (5.1) and the estimates above, the lemma follows. O

Given a constant & > 1, next we define
(5.2) Gé{ = {:L' € Gy : Z xr(z) < K},
ReTop
By Chebyshev and the preceding lemma, we have
1 M (e)
GGK<RGK<—/ dp < =5 (R
MO\ GE) S p(Ro\GE) < g L 7 wnd < T3 o)

Therefore, if K is chosen big enough (depending on M (¢) and the constants on the weak-A., condi-
tion), by Lemma 4.2 we get

and thus
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We distinguish now two types of cubes from Top. We denote by Top, the family of cubes R € Top
such that Tree(R) = { R}, and we set Top, = Top \ Top,. Notice that, by construction, if R € Top,,
then b3(R) < €. On the other hand, this estimate may fail if R € Top,,.

5.2. The truncated corona decomposition. For technical reasons, we need now to define a truncated
version of the previous corona decomposition. We fix a big natural number N > 1. Then we let Top(N )
be the family of the cubes from Top with side length larger than 2=V /(Ry). Given R € Top(N )

Treel()N) (R) be the subfamily of the cubes from Tree(R) with side length larger than 2~V ¢(Ry), and we

let Stop™)(R) be a maximal subfamily from Stop(R) U D, n(Rop), where D,, n(Rp) is the subfamily

of the cubes from D,,(Ry) with side length 2=NU(Ry). We also denote Top,(lN) = Top™ N Top,, and
Topl()N) = Top(N) N Topy,.

Observe that, since Top

we let

V) Top, we also have

Z Xr(z) < Z xr(z) < K forallz € GI.
ReTop®™) ReTop

5.3. The Key Lemma. The main ingredient for the proof of the Main Lemma 2.13 is the following
result.

Lemma 5.3 (Key Lemma). Given n € (0,1) and A € (0,c3] (with c3 as in (4.2)), there exists an
exceptional family Ex(R) C Stop(R) N G satisfying

> u(P) <nuR)

PeEx(R)

such that, for every Q € Stop(R) N G\ Ex(R), any A-good corkscrew for Q can be joined to some
N-good corkscrew for R by a C(\,n)-good Harnack chain, with X' depending on \, 1.

This lemma will be proved in the next Sections 6 and 7. Using this result, in Section 8 we will build
the required carrot curves for the Main Lemma 2.13, which join the pole p to points from a suitable big
piece of Ry. If the reader prefers to see how this is applied before its long proof, they may go directly
to Section 8. A key point in the Key Lemma is that the constant ¢ in the definition of the stopping cubes
of the corona decomposition does not depend on the constants A or 1 above.

To prove the Key Lemma 5.3 we will need first to introduce the notion of “cubes with well separated
big corkscrews” and we will split Tree®) (R) into subtrees by introducing an additional stopping con-
dition involving this type of cubes. Later on, in Section 6 we will prove the “Geometric Lemma”, which
relies on a geometric construction which plays a fundamental role in the proof of the Key Lemma.

5.4. The cubes with well separated big corkscrews. Let () € D,, be a cube such that b3(Q) < Cie.

For example, ) might be a cube from Q € Tree!™)(R) U Stop™)(R), with R € Topl()N) (which in
particular implies that b3(R) < ). We denote by L a best approximating n-plane for b5(()), and we
choose wb and x2Q to be two fixed points in B such that dist(acé?, Lg) = r(Bg)/2 and lie in different

components of R 1\ Lg. So xé and wé are corkscrews for (). We will call them “big corkscrews”.
Since any corkscrew x for () satisfies 0o (z) > k1 £(QQ) and we have chosen ¢ < k1, it turns out that

dist(z, Lg) > %lﬁ:l Q) > Q).
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As a consequence, x can be joined either to xb or to 3:22 by a C'-good Harnack chain, with C' depending
only on n, Cy, k1, and thus only on n, Cj and the weak-A, constants in Br,. The following lemma
follows by the same reasoning:

Lemma 5.4. Let Q,Q" € D, be cubes such that b3(Q),b6(Q’) < Cue and Q' is the parent of Q.
Let mg,xéy, for i = 1,2, be big corkscrews for Q and Q' respectively. Then, after relabelling the
corkscrews if necessary, sz can be joined to wég, by a C-good Harnack chain, with C' depending only
onn, Cy, k1.

Given I" > 0, we will write Q € WSBC(T") (or just Q € WSBC, which stands for “well separated
big corkscrews”) if b3(Q) < Cye and the big corkscrews mb, wé can not be joined by any I'-good
Harnack chain. The parameter I" will be chosen below. For the moment, let us say that ™' < ¢. The
reader should think that in spite of b3(Q) < Cye, the possible existence of “holes of size C'cf(Q) in
supp ¢~ makes possible the connection of the big corkscrews by means of I'-Harnack chains passing
through these holes. Note that if @ ¢ WSBC(T"), then any pair of corkscrews for () can be connected
by a C(I")-good Harnack chain, since any of these corkscrews can be joined by a good chain to one of
the big corkscrews for (), as mentioned above.

5.5. The tree of cubes of type WSBC and the subtrees. Given R € Topl()N), denote by Stop\ysgc(R)
the maximal subfamily of cubes from () € D,,(R) which satisfy that either

e ) ¢ WSBC(T"), or

o Q & Tree™(R).
Also, denote by Treewsgc (R) the cubes from D), (R) which are not strictly contained in any cube from
Stopwsgc (R). So this tree is empty if R ¢ WSBC(I').

Observe that if ) € Stop\ysgc(R), it may happen that @ ¢ WSBC(I"). However, unless @ = R, it
holds that Q@ € WSBC(I), with IV > T" depending only on I" and Cj (because the parent of ) belongs
to WSBC(I")).

For each @ € Stopysgc(R) \ Stop(R), we denote

SubTree(Q) = D,(Q) N Tree™(R), SubStop(Q) = Stop(R) N D,(Q).

So we have
Tree™)(R) = Treewsgc(R) U U SubTree(Q®),
QEStopyyspc (R)
and the union is disjoint. Observe also that we have the partition
(5.3) Stop(R) = (Stopwsgc(R) N Stop(R)) U U SubStop(Q).

QEStopyyspc (1)\Stop(R)

6. THE GEOMETRIC LEMMA

6.1. The geometric lemma for the tree of cubes of type WSBC. Let R € Topl()N) and suppose that

Treewspc(R) # . We need now to define a family End(R) of cubes from D,,, which in a sense can
be considered as a regularized version of Stop(R). The first step consists of introducing the following
auxiliary function:

d = inf 14 dist f R7HL,
r(x) QeTreleI\}VSBc(R)( (Q) + dist(z, Q)), or x €
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Observe that dg, is 1-Lipschitz.
For each x € 00 we take the largest cube (), € D,, such that x € (), and

r .
(6.1) U(Qq) < 300 ylench dr(y)-

We consider the collection of the different cubes @Q,, x € 9€2, and we denote it by End(R).
Lemma 6.1. Given R € Topl()N), the cubes from End(R) are pairwise disjoint and satisfy the following
properties:
(a) If P € End(R) and x € 50Bp, then 100 (P) < dr(x) < 900¢(P).
(b) There exists some absolute constant C' such that if P, P' € End(R) and 50Bp N 50Bp: # &,
then C~1(P) < ¢(P") < CL(P).
(c¢) For each P € End(R), there at most N cubes P' € End(R) such that 50Bp N 50Bp: # &,
where N is some absolute constant.
(d) If P € End(R) and dist(P, R) < 20{(R), then there exists some ) € Treewsgc(R) such that
P C 22Q and £(Q) < 2000 ¢(P).

Proof. The proof is a routine task. For the reader’s convenience we show the details.. To show (a),
consider = € 50Bp. Since dr(-) is 1-Lipschitz and, by definition, dg(zp) > 300 ¢(P), we have

dr(x) > dgr(zp) — |x — zp| > dr(zp) — 507 (Bp) > 3004(P) — 200 ¢(P) = 100 ¢(P).

To prove the converse inequality, by the definition of End(R), there exists some 2’ € P, the parent
of P, such that R
dr(2') <3004(P) = 600£(P).
Also, we have
|v — 2| <|z — zp| + |zp — /| < 507(Bp) + 20(P) < 3004(P).
Thus,
dr(z) < dgr(Z) + |z — 2'| < (600 + 300) £(P).
The statement (b) is an immediate consequence of (a), and (c) follows easily from (b). To show (d),
observe that, for any S € Treewsgc(R),
(pP) < d(zp) < 0(S) + dist(zp, 5) < 0(P) 4 £(S) + dist(P, S).
300 300 300

Thus, .
(p) < 0(S) + dist (P, S)‘
299

In particular, choosing S = R, we deduce
((R) +dist(P,R) _ 21
U < 25 i(R) < U(R),

and thus, using again that dist(P, R) < 20¢(R), it follows that P C 22R. Let Sy € Treewsgc(R) be
such that d(zp) = £(Sp) + dist(zp, So), and let Q@ € D, be be the smallest cube such that Sy C Q
and P C 22Q). Since Sy C R and P C 22R, we deduce that So C Q C R, implying that Q €
Treewssc(R). _

So it just remains to check that £(Q)) < 2000 ¢(P). To this end, consider a cube Q D Sy such that

((P) + £(So) + dist(P, Sp) < £(Q) < 2(£(P) + £(So) + dist(P, Sp)).

((P) <
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From the first inequality, it is clear that P C 2@ and then, by the definition of (), we infer that () C @
This inclusion and the second inequality above imply that

UQ) < UQ) < 2(26(P) +£(So) + dist(zp, So)) = 4U(P) + 2dr(zp).
By (a) we know that dr(zp) < 900¢(P), and so we derive £(Q) < 2000 ¢(P). O

Lemma 6.2. Given R € Top{", if Q € End(R) and dist(P, R) < 20((R), then b3(Q) < C'e and
Q € WSBC(T), with T = ¢ T, for some absolute constants C,cg > 0.

Proof. This immediate from the fact that, by (d) in the previous lemma, there exists some cube Q' €
Treewsgc(R) such that Q@ C 22Q’ and 4(Q") < 20004(Q), so that b3(Q’) < e and Q' € WSBC(T").
O

Next we consider the following Whitney decomposition of 2: we let YV be a family of dyadic cubes
from R™*1, contained in Q, with disjoint interiors, such that

Ur=2,

Iew
and such that moreover there are some constants My > 20 and Dy > 1 satisfying the following for
every I € W:
(i) 101 C O
Gi) Mol NOQ +# 2
(iii) there are at most Dy cubes I’ € W such that 101 N 101’ # @. Further, for such cubes I’, we
have ¢(I") = ¢(I), where £(I’) stands for the side length of I'.

From the properties (i) and (ii) it is clear that dist(Z,0) ~ ¢(I). We assume that the Whitney cubes
are small enough so that

: .
(6.2) diam(J) < 100 dist(1, 092).

This can be achieved by replacing each cube I € W by its descendants I’ € Dy(I), for some fixed
k > 1, if necessary.
For each I € W, we denote by B! a ball concentric with I and radius C5/(I), where Cj is a universal
constant big enough so that
(B!
g(p,x) < % forall z € 41.
Obviously, the ball B/ intersects 9<2, and the family { B’} ¢y does not have finite overlapping.

To state the Geometric Lemma we need some additional notation. Given a cube R’ € Treewsgc(R),
we denote by 'FreveWSBC(R’ ) the family of cubes from D,, with side length at most /(R’) which are
contained in 1008 and are not contained in any cube from End(R). We also denote by EHH(R’ ) the
subfamily of the cubes from End(R) which are contained in some cube from 'FreveWSBC(R’ ). Note that
'Fr\e/eWSBC(R’ ) is not a tree, in general, but a union of trees.

Lemma 6.3 (Geometric Lemma). Ler 0 < v < 1, and assume that the constant I' = T'(v) in the
definition of WSBC is big enough. Let R € Topl()N) NWSBC(T") and let R’ € Treewsgc(R) be such
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that {(R') = 27%00(R), with kg = ko(y) > 1 big enough. Then there are two connected open sets
V1, Vo C C'Br N Q with disjoint closures which satisfy the following properties:

(a) There are subfamilies W; C W such that V; = UIeWi 1.11.

(b) Each V; contains a ball B; with r(B;) =~ {(R'), and each corkscrew point for R’ contained in
2BprNV; can be joined to the center z; of B; by a good Harnack chain contained in V;. Further,
any point © € V; can be joined to z; by a good Harnack chain (not necessarily contained in
Vi).

(c) For each Q € Treewsgc(R) N D, (R') there are big corkscrews xé € Vi N2Bg and x2Q €
Vo N 2Bg, and if @ is an ancestor of Q which also belongs to Treewsgc(R) N Dy (R'), then
xZQ can be joined to x' by a good Harnack chain, for eachi = 1, 2.

(d) (0V1 U0Va) N10Bgr C UPeE@(R’) 2Bp.
(e) If P € Envd(R’) is such that 2Bp N 10Br # &, then OV; N 2Bp is contained in the union of

cubes of a subfamily Wp C W such that
(i)

marg(p,-) <7y foreach I € Wp,

and
(it)
dunmSUP)t and Y wP(B') SwP(CBp),
IeEWp IeEWp
for some universal constant C' > 1.

The constants involved in the Harnack chain and corkscrew conditions may depend on ¢, T, and .

6.2. Proof of the Geometric Lemma 6.3. In this whole subsection we fix R € Topl()N) and we assume

Treewspc(R) # @, as in Lemma 6.3. We let R’ € Treeywsgc(R) be such that £(R') = 27%0¢(R), with
ko = ko(y) > 1 big enough, as in Lemma 6.3, and we consider the associated families Treewsgc(R')
and End(R').

Remark 6.4. By arguments analogous to the ones in Lemma 6.2, it follows easily that if ) € 'ITe/eWSBc (R,
for R’ € Treewsgc(R) such that £(R') = 27%0/(R), then there exists some cube S € Treewsgc(R)
such that @) C 225 and £(S) < 2000¢(Q). This implies that b3(Q) < C'e and Q € WSBC(c6T") too.

In order to define the open setsNVL Vs describeq\irl the lemma, first we need to associate some open
sets U1(Q), Uz(Q) to each @ € Treewsgc(R') U End(R’). We distinguish two cases:

e For Q € Treewsac (R'), we let J;(Q) be the family of Whitney cubes I € W which intersect
{y € 20Bg : dist(y, Lg) > /*4(Q)}

and are contained in the same connected component of R"*1\ L as :L'ZQ, and then we set

U@ = |J 11l

Ie7:(Q)

’To guarantee the existence of the sets V; and the fact that they are contained in §2 we use the assumption that Q = (992)°.
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e For Q) € Envd(R’ ) the definition of U;(Q) is more elaborated. First we consider an auxiliary
ball Bg, concentric with B, such that 19Bg C Bg C 20Bg and having thin boundaries for
wP. This means that, for some absolute constant C,
(6.3) wp({:n € QEQ : dist(z, OEQ) < tr(EQ)}) < thp(QEQ) forall ¢ > 0.

The existence of such ball EQ follows by well known arguments (see for example [To, p.370]).

Next we denote by J((Q) the family of Whitney cubes I € W which intersect By and
satisfy £(I) > 0£(Q) for & € (0,1) depending on v (the reader should think that # < ¢ and
that § = 277 for some j; > 1), and we set

(6.4) U= (J il
IeJ(Q)
For a fixed i = 1 or 2, let {D;-(Q)}jzo be the connected components of U((Q)) which satisfy

one of the following properties: '
— either 2, € D}(Q) (recall that x(; is a big corkscrew for @), or

— there exists some y € D;(Q) such that g(p, y) > v £(Q) u(Ro) ™! and there is a Cg(7, 0)-
good Harnack chain that joins y to :L'ZQ, for some constant C(+y, #) to be chosen below.
Then we let U;(Q) = U, D;(Q) After reordering the sequence, we assume that ac’Q € Di(Q).

In the case Q € Treewsac (R’), from the definitions, it is clear that the sets U;(Q) are open and
connected and

(6.5) U1(Q)NU2(Q) = 2.

In the case Q) € EHH(R’ ), the sets U;(Q)) may fail to be connected. However, (6.5) still holds if I' is
chosen big enough (which will be the case). Indeed, if some component D can be joined by Cs(7,0)-

good Harnack chains both to xé and x2Q, then there is a C'(vy, #)-good Harnack chain that joins wb

to x2Q and thus @) does not belong to WSBC(c¢gI") if I is taken big enough, which cannot happen by
Lemma 6.2. Note also that the two components of

{y € By : dist(y, Lg) > €'/2 (Q)}
are contained in D}(Q) U D3(Q), because b3(Q) < Ce and we assume 0 < &.
The following is immediate:

Lemma 6.5. Assume that we relabel appropriately the sets U;(P) and corkscrews x' for P € 'ﬁe/ewsgc (RHU
End(R'). Then for all Q,Q € Treewsgc(R') U End(R') such that Q is the parent of Q we have

(6.6) 2, 25] CUUQ)NUIQ)  and [y, 25] C Ua(Q) N U2(Q)-
Further, o

dist([:nb,:n%],@ﬁ) >cl(Q) fori=1,2,
where c depends at most on n on Cj.

The labelling above can be chosen inductively. First we fix the sets U;(T") and corkscrews x for
every maximal cube T from Treeywsgc(R') (contained in 100Bg: and with side length equal to £(R")).

Further we assume that, for any maximal cube 7', the corkscrew x?r is at the same side of Lgs as x%,
for each ¢+ = 1,2 (this property will be used below). Later we label the sons of each 7' so that (6.6)
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holds for any son @) of 7. Then we proceed with the grandsons of 7', and so on. We leave the details
for the reader.
The following result will be used later to prove the property (e)(i).

Lemma 6.6. Suppose that the constant ky(vy) in Lemma 6.3 is big enough. Let QQ € EE!(R’ ) and
assume 6 small enough and Cg(~y, 0) big enough in the definition of U;(Q). If y € Bg satisfies g(p,y) >
YUQ) 1(Ro) ™, then y € U1(Q) U U2(Q).

Proof. By the definition of U;(Q), it suffices to show that y belongs to some component D; (@) and that
there is a Cg(7, 8)-good Harnack chain that joins y to :E’Q To this end, observe that by the boundary
Holder continuity of g(p, -),

Q) Sa(y)\* Saly)\“ Q)
VAl I <€ ( 10 > maobed(p.) < C (e@) > a(Ro)

where in the last inequality we used Lemma 2.5. Thus,

Sa(y) = ey Q)

and if 6 is small enough, then y belongs to some connected component of the set U(Q) in (6.4). By
Lemma 6.1(d) there is a cube Q" € Treewsgc(R) such that Q C 22Q’ and ¢(Q') = £(Q). In particular,
WA(p,A) N Q" D Gy N Q" # @ and thus, by applying Lemma 3.2 with ¢ = y and o = Cr(Bg) (for
a suitable C' > 1), it follows that there exists a x1-corkscrew ' € C/(y) Bg, with C(~y) > 20 say, such
that y can be joined to y’ by a C’(y)-good Harnack chain. Assuming that the constant k() in Lemma
6.3 is big enough, it turns out that y’ € C' B~ for some Q" € Treewsgc (R) such that 22Q” O Q. Since
all the cubes S such that Q C S C 22Q" satisfy b3(S) < C'e, by applying Lemma 5.4 repeatedly, it
follows that 3’ can be joined either to wb or wé by a C”(y)-good Harnack chain. Then, joining both

Harnack chains, it follows that y can be joined either to xé or wé by a C"(v)-good Harnack chain. So
y belongs to one of the components D%, assuming Cg(y, §) big enough. (]

From now on we assume # small enough and Cg(~, 8) big enough so that the preceding lemma holds.
Also, we assume 6 < *. We define

Vi= U Ui(Q), Va= U U2(@Q)-

QETreewsgc (R )UENd(R!) QETreewsgc (R )UENd(R/)
Next we will show that
VinV, =2.

Since the number of cubes () € 'Ifr\e/eWSBC(R’ ) U EE&(R’ ) is finite (because of the truncation in the
corona decomposition), this is a consequence of the following:

Lemma 6.7. Suppose T' is big enough in the definition of WSBC (depending on 8). For all P,Q €
Treewsgc(R') U End(R'), we have

U(P)NU:2(Q) = 2.

Proof. We suppose that £(QQ) > £(P) We also assume that Uy (P) N U2(Q) # @ and then we will get
a contradiction. Notice first that if /(P) = ¢(Q) = 277¢(R’) for some j > 0, then the corkscrews x5
and sz are at the same side of L for each i = 1, 2. This follows easily by induction on j.
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1. Suppose first that P, Q € 'FreveWSBC(R’ ). Since the cubes from J>(Q) have side length at least
ce/*£(Q), it follows that at least one of the cubes from 7 (P) has side length at least ¢’ /% £(Q),
which implies that £(P) > ¢’ €!/* £(Q), by the construction of Uy (P).

Since Uy (P) N U2(Q) # @, there exists some curve v = y(zh, x2Q) that joins 2} and x2Q such that
dist(y,09) > ce'/2 £(Q) because all the cubes from J»(Q) have side length at least /4 £(Q), and
the ones from 7; (P) have side length > c&'/4 ¢(P) > c'/24(Q).

Let P be the ancestor of P such that £(P) = ¢(Q). From the fact that Uy (P) N U3(Q) # @, we
deduce that 20Bp N 20Bg # <& and thus 20B5 N 20Bg # 9, and so 20B5 C 60Bg. This implies
that z1 is in the same connected component as xé and also that dist([wb, w}S], o) 2 ¢(Q), because
bB(100Bg) < ¢ < 1 and they are at the same side of L.

Consider now the chain P = P, C P, C ... C P, = ﬁ, so that P;; is the parent of P;. Form
the curve 7/ = +/ (;L'lﬁ, zL,) with endpoints ;L'lﬁ and 2} by joining the segments [{L’}_—,i, x}giﬂ]. Since these
segments satisfy

dist([xp,, xp,,,],00) > cl(P) > cl(P) > ce"/* 1(Q),

it is clear that dist(v’, 9€2) > ce/* Q).

Next we form a curve 7" = +/ (xQ,xQ) which joins xQ to xQ by joining [wQ,wlA] ’y’(x%,x};),
and v(z}, wQ) It follows easily that this is contained in 90B¢ and that dist(y”,9Q) > c£'/24(Q).
However, this is not possible because xQ and xQ are in different connected components of R"*1\ Lq
and b3(Q) < ¢ < /2 (since we assume ¢ < 1).

2. Suppose now that () € EB(R’ ). The arguments are quite similar to the ones above. In this case, the
cubes from J>((Q) have side length at least 6 £((Q) and thus at least one of the cubes from 71 (P) has
side length at least ¢ 6 £(Q), which implies that £(P) > ¢ 6 £(Q).

Now there exists a curve v = y(zh, 3:%2) that joints =1, and :Eé such that dist(y,0Q) > c6%4(Q)
because all the cubes from 72((Q)) have side length at least 6 £(()), and the ones from 7, (P) have side
length 6 £(P) > c6?£(Q).

We consider again cubes P and P, ..., P, defined exactly as above. By the same reasoning as
above, dist([:pég, 3:}3], 00) 2 £(Q). We also define the curve v/ = 7’(:p}3, zL,) which joins :L'lﬁ to } in
the same way. In the present case we have

dist(y',00) = ¢(P) > c(Q).

Again construct a curve v = 7"(:pé2, :Eé) which joins xb to 3:22 by gathering [mb, xlA] 7’(3:}), zh),

and y(z} P xQ) This is contained in C'Bg (for some C' > 1 poss1b1y depending on 7) and satisfies
dist(y",09) > ¢6?£(Q). From this fact we deduce that xQ and xQ can be joined by C(#)-good

Harnack chain. Taking I" big enough (depending on C'()), this implies that the big corkscrews for @
can be joined by a (cgI')-good Harnack chain, which contradicts Lemma 6.2.

3. Finally suppose that P & EE!(R’ ). We consider the same auxiliary cube P and the same curve
v = y(zh, x2Q) satisfying dist(~y,0Q) > ¢ ¢(P). By joining the segments [x%i,w%iﬂ], we construct
acurve v, = 4 (x%, x%) analogous to 7' = ’y’(x%, x}) from the case 2, so that this joins w% to z% and
satisfies dist (v}, 9Q) = £(P).

We construct a curve 7" that joins 2} to #% by joining y(z b, x%), [m%, 3:%], and yé(:né, z%). Again
this is contained in C' B and it holds dist(y"”, Q) > c@¢(P). This implies that 2}, and z% can be
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joined by C'(#)-good Harnack chain. Taking I" big enough, we deduce the big corkscrews for P can be
joined by a (cgI")-good Harnack chain, which is a contradiction. (]

By the definition of V/; and V% it is clear that the properties (a), (b) and (c) in Lemma 6.3 hold. So to
complete the proof of the lemma it just remains to prove (d) and (e).

Proof of Lemma 6.3(d). Let = € (9V; U 9V,) N 10Br. We have to show that there exists some
S € End(R') such that x € 2Bg. To this end we consider y € 9L such that |z — y| = dq(z). Since

zp € 0N, it follows that y € 20Bp. Let S € EE&(R/) be such that y € S. Observe that
1 1 81 1

6.7 0S) < —d < — (((R)+207r(Br)) = —(R) < = U(R)).
©7) (9) < 555 dnly) < 55 (HR) +207(Bp)) = 50 (R) < 5 (R
We claim that x € 2Bg. Indeed, if © ¢ 2Bg, taking also into account (6.7), there exists some
ancestor () of S contained in 100Bp such that z € 2Bg and o (z) = |z — y| = £(Q). From the fact

that S C Q C 100Bg we deduce that Q € Treewsgc(R'). By the construction of the sets U;(Q), it
is immediate to check that the condition that do(x) ~ ¢(Q) implies that z € U;(Q) U Ua(Q). Thus
x € ViUVaand soz & 0(V1 UVa) = 0V UV, (for this identity we use that dist(V3, Vo) > 0), which
is a contradiction. (|

To show (e), first we need to prove the next result:

Lemma 6.8. For eachi = 1,2, we have

ovVin10Br C | oU:(Q).
QEEnd(R)

Proof. Clearly, we have
Vi N10Bp C U ou;(Pyu | U@

PETAre/eWSBc(R’): QEEI:IE(R/):
PN10Bg #2 QN10Bp #2
So it suffices to show that
(6.8) U OU(P)NAV; N10Br = @.
PeTreewspc (R'):
PﬂlOBR/ 75@

Let z € OU;(P) N OV; N 10Bp:, with P € 'ITe/eWSBC(R’), PN 10Bg # @. From the definition of
U;(P), it follows easily that

(6.9) Sa(x) = *0(P).

On the other hand, by Lemma 6.3(d), there exists some () € EE!(R’ ) such that z € 2Bg. By the
definition of U;(@Q), since # < ¢, it also follows easily that

{y € 2Bg : da(y) > /20(Q)} c 1 UTh.
Hence, dist(9V; N 2Bg, Q) < £/24(Q), and so
(6.10) Sa(x) < V20(Q).
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We claim that £(Q) < ¢(P). Indeed, from the fact that = € 9U;(P) C 30Bp, we infer that
30Bp N 2Bg # .

Suppose that £(Q)) > ¢(P). This implies that Bp C 33B¢. Consider now a cube S C P belonging to
End(R’). Since Bg N 33B¢ # @, by Lemma 6.1 (b) we have

U(Q) = ((S) < U(P),
which proves our claim. Together with (6.9) and (6.10), this yields
eU(P) S ba(x) S2UQ) SR UP),

which is a contradiction for € small enough. So there does not exist any = € oU;(P) N dV; N 10Bg,
which proves (6.8). U

Proof of Lemma 6.3(e). Let P € Envd(R’ ) be such that 2Bp N 10Bgr # &. The statement (i) is
an immediate consequence of Lemma 6.6. In fact, this lemma implies that any y € 2Bp such that
g(p,y) > vL(P)u(Ry)~! is contained in U;(P) U Uy(P) and thus in V; U Vs. In particular, 3 ¢
(V1 U Vy) = 0V4 U OV,. Thus, if y € 2Bp N OV;, then

((P)

9(p,y) S’vm-

It is easy to check that this implies the statement (i) in Lemma 6.3(e) (possibly after replacing v by
Cv).

Next we turn our attention to (ii). To this end, denote by Jp the subfamily of the cubes @ € End(R’)
such that 308 N 2Bp # @. By Lemma 6.8,

(6.11) ovin2Bp C | ) OUi(Q)N2Bp.
QeJp
We will show that

(6.12) D Sep)t and > wP(B') SwP(CBp),
I1eWp IeWp

where Wp the family of Whitney cubes I C Vi U V4 such that 1.17 N 9(V; U Vo) N 2Bp # @. To this
end, observe that, by (6.11) and the construction of U;(Q), for each I € Wp there exists some @) € Jp

such that I C 30B¢ and either £(I) = 04(Q) or 1.1 N dBg # @. Using the n-AD-regularity of p, it
is immediate to check that for each () € Jp,

Sounm S uRQ)™

IC30Bg:
L(I)=04(Q)
Also,
Yoounrs Y, H'2INOBg) SHY9Bg) SUQ)™
Iew: Iew
1.1INdBo#2 1.1INdBg #@

Since the number of cubes @) € Jp is uniformly bounded (by Lemma 6.1(b)) and ¢(Q) ~ ¢(P), the
above inequalities yield the first estimate in (6.12).



HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY. PART II 31

To prove the second one we also distinguish among the two types of cubes I € Jp above. First, by
the bounded overlap of the balls B such that £(I) = 0 £(Q), we get

(6.13) > wP(B") SwP(CBp),
I1C30Bg
L(I)=04(Q)

since the balls B’ in the sum are contained C'Bp for a suitable universal constant C' > 1. To deal with
the cubes I € W such that 1.17 N 8BQ # @ we intend to use the thin boundary property of BQ in
(6.3). To this end, we write

SooowBH=Y" Y WP(B) S WUkt giam(@)(9Bq));

Tew: k>0 IeWw: k>0
1.11N8Bo#2 1.1INdBo#2
(n=27*uQ)

where U;(A) stands for the d-neighborhood of A. By (6.3) it follows that
WP (Uy-ry)(0Bq)) < 27*wP(C'By),

and thus
> wP(B") SwP(C'Bg) SwP(CBp),

Tew:
1.1IN0Bg#@

for a suitable C' > 1. Together with (6.13), this yields the second inequality in (6.12), which completes
the proof of Lemma 6.3(¢e). O

7. PROOF OF THE KEY LEMMA

We fix Ry € D,, and a corkscrew point p € €2 as in the preceding sections. We consider i € Topl()N)

and we assume Treewsgc(R) # @, as in Lemma 6.3. We let R’ € Treeywsgc(R) be such that /(R') =
27%0¢(R), with kg = ko(7) > 1 big enough. Given A > 0 and i = 1,2, we set
(7.1) Hi(R') = {Q € Stopwsgc(R) N Du(R) NG : g(p,x5) > M(Q) u(Ro) ™'},

so that Stopywspc(R) N Du(R') NG = Hi(R') UHy(R'). Here we are assuming that the corkscrews
xZQ belong to the set V; from Lemma 6.3 and that )\ is small enough.

Lemma 7.1 (Baby Key Lemma). Let p, Ry, R, R’ be as above. Given \ > 0, define also H;(R’) as
above. For a given T > 0, suppose that

u< U Q) > 7 u(R').
QeH;(R)
If v is small enough in the definition of V; in Lemma 6.3 (depending on T and \), then
(R
1(Ro)

9(p,2%) = (A7)
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Remark that I' depends on 7 (see Lemma 6.3), and thus the families WSBC(T"), Stopysgc(R),
H;(R') also depend on ~. The reader should thing that ' — oo as v — 0.

A key fact in this lemma is that the constants A, 7 can be taken arbitrarily small, without requiring
e — 0 as A7 — 0. Instead, the lemma requires v — 0, which does not affect the packing condition in
Lemma 5.2.

We denote

Bdy(R') = U We,
PEEnd(R'):2BpN10B g #0

with Wp as in the Lemma 6.3. That is, WWp the family of Whitney cubes I C V; U V5 such that
11T NO(V4 U Vo) N 2Bp # @. So the family Bdy(R') contains Whitney cubes which intersect the
boundaries of V; or V5 and are close to 10Bp/.

To prove Lemma 7.1, first we need the following auxiliary result.

Lemma 7.2. Let p, Ry, R, R’ be as above and, for i = 1 or 2, let Q@ € H;(R'). Let V; be as in
Lemma 6.3 and let q € Q) be a corkscrew point for Q which belongs to V;. Denote r = 2((R') and for
6 € (0,1/100) set

={z € A(q,r,2r) NQ: dg(x) > dr}.
Then we have

1 ,
g(zw)S sup 9(p.y) / 9(q,x) dx
T yeAsny; 59( ) A

o5 e [ g
+ T glq,z)dx
s A(q r,2r) A(q,r,2r)

T Z /\9 p.x) Vg(q,z) — Vg(p,z) g(q, x)| dz.

ITeBdy(

Note that the fact that ¢ is a corkscrew for ) contained in V; implies that dist(q, 0V;) ~ £(Q), b
the construction of the sets V; in Lemma 6.3.

Proof. We fix i = 1, for definiteness. Recall that V} = Tew, 1.11. Foreach I € Wi, consider a
smooth function 7; such that xo.97 < 17 < X1.007 With ||[V77]leo < £(I)~! and

:Zm;1 on V; N10Bg \ U 2I.
Iewy IeBdy(R')
It follows that suppn C V; and so suppn N Vo = &, and also
supp(Vn) N 10Bg C U 21.
IeBdy(R)

Let g be a smooth function such that x p(q.1.2r) < Y0 < XB(g,1.8r)> With [Vp|lee S 1/7. Then we
set

¥ ="1n%o-
So ¢ is smooth, and it satisfies
supp Vo C (A(q,r, 2r) N Vl) U U 21.
IeBdy(R')

Observe that, in a sense, ¢ is a smooth version of the function x g4 r)nv; -
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Since g(p, q) = g9(p,q) ¢(q) and g(p, -) ¢ is a continuous function from Wol’z(Q), we have

/V 9(p,-) p)(x) Vg(q, ) dx

_ / 9(p,7) Voo(a) Vglg, z) da + / (@) Vg(p, z) Vg(g, z) da
Q Q
=1 + L.

First we estimate [>. For e with 0 < ¢ < 1 / 10, we consider a smooth function ¢. such that
XB(g,260(q)) < Pe < XB(q,2:60(q))» With [[Vee oo S 1/(da(q))- Since e ¢ = ¢, we have

I, = /Q%(:L") Vg(p,r)Vg(q,z)dr + /Q o(x)(1 — e(x)) Vg(p, ) Vg(q,x) dx =: Ioq + Iop.

To deal with I, , we use the fact that for x € B(q, 2¢dn(q)) we have

1
Vy(g,z)| < m and  |Vg(p,2)| <

Then we get

9(p,q) 1 9(p,q)
2,0l S / dr S eda(q) =eg(p,q).
6a(q) JB(g2e50(0) 17— al™ da(q)

Let us turn our attention to /5 ;. We denote 1) = (1 — ). Integrating by parts, we get

Iy = /vg p,x) V(¢ g(q,))(z)dr — /Vg(p,w) V() g(q, ) dx.

Observe now that the first integral vanishes because 1 g(q,-) € I/VO1 2(€2) N C() and vanishes at IQ
and at p. Hence, since Vi) = Vo — V., we derive

j— / Vo(p,x) V() g(g,2) dz + / Vo(p,2) Ve () g(g,)dx = I + I,

To estimate I4 we take into account that V.| S x
.
£00(4) J a(g.es0(9) 2¢00(0))

Using now that, for = in the domain of integration,

0.550(q),2¢50.(¢))/ (€02(q) ), and then we derive

IVg(p,z)| g(q,z)dx.

|14 S

1 9(p,q)
9(q, ) < S Eoalg) T and  [Vg(p, )| S 50()
we obtain
Jap— L 909 500 < eglpra).

ed0a(q) (eda(q))"1 dalq)

From the above estimates we infer that

9(p,q) < | + I3| + ce g(p, 9)-
Since neither I; nor Is depend on ¢, letting € — 0 we get

g(p,q) < |I + I3

< ‘ [ otp.2)Vita) Vit ) d - / Vo(p.x) Veo(z) glq. ) de



34 AZZAM, MOURGOGLOU, AND TOLSA

< /\Vw(x)\\g(p,x) Vy(g,z) = Vg(p,z) g(q, z)| da.

We denote
F= U 21,
IeBdy(R!)
A = {x e Alg,1.2r,1.87) N Vi \ F : o (z) > o7},
and

Ar,é ={z € A(¢q,1.2,1.8r)NV; \ F: 6g(x) < or}.

Next we split the last integral as follows:

(7.2) 9(p,q) < /A,(s IVeo(2)| |g(p, z) Vg(q,z) — Vg(p, x) g(q, z)| da

+/~ V()| |g(p. ) Va(a.x) — Vg(p,z) g(g,2)| dz

Ar,&

+ /ﬁ V()| |9(p, z) Vg(q,z) — Vg(p, x) g(q, x)| dz
= J1+ Jo+ J3.

Concerning J;, we have

9(p;z) 9(q, ) A0
Vg(p,x)| < and |Vg(q,x)| < forall x € A;.

Thus, using also that | V| < 1/ outside F',

1
(7.3) JS~ swp gé(p . 2) / 9(q,) da.
T zeASnV; a() Jas

T

Regarding .J», using Cauchy-Schwarz, we get

(7.4) J2

N

_/g l9(p,z) Vg(q,2) — Vg(p,x) g(q,z)| dx

1/2
1
< - </~ 9(p, z)* d!E) </y |Vg(q,z)|? da:)
r Ar,5 A7‘75
1/2 1/2
1 2 >
+ _Va(p,x)|” dx  g(g,z)? dx )
r A'r,(S A7‘75

To estimate the integral f i g(p, z)? dzx, we take into account that, for all = € ﬁm;,

1/2

gp,z) S 5a][ g(p,y) dy.
Alq,r,2r)

Then we deduce
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Next we estimate the integral [ S |Vg(q,z)|? dz. By covering Zné by a finite family of balls of
radius /100 and applying Cacciopofi’s inequality to each one, it follows that
1

Y o(a2)" do.
Ars " J A(g,1.17,1.97)

9(q,x) < ][ 9(q,y)dy forall z € A(q,1.1r,1.97),
A(g,r,2r)

Since

we get

2
1 1
Vyl(q,z 2d3:<—/ gq,:n2d3:,§ / g(g,x)dx | .
/gm; | ( )| 72 A(q,1.17,1.97) ( ) s Alq,r,2r) ( )

So we obtain

1/2 1/2
</~ 9(p,z)? dx) </~ Vg(q, z)[? dx)
Ay s Ars

< &7 [ s [ g
N1 g\p,r)ax g\q, ) ax.
T2 Agr2r) Algr2r)

By interchanging, p and ¢, it is immediate to check that an analogous estimate holds for the second
summand on the right hand side of (7.4). Thus we get

504/2
75) RS [ s [ g
r A(q,r,2r) A(q,r,2r)

Concerning J3, we just take into account that |V| < 1/4(1) in 21, and then we obtain

I3 S /!gp, Vy(q,7) = Vg(p,7) 9(q, )| da.
Iede(R’

Together with (7.2), (7.3), and (7.5), this yields the lemma. U

Proof of Lemma 7.1. We fix ¢ = 1, for definiteness. By a Vitali type covering theorem, there exists a
subfamily Hy (R’) C Hy(R’) such that the balls {SBQ}Qeﬁl(R’) are disjoint and

@5 Y Q).

QEHL(R) QeH;(R)
By Lemma 7.2, for each @) € ﬁl(R’) we have
1 9,y
9(p,x5) S sup #.y) / g(xg, ) da
T ye2B Wi (y)=se®) 00(Y)  Jawl ror)

5a/2
+—n+3/ g(p, ) dw/ 9(wg,z) dx
r Alag,r2r) A(agy,r2r)

1
PN /2]|9(p795)V9(95é2=95)—Vg(p,w)g(xb,xﬂdx

I€Bdy(R)
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= 1(Q) + 12(Q) + I3(Q),
with » = 2¢(R’). Since g(p, :L"é?) > M(Q)/p(Rp), we derive
(7.6)
3
MupRYSA D w@ S D) 9@ pRo) Sy Y LQ)UQ)™ T p(Ro).
Qe (R)) QeH, (R 7=l Qe (R)

Estimate of 3, 5 ) 11(Q) £(Q)"~1. We have

_ 1 )
S LUt <1 sup e > /A vy Nl )0

T y€2Bp NV1:80 (y)>84(R!) S0 (y

QeH;(R) QeH1(
Note now that
Z / ,x) dz Q)" < / w*(4Q) dx < / ldz < ¢(R)™L.
QGH ’f‘ 27‘ BR’ QEH (R’ 2BR’

Since r ~ E(R’), we derive

S L@UQ™ S sup 9w.v) g,

" 0
Qefi () YE2B (Vi be(y) >se(R!) 02(Y)

Estimate of ZQeﬁl(R’) I>(Q) £(Q)™ L. First we estimate fA(%’T’%) g(p, z) dz by applying Lemma
2.5:
w (SBR’) na MR it
gp,a:dxg/ g(p,x)de <R L < Y(R A .
/A%rm paydes | 90 de SR gt S URY LRy ™ i)

So we have

5a/2
> B 5 - 3 / ,, 9l 2) @)
Qer (R)) QeH (Rr) A FQm2r)

5a/2

57“,&1%0 /BR/ Z

/2 /2
Sy L )
ru(Ro) Jam,, 1(Ro)

Estimate of ZQeﬁl(R') I3(Q) £(Q)" L. Note first that, for each I € Bdy(R'), since a:b ¢ 41, using
the subharmonicity of g(p,-) and g(:nl -) in 41, and Caccioppoli’s inequality,

1
9(p,2) Vg(zg,v)| dv S — sup g(p,x /Vg:cl,:c dx
i ) @@ dr S gy supgpa) | Volag.o)]

S D)™ marg(p, <) marg(zg, ).
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By very similar estimates, we also get

1
—/ IVg(p,x) g(a, )| de S 01" marg(p,-) marg(x, ).
UI) Jor
Recall now that, by Lemma 6.3(e)(i),
P .
marg(p,-) <v—== (P) for each I € Wp, with P € End(R’) such that 2Bp N 10Bgs # &.

1(Ro)

We distinguish two types of Whitney cubes I € Bdy(R'). We write I € Ty if £(I) > vY/2¢(P) for
some P such that I € Wp and 2Bp N 10Br # &, and we write I € T5 otherwise (there may exist
more than one P such that I € Wp, but if Wp N Wps # &, then {(P) ~ {(P’)). So we split

Yo BT YT > D) marg(p, ) marg(ag, ) Q)"

QeH1(R) QeHl(R/)IEde(R’)
(1.7) = > Y .+ D> Y =5+8
Qef(RY €D Qehy(r!) I€T:

Concerning the sum S; we have

Sisy 2 D

QeH1(R') PeEnd(R): 1€WPNT1
2BpN10B g #0

EDIEENDY

QeH1(R') PecEnd(R'): rewp #
2BpN10B g #2

1(Ro)

Next we take into account that

Q)" P marg(zg, ) S w1 (4Q),
where x stands for the center of I. Then we derive
)n
S1SAY Z Z Z (Ro)
QeH (R) PeEnd(R)): 1€Wp

2BpN10B £

Since ZQeﬁl(R') w®(4Q) < 1 for each I, we get

Sl < 71/2

~

PEEnd(R): rews H
2BpﬂlOBR/;£®

By Lemma 6.3(e)(ii), we have > 7.y, £(1)" < £(P)", and so we deduce

P) n(R)
g, < A1/2 1( < A1/2 )
L 2 w2 )
PeEnd(R):
2BP010BR/7£@
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Next we turn our attention to the sum S5 in (7.7). Recall that

So= > > UD" " marglp,-) marg(xs, ) €Q)" "

QeHy(R') 1€

Let us remark that we assume the condition that I € Wp for some 2P € EHH(R’ ) such that 2Bp N
10Bg # @ to be part of the definition of I € Tj. Using the estimate m47g(p,-) < wP(BY)£(1)'™,

we derive
< Y Y w(B) marglab, ) Q)
QEHl(R,) I1€Ts

= Z Z et Z Z ...= A+ B.

Qeﬁl(R/) IETQ:QOIOQOBQ;&@ Qeﬁl(R/) 1€T%:20IN20Bo=92

To estimate the term A we take into account that if 20/ N 20Bg # @ and I € Wp, then {(P) < 4(Q)
and thus £(I) < 4'/2£(Q) because I € Ty. As a consequence, I C 21Bg and also, by the Holder
continuity of g(:EQ, 1), if we let B be a ball concentric with B! with radius comparable to £(Q) and
such that dlst(an, B) ~ {(Q), we obtain

1
K(Q)n—l’

r(BH)\“ o
o o(aly ) S (B2 gty <477

where o > 0 is the exponent of Holder continuity. Hence,

ASA? Y > S w(Bh).

QEH1(R) PeEnd(R): 1EWpPNT:
QBPQIOBR/7$@
20BpN20Bo#2

By Lemma 6.3(e)(ii), we have > ;. wP(B!) < wP(CBp), and using also that, for P as above,
CBp C C'B for some absolute constant C’, we obtain

(07 (e} Q (07 R,
Ayt Y wCBg sy Y A gl
QeH1(R) QeH;1 (R

Finally, we turn our attention to the term B. We have

B = Z Z wP(BT) marg(zg, ) Q)"

Qeﬁl(R/) 1€T%:20IN20Bo=9

=Y (Bl ][ 3 gl ) €(Q)" " du

IeT, i QeH; (R"):20IN20Bo=2
<> wh(B ][ > w"(8Bgq) du.
I€T, QeH; (R"):20IN20Bo=2

We claim now that, in the last sum, if 207 N 20Bg = @, then dist(I,8Bg) > ¢y~ /2 4(I). To check
this, take P € End(R’) such that I € Wp. Then note that

UP) < o= drlzp) < 300 (dist(zp, Q) + £(Q))
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< ﬁ (dist(zp, I) + diam(Z) + dist(I,8Bg) + CL(Q)).

Using that I N 2Bp # @, diam(I) < Cy'/24(P) < ¢(P), and £(Q) < dist(I,8Bg), we get
12

1
((P) < 300 (dist(Z,8Bq) + 3r(Bp) + C£(Q)) < Cdist(I,8Bq) + 300 ((P),

which implies that
oI) < CyY24(P) < C 42 dist(1,8Bg),
and yields our claim.
Taking into account that the balls {8B¢ } Qehy (r) &€ disjoint and the Holder continuity of w() (99 \

ey~ Y21, for all 2 € 41 we get

> W' (8Bq) S w (O \ ey /21) < 42
QeH1 (R):20IN20Bgo =2

BSA*? Y wP(BY) < Y > wi(B).

IeT> PEE;&(R/): I1eWpnTs
2BpN10B g #2

Recalling again that 57y, wP(B!) < wP(CBp), we deduce

By > wP(CBp) S Y :((50)) <y u((g;))'

Thus,

PcEnd(R'): PcEnd(R'):
2BpN10B g £2 2BpN10Bp #2

Remark that for the second inequality we took into account that P is contained in a cube of the form
22P" with P’ € Treewsgc(R) and ¢(P’) ~ ¢(P), by Lemma 6.1. This implies that w?(C'Bp) <
wP(C'Bpr) < u(P") p(Ro) ™" S p(P) u(Ro) ™.

Gathering the estimates above and recalling (7.6), we deduce

AT u(R) S sup 9(p,v) (R 1(Ro) + 6%/ u(R') + 47 u(R)).
YE2B 1 Va6 (y)>5¢(R) 00(Y)

So, if § and ~y are small enough (depending on A, 7), we infer that

AT u(R) S sup IPY) ) (o).
YE2B 1 Vi :66 (y)>5¢(R) 00(Y)

That is, there exists some yo € 2Bg N V4 with 0 (yo) > § £(R’) such that

9, y0) - AT
da(y) ™ u(Ro)’
with § depending on A, 7. Since ZE}%, and yp can be joined by a C-good Harnack chain (for some C
depending on 4 and +, and thus on A, 7), we deduce that

9, 7h) o (A7)
U(R) ™ p(Ro)’
as wished. O
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Lemma 7.3. Let n € (0,1) and A > 0. Choose v = ~(\,7) small enough as in Lemma 7.1 with
T = n/2. Assume that the family WSBC(T") is defined by choosing T" big enough depending on ~y (and

thus on A and n) as in Lemma 6.3. Let R € Topl()N) and suppose that Treewsgc(R) # @. Then, there
exists an exceptional family Exwsgc(R) C Stopysgc (R) N G satisfying

> w(P) <nu(R)
P€Exwspc(R)
such that, for every Q € Stopwspc(R) N G\ Exwsgc(R), any A-good corkscrew for Q can be joined
to some X -good corkscrew for R by a C'(\,n)-good Harnack chain, with \' depending on \, 1.
Proof. Forany R’ € D, i, N Treewsgc(R), with ko = ko(7), we define H;(R') as in (7.1), so that
Stopwsgc(R) N GNDyu(R) = Hi(R') UH2(R).

For each R/, we set

2
Exwssc (1 U {Q € Hi(R) : X pen,(ry M(P) < T#(R/)}-

That is, for fixed i = 1 or 2, if ZPEHZ-(R’) w(P) < 7 u(R'), then all the cubes from H;(R’) belong to
Exwsgc(R'). In this way, it is clear that

(7.8) > wP) <27 u(R) =nuR).
PeExwspc(R')

We claim that the A\-good corkscrews of cubes from Stopyysgc (R)NGND,(R')\Exwsgc(R') can be
joined to some A- good corkscrew for R’ by a C- good Harnack chain, with A depending on A, 7, and C
depending on I" and thus on A, 7 too. Indeed, if @ € H;(R’)\ Exwsgc(R') and z(, is A-good corkscrew
belonging to V; (we use the notation of Lemma 7.1 and 6.3), then }_ peyy, gy w(P) > 7 u(R') by

the definition above and thus Lemma 7.1 ensures that g(p, z%,) > c(\,7) ﬁgg;)). So z%, is a X—good

corkscrew, which by Lemma 6.3(c) can be joined to acZQ by a 5—g00d Harnack chain. In turn, this \-
good corkscrew for R’ can be joined to some \’-good corkscrew for R by a C’-good Harnack chain, by
applying Lemma 5.4 kg times, with C’ depending on kg and thus on \ and 7.

On the other hand, the cubes ) € Stopwsgc(R) N G which are not contained in any cube R’ €
Dy ko N Treewspc(R) satisty £(Q) > 2=k0_ and then, arguing as above, their associated \-good
corkscrews can be joined to some \-good corkscrew for R by a C’-good Harnack chain, by apply-
ing Lemma 5.4 at most kg times. Hence, if we define

Exwssc(R) = ()  Exwssc(R),
RIED,, 1y (R)

taking into account (7.8), the lemma follows. O

Proof of the Key Lemma 5.3. We choose I' = T'(\,7) as in Lemma 7.3 and we consider the associ-
ated family WSBC(T"). In case that Treewsgc(R) = @, we set Ex(R) = @. Otherwise, we consider
the family Exwsgc(R) from Lemma 7.3, and we define

Ex(R) = (Exwssc(R) N Stop(R)) U U (SubStop(Q) N G).
Q€Exwspc(1?)\Stop(R)
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It may be useful for the reader to compare the definition above with the partition of Stop(R) in (5.3).
By Lemma 7.3 we have

YoowPy< > uP) <nuR).

PEEX(R) QEEstgc(R)

Next we show that for every P € Stop(R) N G\ Ex(R), any A-good corkscrew for P can be joined
to some \'-good corkscrew for R by a C'(\,7)-good Harnack chain. In fact, if P € Stopwsgc(R),
then P € Stopywsgc(R) N G\ Exwsgc(R) since such cube P cannot belong to SubStop(()) for any
Q € Stopywspc(R) \ Stop(R) (recall the partition (5.3)), and thus the existence of such Harnack chain
is ensured by Lemma 7.3. On the other hand, if P ¢ Stop\ysgc(R), then P is contained in some cube
Q(P) € Stopwspc(R) \ WSBC(T"). Consider the chain P = S; C Sy C -+ C S, = Q(P), so
that each S; is the parent of S;_;. For 1 < ¢ < m, choose inductively a big corkscrew z; for S; in
such a way that x; is at the same side of Lp as the good A corkscrew xp for P, and x;.1 is at the
same side of Lg, as z; for each i. Using that b3(S;) < Ce < 1 for all i, it easy to check that the line
obtained by joining the segments [xp,x1], [x1,Z2],. .. ,[Tm—1, Zm] is @ good carrot curve and so gives
rise to a good Harnack chain that joins zp to x,,. It may happen that x,, is not a A\-good corkscrew.
However, since Q(P) ¢ WSBC(T'), it turns out that z,, can be joined to some c3-good corkscrew
zg(p) for Q(P) by some C (T")-good Harnack chain, with c3 given by (4.2) (and thus independent of A
and 1), because Q(P) € G. Note that since A < c3, zg(py is also a A-good corkscrew. In turn, since
Q(P) ¢ Exwsac(R), zg(p) can be joined to some \'-good corkscrew for 1 by another C”(), 1)-good
Harnack chain. Altogether, this shows that x p can be connected to some \’-good corkscrew for R by a
C" (), n)-good Harnack chain, which completes the proof of the lemma. U

Below we will write Ex(R, A, ) instead of Ex(R) to keep track of the dependence of this family on
the parameters A and 7.

8. PROOF OF THE MAIN LEMMA 2.13

8.1. Notation. Recall that by the definition of G in (5.2), > ReTop X r(7) < K forall z € G{. For
such z, let ) be the smallest cube from Top that contains z, and denote ng(x) = — log, £(Q), so that
Q € Dy, 1y (x)- Nextlet No € Z be such that

p({ € GI no(w) < No —1}) > £ w(GE),
and denote
GE ={z e G :no(x) < Ny —1}.
Fix
N =Ny —1,
and set
T, = Dy.n(Ro) U Top{™,

and also

= Topl()N) \ Du,n(Ro)
(N) (N)

(recall that Top, ’ and Top; ’ were defined in Section 5.2). So if R € T/, \ D,, n(Ro), then Stop™ (R)
coincides the family of sons of R, and it R € T}, this will not be the case, in general. Next we denote

by T, and Ty, the respective subfamilies of cubes from T/, and T} which intersect éé{ .
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For 5 > 0, we set
T{):{ReTb: Z XQ:jonR}.
QETbZQDR
We also denote

S;={Q€D,:QeStop"(R) forsome Re T}, S, =S},
;

and we let T, be the subfamily of cubes R € T, such that there exists some () € Sg_l such that ) O R
and R is not contained in any cube from S’If with k& > 7.

8.2. Two auxiliary lemmas.

Lemma 8.1. The following properties hold for the family T;:

(a) The cubes from T% are pairwise disjoint and cover éé{ , assuming N big enough.

(b) If R € T}, then {(R) ~f £(Ry).

(c) Given R € D, (Ry) with {(R) > c{(Ry) (for example, R € T}) and X > 0, if v is a A\-good
corkscrew point for R, then there is a C(\, ¢)-good Harnack chain that joins x g to p.

Proof. Concerning the statement (a), the cubes from Tll) are pairwise disjoint by construction. Suppose
that x € éé( is not contained in any cube from T}). By the definition of the family Top’, this implies
that all the cubes Q C Rg with 27V ¢(R) < £(Q) < 271%(Ry) containing z belong to T,. However,
there are most K cubes () of this type, which is not possible if /V is taken big enough. So the cubes
from Té cover 6’6( .

The proof of (b) is analogous. Given R € Té, all the cubes @ which contain R and have side length
smaller or equal that 271%/( Rg) belong to T,. Hence there at most K — 1 cubes Q of this type, because
GE N R +# @. Thus, ((R) > 2~ K-100(Ry).

The statement (c) is an immediate consequence of (b) and Lemma 4.4. O

Lemma 8.2. Let Q € T, U T{) for some j > 2 and let xq be a \-good corkscrew for Q, with A\ > 0.
There exists some constant y(A\, K) > 0 such if £(Q) < ~v(\, K){(Ry), then there exists some cube
R € Sy such that R O Q with a N'-good corkscrew g for R such that x g can be joined to x¢ by a
C(\, K)-good Harnack chain, with \' depending on \ and K.

Proof. We assume (A, K') > 0 small enough. Then we can apply Lemma 4.5 K + 1 times to get cubes
Ry, ..., R4 satisfying:
e QCRICRC...C Rigypand (Ry11) < 27104(Ry),
e cach R; has an associated \'-good corkscrew x g, (with \’ depending on A, K') and there exists
a C(\, K)-good Harnack chain joining g and xR, ..., 2R, -

Since @ N 6’6( # &, at least one of the cubes R1, ..., Rxy1, say R;, does not belong to Top. This
implies that R; € Tree®™) (R) for some R € T,. Let R € Stop™(R) be the stopping cube that
contains (). Then Lemma 6.3 ensures that there is a good Harnack chain that connects zg; to some
corkscrew z for R. Notice that /(R;) ~) g ¢(Q) ~x k ¢(R) because () C R C R;. This implies
that g(p, zr) ~Kx 9(P; TR;) =K ) 9(P; 2q). Further, gathering the Harnack chain that joins xq to 75

R
and the one that joins x g, to x g, we obtain the good Harnack chain required by the lemma. O
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8.3. The algorithm to construct good Harnack chains. We will construct good Harnack chains that
join good corkscrews from “most” cubes from D,, xy that intersect Gé( to good corkscrews from cubes

belonging to R € T}, and then we will join these latter good corkscrews to p using the fact that
((R) =~ £(Ry). To this end we choose 1 > 0 such that

1 w(GE)

< — )
"= 9K u(Ro)

and we denote
m=max »  Xg(z)
v€C5 ReT,

(so that m < K) and we apply the following algorithm: we set a,,+1 = c3, so that (4.2) ensures that
for each @Q € T, U Ty there exists some good a,,+1-good corkscrew zg. For j =m,m —1,...,1, we
perform the following procedure:

(1) Join aj41-good corkscrews of cubes () from Tﬁ“UT{;H such that £(Q) < ¢} £(Ro)

to a;—good corkscrews of cubes R(Q) from S{U. . .US{; by C]’- -good Harnack chains,
with a; < ajy1, so that R(Q) is an ancestor of (). This step can be performed
because of Lemma 8.2, with c;- = v(aj4+1, K) in the lemma. The constants a;-, c.,
and C} depend on ;41 and K.
(2) Set
NC; = U Ex(R, a;-,n),

RET)
and join a;-—good corkscrews for all cubes ) € Si \ NC; to a;-good corkscrews for
cubes R(Q) € TZ by Cj-good Harnack chains, with a; < a7, so that R(Q) is an
ancestor of (). To this end, one applies Lemma 5.3, which ensures the existence of
such Harnack chains connecting a; -good corkscrew points for cubes from S{) \NC;

to a;j-good corkscrew points for cubes from Tg. The constants a; and C; depend

on a;- and K.

After iterating the procedure above for j = m,m — 1...,1 and joining some Harnack chains
arisen in the different iterations, we will have constructed C'-good Harnack chains that join a;,+1-
good corkscrew points for all cubes ) € T, not contained in U;”zl U PeNC;, P to a;-good corkscrews

of some ancestors R(Q) belonging either T} or, more generally, such that ¢(R(Q)) 2> ¢(Ro). The
constants c;-, a;-, a;, C; worsen at each step j. However, this is not harmful because the number of
iterations of the procedure is at most m, and m < K.

Denote by I the cubes from D,y which intersect éé( and are not contained in any cube from
{P € NC; : j = 1,...m}. By the algorithm above we have constructed good Harnack chains that
join a,,41-good corkscrew points for all cubes ) € Iy to some to some a;-good corkscrew for cubes
R(Q) € Du(Ro) with {(R(Q)) = £(Ryp). Also, by applying Lemma 8.1 (c) we can connect the a;-good
corkscrew for R((Q)) to p by a good Harnack chain.

Consider now an arbitrary point x € é{){ N @, with Q € Iy. By the definition of é{){ and the
choice N = Nj, all the cubes P € D,, containing = with side length smaller or equal than £(Q) satisfy
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bB(P) < e. Then, by an easy geometric argument (see the proof of Lemma 5.3 for a related argument)
it is easy to check that there is a good Harnack chain joining any good corkscrew for ) to z. Hence,
for all the points x € UQe In QN G{)( there is a good Harnack chain that joins x to p.

Finally, observe that, for each j, by Lemma 5.3,
1 ~
Yooy =3 > pP)<n Y wR) <nuRo) < 5 m(GE):
PeNC; ReT] PEEX(R,a/;,n) ReT]
Therefore,
< m K 1 K
< — < =
Jj=1 PeNC;
and thus
~ m 1~
PINIOENEIED u(P) = 5 u(GG) ~ u(Ro).
Qely j=1 PeNC;
This finishes the proof of the Main Lemma 2.13. (]

Remark 8.3. Recall that in the arguments above we assumed that Q = R™*1 \ 9Q. For the general
case, we define the auxiliary open set Q =R \ 012, and we apply the arguments above to Q. Then
we will get carrot curves contained in Q that join points from a big piece of é{){ to p. A quick inspection
of the construction above shows that these carrot curves are contained in the set {z € Q: g(p,z) > 0},

which is a

subset of €2, which implies the required connectivity condition to conclude the proof of the

Main Lemma 2.13.
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