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HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY: GEOMETRIC

CHARACTERIZATION OF THE Lp SOLVABILITY OF THE DIRICHLET PROBLEM.

PART II

JONAS AZZAM, MIHALIS MOURGOGLOU, AND XAVIER TOLSA

ABSTRACT. Let Ω ⊂ Rn+1 be an open set with n-AD-regular boundary. In this paper we prove that

if the harmonic measure for Ω satisfies the so-called weak-A∞ condition, then Ω satisfies a suitable

connectivity condition, namely the weak local John condition. Together with other previous results by

Hofmann and Martell, this implies that the weak-A∞ condition for harmonic measure holds if and only if

∂Ω is uniformly n-rectifiable and the weak local John condition is satisfied. This yields the first geometric

characterization of the weak-A∞ condition for harmonic measure, which is important because of its

connection with the Dirichlet problem for the Laplace equation.
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1. INTRODUCTION

The weak-A∞ condition for harmonic measure of an open set Ω ⊂ Rn+1 is a quantitative version of

absolute continuity of harmonic measure with respect to the surface measure. In this paper we complete

one of the fundamental steps for the characterization of the weak-A∞ condition for harmonic measure

in terms of quantitative rectifiability of the boundary ∂Ω and a quantitative connectivity property of Ω.

More precisely, we show that if the weak-A∞ condition holds, then the so-called local John condition

is satisfied. Together with previous results by Hofmann and Martell, this yields the aforementioned

characterization.

The fact that rectifiability plays a fundamental role in the characterization of absolute continuity

of harmonic measure with respect to surface measure has been well known since 1916 by the classical

theorem of F. and M. Riesz [RR]. Recall that this asserts that, given a simply connected domain Ω ⊂ C,

the rectifiability of ∂Ω implies that harmonic measure for Ω is absolutely continuous with respect to

arc-length measure of the boundary. A local version of this theorem was obtained much later, in 1990,

by Bishop and Jones [BiJo]. For related results in higher dimensions see [AAM]. On the other hand,

in the converse direction, it was shown recently in [AHM3TV] that, for arbitrary open sets Ω ⊂ Rn+1,

n ≥ 1, the mutual absolute continuity of harmonic measure and surface measure (i.e. n-dimensional

Hausdorff measure, which we will denote by Hn) in a subset E ⊂ ∂Ω implies the n-rectifiability of E.

To describe other results of more quantitative nature we need now to introduce some notation and

definitions. A set E ⊂ Rn+1 is called n-AD-regular if there exists some constant C0 > 0 such that

C−1
0 rn ≤ Hn(E ∩B(x, r)) ≤ C0 r

n for all x ∈ E and 0 < r ≤ diam(E).

The set E ⊂ Rn+1 is uniformly n-rectifiable if it is n-AD-regular and there exist constants θ,M > 0
such that for all x ∈ E and all 0 < r ≤ diam(E) there is a Lipschitz mapping g from the ball Bn(0, r)
in Rn to Rd with Lip(g) ≤M such that

Hn(E ∩B(x, r) ∩ g(Bn(0, r))) ≥ θrn.

Uniform n-rectifiability is a quantitative version of n-rectifiability introduced by David and Semmes

(see [DS1] and [DS2]).

Let Ω ⊂ Rn+1 be open. One says that this satisfies the corkscrew condition if for every x ∈ ∂Ω and

0 < ρ ≤ diam(Ω) there exists a ball B ⊂ B(x, ρ) ∩ Ω with radius r(B) ≥ c ρ, for some fixed c > 0.

Given p ∈ Ω, we denote by ωp the harmonic measure for Ω with pole at p. Assume that ∂Ω has

locally finite Hn-measure. We say that the harmonic measure for Ω satisfies the weak-A∞ condition if

for every ε0 ∈ (0, 1) there exists δ0 ∈ (0, 1) such that for every ballB centered at ∂Ω and all p ∈ Ω\4B
the following holds: for any subset E ⊂ B ∩ ∂Ω,

(1.1) if Hn(E) ≤ δ0 H
n(B ∩ ∂Ω), then ωp(E) ≤ ε0 ω

p(2B).
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In the case when the harmonic measure is doubling, that is, there is some constant C > 0 such that

ωp(2B) ≤ C ωp(B) for any ball B centered at Ω and all p ∈ Ω,

the weak-A∞ condition coincides with the more familiar A∞ condition for ωp (uniform on p). Both

the A∞ and weak-A∞ condition should be understood as quantitative versions of the notion of absolute

continuity. We will write ω ∈ A∞(H1|∂Ω) and ω ∈ weak-A∞(H1|∂Ω) to indicate that the harmonic

measure satisfies the A∞ and weak-A∞ conditions, respectively.

The weak-A∞ condition is particularly important from a PDE perspective. In fact, Hofmann and

Le showed in [HLe] that, if we assume Ω to satisfy the corkscrew condition and ∂Ω to be n-AD-

regular, then the Dirichlet problem is BMO-solvable for the Laplace equation if and only if the harmonic

measure is in weak-A∞. So a geometric description of the domains Ω such that ω ∈ weak-A∞ is

particularly desirable.

The first result of quantitative nature involving harmonic measure and rectifiability was obtained by

Lavrentiev [Lav] in 1936 for planar domains. He showed that if Ω ⊂ C is a simply connected domain

which is bounded by a chord-arc curve, then ω ∈ A∞(H1|∂Ω). A fundamental result in arbitrary

dimensions was obtained much later by Dahlberg [Dah]. He showed that if Ω ⊂ Rn+1 is a bounded

Lipschitz domain, then the harmonic measure satisfies the reverse Hölder condition B2 and thus it

belongs to A∞(H1|∂Ω). This result was extended to chord-arc domains by David and Jerison [DJ], and

independently by Semmes [Se]. They proved that chord-arc domains in Rn+1 (i.e., NTA domains with

n-AD regular boundaries) have interior big pieces of Lipschitz, implying that ω ∈ A∞(Hn|∂Ω).
In connection with harmonic measure, the weak-A∞ condition first appeared in the work by Ben-

newitz and Lewis in [BL], where it was shown that if the boundary of Ω ⊂ Rn+1 is n-AD-regular and

Ω has interior big pieces of Lipschitz domains, then ω ∈ weak-A∞(Hn|∂Ω). They also showed that

this is the best one can expect under these assumptions on the geometry of the domain. One can also

show by the arugments in [DJ] that this still holds if we replace Lipschitz with chord-arc subdomains.

Later, Hofmann and Martell [HM1], and in collaboration with Uriarte-Tuero [HMU], showed that for

a uniform domain with n-AD regular boundary, ω ∈ weak-A∞(Hn|∂Ω) if and only if ∂Ω is uniformly

n-rectifiable. This was further improved in [AHMNT] where it was shown that any uniform domain

with uniformly n-rectifiable boundary is in fact NTA and thus ω ∈ A∞(Hn|∂Ω). In [HM2]1 Hofmann

and Martell removed the uniformity assumption entirely by showing that for a domain with n-AD-

regular boundary that satisfies the corkscrew condition, if ω ∈ weak-A∞(Hn|∂Ω), then ∂Ω is uniformly

n-rectifiable. This result was later extended to the case when the surface measure is non-doubling in

[MT].

Also note that according to Bishop and Jones’ example in [BiJo], there exists an infinitely connected

planar domain whose boundary is uniformly 1-rectifiable but ω is not absolutely continuous to arc-

length. In fact, by [GMT] and [HMM], the uniform rectifiability of ∂Ω is equivalent to the existence

of a suitable corona type decomposition of ∂Ω in terms of harmonic measure (and also equivalent to

a Carleson type condition for the gradient of bounded harmonic functions). So uniform rectifiability

alone cannot characterize the weak-A∞ condition for harmonic measure.

The first named author of the current manuscript recently showed in [Azz2] that if a domain is semi-

uniform and has uniformly rectifiable boundary, then harmonic measure is in A∞. Aikawa and Hirata

had shown previously in [AH] that a domain is semi-uniform if and only if the harmonic measure is

doubling, which happens, in particular, if harmonic measure is in A∞ (they also assumed the domains

were John but this assumption was removed in [Azz2]). This and [HM2] show that the A∞ condition

1This result was published in [HLMN].
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implies semi-uniformity of the domain and uniform rectifiability of the boundary. Thus, the combina-

tion of these works yields a geometric characterization of the A∞ property.

Hofmann and Martell, however, introduced an a priori weaker connectivity condition than interior

big pieces of chord-arc domains that is sufficient for the weak-A∞ condition. Given x ∈ Ω, y ∈ ∂Ω,

and λ > 0, a λ-carrot curve (or just carrot curve) from x to y is a curve γ ⊂ Ω ∪ {y} with end-points

x and y such that δΩ(z) := dist(z, ∂Ω) ≥ κH1(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ
between y and z.

One says that Ω satisfies the weak local John condition (with parameters λ, θ,Λ) if there are constants

λ, θ ∈ (0, 1) and Λ ≥ 2 such that for every x ∈ Ω there is a Borel subset F ⊂ B(x,ΛδΩ(x)) ∩ ∂Ω)
with Hn(F ) ≥ θHn(B(x,ΛδΩ(x)) ∩ ∂Ω) such that every y ∈ F can be joined to x by a λ-carrot

curve. Note that the weak local John condition is weaker than semi-uniformity: rather than requiring

nice carrot curves to every point on the boundary, there are only nice curves to points in a big piece.

In [HM3] Hofmann and Martell showed that if Ω ⊂ Rn+1 is open (not necessarily connected), with

a uniformly rectifiable boundary, and Ω satisfies the weak local John condition, then harmonic measure

is in weak-A∞. In the same work they conjectured that, conversely, if the harmonic measure is in

weak-A∞, then the weak local John condition holds.

Our main result confirms this conjecture:

Theorem 1.1. Let Ω ⊂ Rn+1, n ≥ 2, be an open set with n-AD-regular boundary. If the harmonic

measure for Ω satisfies the weak-A∞ condition, then Ω satisfies the weak local John condition.

After the publication of a first version of our paper in Arxiv, Hofmann and Martell also updated

their paper [HM3] to show that the weak local John condition implies interior big pieces of chord-arc

domains. See [HM3] for the precise definition of “interior big pieces of chord-arc domains”. Thus,

combining our results with the main result of [HM3], we can conclude the following.

Corollary 1.2. Let Ω ⊂ Rn+1, n ≥ 2, be an open set with n-AD-regular boundary satisfying the

corkscrew condition. The harmonic measure for Ω is in weak-A∞ if and only if ∂Ω is uniformly n-

rectifiable and Ω satisfies the weak local John condition, if and only if Ω has interior big pieces of

chord-arc domains.

Some of the difficulties that we have to overcome to prove Theorem 1.1 arise from the fact that the

weak-A∞-condition does not imply any doubling condition on harmonic measure. Roughly speaking,

given a ball B centered at in ∂Ω and x ∈ Ω, if ωx
Ω(B) is large, then x should be well connected to a

big piece of ∂Ω ∩ B (though not necessarily any point in B). If we knew that the doubling property

holds for each ball and also for different choices of x, then we would be able to piece together nice

Harnack chains between different base points and the boundary. The weak A∞-condition, however, at

best implies that ωx
Ω is doubling on balls centered on some large subset of the boundary, and this large

subset may change as one changes the pole. So it is difficult to compare harmonic measure with respect

to different poles in Ω (in fact, they may be mutually singular when Ω is not connected).

Because of the reasons above, to prove Theorem 1.1 we cannot use arguments similar to the ones

in [AH] or [Azz2]. In fact, we have to prove a local result which involves only one pole and one ball

which has its own interest. See the Main Lemma 2.13 for more details. Two essential ingredients of the

proof are a corona type decomposition (whose existence is ensured by the uniform n-rectifiability of the

boundary) and the Alt-Caffarelli-Friedman monotonicity formula [ACF]. This formula is used in some

of the connectivity arguments in this paper. This allows to connect by carrot curves corkscrew points

where the Green function is not too small to other corkscrews at a larger distance from the boundary

where the Green function is still not too small (see Lemma 3.2 for the precise statement). See also
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the work [AGMT] for another related application of the Alt-Caffarelli-Friedman formula in connection

with elliptic measure.

Two important steps of the proof of the Main Lemma 2.13 (and so of Theorem 1.1) are the Geometric

Lemma 6.3 and the Key Lemma 7.1. An essential idea consists of distinguishing cubes with “two well

separated big corkscrews” (see Subsection 5.4 for the precise definition). In the Geometric Lemma

2.13 we construct two disjoint open sets satisfying a John condition associated to trees involving this

type of cubes, so that the boundaries of the open sets are located in places where the Green function is

very small. This construction is only possible because the associated tree involves only cubes with two

well separated big corkscrews. The existence of these cubes is an obstacle for the construction of carrot

curves. However, in a sense, in the Key Lemma 7.1 we take advantage of their existence to obtain some

delicate estimates for the Green function on some corkscrew points.

We would like to thank José Marı́a Martell for several comments on a first a version of this paper.

2. PRELIMINARIES

We will write a . b if there is C > 0 so that a ≤ Cb and a .t b if the constant C depends on the

parameter t. We write a ≈ b to mean a . b . a and define a ≈t b similarly. Sometimes, given a

measure ν, we will also use the notation −
∫
g dν for the average ν(F )−1

∫
F g dν.

In the whole paper, Ω will be an open set in Rn+1, with n ≥ 2.

2.1. The dyadic lattice Dµ. Given an n-AD-regular measure µ in Rn+1 we consider the dyadic lattice

of “cubes” built by David and Semmes in [DS2, Chapter 3 of Part I]. The properties satisfied by Dµ are

the following. Assume first, for simplicity, that diam(suppµ) = ∞). Then for each j ∈ Z there exists

a family Dµ,j of Borel subsets of suppµ (the dyadic cubes of the j-th generation) such that:

(a) each Dµ,j is a partition of suppµ, i.e. suppµ =
⋃

Q∈Dµ,j
Q and Q ∩ Q′ = ∅ whenever

Q,Q′ ∈ Dµ,j and Q 6= Q′;

(b) if Q ∈ Dµ,j and Q′ ∈ Dµ,k with k ≤ j, then either Q ⊂ Q′ or Q ∩Q′ = ∅;

(c) for all j ∈ Z and Q ∈ Dµ,j , we have 2−j . diam(Q) ≤ 2−j and µ(Q) ≈ 2−jn;

(d) there exists C > 0 such that, for all j ∈ Z, Q ∈ Dµ,j , and 0 < τ < 1,

µ
(
{x ∈ Q : dist(x, suppµ \Q) ≤ τ2−j}

)

+ µ
(
{x ∈ suppµ \Q : dist(x,Q) ≤ τ2−j}

)
≤ Cτ1/C2−jn.

(2.1)

This property is usually called the small boundaries condition. From (2.1), it follows that there

is a point zQ ∈ Q (the center of Q) such that dist(zQ, suppµ \ Q) & 2−j (see [DS2, Lemma

3.5 of Part I]).

We set Dµ :=
⋃

j∈ZDµ,j , and for Q ∈ Dµ, we denote write J(Q) = j if Q ∈ Dµ,j .

In case that diam(suppµ) < ∞, the families Dµ,j are only defined for j ≥ j0, with 2−j0 ≈
diam(suppµ), and the same properties above hold for Dµ :=

⋃
j≥j0

Dµ,j .

Given a cube Q ∈ Dµ,j , we say that its side length is 2−j , and we denote it by ℓ(Q). Notice that

diam(Q) ≤ ℓ(Q). We also denote

(2.2) BQ := B(zQ, 4ℓ(Q)),

and for λ > 1, we write

λQ =
{
x ∈ suppµ : dist(x,Q) ≤ (λ− 1) ℓ(Q)

}
.
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Given R ∈ Dµ, we set Dµ(R) := {Q ∈ Dµ : Q ⊂ R}. We also let Dµ,j(R) be the family of cubes

Q ∈ Dµ(R) such that ℓ(Q) = 2−jℓ(R).

2.2. Uniform n-rectifiability. A set E ⊂ Rn+1 is called n-rectifiable if there are Lipschitz maps

fi : Rn → Rd, i = 1, 2, . . ., such that

(2.3) Hn

(
E \

⋃

i

fi(R
n)

)
= 0.

Recall that the notion of uniform n-rectifiability is a quantitative version of n-rectifiability. It is very

easy to check that uniform n-rectifiability implies n-rectifiability.

Given a ball B ⊂ Rn+1, we denote

(2.4) bβE(B) = inf
L

1

r(B)

(
sup

y∈E∩B
dist(y, L) + sup

y∈L∩B
dist(y,E)

)
,

where the infimum is taken over all the affine n-planes that intersect B. The following result is due to

David and Semmes:

Theorem 2.1. Let E ⊂ Rn+1 be n-AD-regular. Denote µ = Hn|E and let Dµ be the associated dyadic

lattice. Then, E is uniformly n-rectifiable if and only if, for any ε > 0,
∑

Q∈Dµ:Q⊂R,
bβ(3BQ)>ε

µ(Q) ≤ C(ε)µ(R) for all R ∈ Dµ.

The constant 3 multiplying BQ in the estimate above can be replaced by any number larger than 1.

For the proof, see [DS2, Chapter II-2].

Recall also the following result (see [HLMN] or [MT]).

Theorem 2.2. Let Ω ⊂ Rn+1 be an open set with n-AD-regular boundary such that the harmonic

measure in Ω belongs to weak-A∞. Then ∂Ω is uniformly n-rectifiable.

2.3. Harmonic measure. From now on we assume that Ω ⊂ Rn+1 is an open set with n-AD-regular

boundary such that the harmonic measure in Ω belongs to weak A∞. We denote by µ the surface

measure in ∂Ω. That is, µ = Hn|∂Ω. We also consider the dyadic lattice Dµ associated with µ. The

AD-regularity constant of ∂Ω is denoted by C0.

We denote by ωp the harmonic measure with pole at p of Ω, and by g(·, ·) the Green function. We

write δΩ(x) = dist(x, ∂Ω).
The following well known result is sometimes called “Bourgain’s estimate”:

Lemma 2.3. Let Ω ( Rn+1 be open with n-AD-regular boundary, x ∈ ∂Ω, and 0 < r ≤ diam(∂Ω)/2.

Then

(2.5) ωy(B(x, 2r)) ≥ c > 0, for all y ∈ Ω ∩B(x, r)

where c depends on n and the n-AD-regularity constant of ∂Ω.

The following is also well known.

Lemma 2.4. Let p, q ∈ Ω be such |p− q| ≥ 4 δΩ(q). Then,

g(p, q) ≤ C
ωp(B(q, 4δΩ(q)))

δΩ(q)n−1
.
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The following lemma is also known. See [HLMN, Lemma 3.14], for example.

Lemma 2.5. Let Ω ( Rn+1 be open with n-AD-regular boundary and let p ∈ Ω. Let B be a ball

centered at ∂Ω such that p 6∈ 8B. Then

−

∫

B
g(p, x) dx ≤ C

ωp(4B)

r(B)n−1
.

Lemma 2.6. Let Ω ( Rn+1 be open with n-AD-regular boundary. Let x ∈ ∂Ω and 0 < r < diam(Ω).
Let u be a non-negative harmonic function in B(x, 4r) ∩ Ω and continuous in B(x, 4r) ∩ Ω such that

u ≡ 0 in ∂Ω ∩ B(x, 4r). Then extending u by 0 in B(x, 4r) \ Ω, there exists a constant α > 0 such

that, for all y, z ∈ B(x, r),

|u(y)− u(z)| ≤ C

(
|y − z|

r

)α

sup
B(x,2r)

u ≤ C

(
|y − z|

r

)α

−

∫

B(x,4r)
u,

where C and α depend on n and the AD-regularity of ∂Ω. In particular,

u(y) ≤ C

(
δΩ(y)

r

)α

sup
B(x,2r)

u ≤ C

(
δΩ(y)

r

)α

−

∫

B(x,4r)
u.

The next result provides a partial converse to Lemma 2.3

Lemma 2.7. Let Ω ( Rn+1 be open with n-AD-regular boundary. Let p ∈ Ω and let Q ∈ Dµ be such

that p 6∈ 2Q. Suppose that ωp(Q) ≈ ωp(2Q). Then there exists some q ∈ Ω such that

ℓ(Q) . δΩ(q) ≈ dist(q,Q) ≤ 4 diam(Q)

and
ωp(2Q)

ℓ(Q)n−1
≤ c g(p, q).

Proof. For a given k0 ≥ 2 to be fixed below, let P ∈ Dµ be a cube contained in Q with ℓ(P ) =

2−k0ℓ(Q) such that

ωp(P ) ≈k0 ω
p(Q).

Let ϕP be a C∞ function supported in BP which equals 1 on P and such that ‖∇ϕP ‖∞ . 1/ℓ(P ).
Then, choosing k0 small enough so that p 6∈ 50BP , say, and applying Caccioppoli’s inequality,

ωp(2Q) ≈k0 ω
p(P ) ≤

∫
ϕP dω

p = −

∫
∇yg(p, y)∇ϕP (y) dy

.
1

ℓ(P )

∫

BP

|∇yg(p, y)| dy . ℓ(P )n
(

−

∫

BP

|∇yg(p, y)|
2 dy

)1/2

. ℓ(P )n−1

(
−

∫

2BP

|g(p, y)|2 dy

)1/2

. ℓ(P )n−1 −

∫

3BP

g(p, y) dy.

Applying now Lemmas 2.6 and 2.5 and taking k0 small enough so that 24BP ∩ ∂Ω ⊂ 2Q, for any

a ∈ (0, 1) we get

−

∫

y∈3BP :δΩ(y)≤aℓ(P )
g(p, y) dy . aα −

∫

6BP

g(p, y) dy . aα
ωp(24BP )

ℓ(P )n−1
. aα

ωp(2Q)

ℓ(P )n−1
.
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From the estimates above we infer that

ωp(2Q) .k0 ℓ(P )
n−1 −

∫

y∈3BP :δΩ(y)≥aℓ(P )
g(p, y) dy + aα ωp(2Q).

Hence, for a small enough, we derive

ωp(2Q) .k0 ℓ(P )
n−1 −

∫

y∈3BP :δΩ(y)≥aℓ(P )
g(p, y) dy,

which implies the existence of the point q required in the lemma. �

2.4. Harnack chains and carrots. It will be more convenient for us to work with Harnack chains

instead of curves. The existence of a carrot curve is equivalent to having what we call a good chain

between points.

Let x ∈ Ω, y ∈ Ω be such that δΩ(y) ≤ δΩ(x), and let C > 1. A C-good chain (or C-good Harnack

chain) from x to y is a sequence of balls B1, B2, ... (finite or infinite) contained in Ω such that x ∈ B1

and either

• limj→∞ dist(y,Bj) = 0 if y ∈ ∂Ω, or

• y ∈ BN if y ∈ Ω, where N is the number of elements of the sequence if this is finite,

and moreover the following holds:

• Bj ∩Bj+1 6= ∅ for all j,
• C−1 dist(Bj , ∂Ω) ≤ r(Bj) ≤ C dist(Bj , ∂Ω) for all j,
• r(Bj) ≤ C r(Bi) if j > i,
• for each t > 0 there are at most C balls Bj such that t < r(Bj) ≤ 2t.

Abusing language, sometimes we will omit the constant C and we will just say “good chain” or “good

Harnack chain”.

Observe that in the definitions of carrot curves and good chains, the order of x and y is important:

having a carrot curve from x to y is not equivalent to having one from y to x, and similarly with good

chains.

Lemma 2.8. There is a carrot curve from x ∈ Ω to y ∈ Ω if and only if there is a good Harnack chain

from x to y.

Proof. Let γ be a carrot curve from x to y. We can assume y ∈ Ω, since if y ∈ ∂Ω, we can obtain this

case by taking a limit of points yj ∈ Ω converging to y. Let {Bj}
N
j=1 be a Vitali subcovering of the

family {B(z, δΩ(z)/10) : z ∈ γ} and let rBj
stand for the radius and xBj

for the center of Bj . So the

balls Bj are disjoint and 3Bj cover γ. Note that for t > 0, if t < rBj
≤ 2t,

|xBj
− y| ≤ H1(γ(xBj

, y)) . δΩ(xBj
) ≈ rBj

≤ 2t.

In particular, since the Bj’s are disjoint, by volume considerations, there can only be boundedly many

Bj of radius between t/2 and t, say. Moreover, we may order the balls Bj so that x ∈ 5B1 and Bj+1 is

a ball Bk such that 5Bk ∩ 5Bj 6= ∅ and 5Bk contains the point from γ ∩
⋃

h:5Bh∩5Bj 6=∅ 5Bh which is

maximal in the natural order induced by γ (so that x is the minimal point in γ). Then for j > i,

rBj
≈ δΩ(xBj

) ≤ |xBj
− xBi

|+ δΩ(xBi
) ≤ H1(γ(xBi

, y)) + δΩ(xBi
) . rBi

.

This implies 5B1, 5B2, . . . is a C-good chain for a sufficiently big C .
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Now suppose that we can find a good chain from x to y, call itB1, ..., BN . Let γ be the path obtained

by connecting their centers in order. Let z ∈ γ. Then there is a j such that z ∈ [xBj
, xBj+1 ]. Since

{Bi}i is a good chain,

H1(γ(z, y)) ≤ |z − xBj+1 |+H1(γ(xBj+1 , y)) ≤ rBj+1 +

N∑

i=j

2rBi
. rBj

≈ δΩ(z).

Thus, γ is a carrot curve from x to y. �

2.5. The Alt-Caffarelli-Friedman formula.

Theorem 2.9. Let B(x,R) ⊂ Rn+1, and let u1, u2 ∈ W 1,2(B(x,R)) ∩ C(B(x,R)) be nonnegative

subharmonic functions. Suppose that u1(x) = u2(x) = 0 and that u1 · u2 ≡ 0. Set

Ji(x, r) =
1

r2

∫

B(x,r)

|∇ui(y)|
2

|y − x|n−1
dy,

and

(2.6) J(x, r) = J1(x, r)J2(x, r).

Then J(x, r) is a non-decreasing function of r ∈ (0, R) and J(x, r) <∞ for all r ∈ (0, R). That is,

(2.7) J(x, r1) ≤ J(x, r2) <∞ for 0 < r1 ≤ r2 < R.

Further,

(2.8) Ji(x, r) .
1

r2
‖ui‖

2
∞,B(x,2r).

In the case of equality we have the following result (see [PSU, Theorem 2.9]).

Theorem 2.10. Let B(x,R) and u1, u2 be as in Theorem 2.9. Suppose that J(x, ra) = J(x, rb) for

some 0 < ra < rb < R. Then either one or the other of the following holds:

(a) u1 = 0 in B(x, rb) or u2 = 0 in B(x, rb);
(b) there exists a unit vector e and constants k1, k2 > 0 such that

u1(y) = k1 ((y − x) · e)+, u2(y) = k2 ((y − x) · e)−, in B(x, rb).

We will also need the following auxiliary lemma.

Lemma 2.11. Let B(x,R) ⊂ Rn+1, and let {ui}i≥1 ⊂ W 1,2(B(x,R)) ∩ C(B(x,R)) a sequence

of functions which are nonnegative, subharmonic, such that each ui is harmonic in {y ∈ B(x,R) :
ui(y) > 0} and ui(x) = 0. Suppose also that

‖ui‖∞,B(x,R) ≤ C1R and ‖ui‖Lipα,B(x,R) ≤ C1R
1−α

for all i ≥ 1. Then, for every 0 < r < R there exists a subsequence {uik}k≥1 which converges

uniformly in B(x, r) and weakly in W 1,2(B(x, r)) to some function u ∈W 1,2(B(x, r)) ∩C(B(x, r)),
and moreover,

(2.9) lim
k→∞

∫

B(x,r)

|∇uik(y)|
2

|y − x|n−1
dy =

∫

B(x,r)

|∇u(y)|2

|y − x|n−1
dy.
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Proof. The existence of a subsequence {uik}k≥1 converging weakly in W 1,2(B(x, r)) and uniformly

in B(x, r) to some function u ∈ W 1,2(B(x, r)) ∩ C(B(x, r)) is an immediate consequence of the

Arzelà-Ascoli and the Banach-Alaoglu theorems. Quite likely, the identity (2.9) is also well known.

However, for completeness, we will show the details.

Consider a non-negative subharmonic function v ∈W 1,2(B(x,R))∩C(B(x,R)) which is harmonic

in {y ∈ B(x,R) : v(y) > 0} so that v(x) = 0. For 0 < r < R and 0 < δ < R − r, let ϕ be a radial

C∞ function such that χB(x,r) ≤ ϕ ≤ χB(x,r+δ). Let E(y) = c−1
n |y|1−n be the fundamental solution

of the Laplacian. For ε > 0, denote vε = max(v, ε) − ε. Then we have
∫

|∇vε(y)|
2

|y − x|n−1
ϕ(y) dy = cn

∫
∇vε(y)∇(E(x− ·) vε ϕ)(y) dy

− cn

∫
∇vε(y) E(x− y) vε(y)∇ϕ(y) dy

− cn

∫
∇vε(y)∇yE(x− y) vε(y)ϕ(y) dy = cn(I1 − I2 − I3).

Using the fact that vε is harmonic in {vε > 0} and that E(x − ·) vε ϕ ∈ W 1,2
0 ({vε > 0} ∩ B(x,R))

since ϕ is compactly supported in B(x,R), vε = 0 on ∂{vε > 0}, and x is far away from {vε > 0}, it

follows easily that I1 = 0. On the other hand, we have

2 I3 =

∫
∇(v2ε ϕ)(y)∇yE(x− y) dy −

∫
vε(y)

2 ∇yE(x− y)∇ϕ(y) dy

= −vε(x)
2 −

∫
vε(y)

2 ∇yE(x− y)∇ϕ(y) dy.

Thus,
∫

|∇vε(y)|
2

|y − x|n−1
ϕ(y) dy = −cn

∫
∇vε(y) E(x − y) vε(y)∇ϕ(y) dy

−
cn
2

∫
vε(y)

2 ∇yE(x− y)∇ϕ(y) dy.

Taking into account that supp∇ϕ is far away from x, letting ε→ 0, we obtain
∫

|∇v(y)|2

|y − x|n−1
ϕ(y) dy = −cn

∫
∇v(y) E(x − y) v(y)∇ϕ(y) dy

−
cn
2

∫
v(y)2 ∇yE(x− y)∇ϕ(y) dy.

Using the preceding identity, it follows easily that

lim
k→∞

∫
|∇uik(y)|

2

|y − x|n−1
ϕ(y) dy =

∫
|∇u(y)|2

|y − x|n−1
ϕ(y) dy.

Indeed, limk→∞ uik(x)
2 = u(x)2. Also, it is clear that

lim
k→∞

∫
uik(y)

2 ∇yE(x− y)∇ϕ(y) dy =

∫
u(y)2 ∇yE(x− y)∇ϕ(y) dy.

Further,∫
∇uik(y) E(x− y)uik(y)∇ϕ(y) dy =

∫
∇uik(y) E(x− y)u(y)∇ϕ(y) dy
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+

∫
∇uik(y) E(x− y) (uik(y)− u(y))∇ϕ(y) dy

k→∞
→

∫
∇u(y) E(x− y)u(y)∇ϕ(y) dy,

by the weak convergence of uik in W 1,2(B(x,R)) and the uniform convergence in B(x, r + δ), since

supp∇ϕ is far away from x.

Let ψ be a radial C∞ function such that χB(x,r−δ) ≤ ψ ≤ χB(x,r). The same argument as above

shows that

lim
k→∞

∫
|∇uik(y)|

2

|y − x|n−1
ψ(y) dy =

∫
|∇u(y)|2

|y − x|n−1
ψ(y) dy.

Consequently,

lim sup
k→∞

∫

B(x,r)

|∇uik(y)|
2

|y − x|n−1
dy ≤ lim

k→∞

∫
|∇uik(y)|

2

|y − x|n−1
ϕ(y) dy =

∫
|∇u(y)|2

|y − x|n−1
ϕ(y) dy,

and also

lim inf
k→∞

∫

B(x,r)

|∇uik(y)|
2

|y − x|n−1
dy ≥ lim

k→∞

∫
|∇uik(y)|

2

|y − x|n−1
ψ(y) dy =

∫
|∇u(y)|2

|y − x|n−1
ψ(y) dy.

Since δ > 0 can be taken arbitrarily small, (2.9) follows. �

Lemma 2.12. LetB(x, 2R) ⊂ Rn+1, and let u1, u2 ∈W 1,2(B(x, 2R))∩C(B(x, 2R)) be nonnegative

subharmonic functions such that each ui is harmonic in {y ∈ B(x, 2R) : ui(y) > 0}. Suppose that

u1(x) = u2(x) = 0 and that u1 · u2 ≡ 0. Assume also that

‖ui‖∞,B(x,2R) ≤ C1R and ‖ui‖Lipα,B(x,2R) ≤ C1R
1−α for i = 1, 2.

For any ε > 0, there exists some δ > 0 such that if

J(x,R) ≤ (1 + δ)J(x, 12R),

with J(·, ·) defined in (2.6), then either one or the other of the following holds:

(a) ‖u1‖∞,B(x,R) ≤ εR or ‖u2‖∞,B(x,R) ≤ εR;

(b) there exists a unit vector e and constants k1, k2 > 0 such that

‖u1 − k1 ((· − x) · e)+‖∞,B(x,R) ≤ εR, ‖u2 − k2 ((· − x) · e)−‖∞,B(x,R) ≤ εR.

The constant δ depends only on n, α,C1, ε.

Proof. Suppose that the conclusion of the lemma fails. By replacing ui(y) by 1
R ui(R(y + x)), we can

assume that x = 0 and R = 1. Let ε > 0, and for each δ = 1/k and i = 1, 2, consider functions ui,k
satisfying the assumptions of the lemma and such that neither (a) nor (b) holds for them. By Lemma

2.11, there exist subsequences (which we still denote by {ui,k}k) which converge uniformly in B(0, 32)

and weakly in W 1,2(B(0, 32 )) to some functions ui ∈W 1,2(B(0, 32 )) ∩C(B(0, 32)), and moreover,

lim
k→∞

∫

B(0,r)

|∇ui,k(y)|
2

|y|n−1
dy =

∫

B(0,r)

|∇ui(y)|
2

|y|n−1
dy

both for r = 1 and r = 1/2. Clearly, the functions ui are non-negative, subharmonic, and u1 · u2 = 0.

Hence, by Theorem 2.10, one of the following holds:

(a’) u1 = 0 in B(0, 1) or u2 = 0 in B(0, 1);
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(b’) there exists a unit vector e and constants k1, k2 > 0 such that

u1(y) = k1 (y · e)
+, u2(y) = k2 (y · e)

−, in B(0, 1).

However, the fact that neither (a) nor (b) holds for any pair u1,k, u2,k, together with the uniform con-

vergence of {ui,k}k, implies that neither (a’) nor (b’) can hold, and thus we get a contradiction. �

2.6. The Main Lemma. LetB ⊂ Rn+1 be a ball centerer at ∂Ω and let p ∈ Ω. We say that ωp satisfies

the weak-A∞ condition in B if for every ε0 ∈ (0, 1) there exists δ0 ∈ (0, 1) such that the following

holds: for any subset E ⊂ B ∩ ∂Ω,

if Hn(E) ≤ δ0 H
n(B ∩ ∂Ω), then ωp(E) ≤ ε0 ω

p(2B).

In the next sections we will prove the following.

Main Lemma 2.13. Let Ω ⊂ Rn+1 have n-AD-regular boundary. Let R0 ∈ Dµ and let p ∈ Ω \ 4BR0

be a point such that

c ℓ(R0) ≤ dist(p, ∂Ω) ≤ dist(p,R0) ≤ c−1 ℓ(R0)

and ωp(R0) ≥ c′ > 0. Suppose that ωp satisfies the weak-A∞ condition in BR0 . Then there exists

a subset Con(R0) ⊂ R0 and a constant c′′ > 0 with µ(Con(R0)) ≥ c′′ µ(R0) such that each point

x ∈ Con(R0) can be joined to p by a carrot curve. The constant c′′ and the constants involved in the

carrot condition only depend on c, c′, n, the weak-A∞ condition, and the n-AD-regularity of µ.

The notation Con(·) stands for “connectable”.

It is easy to check that Theorem 1.1 follows from this result. Indeed, given any x ∈ Ω, we take a

point ξ ∈ ∂Ω such that |x − ξ| = δΩ(x). Then we consider the point p in the segment [x, ξ] such that

|p− ξ| = 1
16 δΩ(x). By Lemma 2.5, we have

ωp(B(ξ, 18δΩ(x))) & 1,

because p ∈ 1
2B(ξ, 18δΩ(x)). Hence, by covering B(ξ, 18δΩ(x)) ∩ Ω with cubes R ∈ Dµ contained in

B(ξ, 14δΩ(x)) ∩ ∂Ω with side length comparable to δΩ(x) we deduce that at least one these cubes, call

it R0, satisfies ωp(R0) & 1. Further, by taking the side length small enough, we may also assume that

p 6∈ 4BR0 . So by applying Lemma 2.13 above we infer that there exists a subset F := Con(R0) ⊂ R0

with µ(F ) ≥ c′ µ(R0) & δΩ(x)
n such that all y ∈ F can be joined to x by a carrot curve, which proves

that Ω satisfies the weak local John condition and concludes the proof of Theorem 1.1.

For simplicity, in the next sections we will assume that Ω = Rn+1 \ ∂Ω. At the end of the paper we

will sketch the necessary changes for the general case.

3. SHORT PATHS

Let p ∈ Ω and Λ > 1. For x ∈ ∂Ω, we write x ∈ WA(p,Λ) if

• x ∈ B(p, 10δΩ(p)) ∩ ∂Ω, and

• for all 0 < r ≤ δΩ(p),

Λ−1 µ(B(x, r))

µ(B(x, δΩ(p)))
≤ ωp(B(x, r)) ≤ Λ

µ(B(x, r))

µ(B(x, δΩ(p)))
.

We will see in Section 4 that, under the assumptions of the Main Lemma 2.13, for some Λ big enough,

(3.1) µ(WA(p,Λ) ∩R0) & µ(R0).
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Lemma 3.1. Let p ∈ Ω, x0 ∈ WA(p,Λ), and r ∈ (0, δΩ(p)). Then there exists q ∈ B(x0, r) such that,

for some constant κ ∈ (0, 1/10),

(a) δΩ(q) ≥ κ r, and

(b)

κ
ωp(B(x0, r))

rn−1
≤ g(p, q) ≤ κ−1 ω

p(B(x0, r))

rn−1
.

The constant κ depends only on Λ, n, and C0, the AD-regularity constant of ∂Ω.

Proof. This follows easily from Lemmas 2.4 and 2.7. �

Lemma 3.2 (Short paths). Let p ∈ Ω, x0 ∈ WA(p,Λ), and for 0 < r0 ≤ δΩ(p)/4, 0 < τ0, λ0 ≤ 1, let

q ∈ Ω be such that

(3.2) q ∈ B(x0, r0), δΩ(q) ≥ τ0 r0, g(p, q) ≥ λ0
δΩ(q)

δΩ(p)n
.

Then there exist constants A1 > 1 and 0 < a1, λ1 < 1 such that for every r ∈ (r0, δΩ(p)/2), there

exists some point q′ ∈ Ω such that

(3.3) q′ ∈ B(x0, A1r), δΩ(q
′) ≥ κ |x0 − q′| ≥ κ r, g(p, q′) ≥ λ1

δΩ(q
′)

δΩ(p)n
,

and such that q and q′ can be joined by a curve γ such that

γ ⊂ {y ∈ B(x0, A1r) : dist(y, ∂Ω) > a1 r0}.

The parameters λ1, A1, a1 depend only on C0,Λ, λ0, τ0 and the ratio r/r0.

Proof. All the parameters in the lemma will be fixed along the proof. We assume that A1 ≫ κ−1 > 1.

First note that we may assume that r < 2A−1
1 |x0 − p|. Otherwise, we just take a point q′ ∈ Ω such that

|p − q′| = δΩ(p)/2, which clear satisfies the properties in (3.3). Further, both q and q′ belong to the

open connected set

U := {x ∈ Ω : g(p, x) > c2 r0 δΩ(p)
−n}

for a sufficiently small c2 > 0. The fact that U is connected is well known. This follows from the

fact that, for any λ > 0, any connected component of {g(p, ·) > λ} should contain p. Otherwise there

would be a connected component where g(p, ·)−λ is positive and harmonic with zero boundary values.

So, by maximum principle, g(p, ·)−λ should equal λ in the whole component, which is a contradiction.

So there is only one connected component.

We just let γ be a curve contained in U . Note that

dist(U, ∂Ω) ≥ c r
1
α
0 δΩ(p)

1− 1
α ≥ a r0,

for a sufficiently small a > 0 because, by boundary Hölder continuity,

g(p, x) .

(
δΩ(x)

δΩ(p)

)α 1

δΩ(p)n−1

if dist(x, ∂Ω) ≤ δΩ(p)/2. Further, the fact that g(p, x) ≤ c|x−p|1−n ensures that U ⊂ B(p,CδΩ(p)),
for a sufficiently big constant C depending on r/r0.
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So from now on we assume that r < 2A−1
1 |x0 − p|. By Lemma 3.1 we know there exists some point

q̃ ∈ Ω such that

(3.4) q̃ ∈ B(x0, κ
−1r), δΩ(q̃) ≥ r ≥ κ |x0 − q̃| ≥ κ δΩ(q̃) ≥ κ r, g(p, q̃) ≥ c

δΩ(q̃)

δΩ(p)n
,

with c depending on κ and Λ.

Assume that q and q̃ cannot be joined by a curve γ as in the statement of the lemma. Otherwise, we

are done. For t > 0, consider the open set

V t =
{
x ∈ B(x0,

1
4A1r) : g(p, x) > t r0 δΩ(p)

−n
}
.

We fix t > 0 small enough such that q, q̃ ∈ V 2t ⊂ V t. Such t exists by (3.2) and (3.4), and it may

depend on Λ, λ, r/r0.

Let V1 and V2 be the respective components of V t to which q and q̃ belong. We have

V1 ∩ V2 = ∅,

because otherwise there is a curve contained in V t ⊂ B(x0,
1
4A1r) which connects q and q̃, and further

this is far away from ∂Ω. Indeed, we claim that

(3.5) dist(V t, ∂Ω) &A1,Λ,t,r/r0 r0.

To see this, note that by the Hölder continuity of g(p, ·) in B(x0,
1
2A1r), for all x ∈ V t, we have

t
r0

δΩ(p)n
≤ g(p, x) . sup

y∈B(x0,
1
2
A1r)

g(p, y)

(
δΩ(x)

A1r

)α

≤ −

∫

B(x0,
3
4
A1r)

g(p, y) dy

(
δΩ(x)

A1r

)α

.A1,Λ
A1r

δΩ(p)n

(
δΩ(x)

A1r

)α

,

where in the last inequality we used Lemma 2.5 and that x0 ∈WA(p,Λ). This yields our claim.

Next we wish to apply the Alt-Caffarelli-Friedman formula with

u1(x) = χV1 (δΩ(p)
n g(p, x) − t r0)

+,

u2(x) = χV2 (δΩ(p)
n g(p, x) − t r0)

+.

It is clear that both satisfy the hypotheses of Theorem 2.9. For i = 1, 2 and 0 < s < A1r, we denote

Ji(x0, s) =
1

s2

∫

B(x0,s)

|∇ui(y)|
2

|y − x0|n−1
dy,

so that J(x0, s) = J1(x0, s)J2(x0, s). We claim that:

(i) Ji(x0, s) .Λ 1 for i = 1, 2 and 0 < s < 1
4A1r.

(ii) Ji(x0, 2r) &Λ,λ,r/r0 1 for i = 1, 2.

The condition (i) follows from (2.8) and the fact that

(3.6) g(p, y) .
s

δΩ(p)n
for all y ∈ B(x0, s),

which holds by Lemma 2.5 and subharmonicity, since x0 ∈ WA(p,Λ). Concerning (ii), note first that

|∇u1(y)| . δΩ(p)
n g(p, y)

δΩ(y)
.τ0 δΩ(p)

n r0
δΩ(p)n

= 1 for all y ∈ B(q, τ0r0/2),
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where we first used Cauchy estimates and then the pointwise bounds of g(·, ·) in (3.6) with s ≈ δΩ(y).
Thus, using also that q ∈ V 2t, we infer that u1(y) > 1.5t r0 in some ball B(q, ctr0) with c possibly

depending on Λ, λ, r/r0. Analogously, we deduce that u2(y) > 1.5t r0 in some ball B(q̃, ctr0). Let B
be the largest open ball centered at q not intersecting ∂V1 and let y0 ∈ ∂V1 ∩ ∂B. Then, by considering

the convex hull H ⊂ B of B(q, ctr0) and y0 and integrating in spherical coordinates (with the origin in

y0), one can check that ∫

H
|∇u1| dy &t r

n+1
0 .

An analogous estimate holds for u2, and then it easily follows that

Ji(x0, 2r0) &t 1,

which implies (ii). We leave the details for the reader.

From the conditions (i) and (ii) and the fact that J(x, r) is non-decreasing we infer that

J(x0, s) ≈Λ,λ,r/r0 1 for 2r < s < 1
4A1r.

and also

(3.7) Ji(x0, s) ≈Λ,λ,r/r0 1 for i = 1, 2 and 2r < s < 1
4A1r.

Assume that 1
4A1 = 2m for some big m > 1. Since J(x0, s) is non-decreasing we infer that there

exists some h ∈ [1,m − 1] such that

J(x0, 2
h+1r) ≤ C(Λ, λ, r/r0)

1/mJ(x0, 2
hr),

because otherwise, by iterating the reverse inequality, we get a contradiction. Now from Lemma 2.12

we deduce that, given any ε > 0, for m big enough, there are constant ki ≈Λ,λ,r/r0 1 and a unit vector

e such that

(3.8) ‖u1 − k1 ((· − x0) · e)
+‖∞,B(x0,2hr) + ‖u2 − k2 ((· − x0) · e)

−‖∞,B(x0,2hr) ≤ ε 2h r.

Indeed, ‖ui‖∞,B(x0,2hr) ≈Λ,λ,r/r0 2hr by (2.8) and (3.7); ‖ui‖Lipα,B(x0,2h+r) .Λ,λ,r/r0 (2hr)1−α by

Lemma 2.6; and the option (a) in Lemma 2.12 cannot hold (since ‖ui‖∞,B(x0,2hr) ≈Λ,λ,r/r0 2
hr).

In particular, for ε small, (3.8) implies that if q′ := x0 + 2h−1re, then u1(q
′) ≈Λ,λ,r/r0 2h−1r, and

also that

u1(y) ≈Λ,λ,r/r0 2
h−1r > 0 for all y ∈ B(q′, 2h−2r).

Thus B(q′, 2h−2r) ⊂ Ω and so q′ is at a distance at least 2h−2r from ∂Ω, and also

g(p, q′) ≥
u1(q

′)

δΩ(p)n
≈Λ,λ,r/r0

2h r

δΩ(p)n
.

Further, since q and q′ are both in V1 by definition, there is a curve γ which joins q and q′ contained in

V1 satisfying

dist(γ, ∂Ω) &A1,Λ,t,r/r0 r0,

by (3.5). �
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4. TYPES OF CUBES

From now on we fix R0 ∈ Dµ and p ∈ Ω and we assume that we are under the assumptions of the

Main Lemma 2.13.

We need now to define two families HD and LD of high density and low density cubes, respectively.

Let A ≫ 1 be some fixed constant. We denote by HD (high density) the family of maximal cubes

Q ∈ Dµ which are contained in R0 and satisfy

ωp(2Q)

µ(2Q)
≥ A

ωp(2R0)

µ(2R0)
.

We also denote by LD (low density) the family of maximal cubes Q ∈ Dµ which are contained in R0

and satisfy

ωp(Q)

µ(Q)
≤ A−1 ω

p(R0)

µ(R0)

(notice that ωp(R0) ≈ ωp(2R0) ≈ 1 by assumption). Observe that the definition of the family HD

involves the density of 2Q, while the one of LD involves the density of Q.

We denote

BH =
⋃

Q∈HD

Q and BL =
⋃

Q∈LD

Q.

Lemma 4.1. We have

µ(BH) .
1

A
µ(R0) and ωp(BL) ≤

1

A
ωp(R0).

Proof. By Vitali’s covering theorem, there exists a subfamily I ⊂ HD so that the cubes 2Q, Q ∈ I , are

pairwise disjoint and ⋃

Q∈HD

2Q ⊂
⋃

Q∈I

6Q.

Then, since µ is doubling, we obtain

µ(BH) .
∑

Q∈I

µ(2Q) ≤
1

A

∑

Q∈I

ωp(2Q)

ωp(2R0)
µ(2R0) .

1

A
µ(R0).

Next we turn our attention to the low density cubes. Since the cubes from LD are pairwise disjoint,

we have

ωp(BL) =
∑

Q∈LD

ωp(Q) ≤
1

A

∑

Q∈LD

µ(Q)

µ(R0)
ωp(R0) ≤

1

A
ωp(R0).

�

From the above estimates and the fact that the harmonic measure belongs to weak-A∞, we infer that

if A is chosen big enough, then

ωp(BH) ≤ ε0 ω
p(2BR0) ≤

1

4
ωp(R0)

and thus

ωp(BH ∪BL) ≤
1

4
ωp(R0) +

1

A
ωp(R0) ≤

1

2
ωp(R0).
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As a consequence, denoting G0 = R0 \ (BH ∪BL)), we deduce that

ωp(G0) ≥
1

2
ωp(R0) ≈ ωp(2BR0),

which implies that

µ(G0) & µ(2BR0) ≈ µ(R0),

again using the fact that ωp belongs to weak-A∞ in BR0 . So we have:

Lemma 4.2. Assuming A big enough, the set G0 := R0 \ (BH ∪BL)) satisfies

ωp(G0) ≈ 1 and µ(G0) ≈ µ(R0),

with the implicit constants depending on C0 and the weak-A∞ condition in BR0 .

We denote by G the family of those cubes Q ∈ Dµ(R0) which are not contained in
⋃

P∈HD∪LD P . In

particular, such cubes Q ∈ G do not belong to HD ∪ LD and thus

(4.1) A−1ω
p(R0)

µ(R0)
≤
ωp(Q)

µ(Q)
.
ωp(2Q)

µ(2Q)
≤ A

ωp(2R0)

µ(2R0)
.

From this fact, it follows easily that G0 is contained in the set WA(p,Λ) defined in Section 3, assuming

Λ big enough, and so Lemma 4.2 ensures that (3.1) holds.

The following lemma is an immediate consequence of Lemma 3.1.

Lemma 4.3. For every cube Q ∈ G there exists some point xQ ∈ 2BQ∩Ω such that δΩ(xQ) ≥ κ0 ℓ(Q)
and

(4.2) g(p, xQ) > c3
ℓ(Q)

µ(R0)
,

for some κ0, c3 > 0, which depend on A and on the weak-A∞ constants in BR0 .

If xQ ∈ 2BQ ∩ Ω and δΩ(xQ) ≥ κ0 ℓ(Q), we say that xQ is κ0-corkscrew for Q. If (4.2) holds, we

say that xQ is a c3-good corkscrew for Q. Abusing notation, quite often we will not write “for Q”.

We will need the following auxiliary result:

Lemma 4.4. Let Q ∈ Dµ and let xQ be a λ-good c4-corkscrew, for some λ, c4 > 0. Suppose that

ℓ(Q) ≥ c5 ℓ(R0). Then there exists some C-good Harnack chain that joins xQ and p, with C depending

on λ, c5.

Proof. Consider the open set U = {x ∈ Ω : g(p, x) > λ ℓ(Q)/µ(R0)}. This is connected and thus

there exists a curve γ ⊂ U that connects xQ and p. By Hölder continuity, any point x ∈ Ω such that

δΩ(x) ≤ δΩ(p)/2, satisfies

g(p, x) ≤ c

(
δΩ(x)

ℓ(R0)

)α 1

ℓ(R0)n−1
.

Since g(p, x) > λ ℓ(Q)/µ(R0) &c5,λ ℓ(R0)
1−n for all x ∈ U , we deduce that dist(U, ∂Ω) ≥ c6 ℓ(R0)

for some c6 > 0 depending on λ and c5. Thus,

dist(γ, ∂Ω) ≥ c6 ℓ(R0).

From the fact that g(p, x) ≤ |p− x|1−n for all x ∈ Ω, we infer that any x ∈ U satisfies

λ
ℓ(Q)

µ(R0)
< g(p, x) ≤

1

|p− x|n−1
.



18 AZZAM, MOURGOGLOU, AND TOLSA

Therefore,

|p − x| <

(
µ(R0)

λ ℓ(Q)

)1/(n−1)

.c5,λ ℓ(R0).

So U ⊂ B(p,C2 ℓ(R0)) for some C2 depending on λ and c5. Next we consider a Besicovitch covering

of γ with balls Bi of radius c6ℓ(R0)/2. By volume considerations, it easily follows that the number

of balls Bi is bounded above by some constant C3 depending on λ and c5, and thus this is a C-good

Harnack chain, with C = C(λ, c5). �

Lemma 4.5. There exists some constant κ1 with 0 < κ1 ≤ κ0 such that the following holds for all

λ > 0. Let Q ∈ G, Q 6= R0, and let xQ be a λ-good κ1-corkscrew. Then there exists some cube R ∈ G

with Q ( R ⊂ R0 and ℓ(R) ≤ C ℓ(Q) and a λ′-good κ1-corkscrew xR such that xQ and xR can be

joined by a C ′(λ)-good Harnack chain, with λ′ > 0 and C depending on λ.

The proof below yields a constant λ′ < λ. On the other hand, the lemma ensures that xR is still a

κ1-corkscrew, which will be important for the arguments to come.

Proof. This follows easily from Lemma 3.2. For completeness we will show the details.

By choosing Λ = Λ(A) > 0 big enough, G0 ∩ Q ⊂ WA(p,Λ) and thus there exists some x0 ∈
Q ∩WA(p,Λ). We let

κ1 = min(κ0, κ),

where κ0 is defined in Lemma 4.3 and κ in Lemma 3.1 (and thus it depends only on A and C0). We

apply Lemma 3.2 to x0, q, with r0 = 3r(BQ), λ0 ≈ λ, and r = 4r(BQ). To this end, note that

δΩ(q) ≥ κ1 ℓ(Q) = κ1
1

4
ℓ(r(BQ)) = κ1

1

12
r0.

Hence there exists q′ ∈ B(x0, A1r) such that

(4.3) δΩ(q
′) ≥ κ |x0 − q′| ≥ κ r, g(p, q′) ≥ λ1

δΩ(q
′)

δΩ(p)n
,

and such that q and q′ can be joined by a curve γ such that

(4.4) γ ⊂ {y ∈ B(x0, A1r) : dist(y, ∂Ω) > a1 r0},

with λ1, A1, a1 depending on on C0, A, λ, κ1. Now let R ∈ Dµ be the cube containing x0 such that

1

2
r(BR) < |x0 − q′| ≤ r(BR).

Observe that

r(BR) ≥ |x0 − q′| ≥ r = 4r(BQ) and r(BR) < 2|x0 − q′| ≤ 2A1 r .λ ℓ(Q).

Also, we may assume that ℓ(R) ≤ ℓ(R0) because otherwise we have ℓ(Q) & A1 δΩ(p) and then the

statement in the lemma follows from Lemma 4.4. So we have Q ( R ⊂ R0.

From (4.3) we get

δΩ(q
′) ≥ κ |x0 − q′| ≥

1

2
κ r(BR) > κ1 ℓ(R)

and

g(p, q′) ≥ c λ1
2κ ℓ(R)

µ(R0)
.

From (4.4) and arguing as in the end of the proof of Lemma 4.4 we infer that xQ and xR can be

joined by a C(λ)-good Harnack chain. �
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From now on we will assume that all corkscrew points for cubes Q ∈ G are κ1-corkscrews, unless

otherwise stated.

5. THE CORONA DECOMPOSITION AND THE KEY LEMMA

5.1. The corona decomposition. Recall that the bβ coefficient of a ball was defined in (2.4). For each

Q ∈ Dµ, we denote

bβ(Q) = bβ∂Ω(100BQ).

Now we fix a constant 0 < ε ≪ min(1, κ1). Given R ∈ Dµ(R0), we denote by Stop(R) the

maximal family of cubes Q ∈ Dµ(R) \ {R} satisfying that either Q 6∈ G or bβ
(
Q̂
)
> ε, where Q̂ is

the parent of Q. Recall that the family G was defined in (4.1). Note that, by maximality, Stop(R) is a

family of pairwise disjoint cubes.

We define

Tree(R) := {Q ∈ Dµ(R) : ∄ S ∈ Stop(R) such that Q ⊂ S}.

In particular, note that Stop(R) 6⊂ Tree(R).

We now define the family of the top cubes with respect to R0 as follows: first we define the families

Topk for k ≥ 1 inductively. We set

Top1 = {R ∈ Dµ(R0) ∩ G : ℓ(R) = 2−10ℓ(R0)}.

Assuming that Topk has been defined, we set

Topk+1 =
⋃

R∈Topk

(Stop(R) ∩ G),

and then we define

Top =
⋃

k≥1

Topk.

Notice that the family of cubes Q ∈ Dµ(R0) with ℓ(Q) ≤ 2−10ℓ(R0) which are not contained in any

cube P ∈ HD ∪ LD is contained in
⋃

R∈Top Tree(R), and this union is disjoint. Also, all the cubes in

that union belong to G.

The following lemma is an easy consequence of our construction. Its proof is left for the reader.

Lemma 5.1. We have

Top ⊂ G.

Also, for each R ∈ Top,

Tree(R) ⊂ G.

Further, for all Q ∈ Tree(R) ∪ Stop(R),

ωp(2Q) ≤ C A
µ(Q)

µ(R0)
.

Remark that the last inequality holds for any cube Q ∈ Stop(R) because its parent Q̂ belongs to

Tree(R) and so Q̂ 6∈ HD, which implies that ωp(2Q) ≤ ωp(2Q̂) . A µ(Q̂)
µ(R0)

≈ A µ(Q)
µ(R0)

.

Using that µ is uniformly rectifiable, it is easy to prove that the cubes from Top satisfy a Carleson

packing condition. This is shown in the next lemma.
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Lemma 5.2. We have ∑

R∈Top

µ(R) ≤M(ε)µ(R0).

Proof. For each Q ∈ Top we have

µ(Q) =
∑

P∈Stop(Q)∩G

µ(P ) +
∑

P∈Stop(Q)\G

µ(P ) + µ

(
Q \

⋃

P∈Stop(Q)

P

)
.

Then we get
∑

Q∈Top

µ(Q) ≤
∑

Q∈Top

∑

P∈Stop(Q)∩G

µ(P )(5.1)

+
∑

Q∈Top

∑

P∈Stop(Q)\G

µ(P ) +
∑

Q∈Top

µ

(
Q \

⋃

P∈Stop(Q)

P

)
.

Note now that, because of the stopping conditions, for all Q ∈ Top, if P ∈ Stop(Q) ∩ G, then the

parent P̂ of P satisfies bβ∂Ω(100BP̂
) > ε. Hence, by Theorems 2.1 and 2.2,

∑

Q∈Top

∑

P∈Stop(Q)∩G

µ(P ) ≤
∑

P∈Dµ(R0):bβ∂Ω(100BP̂
)>ε

µ(P ) ≤ C(ε)µ(R0).

On the other hand, the cubes P ∈ Stop(Q) \ G with Q ∈ Top do not contain any cube from Top, by

construction. Hence, they are disjoint and thus
∑

Q∈Top

∑

P∈Stop(Q)\G

µ(P ) ≤ µ(R0).

By an analogous reason,
∑

Q∈Top

µ

(
Q \

⋃

P∈Stop(Q)

P

)
≤ µ(R0).

By (5.1) and the estimates above, the lemma follows. �

Given a constant K ≫ 1, next we define

(5.2) GK
0 =

{
x ∈ G0 :

∑

R∈Top

χR(x) ≤ K

}
,

By Chebyshev and the preceding lemma, we have

µ(G0 \G
K
0 ) ≤ µ(R0 \G

K
0 ) ≤

1

K

∫

R0

∑

R∈Top

χR dµ ≤
M(ε)

K
µ(R0).

Therefore, if K is chosen big enough (depending on M(ε) and the constants on the weak-A∞ condi-

tion), by Lemma 4.2 we get

µ(G0 \G
K
0 ) ≤

1

2
µ(G0),

and thus

µ(GK
0 ) ≥

1

2
µ(G0) & µ(R0).
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We distinguish now two types of cubes from Top. We denote by Topa the family of cubes R ∈ Top

such that Tree(R) = {R}, and we set Topb = Top \ Topa. Notice that, by construction, if R ∈ Topb,

then bβ(R) ≤ ε. On the other hand, this estimate may fail if R ∈ Topa.

5.2. The truncated corona decomposition. For technical reasons, we need now to define a truncated

version of the previous corona decomposition. We fix a big natural number N ≫ 1. Then we let Top(N)

be the family of the cubes from Top with side length larger than 2−Nℓ(R0). Given R ∈ Top(N) we let

Tree
(N)
b (R) be the subfamily of the cubes from Tree(R) with side length larger than 2−N ℓ(R0), and we

let Stop(N)(R) be a maximal subfamily from Stop(R) ∪Dµ,N (R0), where Dµ,N (R0) is the subfamily

of the cubes from Dµ(R0) with side length 2−N ℓ(R0). We also denote Top
(N)
a = Top(N) ∩ Topa and

Top
(N)
b = Top(N) ∩ Topb.

Observe that, since Top(N) ⊂ Top, we also have
∑

R∈Top(N)

χR(x) ≤
∑

R∈Top

χR(x) ≤ K for all x ∈ GK
0 .

5.3. The Key Lemma. The main ingredient for the proof of the Main Lemma 2.13 is the following

result.

Lemma 5.3 (Key Lemma). Given η ∈ (0, 1) and λ ∈ (0, c3] (with c3 as in (4.2)), there exists an

exceptional family Ex(R) ⊂ Stop(R) ∩ G satisfying
∑

P∈Ex(R)

µ(P ) ≤ η µ(R)

such that, for every Q ∈ Stop(R) ∩ G \ Ex(R), any λ-good corkscrew for Q can be joined to some

λ′-good corkscrew for R by a C(λ, η)-good Harnack chain, with λ′ depending on λ, η.

This lemma will be proved in the next Sections 6 and 7. Using this result, in Section 8 we will build

the required carrot curves for the Main Lemma 2.13, which join the pole p to points from a suitable big

piece of R0. If the reader prefers to see how this is applied before its long proof, they may go directly

to Section 8. A key point in the Key Lemma is that the constant ε in the definition of the stopping cubes

of the corona decomposition does not depend on the constants λ or η above.

To prove the Key Lemma 5.3 we will need first to introduce the notion of “cubes with well separated

big corkscrews” and we will split Tree(N)(R) into subtrees by introducing an additional stopping con-

dition involving this type of cubes. Later on, in Section 6 we will prove the “Geometric Lemma”, which

relies on a geometric construction which plays a fundamental role in the proof of the Key Lemma.

5.4. The cubes with well separated big corkscrews. Let Q ∈ Dµ be a cube such that bβ(Q) ≤ C4ε.

For example, Q might be a cube from Q ∈ Tree(N)(R) ∪ Stop(N)(R), with R ∈ Top
(N)
b (which in

particular implies that bβ(R) ≤ ε). We denote by LQ a best approximating n-plane for bβ(Q), and we

choose x1Q and x2Q to be two fixed points in BQ such that dist(xiQ, LQ) = r(BQ)/2 and lie in different

components of Rn+1 \ LQ. So x1Q and x2Q are corkscrews for Q. We will call them “big corkscrews”.

Since any corkscrew x for Q satisfies δΩ(x) ≥ κ1 ℓ(Q) and we have chosen ε≪ κ1, it turns out that

dist(x,LQ) ≥
1

2
κ1 ℓ(Q) ≫ ε ℓ(Q).
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As a consequence, x can be joined either to x1Q or to x2Q by a C-good Harnack chain, with C depending

only on n,C0, κ1, and thus only on n, C0 and the weak-A∞ constants in BR0 . The following lemma

follows by the same reasoning:

Lemma 5.4. Let Q,Q′ ∈ Dµ be cubes such that bβ(Q), bβ(Q′) ≤ C4ε and Q′ is the parent of Q.

Let xiQ, x
i
Q′ , for i = 1, 2, be big corkscrews for Q and Q′ respectively. Then, after relabelling the

corkscrews if necessary, xiQ can be joined to xiQ′ by a C-good Harnack chain, with C depending only

on n,C0, κ1.

Given Γ > 0, we will write Q ∈ WSBC(Γ) (or just Q ∈ WSBC, which stands for “well separated

big corkscrews”) if bβ(Q) ≤ C4ε and the big corkscrews x1Q, x2Q can not be joined by any Γ-good

Harnack chain. The parameter Γ will be chosen below. For the moment, let us say that Γ−1 ≪ ε. The

reader should think that in spite of bβ(Q) ≤ C4ε, the possible existence of “holes of size C εℓ(Q) in

suppµ” makes possible the connection of the big corkscrews by means of Γ-Harnack chains passing

through these holes. Note that if Q 6∈ WSBC(Γ), then any pair of corkscrews for Q can be connected

by a C(Γ)-good Harnack chain, since any of these corkscrews can be joined by a good chain to one of

the big corkscrews for Q, as mentioned above.

5.5. The tree of cubes of type WSBC and the subtrees. GivenR ∈ Top
(N)
b , denote by StopWSBC(R)

the maximal subfamily of cubes from Q ∈ Dµ(R) which satisfy that either

• Q 6∈ WSBC(Γ), or

• Q 6∈ Tree(N)(R).

Also, denote by TreeWSBC(R) the cubes from Dµ(R) which are not strictly contained in any cube from

StopWSBC(R). So this tree is empty if R 6∈ WSBC(Γ).
Observe that if Q ∈ StopWSBC(R), it may happen that Q 6∈ WSBC(Γ). However, unless Q = R, it

holds that Q ∈ WSBC(Γ′), with Γ′ > Γ depending only on Γ and C0 (because the parent of Q belongs

to WSBC(Γ)).
For each Q ∈ StopWSBC(R) \ Stop(R), we denote

SubTree(Q) = Dµ(Q) ∩ Tree(N)(R), SubStop(Q) = Stop(R) ∩ Dµ(Q).

So we have

Tree(N)(R) = TreeWSBC(R) ∪
⋃

Q∈StopWSBC(R)

SubTree(Q),

and the union is disjoint. Observe also that we have the partition

(5.3) Stop(R) =
(
StopWSBC(R) ∩ Stop(R)

)
∪

⋃

Q∈StopWSBC(R)\Stop(R)

SubStop(Q).

6. THE GEOMETRIC LEMMA

6.1. The geometric lemma for the tree of cubes of type WSBC. Let R ∈ Top
(N)
b and suppose that

TreeWSBC(R) 6= ∅. We need now to define a family End(R) of cubes from Dµ, which in a sense can

be considered as a regularized version of Stop(R). The first step consists of introducing the following

auxiliary function:

dR(x) := inf
Q∈TreeWSBC(R)

(ℓ(Q) + dist(x,Q)), for x ∈ Rn+1.
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Observe that dR is 1-Lipschitz.

For each x ∈ ∂Ω we take the largest cube Qx ∈ Dµ such that x ∈ Qx and

(6.1) ℓ(Qx) ≤
1

300
inf

y∈Qx

dR(y).

We consider the collection of the different cubes Qx, x ∈ ∂Ω, and we denote it by End(R).

Lemma 6.1. Given R ∈ Top
(N)
b , the cubes from End(R) are pairwise disjoint and satisfy the following

properties:

(a) If P ∈ End(R) and x ∈ 50BP , then 100 ℓ(P ) ≤ dR(x) ≤ 900 ℓ(P ).
(b) There exists some absolute constant C such that if P,P ′ ∈ End(R) and 50BP ∩ 50BP ′ 6= ∅,

then C−1ℓ(P ) ≤ ℓ(P ′) ≤ C ℓ(P ).
(c) For each P ∈ End(R), there at most N cubes P ′ ∈ End(R) such that 50BP ∩ 50BP ′ 6= ∅,

where N is some absolute constant.

(d) If P ∈ End(R) and dist(P,R) ≤ 20 ℓ(R), then there exists some Q ∈ TreeWSBC(R) such that

P ⊂ 22Q and ℓ(Q) ≤ 2000 ℓ(P ).

Proof. The proof is a routine task. For the reader’s convenience we show the details.. To show (a),

consider x ∈ 50BP . Since dR(·) is 1-Lipschitz and, by definition, dR(zP ) ≥ 300 ℓ(P ), we have

dR(x) ≥ dR(zP )− |x− zP | ≥ dR(zP )− 50 r(BP ) ≥ 300 ℓ(P ) − 200 ℓ(P ) = 100 ℓ(P ).

To prove the converse inequality, by the definition of End(R), there exists some z′ ∈ P̂ , the parent

of P , such that

dR(z
′) ≤ 300 ℓ(P̂ ) = 600 ℓ(P ).

Also, we have

|x− z′| ≤ |x− zP |+ |zP − z′| ≤ 50 r(BP ) + 2ℓ(P ) ≤ 300 ℓ(P ).

Thus,

dR(x) ≤ dR(z
′) + |x− z′| ≤ (600 + 300) ℓ(P ).

The statement (b) is an immediate consequence of (a), and (c) follows easily from (b). To show (d),

observe that, for any S ∈ TreeWSBC(R),

ℓ(P ) ≤
d(zP )

300
≤
ℓ(S) + dist(zP , S)

300
≤
ℓ(P ) + ℓ(S) + dist(P, S)

300
.

Thus,

ℓ(P ) ≤
ℓ(S) + dist(P, S)

299
.

In particular, choosing S = R, we deduce

ℓ(P ) ≤
ℓ(R) + dist(P,R)

299
≤

21

299
ℓ(R) ≤ ℓ(R),

and thus, using again that dist(P,R) ≤ 20ℓ(R), it follows that P ⊂ 22R. Let S0 ∈ TreeWSBC(R) be

such that d(zP ) = ℓ(S0) + dist(zP , S0), and let Q ∈ Dµ be be the smallest cube such that S0 ⊂ Q
and P ⊂ 22Q. Since S0 ⊂ R and P ⊂ 22R, we deduce that S0 ⊂ Q ⊂ R, implying that Q ∈
TreeWSBC(R).

So it just remains to check that ℓ(Q) ≤ 2000 ℓ(P ). To this end, consider a cube Q̃ ⊃ S0 such that

ℓ(P ) + ℓ(S0) + dist(P, S0) ≤ ℓ(Q̃) ≤ 2
(
ℓ(P ) + ℓ(S0) + dist(P, S0)

)
.



24 AZZAM, MOURGOGLOU, AND TOLSA

From the first inequality, it is clear that P ⊂ 2Q̃ and then, by the definition of Q, we infer that Q ⊂ Q̃.

This inclusion and the second inequality above imply that

ℓ(Q) ≤ ℓ(Q̃) ≤ 2
(
2ℓ(P ) + ℓ(S0) + dist(zP , S0)

)
= 4ℓ(P ) + 2 dR(zP ).

By (a) we know that dR(zP ) ≤ 900 ℓ(P ), and so we derive ℓ(Q) ≤ 2000 ℓ(P ). �

Lemma 6.2. Given R ∈ Top
(N)
b , if Q ∈ End(R) and dist(P,R) ≤ 20 ℓ(R), then bβ(Q) ≤ C ε and

Q ∈ WSBC(Γ′), with Γ′ = c6 Γ, for some absolute constants C, c6 > 0.

Proof. This immediate from the fact that, by (d) in the previous lemma, there exists some cube Q′ ∈
TreeWSBC(R) such that Q ⊂ 22Q′ and ℓ(Q′) ≤ 2000 ℓ(Q), so that bβ(Q′) ≤ ε and Q′ ∈ WSBC(Γ).

�

Next we consider the following Whitney decomposition of Ω: we let W be a family of dyadic cubes

from Rn+1, contained in Ω, with disjoint interiors, such that
⋃

I∈W

I = Ω,

and such that moreover there are some constants M0 > 20 and D0 ≥ 1 satisfying the following for

every I ∈ W:

(i) 10I ⊂ Ω;

(ii) M0I ∩ ∂Ω 6= ∅;

(iii) there are at most D0 cubes I ′ ∈ W such that 10I ∩ 10I ′ 6= ∅. Further, for such cubes I ′, we

have ℓ(I ′) ≈ ℓ(I), where ℓ(I ′) stands for the side length of I ′.

From the properties (i) and (ii) it is clear that dist(I, ∂Ω) ≈ ℓ(I). We assume that the Whitney cubes

are small enough so that

(6.2) diam(I) <
1

100
dist(I, ∂Ω).

This can be achieved by replacing each cube I ∈ W by its descendants I ′ ∈ Dk(I), for some fixed

k ≥ 1, if necessary.

For each I ∈ W , we denote byBI a ball concentric with I and radius C5ℓ(I), where C5 is a universal

constant big enough so that

g(p, x) .
ωp(BI)

ℓ(I)n−1
for all x ∈ 4I .

Obviously, the ball BI intersects ∂Ω, and the family {BI}I∈W does not have finite overlapping.

To state the Geometric Lemma we need some additional notation. Given a cube R′ ∈ TreeWSBC(R),

we denote by T̃reeWSBC(R
′) the family of cubes from Dµ with side length at most ℓ(R′) which are

contained in 100BR′ and are not contained in any cube from End(R). We also denote by Ẽnd(R′) the

subfamily of the cubes from End(R) which are contained in some cube from T̃reeWSBC(R
′). Note that

T̃reeWSBC(R
′) is not a tree, in general, but a union of trees.

Lemma 6.3 (Geometric Lemma). Let 0 < γ < 1, and assume that the constant Γ = Γ(γ) in the

definition of WSBC is big enough. Let R ∈ Top
(N)
b ∩WSBC(Γ) and let R′ ∈ TreeWSBC(R) be such
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that ℓ(R′) = 2−k0ℓ(R), with k0 = k0(γ) ≥ 1 big enough. Then there are two connected open sets

V1, V2 ⊂ CBR′ ∩ Ω with disjoint closures which satisfy the following properties:

(a) There are subfamilies Wi ⊂ W such that Vi =
⋃

I∈Wi
1.1I̊ .

(b) Each Vi contains a ball Bi with r(Bi) ≈ ℓ(R′), and each corkscrew point for R′ contained in

2BR′∩Vi can be joined to the center zi ofBi by a good Harnack chain contained in Vi. Further,

any point x ∈ Vi can be joined to zi by a good Harnack chain (not necessarily contained in

Vi).
(c) For each Q ∈ TreeWSBC(R) ∩ Dµ(R

′) there are big corkscrews x1Q ∈ V1 ∩ 2BQ and x2Q ∈

V2 ∩ 2BQ, and if Q̂ is an ancestor of Q which also belongs to TreeWSBC(R) ∩ Dµ(R
′), then

xiQ can be joined to xi
Q̂

by a good Harnack chain, for each i = 1, 2.

(d) (∂V1 ∪ ∂V2) ∩ 10BR′ ⊂
⋃

P∈Ẽnd(R′)
2BP .

(e) If P ∈ Ẽnd(R′) is such that 2BP ∩ 10BR′ 6= ∅, then ∂Vi ∩ 2BP is contained in the union of

cubes of a subfamily WP ⊂ W such that

(i)

m4Ig(p, ·) ≤ γ
ℓ(P )

µ(R0)
for each I ∈ WP ,

and

(ii) ∑

I∈WP

ℓ(I)n . ℓ(P )n and
∑

I∈WP

ωp(BI) . ωp(CBP ),

for some universal constant C > 1.

The constants involved in the Harnack chain and corkscrew conditions may depend on ε, Γ, and γ.2

6.2. Proof of the Geometric Lemma 6.3. In this whole subsection we fixR ∈ Top
(N)
b and we assume

TreeWSBC(R) 6= ∅, as in Lemma 6.3. We let R′ ∈ TreeWSBC(R) be such that ℓ(R′) = 2−k0ℓ(R), with

k0 = k0(γ) ≥ 1 big enough, as in Lemma 6.3, and we consider the associated families T̃reeWSBC(R
′)

and Ẽnd(R′).

Remark 6.4. By arguments analogous to the ones in Lemma 6.2, it follows easily that ifQ ∈ T̃reeWSBC(R
′),

for R′ ∈ TreeWSBC(R) such that ℓ(R′) = 2−k0ℓ(R), then there exists some cube S ∈ TreeWSBC(R)
such that Q ⊂ 22S and ℓ(S) ≤ 2000ℓ(Q). This implies that bβ(Q) ≤ C ε and Q ∈ WSBC(c6Γ) too.

In order to define the open sets V1, V2 described in the lemma, first we need to associate some open

sets U1(Q), U2(Q) to each Q ∈ T̃reeWSBC(R
′) ∪ Ẽnd(R′). We distinguish two cases:

• For Q ∈ T̃reeWSBC(R
′), we let Ji(Q) be the family of Whitney cubes I ∈ W which intersect

{y ∈ 20BQ : dist(y, LQ) > ε1/4 ℓ(Q)}

and are contained in the same connected component of Rn+1 \ LQ as xiQ, and then we set

Ui(Q) =
⋃

I∈Ji(Q)

1.1I̊ .

2To guarantee the existence of the sets Vi and the fact that they are contained in Ω we use the assumption that Ω = (∂Ω)c.
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• For Q ∈ Ẽnd(R′) the definition of Ui(Q) is more elaborated. First we consider an auxiliary

ball B̃Q, concentric with BQ, such that 19BQ ⊂ B̃Q ⊂ 20BQ and having thin boundaries for

ωp. This means that, for some absolute constant C ,

(6.3) ωp
({
x ∈ 2B̃Q : dist(x, ∂B̃Q) ≤ t r(B̃Q)

})
≤ C tωp(2B̃Q) for all t > 0.

The existence of such ball B̃Q follows by well known arguments (see for example [To, p.370]).

Next we denote by J (Q) the family of Whitney cubes I ∈ W which intersect B̃Q and

satisfy ℓ(I) ≥ θ ℓ(Q) for θ ∈ (0, 1) depending on γ (the reader should think that θ ≪ ε and

that θ = 2−j1 for some j1 ≫ 1), and we set

(6.4) U(Q) =
⋃

I∈J (Q)

1.1I̊ .

For a fixed i = 1 or 2, let {Di
j(Q)}j≥0 be the connected components of U(Q) which satisfy

one of the following properties:

– either xiQ ∈ Di
j(Q) (recall that xiQ is a big corkscrew for Q), or

– there exists some y ∈ Di
j(Q) such that g(p, y) > γ ℓ(Q)µ(R0)

−1 and there is a C6(γ, θ)-

good Harnack chain that joins y to xiQ, for some constant C6(γ, θ) to be chosen below.

Then we let Ui(Q) =
⋃

jD
i
j(Q). After reordering the sequence, we assume that xiQ ∈ Di

0(Q).

In the case Q ∈ T̃reeWSBC(R
′), from the definitions, it is clear that the sets Ui(Q) are open and

connected and

(6.5) U1(Q) ∩ U2(Q) = ∅.

In the case Q ∈ Ẽnd(R′), the sets Ui(Q) may fail to be connected. However, (6.5) still holds if Γ is

chosen big enough (which will be the case). Indeed, if some component Di
j can be joined by C6(γ, θ)-

good Harnack chains both to x1Q and x2Q, then there is a C(γ, θ)-good Harnack chain that joins x1Q
to x2Q, and thus Q does not belong to WSBC(c6Γ) if Γ is taken big enough, which cannot happen by

Lemma 6.2. Note also that the two components of

{y ∈ B̃Q : dist(y, LQ) > ε1/2 ℓ(Q)}

are contained in D1
0(Q) ∪D2

0(Q), because bβ(Q) ≤ Cε and we assume θ ≪ ε.

The following is immediate:

Lemma 6.5. Assume that we relabel appropriately the setsUi(P ) and corkscrews xiP for P ∈ T̃reeWSBC(R
′)∪

Ẽnd(R′). Then for all Q, Q̂ ∈ T̃reeWSBC(R
′) ∪ Ẽnd(R′) such that Q̂ is the parent of Q we have

(6.6)
[
x1Q, x

1
Q̂

]
⊂ U1(Q) ∩ U1(Q̂) and

[
x2Q, x

2
Q̂

]
⊂ U2(Q) ∩ U2(Q̂).

Further,

dist
(
[xiQ, x

i
Q̂
], ∂Ω

)
≥ c ℓ(Q) for i = 1, 2,

where c depends at most on n on C0.

The labelling above can be chosen inductively. First we fix the sets Ui(T ) and corkscrews xiT for

every maximal cube T from T̃reeWSBC(R
′) (contained in 100BR′ and with side length equal to ℓ(R′)).

Further we assume that, for any maximal cube T , the corkscrew xiT is at the same side of LR′ as xiR′ ,

for each i = 1, 2 (this property will be used below). Later we label the sons of each T so that (6.6)
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holds for any son Q of T . Then we proceed with the grandsons of T , and so on. We leave the details

for the reader.

The following result will be used later to prove the property (e)(i).

Lemma 6.6. Suppose that the constant k0(γ) in Lemma 6.3 is big enough. Let Q ∈ Ẽnd(R′) and

assume θ small enough andC6(γ, θ) big enough in the definition of Ui(Q). If y ∈ B̃Q satisfies g(p, y) >
γ ℓ(Q)µ(R0)

−1, then y ∈ U1(Q) ∪ U2(Q).

Proof. By the definition of Ui(Q), it suffices to show that y belongs to some component Di
j(Q) and that

there is a C6(γ, θ)-good Harnack chain that joins y to xiQ. To this end, observe that by the boundary

Hölder continuity of g(p, ·),

γ
ℓ(Q)

µ(R0)
≤ g(p, y) ≤ C

(
δΩ(y)

ℓ(Q)

)α

m30BQ
g(p, ·) ≤ C

(
δΩ(y)

ℓ(Q)

)α ℓ(Q)

µ(R0)
,

where in the last inequality we used Lemma 2.5. Thus,

δΩ(y) ≥ c γ1/α ℓ(Q),

and if θ is small enough, then y belongs to some connected component of the set U(Q) in (6.4). By

Lemma 6.1(d) there is a cube Q′ ∈ TreeWSBC(R) such that Q ⊂ 22Q′ and ℓ(Q′) ≈ ℓ(Q). In particular,

WA(p,Λ) ∩Q′ ⊃ G0 ∩Q
′ 6= ∅ and thus, by applying Lemma 3.2 with q = y and r0 = Cr(BQ) (for

a suitable C > 1), it follows that there exists a κ1-corkscrew y′ ∈ C(γ)BQ, with C(γ) > 20 say, such

that y can be joined to y′ by a C ′(γ)-good Harnack chain. Assuming that the constant k0(γ) in Lemma

6.3 is big enough, it turns out that y′ ∈ CBQ′′ for someQ′′ ∈ TreeWSBC(R) such that 22Q′′ ⊃ Q. Since

all the cubes S such that Q ⊂ S ⊂ 22Q′′ satisfy bβ(S) ≤ C ε, by applying Lemma 5.4 repeatedly, it

follows that y′ can be joined either to x1Q or x2Q by a C ′′(γ)-good Harnack chain. Then, joining both

Harnack chains, it follows that y can be joined either to x1Q or x2Q by a C ′′′(γ)-good Harnack chain. So

y belongs to one of the components Di
j , assuming C6(γ, θ) big enough. �

From now on we assume θ small enough and C6(γ, θ) big enough so that the preceding lemma holds.

Also, we assume θ ≪ ε4. We define

V1 =
⋃

Q∈T̃reeWSBC(R′)∪Ẽnd(R′)

U1(Q), V2 =
⋃

Q∈T̃reeWSBC(R′)∪Ẽnd(R′)

U2(Q).

Next we will show that

V1 ∩ V2 = ∅.

Since the number of cubes Q ∈ T̃reeWSBC(R
′) ∪ Ẽnd(R′) is finite (because of the truncation in the

corona decomposition), this is a consequence of the following:

Lemma 6.7. Suppose Γ is big enough in the definition of WSBC (depending on θ). For all P,Q ∈

T̃reeWSBC(R
′) ∪ Ẽnd(R′), we have

U1(P ) ∩ U2(Q) = ∅.

Proof. We suppose that ℓ(Q) ≥ ℓ(P ) We also assume that U1(P ) ∩ U2(Q) 6= ∅ and then we will get

a contradiction. Notice first that if ℓ(P ) = ℓ(Q) = 2−jℓ(R′) for some j ≥ 0, then the corkscrews xiP
and xiQ are at the same side of LQ for each i = 1, 2. This follows easily by induction on j.
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1. Suppose first that P,Q ∈ T̃reeWSBC(R
′). Since the cubes from J2(Q) have side length at least

c ε1/4 ℓ(Q), it follows that at least one of the cubes from J1(P ) has side length at least c′ ε1/4 ℓ(Q),

which implies that ℓ(P ) ≥ c′′ ε1/4 ℓ(Q), by the construction of U1(P ).
Since U1(P ) ∩ U2(Q) 6= ∅, there exists some curve γ = γ(x1P , x

2
Q) that joins x1P and x2Q such that

dist(γ, ∂Ω) ≥ c ε1/2 ℓ(Q) because all the cubes from J2(Q) have side length at least c ε1/4 ℓ(Q), and

the ones from J1(P ) have side length ≥ c ε1/4 ℓ(P ) ≥ c ε1/2 ℓ(Q).

Let P̂ be the ancestor of P such that ℓ(P̂ ) = ℓ(Q). From the fact that U1(P ) ∩ U2(Q) 6= ∅, we

deduce that 20BP ∩ 20BQ 6= ∅ and thus 20BP̂ ∩ 20BQ 6= ∅, and so 20BP̂ ⊂ 60BQ. This implies

that x1
P̂

is in the same connected component as x1Q and also that dist([x1Q, x
1
P̂
], ∂Ω) & ℓ(Q), because

bβ(100BQ) ≤ ε≪ 1 and they are at the same side of LQ.

Consider now the chain P = P1 ⊂ P2 ⊂ . . . ⊂ Pm = P̂ , so that Pi+1 is the parent of Pi. Form

the curve γ′ = γ′(x1
P̂
, x1P ) with endpoints x1

P̂
and x1P by joining the segments [x1Pi

, x1Pi+1
]. Since these

segments satisfy

dist
(
[x1Pi

, x1Pi+1
], ∂Ω

)
≥ c ℓ(Pi) ≥ c ℓ(P ) ≥ c ε1/4 ℓ(Q),

it is clear that dist(γ′, ∂Ω) ≥ c ε1/4 ℓ(Q).
Next we form a curve γ′′ = γ′′(x1Q, x

2
Q) which joins x1Q to x2Q by joining [x1Q, x

1
P̂
], γ′(x1

P̂
, x1P ),

and γ(x1P , x
2
Q). It follows easily that this is contained in 90BQ and that dist(γ′′, ∂Ω) ≥ c ε1/2 ℓ(Q).

However, this is not possible because x1Q and x2Q are in different connected components of Rn+1 \ LQ

and bβ(Q) ≤ ε≪ ε1/2 (since we assume ε≪ 1).

2. Suppose now that Q ∈ Ẽnd(R′). The arguments are quite similar to the ones above. In this case, the

cubes from J2(Q) have side length at least θ ℓ(Q) and thus at least one of the cubes from J1(P ) has

side length at least c θ ℓ(Q), which implies that ℓ(P ) ≥ c′ θ ℓ(Q).
Now there exists a curve γ = γ(x1P , x

2
Q) that joints x1P and x2Q such that dist(γ, ∂Ω) ≥ c θ2 ℓ(Q)

because all the cubes from J2(Q) have side length at least θ ℓ(Q), and the ones from J1(P ) have side

length θ ℓ(P ) ≥ c θ2 ℓ(Q).

We consider again cubes P̂ and P1, . . . , Pm defined exactly as above. By the same reasoning as

above, dist([x1Q, x
1
P̂
], ∂Ω) & ℓ(Q). We also define the curve γ′ = γ′(x1

P̂
, x1P ) which joins x1

P̂
to x1P in

the same way. In the present case we have

dist(γ′, ∂Ω) & ℓ(P ) ≥ c θ ℓ(Q).

Again construct a curve γ′′ = γ′′(x1Q, x
2
Q) which joins x1Q to x2Q by gathering [x1Q, x

1
P̂
], γ′(x1

P̂
, x1P ),

and γ(x1P , x
2
Q). This is contained in CBQ (for some C > 1 possibly depending on γ) and satisfies

dist(γ′′, ∂Ω) ≥ c θ2 ℓ(Q). From this fact we deduce that x1Q and x2Q can be joined by C(θ)-good

Harnack chain. Taking Γ big enough (depending on C(θ)), this implies that the big corkscrews for Q
can be joined by a (c6Γ)-good Harnack chain, which contradicts Lemma 6.2.

3. Finally suppose that P ∈ Ẽnd(R′). We consider the same auxiliary cube P̂ and the same curve

γ = γ(x1P , x
2
Q) satisfying dist(γ, ∂Ω) ≥ c θ ℓ(P ). By joining the segments [x2Pi

, x2Pi+1
], we construct

a curve γ′2 = γ′2(x
2
P̂
, x2P ) analogous to γ′ = γ′(x1

P̂
, x1P ) from the case 2, so that this joins x2

P̂
to x2P and

satisfies dist(γ′2, ∂Ω) & ℓ(P ).
We construct a curve γ′′′ that joins x1P to x2P by joining γ(x1P , x

2
Q), [x

2
Q, x

2
P̂
], and γ′2(x

2
P̂
, x2P ). Again

this is contained in CBQ and it holds dist(γ′′′, ∂Ω) ≥ c θ ℓ(P ). This implies that x1P and x2P can be
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joined by C(θ)-good Harnack chain. Taking Γ big enough, we deduce the big corkscrews for P can be

joined by a (c6Γ)-good Harnack chain, which is a contradiction. �

By the definition of V1 and V2 it is clear that the properties (a), (b) and (c) in Lemma 6.3 hold. So to

complete the proof of the lemma it just remains to prove (d) and (e).

Proof of Lemma 6.3(d). Let x ∈ (∂V1 ∪ ∂V2) ∩ 10BR′ . We have to show that there exists some

S ∈ Ẽnd(R′) such that x ∈ 2BS . To this end we consider y ∈ ∂Ω such that |x − y| = δΩ(x). Since

zR′ ∈ ∂Ω, it follows that y ∈ 20BR′ . Let S ∈ Ẽnd(R′) be such that y ∈ S. Observe that

(6.7) ℓ(S) ≤
1

300
dR(y) ≤

1

300

(
ℓ(R′) + 20 r(BR′)

)
=

81

300
ℓ(R′) ≤

1

3
ℓ(R′).

We claim that x ∈ 2BS . Indeed, if x 6∈ 2BS , taking also into account (6.7), there exists some

ancestor Q of S contained in 100BR′ such that x ∈ 2BQ and δΩ(x) = |x − y| ≈ ℓ(Q). From the fact

that S ( Q ⊂ 100BR′ we deduce that Q ∈ T̃reeWSBC(R
′). By the construction of the sets Ui(Q), it

is immediate to check that the condition that δΩ(x) ≈ ℓ(Q) implies that x ∈ U1(Q) ∪ U2(Q). Thus

x ∈ V1∪V2 and so x 6∈ ∂(V1 ∪V2) = ∂V1 ∪∂V2 (for this identity we use that dist(V1, V2) > 0), which

is a contradiction. �

To show (e), first we need to prove the next result:

Lemma 6.8. For each i = 1, 2, we have

∂Vi ∩ 10BR′ ⊂
⋃

Q∈Ẽnd(R′)

∂Ui(Q).

Proof. Clearly, we have

∂Vi ∩ 10BR′ ⊂
⋃

P∈T̃reeWSBC(R
′):

P∩10BR′ 6=∅

∂Ui(P ) ∪
⋃

Q∈Ẽnd(R′):
Q∩10BR′ 6=∅

∂Ui(Q).

So it suffices to show that

(6.8)
⋃

P∈T̃reeWSBC(R
′):

P∩10BR′ 6=∅

∂Ui(P ) ∩ ∂Vi ∩ 10BR′ = ∅.

Let x ∈ ∂Ui(P ) ∩ ∂Vi ∩ 10BR′ , with P ∈ T̃reeWSBC(R
′), P ∩ 10BR′ 6= ∅. From the definition of

Ui(P ), it follows easily that

(6.9) δΩ(x) & ε1/4ℓ(P ).

On the other hand, by Lemma 6.3(d), there exists some Q ∈ Ẽnd(R′) such that x ∈ 2BQ. By the

definition of Ui(Q), since θ ≪ ε, it also follows easily that
{
y ∈ 2BQ : δΩ(y) > ε1/2ℓ(Q)

}
⊂ V1 ∪ V2.

Hence, dist(∂Vi ∩ 2BQ, ∂Ω) ≤ ε1/2 ℓ(Q), and so

(6.10) δΩ(x) ≤ ε1/2 ℓ(Q).
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We claim that ℓ(Q) . ℓ(P ). Indeed, from the fact that x ∈ ∂Ui(P ) ⊂ 30BP , we infer that

30BP ∩ 2BQ 6= ∅.

Suppose that ℓ(Q) ≥ ℓ(P ). This implies that BP ⊂ 33BQ. Consider now a cube S ⊂ P belonging to

Ẽnd(R′). Since BS ∩ 33BQ 6= ∅, by Lemma 6.1 (b) we have

ℓ(Q) ≈ ℓ(S) ≤ ℓ(P ),

which proves our claim. Together with (6.9) and (6.10), this yields

ε1/4ℓ(P ) . δΩ(x) . ε1/2 ℓ(Q) . ε1/2 ℓ(P ),

which is a contradiction for ε small enough. So there does not exist any x ∈ ∂Ui(P ) ∩ ∂Vi ∩ 10BR′ ,

which proves (6.8). �

Proof of Lemma 6.3(e). Let P ∈ Ẽnd(R′) be such that 2BP ∩ 10BR′ 6= ∅. The statement (i) is

an immediate consequence of Lemma 6.6. In fact, this lemma implies that any y ∈ 2BP such that

g(p, y) > γ ℓ(P )µ(R0)
−1 is contained in U1(P ) ∪ U2(P ) and thus in V1 ∪ V2. In particular, y 6∈

∂(V1 ∪ V2) = ∂V1 ∪ ∂V2. Thus, if y ∈ 2BP ∩ ∂Vi, then

g(p, y) ≤ γ
ℓ(P )

µ(R0)
.

It is easy to check that this implies the statement (i) in Lemma 6.3(e) (possibly after replacing γ by

Cγ).

Next we turn our attention to (ii). To this end, denote by JP the subfamily of the cubes Q ∈ Ẽnd(R′)
such that 30BQ ∩ 2BP 6= ∅. By Lemma 6.8,

(6.11) ∂Vi ∩ 2BP ⊂
⋃

Q∈JP

∂Ui(Q) ∩ 2BP .

We will show that

(6.12)
∑

I∈WP

ℓ(I)n . ℓ(P )n and
∑

I∈WP

ωp(BI) . ωp(CBP ),

where WP the family of Whitney cubes I ⊂ V1 ∪ V2 such that 1.1I ∩ ∂(V1 ∪ V2) ∩ 2BP 6= ∅. To this

end, observe that, by (6.11) and the construction of Ui(Q), for each I ∈ WP there exists some Q ∈ JP
such that I ⊂ 30BQ and either ℓ(I) = θℓ(Q) or 1.1I ∩ ∂B̃Q 6= ∅. Using the n-AD-regularity of µ, it

is immediate to check that for each Q ∈ JP ,
∑

I⊂30BQ:
ℓ(I)=θℓ(Q)

ℓ(I)n . ℓ(Q)n.

Also, ∑

I∈W :
1.1I∩∂B̃Q 6=∅

ℓ(I)n .
∑

I∈W
1.1I∩∂B̃Q 6=∅

Hn(2I ∩ ∂B̃Q) . Hn(∂B̃Q) . ℓ(Q)n.

Since the number of cubes Q ∈ JP is uniformly bounded (by Lemma 6.1(b)) and ℓ(Q) ≈ ℓ(P ), the

above inequalities yield the first estimate in (6.12).
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To prove the second one we also distinguish among the two types of cubes I ∈ JP above. First, by

the bounded overlap of the balls BI such that ℓ(I) = θ ℓ(Q), we get

(6.13)
∑

I⊂30BQ

ℓ(I)=θℓ(Q)

ωp(BI) . ωp(CBP ),

since the balls BI in the sum are contained CBP for a suitable universal constant C > 1. To deal with

the cubes I ∈ W such that 1.1I ∩ ∂B̃Q 6= ∅ we intend to use the thin boundary property of B̃Q in

(6.3). To this end, we write
∑

I∈W :
1.1I∩∂B̃Q 6=∅

ωp(BI) =
∑

k≥0

∑

I∈W :
1.1I∩∂B̃Q 6=∅
ℓ(I)=2−kℓ(Q)

ωp(BI) .
∑

k≥0

ωp(U2−k+1 diam(Q)(∂B̃Q)),

where Ud(A) stands for the d-neighborhood of A. By (6.3) it follows that

ωp(U2−kℓ(Q)(∂B̃Q)) . 2−kωp(C ′BQ),

and thus ∑

I∈W :
1.1I∩∂B̃Q 6=∅

ωp(BI) . ωp(C ′BQ) . ωp(CBP ),

for a suitable C > 1. Together with (6.13), this yields the second inequality in (6.12), which completes

the proof of Lemma 6.3(e). �

7. PROOF OF THE KEY LEMMA

We fix R0 ∈ Dµ and a corkscrew point p ∈ Ω as in the preceding sections. We consider R ∈ Top
(N)
b

and we assume TreeWSBC(R) 6= ∅, as in Lemma 6.3. We let R′ ∈ TreeWSBC(R) be such that ℓ(R′) =
2−k0ℓ(R), with k0 = k0(γ) ≥ 1 big enough. Given λ > 0 and i = 1, 2, we set

(7.1) Hi(R
′) =

{
Q ∈ StopWSBC(R) ∩ Dµ(R

′) ∩ G : g(p, xiQ) > λ ℓ(Q)µ(R0)
−1
}
,

so that StopWSBC(R) ∩ Dµ(R
′) ∩ G = H1(R

′) ∪ H2(R
′). Here we are assuming that the corkscrews

xiQ belong to the set Vi from Lemma 6.3 and that λ is small enough.

Lemma 7.1 (Baby Key Lemma). Let p,R0, R,R
′ be as above. Given λ > 0, define also Hi(R

′) as

above. For a given τ > 0, suppose that

µ

( ⋃

Q∈Hi(R′)

Q

)
≥ τ µ(R′).

If γ is small enough in the definition of Vi in Lemma 6.3 (depending on τ and λ), then

g(p, xiR′) ≥ c(λ, τ)
ℓ(R′)

µ(R0)
.
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Remark that Γ depends on γ (see Lemma 6.3), and thus the families WSBC(Γ), StopWSBC(R),
Hi(R

′) also depend on γ. The reader should thing that Γ → ∞ as γ → 0.

A key fact in this lemma is that the constants λ, τ can be taken arbitrarily small, without requiring

ε → 0 as λτ → 0. Instead, the lemma requires γ → 0, which does not affect the packing condition in

Lemma 5.2.

We denote

Bdy(R′) =
⋃

P∈Ẽnd(R′):2BP∩10BR′ 6=∅

WP ,

with WP as in the Lemma 6.3. That is, WP the family of Whitney cubes I ⊂ V1 ∪ V2 such that

1.1I ∩ ∂(V1 ∪ V2) ∩ 2BP 6= ∅. So the family Bdy(R′) contains Whitney cubes which intersect the

boundaries of V1 or V2 and are close to 10BR′ .

To prove Lemma 7.1, first we need the following auxiliary result.

Lemma 7.2. Let p,R0, R,R
′ be as above and, for i = 1 or 2, let Q ∈ Hi(R

′). Let Vi be as in

Lemma 6.3 and let q ∈ Ω be a corkscrew point for Q which belongs to Vi. Denote r = 2ℓ(R′) and for

δ ∈ (0, 1/100) set

Aδ
r =

{
x ∈ A(q, r, 2r) ∩ Ω : δΩ(x) > δ r

}
.

Then we have

g(p, q) .
1

r
sup

y∈Aδ
r∩Vi

g(p, y)

δΩ(y)

∫

Aδ
r

g(q, x) dx

+
δα/2

rn+3

∫

A(q,r,2r)
g(p, x) dx

∫

A(q,r,2r)
g(q, x) dx

+
∑

I∈Bdy(R′)

1

ℓ(I)

∫

2I

∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)
∣∣ dx.

Note that the fact that q is a corkscrew for Q contained in Vi implies that dist(q, ∂Vi) ≈ ℓ(Q), by

the construction of the sets Vi in Lemma 6.3.

Proof. We fix i = 1, for definiteness. Recall that V1 =
⋃

I∈W1
1.1I̊ . For each I ∈ W1, consider a

smooth function ηI such that χ0.9I ≤ ηI ≤ χ1.09I with ‖∇ηI‖∞ . ℓ(I)−1 and

η :=
∑

I∈W1

ηI ≡ 1 on V1 ∩ 10BR′ \
⋃

I∈Bdy(R′)

2I.

It follows that supp η ⊂ V1 and so supp η ∩ V2 = ∅, and also

supp(∇η) ∩ 10BR′ ⊂
⋃

I∈Bdy(R′)

2I.

Let ϕ0 be a smooth function such that χB(q,1.2r) ≤ ϕ0 ≤ χB(q,1.8r), with ‖∇ϕ0‖∞ . 1/r. Then we

set

ϕ = η ϕ0.

So ϕ is smooth, and it satisfies

supp∇ϕ ⊂
(
A(q, r, 2r) ∩ V1

)
∪

⋃

I∈Bdy(R′)

2I.

Observe that, in a sense, ϕ is a smooth version of the function χB(q,r)∩V1
.
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Since g(p, q) = g(p, q)ϕ(q) and g(p, ·)ϕ is a continuous function from W 1,2
0 (Ω), we have

g(p, q) =

∫

Ω
∇(g(p, ·)ϕ)(x)∇g(q, x) dx

=

∫

Ω
g(p, x)∇ϕ(x)∇g(q, x) dx +

∫

Ω
ϕ(x)∇g(p, x)∇g(q, x) dx

=: I1 + I2.

First we estimate I2. For ε with 0 < ε < 1/10, we consider a smooth function ϕε such that

χB(q,εδΩ(q)) ≤ ϕε ≤ χB(q,2εδΩ(q)), with ‖∇ϕε‖∞ . 1/(εδΩ(q)). Since ϕε ϕ = ϕε, we have

I2 =

∫

Ω
ϕε(x)∇g(p, x)∇g(q, x) dx +

∫

Ω
ϕ(x)(1 − ϕε(x))∇g(p, x)∇g(q, x) dx =: I2,a + I2,b.

To deal with I2,a we use the fact that for x ∈ B(q, 2εδΩ(q)) we have

|∇g(q, x)| .
1

|x− q|n
and |∇g(p, x)| .

g(p, q)

δΩ(q)
.

Then we get

|I2,a| .
g(p, q)

δΩ(q)

∫

B(q,2εδΩ(q))

1

|x− q|n
dx .

g(p, q)

δΩ(q)
ε δΩ(q) = ε g(p, q).

Let us turn our attention to I2,b. We denote ψ = ϕ(1− ϕε). Integrating by parts, we get

I2,b =

∫
∇g(p, x)∇(ψ g(q, ·))(x) dx −

∫
∇g(p, x)∇ψ(x) g(q, x) dx.

Observe now that the first integral vanishes because ψ g(q, ·) ∈ W 1,2
0 (Ω) ∩ C(Ω) and vanishes at ∂Ω

and at p. Hence, since ∇ψ = ∇ϕ−∇ϕε, we derive

I2,b = −

∫
∇g(p, x)∇ϕ(x) g(q, x) dx +

∫
∇g(p, x)∇ϕε(x) g(q, x) dx = I3 + I4.

To estimate I4 we take into account that |∇ϕε| . χA(q,εδΩ(q),2εδΩ(q))/(εδΩ(q)), and then we derive

|I4| .
1

ε δΩ(q)

∫

A(q,εδΩ(q),2εδΩ(q))
|∇g(p, x)| g(q, x) dx.

Using now that, for x in the domain of integration,

g(q, x) .
1

(ε δΩ(q))n−1
and |∇g(p, x)| .

g(p, q)

δΩ(q)
,

we obtain

|I4| .
1

ε δΩ(q)

1

(ε δΩ(q))n−1

g(p, q)

δΩ(q)
(ε δΩ(q))

n+1 . ε g(p, q).

From the above estimates we infer that

g(p, q) ≤ |I1 + I3|+ c ε g(p, q).

Since neither I1 nor I3 depend on ε, letting ε→ 0 we get

g(p, q) ≤ |I1 + I3|

≤

∣∣∣∣
∫
g(p, x)∇ϕ(x)∇g(q, x) dx −

∫
∇g(p, x)∇ϕ(x) g(q, x) dx

∣∣∣∣
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≤

∫
|∇ϕ(x)|

∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)
∣∣ dx.

We denote

F̃ =
⋃

I∈Bdy(R′)

2I,

Ãδ
r =

{
x ∈ A(q, 1.2r, 1.8r) ∩ V1 \ F̃ : δΩ(x) > δ r

}
,

and

Ãr,δ =
{
x ∈ A(q, 1.2, 1.8r) ∩ V1 \ F̃ : δΩ(x) ≤ δ r

}
.

Next we split the last integral as follows:

g(p, q) ≤

∫

Ãδ
r

|∇ϕ(x)|
∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)

∣∣ dx(7.2)

+

∫

Ãr,δ

|∇ϕ(x)|
∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)

∣∣ dx

+

∫

F̃
|∇ϕ(x)|

∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)
∣∣ dx

=: J1 + J2 + J3.

Concerning J1, we have

|∇g(p, x)| .
g(p, x)

δΩ(x)
and |∇g(q, x)| .

g(q, x)

δΩ(x)
for all x ∈ Ãδ

r.

Thus, using also that |∇ϕ| . 1/r outside F̃ ,

(7.3) J1 .
1

r
sup

x∈Aδ
r∩V1

g(p, x)

δΩ(x)

∫

Aδ
r

g(q, x) dx.

Regarding J2, using Cauchy-Schwarz, we get

J2 .
1

r

∫

Ãr,δ

∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)
∣∣ dx(7.4)

≤
1

r

(∫

Ãr,δ

g(p, x)2 dx

)1/2 (∫

Ãr,δ

|∇g(q, x)|2 dx

)1/2

+
1

r

(∫

Ãr,δ

|∇g(p, x)|2 dx

)1/2(∫

Ãr,δ

g(q, x)2 dx

)1/2

.

To estimate the integral
∫
Ãr,δ

g(p, x)2 dx, we take into account that, for all x ∈ Ãr,δ,

g(p, x) . δα −

∫

A(q,r,2r)
g(p, y) dy.

Then we deduce
∫

Ãr,δ

g(p, x)2 dx .
δα

rn+1

(∫

A(q,r,2r)
g(p, x) dx

)2

.
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Next we estimate the integral
∫
Ãr,δ

|∇g(q, x)|2 dx. By covering Ãr,δ by a finite family of balls of

radius r/100 and applying Cacciopoli’s inequality to each one, it follows that
∫

Ãr,δ

|∇g(q, x)|2 dx .
1

r2

∫

A(q,1.1r,1.9r)
g(q, x)2 dx.

Since

g(q, x) . −

∫

A(q,r,2r)
g(q, y) dy for all x ∈ A(q, 1.1r, 1.9r),

we get

∫

Ãr,δ

|∇g(q, x)|2 dx .
1

r2

∫

A(q,1.1r,1.9r)
g(q, x)2 dx .

1

rn+3

(∫

A(q,r,2r)
g(q, x) dx

)2

.

So we obtain

(∫

Ãr,δ

g(p, x)2 dx

)1/2 (∫

Ãr,δ

|∇g(q, x)|2 dx

)1/2

.
δα/2

rn+2

∫

A(q,r,2r)
g(p, x) dx

∫

A(q,r,2r)
g(q, x) dx.

By interchanging, p and q, it is immediate to check that an analogous estimate holds for the second

summand on the right hand side of (7.4). Thus we get

(7.5) J2 .
δα/2

rn+3

∫

A(q,r,2r)
g(p, x) dx

∫

A(q,r,2r)
g(q, x) dx.

Concerning J3, we just take into account that |∇ϕ| . 1/ℓ(I) in 2I , and then we obtain

J3 .
∑

I∈Bdy(R′)

1

ℓ(I)

∫

2I

∣∣g(p, x)∇g(q, x) −∇g(p, x) g(q, x)
∣∣ dx.

Together with (7.2), (7.3), and (7.5), this yields the lemma. �

Proof of Lemma 7.1. We fix i = 1, for definiteness. By a Vitali type covering theorem, there exists a

subfamily H̃1(R
′) ⊂ H1(R

′) such that the balls {8BQ}Q∈H̃1(R′)
are disjoint and

∑

Q∈H1(R′)

µ(Q) .
∑

Q∈H̃1(R′)

µ(Q).

By Lemma 7.2, for each Q ∈ H̃1(R
′) we have

g(p, x1Q) .
1

r
sup

y∈2BR′∩V1:δΩ(y)≥δℓ(R′)

g(p, y)

δΩ(y)

∫

A(x1
Q,r,2r)

g(x1Q, x) dx

+
δα/2

rn+3

∫

A(x1
Q,r,2r)

g(p, x) dx

∫

A(x1
Q,r,2r)

g(x1Q, x) dx

+
∑

I∈Bdy(R′)

1

ℓ(I)

∫

2I

∣∣g(p, x)∇g(x1Q, x)−∇g(p, x) g(x1Q, x)
∣∣ dx
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=: I1(Q) + I2(Q) + I3(Q),

with r = 2ℓ(R′). Since g(p, x1Q) > λ ℓ(Q)/µ(R0), we derive

(7.6)

λτ µ(R′) . λ
∑

Q∈H̃1(R′)

µ(Q) .
∑

Q∈H̃1(R′)

g(p, x1Q) ℓ(Q)n−1 µ(R0) .

3∑

j=1

∑

Q∈H̃1(R′)

Ij(Q) ℓ(Q)n−1 µ(R0).

Estimate of
∑

Q∈H̃1(R′)
I1(Q) ℓ(Q)n−1. We have

∑

Q∈H̃1(R′)

I1(Q) ℓ(Q)n−1 ≤
1

r
sup

y∈2BR′∩V1:δΩ(y)≥δℓ(R′)

g(p, y)

δΩ(y)

∑

Q∈H̃1(R′)

∫

A(x1
Q,r,2r)

g(x1Q, x) dx ℓ(Q)n−1.

Note now that
∑

Q∈H̃1(R′)

∫

A(x1
Q,r,2r)

g(x1Q, x) dx ℓ(Q)n−1 .

∫

2BR′

∑

Q∈H̃1(R′)

ωx(4Q) dx ≤

∫

2BR′

1 dx . ℓ(R′)n+1.

Since r ≈ ℓ(R′), we derive

∑

Q∈H̃1(R′)

I1(Q) ℓ(Q)n−1 . sup
y∈2BR′∩V1:δΩ(y)≥δℓ(R′)

g(p, y)

δΩ(y)
µ(R′).

Estimate of
∑

Q∈H̃1(R′)
I2(Q) ℓ(Q)n−1. First we estimate

∫
A(x1

Q,r,2r) g(p, x) dx by applying Lemma

2.5:
∫

A(x1
Q,r,2r)

g(p, x) dx ≤

∫

2BR′

g(p, x) dx . ℓ(R′)n+1 ω
p(8BR′)

ℓ(R′)n−1
. ℓ(R′)2

µ(R′)

µ(R0)
≈

rn+2

µ(R0)
.

So we have

∑

Q∈H̃1(R′)

I2(Q) ℓ(Q)n−1 .
δα/2

r µ(R0)

∑

Q∈H̃1(R′)

∫

A(x1
Q,r,2r)

g(x1Q, x) dx ℓ(Q)n−1

.
δα/2

r µ(R0)

∫

2BR′

∑

Q∈H̃1(R′)

ωx(4Q) dx

.
δα/2

r µ(R0)

∫

2BR′

1 dx .
δα/2 µ(R′)

µ(R0)
.

Estimate of
∑

Q∈H̃1(R′)
I3(Q) ℓ(Q)n−1. Note first that, for each I ∈ Bdy(R′), since x1Q 6∈ 4I , using

the subharmonicity of g(p, ·) and g(x1Q, ·) in 4I , and Caccioppoli’s inequality,

1

ℓ(I)

∫

2I

∣∣g(p, x)∇g(x1Q, x)
∣∣ dx .

1

ℓ(I)
sup
x∈2I

g(p, x)

∫

2I
|∇g(x1Q, x)| dx

. ℓ(I)n−1m4Ig(p, ·) m4Ig(x
1
Q, ·).
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By very similar estimates, we also get

1

ℓ(I)

∫

2I

∣∣∇g(p, x) g(x1Q, x)
∣∣ dx . ℓ(I)n−1m4Ig(p, ·) m4Ig(x

1
Q, ·).

Recall now that, by Lemma 6.3(e)(i),

m4Ig(p, ·) ≤ γ
ℓ(P )

µ(R0)
for each I ∈ WP , with P ∈ Ẽnd(R′) such that 2BP ∩ 10BR′ 6= ∅.

We distinguish two types of Whitney cubes I ∈ Bdy(R′). We write I ∈ T1 if ℓ(I) ≥ γ1/2ℓ(P ) for

some P such that I ∈ WP and 2BP ∩ 10BR′ 6= ∅, and we write I ∈ T2 otherwise (there may exist

more than one P such that I ∈ WP , but if WP ∩WP ′ 6= ∅, then ℓ(P ) ≈ ℓ(P ′)). So we split

∑

Q∈H̃1(R′)

I3(Q) ℓ(Q)n−1 ≤
∑

Q∈H̃1(R′)

∑

I∈Bdy(R′)

ℓ(I)n−1m4Ig(p, ·) m4Ig(x
1
Q, ·) ℓ(Q)n−1

=
∑

Q∈H̃1(R′)

∑

I∈T1

. . . +
∑

Q∈H̃1(R′)

∑

I∈T2

. . . =: S1 + S2.(7.7)

Concerning the sum S1 we have

S1 . γ
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

∑

I∈WP∩T1

ℓ(P )

µ(R0)
ℓ(I)n−1m4Ig(x

1
Q, ·) ℓ(Q)n−1

. γ1/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

∑

I∈WP

ℓ(I)n

µ(R0)
m4Ig(x

1
Q, ·) ℓ(Q)n−1

Next we take into account that

ℓ(Q)n−1m4Ig(x
1
Q, ·) . ωxI (4Q),

where xI stands for the center of I . Then we derive

S1 . γ1/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

∑

I∈WP

ωxI (4Q)
ℓ(I)n

µ(R0)
.

Since
∑

Q∈H̃1(R′)
ωxI (4Q) . 1 for each I , we get

S1 . γ1/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

∑

I∈WP

ℓ(I)n

µ(R0)
.

By Lemma 6.3(e)(ii), we have
∑

I∈WP
ℓ(I)n . ℓ(P )n, and so we deduce

S1 . γ1/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

µ(P )

µ(R0)
. γ1/2

µ(R′)

µ(R0)
.
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Next we turn our attention to the sum S2 in (7.7). Recall that

S2 =
∑

Q∈H̃1(R′)

∑

I∈T2

ℓ(I)n−1m4Ig(p, ·) m4Ig(x
1
Q, ·) ℓ(Q)n−1.

Let us remark that we assume the condition that I ∈ WP for some 2P ∈ Ẽnd(R′) such that 2BP ∩
10BR′ 6= ∅ to be part of the definition of I ∈ T2. Using the estimate m4Ig(p, ·) . ωp(BI) ℓ(I)1−n,

we derive

S2 .
∑

Q∈H̃1(R′)

∑

I∈T2

ωp(BI)m4Ig(x
1
Q, ·) ℓ(Q)n−1

=
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ 6=∅

. . . +
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ=∅

. . . =: A+B.

To estimate the term A we take into account that if 20I ∩ 20BQ 6= ∅ and I ∈ WP , then ℓ(P ) . ℓ(Q)

and thus ℓ(I) . γ1/2 ℓ(Q) because I ∈ T2. As a consequence, I ⊂ 21BQ and also, by the Hölder

continuity of g(x1Q, ·), if we let B be a ball concentric with BI with radius comparable to ℓ(Q) and

such that dist(x1Q, B) ≈ ℓ(Q), we obtain

m2BIg(x1Q, ·) .

(
r(BI)

r(B)

)α

mBg(x
1
Q, ·) . γα/2

1

ℓ(Q)n−1
,

where α > 0 is the exponent of Hölder continuity. Hence,

A . γα/2
∑

Q∈H̃1(R′)

∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅
20BP∩20BQ 6=∅

∑

I∈WP∩T2

ωp(BI).

By Lemma 6.3(e)(ii), we have
∑

I∈WP
ωp(BI) . ωp(CBP ), and using also that, for P as above,

CBP ⊂ C ′BQ for some absolute constant C ′, we obtain

A . γα/2
∑

Q∈H̃1(R′)

ωp(C ′BQ) . γα/2
∑

Q∈H̃1(R′)

µ(Q)

µ(R0)
. γα/2

µ(R′)

µ(R0)
.

Finally, we turn our attention to the term B. We have

B =
∑

Q∈H̃1(R′)

∑

I∈T2:20I∩20BQ=∅

ωp(BI)m4Ig(x
1
Q, ·) ℓ(Q)n−1

=
∑

I∈T2

ωp(BI) −

∫

4I

∑

Q∈H̃1(R′):20I∩20BQ=∅

g(x1Q, x) ℓ(Q)n−1 dx

.
∑

I∈T2

ωp(BI) −

∫

4I

∑

Q∈H̃1(R′):20I∩20BQ=∅

ωx(8BQ) dx.

We claim now that, in the last sum, if 20I ∩ 20BQ = ∅, then dist(I, 8BQ) ≥ c γ−1/2 ℓ(I). To check

this, take P ∈ Ẽnd(R′) such that I ∈ WP . Then note that

ℓ(P ) ≤
1

300
dR(zP ) ≤

1

300

(
dist(zP , Q) + ℓ(Q)

)
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≤
1

300

(
dist(zP , I) + diam(I) + dist(I, 8BQ) + Cℓ(Q)

)
.

Using that I ∩ 2BP 6= ∅, diam(I) ≤ Cγ1/2ℓ(P ) ≪ ℓ(P ), and ℓ(Q) ≤ dist(I, 8BQ), we get

ℓ(P ) ≤
1

300

(
dist(I, 8BQ) + 3r(BP ) + C ℓ(Q)

)
≤ C dist(I, 8BQ) +

12

300
ℓ(P ),

which implies that

ℓ(I) ≤ Cγ1/2 ℓ(P ) ≤ C γ1/2 dist(I, 8BQ),

and yields our claim.

Taking into account that the balls {8BQ}Q∈H̃1(R′)
are disjoint and the Hölder continuity of ω(·)(∂Ω\

cγ−1/2I), for all x ∈ 4I we get
∑

Q∈H̃1(R′):20I∩20BQ=∅

ωx(8BQ) . ωx(∂Ω \ cγ−1/2I) . γα/2.

Thus,

B . γα/2
∑

I∈T2

ωp(BI) ≤ γα/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

∑

I∈WP∩T2

ωp(BI).

Recalling again that
∑

I∈WP
ωp(BI) . ωp(CBP ), we deduce

B . γα/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

ωp(CBP ) . γα/2
∑

P∈Ẽnd(R′):
2BP∩10BR′ 6=∅

µ(P )

µ(R0)
. γα/2

µ(R′)

µ(R0)
.

Remark that for the second inequality we took into account that P is contained in a cube of the form

22P ′ with P ′ ∈ TreeWSBC(R) and ℓ(P ′) ≈ ℓ(P ), by Lemma 6.1. This implies that ωp(CBP ) ≤
ωp(C ′BP ′) . µ(P ′)µ(R0)

−1 . µ(P )µ(R0)
−1.

Gathering the estimates above and recalling (7.6), we deduce

λτ µ(R′) . sup
y∈2BR′∩V1:δΩ(y)≥δℓ(R′)

g(p, y)

δΩ(y)
µ(R′)µ(R0) + δα/2 µ(R′) + γα/2 µ(R′).

So, if δ and γ are small enough (depending on λ, τ ), we infer that

λ τ µ(R′) . sup
y∈2BR′∩V1:δΩ(y)≥δℓ(R′)

g(p, y)

δΩ(y)
µ(R′)µ(R0).

That is, there exists some y0 ∈ 2BR′ ∩ V1 with δΩ(y0) ≥ δ ℓ(R′) such that

g(p, y0)

δΩ(y)
&

λτ

µ(R0)
,

with δ depending on λ, τ . Since x1R′ and y0 can be joined by a C-good Harnack chain (for some C
depending on δ and γ, and thus on λ, τ ), we deduce that

g(p, x1R′)

ℓ(R′)
&
c(λ, τ)

µ(R0)
,

as wished. �
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Lemma 7.3. Let η ∈ (0, 1) and λ > 0. Choose γ = γ(λ, τ) small enough as in Lemma 7.1 with

τ = η/2. Assume that the family WSBC(Γ) is defined by choosing Γ big enough depending on γ (and

thus on λ and η) as in Lemma 6.3. Let R ∈ Top
(N)
b and suppose that TreeWSBC(R) 6= ∅. Then, there

exists an exceptional family ExWSBC(R) ⊂ StopWSBC(R) ∩ G satisfying
∑

P∈ExWSBC(R)

µ(P ) ≤ η µ(R)

such that, for every Q ∈ StopWSBC(R) ∩ G \ ExWSBC(R), any λ-good corkscrew for Q can be joined

to some λ′-good corkscrew for R by a C(λ, η)-good Harnack chain, with λ′ depending on λ, η.

Proof. For any R′ ∈ Dµ,k0 ∩ TreeWSBC(R), with k0 = k0(γ), we define Hi(R
′) as in (7.1), so that

StopWSBC(R) ∩ G ∩ Dµ(R
′) = H1(R

′) ∪ H2(R
′).

For each R′, we set

ExWSBC(R
′) =

2⋃

i=1

{
Q ∈ Hi(R

′) :
∑

P∈Hi(R′) µ(P ) ≤ τ µ(R′)
}
.

That is, for fixed i = 1 or 2, if
∑

P∈Hi(R′) µ(P ) ≤ τ µ(R′), then all the cubes from Hi(R
′) belong to

ExWSBC(R
′). In this way, it is clear that

(7.8)
∑

P∈ExWSBC(R′)

µ(P ) ≤ 2τ µ(R) = η µ(R′).

We claim that the λ-good corkscrews of cubes from StopWSBC(R)∩G∩Dµ(R
′)\ExWSBC(R

′) can be

joined to some λ̃-good corkscrew for R′ by a C̃-good Harnack chain, with λ̃ depending on λ, η, and C̃
depending on Γ and thus on λ, η too. Indeed, if Q ∈ Hi(R

′)\ExWSBC(R
′) and xiQ is λ-good corkscrew

belonging to Vi (we use the notation of Lemma 7.1 and 6.3), then
∑

P∈Hi(R′) µ(P ) > τ µ(R′) by

the definition above and thus Lemma 7.1 ensures that g(p, xiR′) ≥ c(λ, τ) ℓ(R′)
µ(R0)

. So xiR′ is a λ̃-good

corkscrew, which by Lemma 6.3(c) can be joined to xiQ by a C̃-good Harnack chain. In turn, this λ̃-

good corkscrew for R′ can be joined to some λ′-good corkscrew for R by a C ′-good Harnack chain, by

applying Lemma 5.4 k0 times, with C ′ depending on k0 and thus on λ and η.

On the other hand, the cubes Q ∈ StopWSBC(R) ∩ G which are not contained in any cube R′ ∈
Dµ,k0 ∩ TreeWSBC(R) satisfy ℓ(Q) ≥ 2−k0 , and then, arguing as above, their associated λ-good

corkscrews can be joined to some λ′-good corkscrew for R by a C ′-good Harnack chain, by apply-

ing Lemma 5.4 at most k0 times. Hence, if we define

ExWSBC(R) =
⋃

R′∈Dµ,k0
(R)

ExWSBC(R
′),

taking into account (7.8), the lemma follows. �

Proof of the Key Lemma 5.3. We choose Γ = Γ(λ, η) as in Lemma 7.3 and we consider the associ-

ated family WSBC(Γ). In case that TreeWSBC(R) = ∅, we set Ex(R) = ∅. Otherwise, we consider

the family ExWSBC(R) from Lemma 7.3, and we define

Ex(R) =
(
ExWSBC(R) ∩ Stop(R)

)
∪

⋃

Q∈ExWSBC(R)\Stop(R)

(
SubStop(Q) ∩ G

)
.
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It may be useful for the reader to compare the definition above with the partition of Stop(R) in (5.3).

By Lemma 7.3 we have
∑

P∈Ex(R)

µ(P ) ≤
∑

Q∈ExWSBC(R)

µ(P ) ≤ η µ(R).

Next we show that for every P ∈ Stop(R) ∩ G \ Ex(R), any λ-good corkscrew for P can be joined

to some λ′-good corkscrew for R by a C(λ, η)-good Harnack chain. In fact, if P ∈ StopWSBC(R),
then P ∈ StopWSBC(R) ∩ G \ ExWSBC(R) since such cube P cannot belong to SubStop(Q) for any

Q ∈ StopWSBC(R) \ Stop(R) (recall the partition (5.3)), and thus the existence of such Harnack chain

is ensured by Lemma 7.3. On the other hand, if P 6∈ StopWSBC(R), then P is contained in some cube

Q(P ) ∈ StopWSBC(R) \ WSBC(Γ). Consider the chain P = S1 ⊂ S2 ⊂ · · · ⊂ Sm = Q(P ), so

that each Si is the parent of Si−1. For 1 ≤ i ≤ m, choose inductively a big corkscrew xi for Si in

such a way that x1 is at the same side of LP as the good λ corkscrew xP for P , and xi+1 is at the

same side of LSi
as xi for each i. Using that bβ(Si) ≤ Cε ≪ 1 for all i, it easy to check that the line

obtained by joining the segments [xP , x1], [x1, x2],. . . ,[xm−1, xm] is a good carrot curve and so gives

rise to a good Harnack chain that joins xP to xm. It may happen that xm is not a λ-good corkscrew.

However, since Q(P ) 6∈ WSBC(Γ), it turns out that xm can be joined to some c3-good corkscrew

xQ(P ) for Q(P ) by some C(Γ)-good Harnack chain, with c3 given by (4.2) (and thus independent of λ
and η), because Q(P ) ∈ G. Note that since λ ≤ c3, xQ(P ) is also a λ-good corkscrew. In turn, since

Q(P ) 6∈ ExWSBC(R), xQ(P ) can be joined to some λ′-good corkscrew for R by another C ′(λ, η)-good

Harnack chain. Altogether, this shows that xP can be connected to some λ′-good corkscrew for R by a

C ′′(λ, η)-good Harnack chain, which completes the proof of the lemma. �

Below we will write Ex(R,λ, η) instead of Ex(R) to keep track of the dependence of this family on

the parameters λ and η.

8. PROOF OF THE MAIN LEMMA 2.13

8.1. Notation. Recall that by the definition of GK
0 in (5.2),

∑
R∈Top χR(x) ≤ K for all x ∈ GK

0 . For

such x, let Q be the smallest cube from Top that contains x, and denote n0(x) = − log2 ℓ(Q), so that

Q ∈ Dµ,n0(x). Next let N0 ∈ Z be such that

µ
({
x ∈ GK

0 : n0(x) ≤ N0 − 1
})

≥
1

2
µ(GK

0 ),

and denote

G̃K
0 =

{
x ∈ GK

0 : n0(x) ≤ N0 − 1
}
.

Fix

N = N0 − 1,

and set

T′
a = Dµ,N (R0) ∪ Top(N)

a ,

and also

T′
b = Top

(N)
b \ Dµ,N (R0)

(recall that Top
(N)
a and Top

(N)
b were defined in Section 5.2). So if R ∈ T′

a \Dµ,N (R0), then StopN (R)
coincides the family of sons of R, and it R ∈ T′

b this will not be the case, in general. Next we denote

by Ta and Tb the respective subfamilies of cubes from T′
a and T′

b which intersect G̃K
0 .
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For j ≥ 0, we set

T
j
b =

{
R ∈ Tb :

∑

Q∈Tb:Q⊃R

χQ = j on R
}
.

We also denote

S
j
b =

{
Q ∈ Dµ : Q ∈ StopN (R) for some R ∈ T

j
b

}
, Sb =

⋃

j

S
j
b,

and we let T
j
a be the subfamily of cubes R ∈ Ta such that there exists some Q ∈ S

j−1
b such that Q ⊃ R

and R is not contained in any cube from Skb with k ≥ j.

8.2. Two auxiliary lemmas.

Lemma 8.1. The following properties hold for the family T1
b:

(a) The cubes from T1
b are pairwise disjoint and cover G̃K

0 , assuming N0 big enough.

(b) If R ∈ T1
b , then ℓ(R) ≈K ℓ(R0).

(c) Given R ∈ Dµ(R0) with ℓ(R) ≥ c ℓ(R0) (for example, R ∈ T1
b ) and λ > 0, if xR is a λ-good

corkscrew point for R, then there is a C(λ, c)-good Harnack chain that joins xR to p.

Proof. Concerning the statement (a), the cubes from T1
b are pairwise disjoint by construction. Suppose

that x ∈ G̃K
0 is not contained in any cube from T1

b . By the definition of the family TopN , this implies

that all the cubes Q ⊂ R0 with 2−N ℓ(R0) ≤ ℓ(Q) ≤ 2−10ℓ(R0) containing x belong to Ta. However,

there are most K cubes Q of this type, which is not possible if N is taken big enough. So the cubes

from T1
b cover G̃K

0 .

The proof of (b) is analogous. Given R ∈ T1
b , all the cubes Q which contain R and have side length

smaller or equal that 2−10ℓ(R0) belong to Ta. Hence there at most K−1 cubes Q of this type, because

G̃K
0 ∩R 6= ∅. Thus, ℓ(R) ≥ 2−K−10ℓ(R0).
The statement (c) is an immediate consequence of (b) and Lemma 4.4. �

Lemma 8.2. Let Q ∈ T
j
a ∪ T

j
b for some j ≥ 2 and let xQ be a λ-good corkscrew for Q, with λ > 0.

There exists some constant γ(λ,K) > 0 such if ℓ(Q) ≤ γ(λ,K) ℓ(R0), then there exists some cube

R ∈ Sb such that R ⊃ Q with a λ′-good corkscrew xR for R such that xR can be joined to xQ by a

C(λ,K)-good Harnack chain, with λ′ depending on λ and K .

Proof. We assume γ(λ,K) > 0 small enough. Then we can apply Lemma 4.5 K+1 times to get cubes

R1, . . . , RK+1 satisfying:

• Q ( R1 ( R2 ( . . . ( RK+1 and ℓ(RK+1) ≤ 2−10ℓ(R0),
• each Rj has an associated λ′-good corkscrew xRi

(with λ′ depending on λ,K) and there exists

a C(λ,K)-good Harnack chain joining xQ and xR1 , . . . , xRK+1
.

Since Q ∩ G̃K
0 6= ∅, at least one of the cubes R1, . . . , RK+1, say Rj , does not belong to Top. This

implies that Rj ∈ Tree(N)(R̃) for some R̃ ∈ Tb. Let R ∈ Stop(N)(R̃) be the stopping cube that

contains Q. Then Lemma 6.3 ensures that there is a good Harnack chain that connects xRj
to some

corkscrew xR for R. Notice that ℓ(Rj) ≈λ,K ℓ(Q) ≈λ,K ℓ(R) because Q ⊂ R ⊂ Rj . This implies

that g(p, xR) ≈K,λ g(p, xRj
) ≈K,λ g(p, xQ). Further, gathering the Harnack chain that joins xQ to x

R̃
and the one that joins xRj

to xR, we obtain the good Harnack chain required by the lemma. �
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8.3. The algorithm to construct good Harnack chains. We will construct good Harnack chains that

join good corkscrews from “most” cubes from Dµ,N that intersect G̃K
0 to good corkscrews from cubes

belonging to R ∈ T1
b , and then we will join these latter good corkscrews to p using the fact that

ℓ(R) ≈ ℓ(R0). To this end we choose η > 0 such that

η ≤
1

2K

µ(G̃K
0 )

µ(R0)
,

and we denote

m = max
x∈G̃K

0

∑

R∈Tb

χR(x)

(so that m ≤ K) and we apply the following algorithm: we set am+1 = c3, so that (4.2) ensures that

for each Q ∈ Ta ∪ Tb there exists some good am+1-good corkscrew xQ. For j = m,m− 1, . . . , 1, we

perform the following procedure:

(1) Join aj+1-good corkscrews of cubesQ from T
j+1
a ∪Tj+1

b such that ℓ(Q) ≤ c′j ℓ(R0)

to a′j-good corkscrews of cubesR(Q) from S1b∪. . .∪S
j
b byC ′

j-good Harnack chains,

with a′j ≤ aj+1, so that R(Q) is an ancestor of Q. This step can be performed

because of Lemma 8.2, with c′j = γ(aj+1,K) in the lemma. The constants a′j , c′j ,

and C ′
j depend on aj+1 and K .

(2) Set

NCj =
⋃

R∈Tj
b

Ex(R, a′j , η),

and join a′j-good corkscrews for all cubes Q ∈ S
j
b \NCj to aj-good corkscrews for

cubes R(Q) ∈ T
j
b by Cj-good Harnack chains, with aj ≤ a′j , so that R(Q) is an

ancestor of Q. To this end, one applies Lemma 5.3, which ensures the existence of

such Harnack chains connecting a′j-good corkscrew points for cubes from S
j
b \NCj

to aj-good corkscrew points for cubes from T
j
b . The constants aj and Cj depend

on a′j and K .

After iterating the procedure above for j = m,m − 1 . . . , 1 and joining some Harnack chains

arisen in the different iterations, we will have constructed C-good Harnack chains that join am+1-

good corkscrew points for all cubes Q ∈ Ta not contained in
⋃m

j=1

⋃
P∈NCj

P to a1-good corkscrews

of some ancestors R(Q) belonging either T1
b or, more generally, such that ℓ(R(Q)) & ℓ(R0). The

constants c′j , a′j , aj , Cj worsen at each step j. However, this is not harmful because the number of

iterations of the procedure is at most m, and m ≤ K .

Denote by IN the cubes from Dµ,N which intersect G̃K
0 and are not contained in any cube from

{P ∈ NCj : j = 1, . . . m}. By the algorithm above we have constructed good Harnack chains that

join am+1-good corkscrew points for all cubes Q ∈ IN to some to some a1-good corkscrew for cubes

R(Q) ∈ Dµ(R0) with ℓ(R(Q)) ≈ ℓ(R0). Also, by applying Lemma 8.1 (c) we can connect the a1-good

corkscrew for R(Q) to p by a good Harnack chain.

Consider now an arbitrary point x ∈ G̃K
0 ∩ Q, with Q ∈ IN . By the definition of G̃K

0 and the

choice N = N0, all the cubes P ∈ Dµ containing x with side length smaller or equal than ℓ(Q) satisfy
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bβ(P ) ≤ ε. Then, by an easy geometric argument (see the proof of Lemma 5.3 for a related argument)

it is easy to check that there is a good Harnack chain joining any good corkscrew for Q to x. Hence,

for all the points x ∈
⋃

Q∈IN
Q ∩ G̃K

0 there is a good Harnack chain that joins x to p.

Finally, observe that, for each j, by Lemma 5.3,

∑

P∈NCj

µ(P ) =
∑

R∈Tj
b

∑

P∈Ex(R,a′j ,η)

µ(P ) ≤ η
∑

R∈Tj
b

µ(R) ≤ η µ(R0) ≤
1

2K
µ(G̃K

0 ).

Therefore,
m∑

j=1

∑

P∈NCj

µ(P ) ≤
m

2K
µ(G̃K

0 ) ≤
1

2
µ(G̃K

0 ),

and thus
∑

Q∈IN

µ(Q) ≥ µ(G̃K
0 )−

m∑

j=1

∑

P∈NCj

µ(P ) ≥
1

2
µ(G̃K

0 ) ≈ µ(R0).

This finishes the proof of the Main Lemma 2.13. �

Remark 8.3. Recall that in the arguments above we assumed that Ω = Rn+1 \ ∂Ω. For the general

case, we define the auxiliary open set Ω̃ = Rn+1 \ ∂Ω, and we apply the arguments above to Ω̃. Then

we will get carrot curves contained in Ω̃ that join points from a big piece of G̃K
0 to p. A quick inspection

of the construction above shows that these carrot curves are contained in the set {x ∈ Ω̃ : g(p, x) > 0},

which is a subset of Ω, which implies the required connectivity condition to conclude the proof of the

Main Lemma 2.13.
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S/N 48940 LEIOA, SPAIN AND, IKERBASQUE, BASQUE FOUNDATION FOR SCIENCE, BILBAO, SPAIN.

E-mail address: michail.mourgoglou@ehu.eus
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