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FROBENIUS DEGENERATIONS OF PREPROJECTIVE

ALGEBRAS

DANIEL KAPLAN

Abstract. In this paper, we study a preprojective algebra for quivers dec-
orated with k-algebras and bimodules, which generalizes work of Gabriel for
ordinary quivers, work of Dlab and Ringel for k-species, and recent work of
de Thanhoffer de Völcsey and Presotto, which has recently appeared from
a different perspective in work of Külshammer. As for undecorated quivers,
we show that its moduli space of representations recovers the Hamiltonian
reduction of the cotangent bundle over the space of representations of the dec-
orated quiver. These algebras yield degenerations of ordinary preprojective
algebras, by folding the quiver and then degenerating the decorations. We
prove that these degenerations are flat in the Dynkin case, and conjecture,
based on computer results, that this extends to arbitrary decorated quivers.
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1. Introduction

A quiver, coined by Peter Gabriel, is a directed graph, whose representations
are defined by placing a vector space at each vertex and a linear transformation at
each arrow. Gabriel classified connected quivers with finite representation type:
these are the quivers whose underlying graph is given by the simply-laced Dynkin
diagrams, two infinite families An, n ≥ 1 and Dn, n ≥ 4, and three exceptions
E6, E7, E8 [10]. Subsequently, Dlab and Ringel proved a more general result for
“species”, quivers labelled with a division ring at each vertex and a bimodule at
each edge. They extended Gabriel’s classification by showing that species with
finite representation type are precisely the Dynkin ones [6]. This paper explores
a further generalization to decorated quivers – quivers with vertices labelled by
k-algebras and arrows labelled by bimodules. An original motivation for this work
is [5], which in our language considers the affine D4 case, while we focus on the
Dynkin case.

One approach to representations of quivers involves studying the variety of all
such representations and considering its cotangent bundle. More precisely, fixing
a field k, a quiver Q with vertices Q0 and arrows Q1, and a dimension vector
d = (di)i∈Q0 ∈ NQ0 , define Repd(Q) to be the vector space of k-representations
of Q with vertex i labelled by the vector space kdi . There is a natural action of
the group GLd(k) :=

∏
i∈Q0

GLdi
(k) on Repd(Q). Letting gld(k) := ⊕i∈Q0gldi

(k)

denote the Lie algebra of GLd(k), one studies the moduli space

Md := T ∗Repd(Q)///GLd(k) := µ−1(0)//GLd(k)

where µ : T ∗Repd(Q)→ gld(k)
∗ is the moment map for the associated action.

The preprojective algebra gives an algebraic construction of Md. First, one
defines the double quiver Q to have the same vertices as Q but with a reverse
arrow α∗ ∈ Q1 for each α ∈ Q1. Then the preprojective algebra, Π(Q) is defined
as the quotient

Π(Q) := P (Q)/

〈∑

α∈Q1

αα∗ − α∗α

〉

where P (Q) is the path algebra of Q [12]. Then we recover Md as the moduli
space of representations of Π(Q) with dimension vector d:

(1.1) Md
∼= RepdΠ(Q)//GLd(k).

Anachronistically, one can view this as a litmus test for a correct definition of a
preprojective algebra. For a quiver Q together with a decoration DQ consisting of
a k-algebra at each vertex and a bimodule at each arrow, we would like a notion
of preprojective algebra Π(Q,DQ) such that the analogue of (1.1) holds:

(1.2) RepdΠ(Q,DQ)//Gd
∼= µ−1(0)//Gd.

We will define an algebra Π(Q,DQ) and a group Gd such that (1.2) holds in
the presence of certain restrictions on the representations and the decorations.

Remark 1.1. A definition of Π(Q,DQ) was recently given in [13]. Thanks to
Külshammer for pointing this out. Under condition (F) below this recovers our
definition. Note that in [13], the viewpoint of representation varieties was not
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considered and it’s an open question to what extent condition (F) can be relaxed
while retaining a moment map interpretation. See Remark 3.18 for a more precise
discussion.

In more detail, a decoration DQ consists of

• {Ai}i∈Q0 with each Ai a k-algebra and
• {Mα}α∈Q1 with Mα an (Ai, Aj)-bimodule, if α is an arrow from i to j.

A decoration satisfies condition (F) if each Ai is symmetric Frobenius and, for
every α, Mα is either Ai ⊗k Aj , or M

α = Ai = Aj .

A representation of a decorated quiver (Q,DQ) with DQ = (Ai,M
α) consists

of

• {Vi}i∈Q0 with each Vi a right Ai-module and
• {ρα : Mα → Homk(Vi, Vj)}α:i→j∈Q1,i,j∈Q0 with each ρα an (Ai, Aj)-
bimodule map.

We fix a dimension vector d = (di) ∈ NQ0 and restrict to representations where

Vi = Adi

i for each i ∈ Q0. Denote this vector space by Repd(Q,DQ).
We define the decorated path algebra to be P (Q,DQ) := T⊕iAi

(⊕αM
α), so

modules for the decorated path algebra are representations of the decorated quiver.
We then double the quiver by adding an arrow α∗ : j → i for each α : i→ j ∈ Q1

and decorate the new arrow α∗ : j → i with the bimodule dual,

Mα∗

:= HomAi⊗Aj
(Mα, Ai ⊗Aj).

A decorated preprojective algebra satisfying (1.2) cannot be defined in this level
of generality. Hence we restrict to decorations satisfying condition (F) and repre-

sentations with Vi := Adi

i for each i ∈ Q0. The decorated preprojective algebra
Π(Q,DQ) is the quotient of the path algebra for the double quiver by the two-sided
ideal generated by the element r =

∑
α∈Q1

rα. Here rα for α : i→ j is a commu-

tator [1Mα , 1Mα∗ ] in the caseMα = Ai = Aj , and
∑

l e
i
l⊗1⊗f i

l −
∑

m ejm⊗1⊗f j
m

in the case Mα = Ai ⊗ Aj , where {eil} and {f i
l } are dual bases of Ai under the

Frobenius form, for all i ∈ Q0. See Definition 3.6 for more detail and Remark 3.7
for independence on the choice of basis.

There is a natural action of Gd :=
∏

iGLAi
(Vi) ∼=

∏
iGLAi

(Adi

i ) on Π(Q,DQ).
Denoting the corresponding Lie algebra by gd = ⊕igldi

(Ai) one can again consider
the moment map µd : T ∗Repd(Q,DQ)→ g∗d. Finally, we can state (1.2) precisely
as a theorem.

Theorem 1.2. Repd(Π(Q,DQ)) is the zero fiber of the moment map

µd : T ∗Repd(Q,DQ)→ g∗d.

Moreover, the coarse moduli space of representations of Π(Q,DQ) of dimension

vector d is given by the Hamiltonian reduction µ−1
d (0)//Gd.

This theorem follows from a more precise statement, Theorem 3.10, given in Sec-
tion 3.
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A second goal of this paper is to study 1-parameter families of decorated pre-
projective algebras whose generic fibers are ordinary preprojective algebras. In
this sense, decorated preprojective algebras are often (formal) degenerations of
preprojective algebras, another motivation for their study.

This perspective is best understood in a simple example. Consider the decorated
quiver

(Q,DQ) = k
k←− k k−→ k.

Since right k-modules are vector spaces and k-bimodule maps are linear trans-
formations, Repd(Q,DQ) ∼= Repd(A3) and Π(Q,DQ) = Π(A3) is an ordinary
preprojective algebra. View these two arrows as a single arrow into the direct
sum, folding the decorated quiver as follows:

k
k←− k k−→ k

fold=⇒ k
k⊕k−→ k ⊕ k.

Folding the decorated quiver does not change the decorated preprojective algebra,
Π(A3). Furthermore, k ⊕ k can be viewed as a 2-dimensional k-algebra with
pointwise multiplication where it has a non-trivial flat degeneration to the k-
algebra S = k[x]/(x2). Hence one can degenerate the decoration

k
k⊕k−→ k ⊕ k

deg
k

S−→ S

which induces a degeneration of Π(A3) = Π(k
k⊕k−→ k ⊕ k) to Π(k

S−→ S). We
denote this degeneration by Π(B2) since the B2 quiver is obtained from A3 by
folding the arrows as above.

Both the formal and filtered perspectives of this degeneration prove fruitful. In
the formal setting, k[[t]][x]/(x2 − t) is an explicit formal degeneration from k ⊕ k
to S. The corresponding formal degeneration of decorated quivers is

(k[[t]]
k[x][[t]]/(x2−t)

//

“t=1”

yyrrr
rrr

rrr
k[x][[t]]/(x2 − t))

t=0

''PP
PPP

PPP
PPP

(k
k⊕k−→ k ⊕ k) (k

S−→ S),

which in turn gives a formal degeneration Πk[[t]](k[[t]] −→ k[x][[t]]/(x2 − t)) from
Π(A3) to Π(k → S). Alternatively, viewing k ⊕ k ∼= k[x]/(x2 − 1) as a filtered
algebra with associated graded algebra S, realizes Π(A3) as a filtered algebra
with associated graded algebra Π(k → S). The filtration on Π(A3) is given by
{0} ⊂ Π(A3)

Φ ⊂ Π(A3) where Φ : A3 → A3 is the graph automorphism exchanging
the outer vertices and Π(A3)

Φ is the subspace of Φ-invariant elements.
This motivates the study of decorated quivers as a means of interpreting a

large class of degenerations of preprojective algebras. But one should not conflate
these notions. The decorated preprojective algebra Π(k → Mat2(k)) is not a

degeneration of Π(D̃4), where D̃4 is the affine D4 quiver. Conversely, Π(A2) has a
flat Frobenius degeneration to

∧
(k2), see Example 4.14, which is not a decorated

preprojective algebra for any decorated quiver except Q = A1 and DQ = (
∧
(k2)).

Most of the decorated quivers appearing in this paper arise as degenerations of
ordinary quivers by folding vertices and then degenerating, as we now explain. In
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general, a group H acts on a quiver Q if H acts on the sets Q1 and Q0 such that
the source and target maps are H-equivariant. In this case, the source and target
maps descend to the quotient quiver Q/H := (Q0/H,Q1/H, s, t). In the case
H = Aut(Q) is the group of graph automorphisms of the underlying undirected
graph of Q, we call the quotient Q/Aut(Q) the folding of Q by automorphisms.

If DQ = (Ai,M
α) is a decoration of Q then one can decorate Q/Aut(Q) by

DQ/Aut(Q) = (Bj , N
β) defined by:

Bj :=
⊕

i∈Aut(Q)·j

Ai and Nβ :=
⊕

α∈Aut(Q)·β

Mα.

In this case, we say (Q,DQ) folds to (Q/Aut(Q), DQ/Aut(Q)). Notice that a
folding of decorated quivers induces an equivalence

Rep(Q,DQ) ∼= Rep(Q/Aut(Q), DQ/Aut(Q))

and an isomorphism

Π(Q,DQ) ∼= Π(Q/Aut(Q), DQ/Aut(Q)).

The second aspect of this procedure is degenerating the decoration, which
amounts to degenerating the algebras at each vertex and the bimodules at each
arrow. Since the definition of the preprojective algebra requires each algebra to
be Frobenius, one needs to degenerate the algebras in a way that preserves a
Frobenius form, see Section 4 for more detail.

We suspect that these degenerations of preprojective algebras are always flat.
In other words, we present the following conjecture in Section 4.

Conjecture 4.20. Suppose DQ flatly Frobenius deforms to D′
Q. Then with re-

spect to the path length grading,

hΠ(Q,DQ)(t) = hΠ(Q,D′

Q
)(t).

Remark 1.3. The conjecture was proven in the case Q = D̃4 for commutative
Frobenius algebras Ai in [5], by computing an explicit basis for the maximally
folded and maximally degenerated decoration

k

��

k // k k
fold=⇒ k⊕4oo // k

deg
k[x, y]/(xy, x2 − y2) // k.

k

OO

This work may be considered a sequel, in that we generalize their statement to
arbitrary Frobenius decorated quivers. Moreover, we prove the conjecture in the
Dynkin case.

In fact, we suspect that the existence of a deformation, while crucial for our
techniques, may be an artifact of the proof style and unnecessary for the result.
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That is, assuming condition (F), the Hilbert–Poincaré series of the decorated pre-
projective algebra may depend purely combinatorially on the dimensions of the
algebras and bimodules in the decoration.

One can define a (not-necessarily symmetric) Cartan matrix C := 2I−A where
A = [aij ] is a Q0 ×Q0 matrix with entries

aij :=
∑

α:i→j

dimk(M
α)

dimk(Ai)
=
∑

α:i→j

dimAi
(Mα) ∈ Z.

We say (Q,DQ) is Dynkin if the Cartan matrix C is positive-definite.
Observe, that if D = [dij ] with dij := δij dimk(Ai) then DA is symmetric as

(DA)ij =
∑

α:i→j

dimk(M
α) =

∑

α∗:j→i

dimk(M
α∗

) = (DA)ji.

Therefore, DC is symmetric and from the perspective of [11], C is a symmetrizable
Cartan matrix with symmetrizer D.

Conjecture 4.21. The Hilbert–Poincaré series of Π(Q,DQ), withDQ = (Ai,M
α)

is given by,

hΠ(Q,DQ)(t) =

{
(I + tmaxt+2P )D(1−At+ t2)−1 for (Q,DQ) Dynkin

D(1−At+ t2)−1 otherwise

where, in the Dynkin case, maxt is the maximum path length of a non-zero homo-
geneous element in Π(Q,DQ) and P is the permutation matrix for the permutation
of the set {1Ai

}i∈Q0 given by the Nakayama automorphism.

Moreover, we will often have an additional grading on the decorated path al-
gebra coming from placing a graded algebra at one or more vertices. Throughout
the paper we call this the x-grading defined as the number of occurrences of x
in the path, since the graded algebras we consider at the vertices are of the form
k[x]/(xn) for some n ∈ N. The x-grading descends from the decorated path al-
gebra to the decorated preprojective algebra in the Cn, G2, and B2 cases. The
x-grading can be adjusted to descend in the Bn with n ≥ 3, and F4 cases. With
respect to path length and an additional x-grading the Hilbert–Poincaré series is
conjecturally given by

hΠ(Q,DQ)(t, s) =

{
(1 + smaxstmaxt +2P )D(1−At+Bt2)−1 for (Q,DQ) Dynkin

D(1 −At+Bt2)−1 otherwise

where maxs is the maximum x-grading of a non-zero homogeneous element of
Π(Q,DQ),

A = [aij ], aij :=
∑

α:i→j

hMα(s)

hAi
(s)

,

and

B = [bij ], bij := δijhk·1Ai
r(s).

Here we say (Q,DQ) is Dynkin if, as before, the Cartan matrix 2I − A |s=1 is
positive-definite.
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In Sections 4 and 5 we prove the conjecture in the Dynkin case and show that the
Frobenius form on the preprojective algebra degenerates to one on the decorated
preprojective algebras. More precisely, we prove

Theorem 4.26. Let (Q,DQ) be Dynkin. Suppose DQ Frobenius degenerates
flatly to D′

Q. Then, Π(Q,DQ) and Π(Q,D′
Q) are both Frobenius algebras and

Π(Q,DQ) Frobenius degenerates flatly to Π(Q,D′
Q).

Moreover, letting S := k[x]/(x2) and S′ := k[x]/(x3), the most degenerate
decorated non-simply laced Dynkin quivers are:

Bn := (An+1, ({k, S, . . . , S}, {kSS ,S SS , . . . ,S SS})), n ≥ 2

Cn := (An+1, ({k, . . . , k, S}, {kkk, . . . , kkk, kSS})), n ≥ 4

F4 := (A4, ({k, k, S, S}, {kkk, kkS , SSS}))
G2 := (A2, ({k, S′}, {kS′

S′})).
The (path, x)-bigraded Hilbert–Poincaré series of the corresponding decorated
preprojective algebras are:

heiΠ(Bn)ej (s, t) = t|i−j|s|i−j|/2(1 + t2min{i,j}−2smin{i,j}−1)(1 + s)

· (1 + st2 + s2t4 + · · ·+ sn−max{i,j}t2n−2max{i,j}), i, j ≥ 2

he1Π(Bn)ej (s, t) = hejΠ(Bn)e1(s, t) = tj−1s(j−1)/2(1 + s)

· (1 + st2 + s2t4 + · · ·+ sn−jt2n−2j), j ≥ 2

he1Π(Bn)e1(s, t) = 1 + st2 + s2t4 + · · ·+ sn−1t2n−2

heiΠ(Cn)ej (s, t) = (1 + st2|n−max{i,j}|)t|i−j|(1 + t2 + t4 + · · ·+ t2min{i,j}−2)

hΠ(F4)(s, t) = (1 + t4s)·



(1+t6s) t(1+t2s+t4ss) t2(1+s)(1+t2s) t3s1/2(1+s)

t(1+t
2
s+t

4
s
2) (1+t

2)(1+t
2
s+t

4
s) t(1+s)(1+t

2
s) t

2
s
1/2(1+s)(1+t

2)

t2(1+s)(1+t2s) t(1+s)(1+t2s) (1+s)(1+t2+t4)(1+t2s) ts1/2(1+s)(1+t2+t4)

t3s1/2(1+s) t2s1/2(1+s)(1+t2) ts1/2(1+s)(1+t2+t4) (1+s)(1+t6s)




hΠ(G2)(s, t) = (1 + t2s)

(
1 + t2s2 (1 + s+ s2)t

(1 + s+ s2)t (1 + s+ s2)(1 + t2)

)

For more detail, see Section 5.

Example 1.4. We conclude the introduction by returning to our simple yet illus-
trative B2 example, i.e., the A2 quiver with vertices labelled by the k-algebras k
and S = k[x]/(x2) and the arrow labelled by S viewed as a (k, S)-bimodule,

k
S

,, S.

S has Frobenius form λ : S → k given by s+ tx 7→ t, which is non-degenerate since
the kernel is the subspace of constant polynomials, which does not contain any
non-trivial left ideals. With respect to this form, the basis {1, x} has dual basis
{x, 1} giving rise to the non-degenerate, S-central element x⊗k 1 + 1⊗k x.
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Using this structure, the decorated preprojective algebra is defined as

Π(Q,DQ) := Tk⊕S(S ⊕ S)/〈1⊗S 1, 1⊗k x+ x⊗k 1〉
where S⊕S is made into a (k⊕S)-bimodule by viewing one S as an (S, k)-bimodule
and the other a (k, S)-bimodule, and defining all other actions to be zero. More
explicitly, one can see that Π≥3(Q,DQ) = 0 and compute,

Π(Q,DQ) = Π0(Q,DQ)⊕Π1(Q,DQ)⊕Π2(Q,DQ)

= (S ⊕ k)⊕ (S ⊕ S)⊕ (S ⊕ k)
where the second graded piece is computed using the identifications

S ⊗S S/〈1⊗S 1〉 ∼= S/〈1〉 ∼= k

as vector spaces and

S ⊗k S/〈1⊗k x+ x⊗k 1, x⊗k x〉 ∼= S

as S-bimodules. Consequently, the matrix-valued Hilbert–Poincaré series in vari-
ables t and s corresponding to path length and x-grading respectively is given
by

hΠ(B2)(t, s) =

(
1 + t2s t(1 + s)
t(1 + s) (1 + t2)(1 + s)

)
.

This agrees with the formula in Conjecture 4.21.

The paper is organized as follows. We recall the theory of representations of
quivers and decorated quivers in Section 2. We define the preprojective algebra
for quivers and decorated quivers in Section 3, and prove Theorem 1.2. In Section
4, we explain the degeneration perspective more carefully, first defining the notion
for Frobenius algebras. We conjecture that a flat degeneration of the decorations
gives rise to a flat degeneration of the corresponding decorated preprojective alge-
bras. Finally, we present a diverse class of examples in low dimensions where the
conjecture has been verified using Magma. In Section 5, we prove the conjecture
in the case of Dynkin quivers by reducing to a single, most degenerate decorated
quiver for each Dynkin quiver and producing an explicit basis for its decorated
preprojective algebra.
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2. Representations of Decorated Quivers

2.1. Recollections on Quivers. For completeness of exposition and to fix no-
tation, we recall the definition of a representation of a quiver, then show how the
theory is subsumed by the representation theory of associative algebras.

Fix a ground field k.

Definition 2.1. A quiver is a quadruple Q = (Q0, Q1, s, t) where s, t : Q1 → Q0

are the source and target maps respectively from the set of arrows, Q1, to the set
of vertices, Q0.

A quiver is merely a directed graph, but the terminology comes from Gabriel,
who considered representations of such graphs, defined as follows:

Definition 2.2. A representation of a quiver Q is ρ = (Vi, ρα)i∈Q0,α∈Q1 where
ρα : Vs(α) → Vt(α) is a k-linear map of vector spaces, for each α ∈ Q1.

We consider exclusively quivers with finitely many vertices and arrows and rep-
resentations with each vector space finite-dimensional. The function dim(V(−)) :

Q0 → N defines an NQ0 -grading on the set of representations. Fixing d = (di) ∈
NQ0 we define

Repd(Q) := {ρ = (kdi , ρα)} =
⊕

α∈Q1

Hom(kds(α) , kdt(α)).

Repd(Q) is a finite-dimensional vector space with an action ofGd :=
∏

i∈Q0
GLdi

(k)
given by

(gi)i∈Q0 · (Vi, ρα)i∈Q0,α∈Q1 = (Vi, gt(α) ◦ ρα ◦ g−1
s(α)).

One says two representations are isomorphic if they lie in the same Gd-orbit.
Alternatively, one can collectively study representations of Q by considering

the category R(Q) whose objects are representations of Q and morphisms are
commuting diagrams between representations. Invertible morphisms are given by
|Q0|-tuples of (compatible) invertible linear maps. Hence, for the full subcategory
Rd(Q) ⊂ R(Q) whose objects are d-dimensional representations, one has a natu-
ral identification between the moduli space of isomorphism classes of semisimple
representations in Rd(Q) and the GIT quotient Repd(Q)//G.

The category R(Q) is equivalent to the category of finitely-generated modules
over an algebra, as we now explain.

Definition 2.3. The path algebra Pk(Q) for a fixed quiver Q = (Q0, Q1, s, t) is
defined to be

Pk(Q) := TkQ0(kQ1),

where kS denotes the k-vector space with basis S and kQ1 is made into a kQ0-
bimodule by k-linear extension of the action

ei · α · ej := δis(α)αδt(α)j .

Here e(·) : Q0 → Pk(Q) regards a vertex as a length zero path. We will usually
write P (Q) := Pk(Q) suppressing the dependence on the field.
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Remark 2.4. As defined above, multiplication in P (Q) is identified with con-
catenation of tensors in TkQ0(kQ1) and hence is read left to right. This choice is
convenient when performing computations with long paths, but requires consider-
ing right modules, as explained below.

The path algebra is graded with nth graded piece given by k-linear combinations
of paths of length n, i.e. n-tuples of composable arrows in the quiver. Since
vertices are idempotents in P (Q) summing to the identity element, there is a
further decomposition of the path algebra by source and target vertices,

P (Q) = 1P (Q)1 =


∑

i∈Q0

ei


P (Q)


∑

j∈Q0

ej


 =

⊕

i,j∈Q0

eiP (Q)ej.

Representations of Q can be identified with right modules for the path algebra,
P (Q). Explicitly, if V is a right P (Q)-module then one can form the representation
ρ = (Vi, ρα) where Vi := V · ei and ρα is the right action by α, a linear map
Vs(α) → Vt(α). Conversely, if (Vi, ρα) is a representation of Q one can form the
right module V :=

⊕
i∈Q0

Vi with length one paths α acting by ρα and paths
γ = α1 · · · · · αn acting by ραn

◦ · · · ◦ ρα1 .
To describe equivalence classes of representations one needs to compute the

orbit space of the action of G on Repd(Q).

2.2. Decorated quivers.

Definition 2.5. A decorated quiver is a pair (Q,DQ) where Q = (Q0, Q1, s, t) is
a quiver and

DQ = (Ai,M
α)i∈Q0,α∈Q1

where Ai is a k-algebra andMα is an (As(α), At(α))-bimodule. Fixing Q, a decora-
tion is a choice of DQ. The decorationDQ is finite if each Ai is a finitely-generated
k-algebra and each Mα is finitely generated as a left As(α)-module and as a right
At(α)-module.

Remark 2.6. This notion appears in the literature under the names k-species or
modulated graph when each Ai is a division ring [6]. One can alternatively choose
a presentation for each Ai and instead consider the quiver with relations where
a loop is added for each generator of each algebra and relations are imposed to
capture identical information: see [11] and its sequels.

Remark 2.7. One can take a categorical perspective by viewing Q as a category
where:

• objects are vertices Q0,
• morphisms are paths, and
• composition is given by concatenation of paths, when possible, and zero
otherwise.

We denote this category by F (Q) to emphasize the structural differences from the
original quiver Q. Using this language, a decoration is a functor D(−) : F (Q) →
Alg into the Morita category of algebras, objects are k-algebras, morphisms are
bimodules, and composition of morphisms is given by the tensor product. This
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is the approach taken in [13] under the name prospecies of algebras, in the case
where the bimodule is projective as a left module and as a right module.

We now proceed to develop all of the notions in the previous section for dec-
orated quivers. The original source for much of this material in the setting of
species is Dlab and Ringel [6].

Definition 2.8. A representation of a decorated quiver (Q,DQ) is

ρ = (Vi, ρα)i∈Q0,α∈Q1

where Vi is a rightAi-module and ρα :Mα → Homk(Vs(α), Vt(α)) is an (As(α), At(α))-
bimodule map.

Note that Homk(Vs(α), Vt(α)) has a right At(α)-action by postcomposition and
a left As(α)-action by precomposition.

Remark 2.9. This definition reduces to the ordinary definition of a representation
of an (undecorated) quiver when each Ai = k and Mα = kkk, in which case each
ρα is determined by a single linear map ρα(k1k) : Vs(α) → Vt(α).

Fixing a quiver and a finite decoration (Q,DQ), we denote by R(Q,DQ) the
category of representations of finite type: each Vi is finitely generated as a right
Ai-module. Morphisms from ρ to ρ′ in this category are given by a collection of
maps (fi : Vi → V ′

i ) such that for all α ∈ Q1 and for all m ∈ Mα, the diagram of
right (As(α) ⊕At(α))-modules

Vs(α)
ρα(m)

//

fs(α)

��

Vt(α)

ft(α)

��

V ′
s(α)

ρ′

α(m)
// V ′

t(α)

commutes. As in the undecorated case, for a fixed d ∈ NQ0 , we consider the
full subcategory of “locally free” representations Rd(Q,DQ) whose objects are

representations ρ = (Vi,M
α) with Vi = Adi

i for all i ∈ Q0.
As before, one can compute equivalence classes of objects in Rd(Q,DQ) as

orbits under a group action on the vector space of all representations with Vi =
Adi

i for all i ∈ Q0, denoted Repd(Q,DQ). In more detail, there is an action of

Gd =
∏

i∈Q0
GLAi

(Adi

i ) on Repd(Q,DQ) by

(gi)i∈Q0 · (Vi, ρα) = (Vi, gt(α)ραg
−1
s(α)).

One says two representations are isomorphic if they lie in the same Gd-orbit.
Isomorphism classes of semisimple objects in Rd(Q,DQ) can be identified with
Repd(Q,DQ)//Gd.

The category Rd(Q,DQ) is equivalent to a category of modules for an algebra,
generalizing the path algebra in the previous subsection.
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Definition 2.10. The decorated path algebra Pk(Q,DQ) for DQ = (Ai,M
α) is

the tensor algebra T⊕iAi
(⊕αM

α) where each Mα is viewed as an (⊕iAi,⊕iAi)-
bimodule by defining(∑

i

ai

)
·mα ·

(∑

i

a′i

)
:= as(α) ·mα · a′t(α)

for ai, a
′
i ∈ Ai and mα ∈ Mα. We will usually write P (Q,DQ) := Pk(Q,DQ)

suppressing the dependence on the field.

Proposition 2.11. The category of representations of the decorated quiver (Q,DQ)
is equivalent to the category of right modules over the path algebra P (Q,DQ).

Proof. Given a representation ρ = (Vi, ρα) of the decorated quiver DQ = (Ai,M
α)

one can form a right module V := ⊕i∈Q0Vi of P (Q,DQ) with the action defined
on generators by

∑

i∈Q0

vi


 · aj := vj · aj aj ∈ Aj , vi ∈ Vi


∑

i∈Q0

vi


 ·mα := ρα(m

α)(vs(α)) mα ∈Mα.

By the universal property of the tensor algebra, this extends to a right module
over all of P (Q,DQ) since ρα is an (As(α), At(α))-bimodule map, which can be
viewed as an ⊕iAi-bimodule map.

One can upgrade this map of objects to a functor defined by taking ρ to V
as above and by taking a morphism (fi : Vi → V ′

i ) from ρ to ρ′ to the map
⊕ifi : ⊕Vi → ⊕iV

′
i . The condition that the diagrams commutes (i.e. ρ′α ◦ fs(α) =

ft(α) ◦ ρα) implies that ⊕ifi, apriori a ⊕iAi-module map, is a right P (Q,DQ)-
module map. We now construct the inverse functor on objects, which in fact gives
an isomorphism of categories in the sense that the compositions equal the identity
functor, as opposed to merely being naturally isomorphic.

A right module for the decorated path algebra is a map ϕ : T⊕iAi
(⊕αM

α) →
Endk(V ), which is determined by its restriction to generators

T≤1
⊕iAi

(⊕αM
α) =

⊕

i

Ai ⊕
⊕

α

Mα.

Then one defines ρ := (ϕ(1Ai
)V, ϕ |Mα) where ϕ(1Ai

)V is given a right Ai-module
structure by

ϕ(1Ai
)(v) · ai := ϕ(ai)(v)

for v ∈ V, ai ∈ Ai. Clearly ϕ |Mα is an (As(α), At(α))-bimodule map since ϕ is an
(⊕iAi)-bimodule map. �

As in the undecorated case, one would like to study the quotient Repd(Q,DQ)//Gd.
In the next section we consider the symplectic action of G on the cotangent bun-
dle to Repd(Q,DQ), but in order to describe the moment map we need to impose
restrictions on the decoration. This definition will be justified a posteriori by our
study of the zero fiber of the moment map.
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Definition 2.12. A decoration DQ = (Ai.M
α) satisfies condition (F) if

• Ai is symmetric Frobenius (i.e. Ai
∼= Homk(Ai, k) as Ai-bimodules) or all

i ∈ Q0.
• Mα = Ai ⊗k Aj or Mα = Ai = Aj , for all α ∈ Q1 with α : i→ j.

We will have occasional need to distinguish between the two allowable bimodule
decorations in condition (F) and hence write Q1 = Q′

1 ⊔Q′′
1 where the decorations

for Q′
1 are of the form Aj⊗kAi and the decorations for Q′′

1 are of the form Ai = Aj .

Remark 2.13. In subsection 3, we explain why the Frobenius condition is nec-
essary to define a preprojective algebra satisfying Theorem 1.2. One can alterna-
tively consider additional structure on the bimodules instead of the algebras, as
is done in [6]. Symmetry of the Frobenius form is needed to identify the moment
map with an evaluation map equivariantly, see Remark 3.19.

3. Representations of Decorated Preprojective Algebras

3.1. Recollections on Preprojective Algebras. Given a quiverQ = (Q0, Q1, s, t)
one can define the opposite quiver to be Qop := (Q0, Q1, t, s), which has the
same vertices but with all arrows reversed. From this the double quiver is Q :=
(Q0, Q1 ⊔ Q1, s ⊔ t, t ⊔ s), which has the same vertices as Q but with both the
arrows and the inverted arrows and consequently is insensitive to the orientation
of the quiver Q. If α ∈ Q1, we write α∗ for the corresponding arrow in Qop

1 , and
vice versa.

The representation theory of the double quiver can be described in terms of
the representation theory of the original quiver. Fix a dimension vector d and
denote by Repd(Q) the vector space of representations of Q with dimension vector
d. Then

Repd(Q)
∼=−→ Repd(Q)⊕ Repd(Q

op)

ρ 7−→ ρ |Q ⊕ρ |Qop .

One has the non-degenerate pairing

Repd(Q)× Repd(Q
op)→ k (ρ, ρ′) 7→

∑

α∈Q1

tr(ρ(α) ◦ ρ′(α∗))

which induces a k-linear isomorphism

Repd(Q
op) ∼= Repd(Q)∗ (Vi, ρα) 7→


ψ 7→

∑

α∈Q1

tr(ψ(α∗) ◦ ρα(α))


 .

We conclude that,

Repd(Q) ∼= Repd(Q)⊕ Repd(Q
op) ∼= Repd(Q)⊕ Repd(Q)∗ =: T ∗(Repd(Q)).

For any finite-dimensional vector space V , the vector space V ⊕ V ∗ ∼= T ∗(V )
carries a canonical symplectic form. Taking V := Repd(Q), the symplectic form
on Repd(Q) ∼= T ∗(Repd(Q)) is explicitly given by:

ωd : Repd(Q)× Repd(Q)→ k
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ωd(ρ, ρ
′) =

∑

α∈Q1

tr(ρ(α∗)ρ′(α)) − tr(ρ(α)ρ′(α∗))

where tr : Endk(⊕i∈Q0k
di)→ k is the usual trace of matrices.

The action of Gd =
∏

i∈Q0
GLdi

(k) on Repd(Q) is extended to Repd(Q) by,

g · (x, φ) = (g · x, φ ◦ (dxϕg)
−1)

where dxϕg is the differential of the action map. This action is Hamiltonian with

Gd-equivariant moment map µd : Repd(Q)→ g∗d given by

µd(ρ)(x) =
1

2
ω(ρ, x · ρ) = 1

2

∑

α∈Q1

tr(ρ(α∗)x · ρ(α) − x · ρ(α)ρ(α∗))

=
1

2

∑

α∈Q1

tr(x · ρ([α, α∗])),

where gd := Lie(Gd). We view the moment map as valued in gd by post-composing
with twice the trace form,

ρ ∈ Repd(Q) // 1
2 tr
(
− ·∑α∈Q1

ρ([α, α∗]
)
∈ g∗ //

∑
α∈Q1

ρ([α, α∗]) ∈ g

Since the second map is an isomorphism, we can identify the moment map with
evaluation at r :=

∑
α∈Q1

[α, α∗].

Returning to the algebraic setting, representations of Q are right modules over
the path algebra

P (Q) = TkQ0(kQ1 ⊕ kQop
1 ).

The condition that a representation, ρ, is in the zero fiber of the moment map is
precisely the condition that ρ(r) = 0, i.e. the module descends to a module for
the quotient algebra P (Q)/〈r〉, where 〈r〉 denotes the two-sided ideal generated
by r. This algebra was originally defined and studied by Gelfand and Ponomarev,
prior to the moment map perspective, since in the Dynkin case it contains the
path algebra as a subalgebra as well as all indecomposable preprojective modules
for the path algebra [12].

Summarizing this discussion:

Definition 3.1. The preprojective algebra associated to a quiver Q and a field k
is

Πk(Q) := P (Q)/

〈∑

α∈Q1

[α, α∗]

〉
.

We will usually write Π(Q) := Πk(Q) suppressing the dependence on the field.

Proposition 3.2. With the identifications induced from the non-degenerate pair-
ings,

Repd(Q)⊗ Repd(Q
op)→ k (ρ, ρ′) 7→

∑

α∈Q1

tr(ρ(α) ◦ ρ′(α∗))

and

gd ⊗ gd → k (X,Y ) 7→ tr(XY )
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the following diagram commutes,

T ∗Repd(Q)
µd // g∗d

∼=

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲

Repd(Q)

∼=

88qqqqqqqqqq ρ7→ρ(
∑

α∈Q1
[α,α∗])

// gd

and hence one can view the moment map as evaluation on the element
∑

α∈Q1
[α, α∗].

Corollary 3.3. The set of representations of dimension vector d in Π(Q) is the
zero fiber of the moment map µd.

Remark 3.4. Crucially, one needs to identify Repd(Q) ∼= T ∗Repd(Q) as sym-
plectic representations of Gd. The symplectic structure on Repd(Q) is defined
through the equivalence. The preservation of the Gd-action follows since Gd acts
on Repd(Q) by conjugation and the pairing uses the trace, which is conjugation-
invariant. Additionally, gd ∼= g∗d as Gd-representations with the adjoint and coad-
joint actions.

3.2. Decorated Preprojective Algebras. In this subsection we extend the def-
inition of the preprojective algebra of a quiver to the decorated setting. We
justify the term preprojective algebra using the moment map for the action of
G = ⊕i∈Q0GLAi

(Vi) on the cotangent bundle of the space of all representations.
Namely, we show that the set of representations of the decorated preprojective
algebra is the zero fiber of the moment map.

Recall the decorated path algebra for a decorated quiver (Q,DQ) with decora-
tion DQ = (Ai,M

α) is P (Q,DQ) = T⊕Ai
(⊕αM

α). The decorated preprojective
algebra is a quotient of the decorated path algebra for the double decorated quiver,
which we define now.

Definition 3.5. Given a decorated quiver (Q,DQ), the opposite decorated quiver
(Qop, Dop

Q ) is defined by

Dop
Q := (Ai,M

α∗

), Mα∗

:= HomAs(α)⊗At(α)
(Mα, As(α) ⊗At(α))

and the double decorated quiver (Q,DQ) is defined by DQ := DQ ∪DQ0
Dop

Q .

Suppose DQ satisfies condition (F) and partition the arrows into Q′
1⊔Q′′

1 where
the former has label Mα = As(α) ⊗ At(α) and the latter has label Mα = As(α) =

At(α). Additionally, pick a basis {eij}j for Ai as a vector space and use the Frobe-

nius form λi : Ai → k to build a dual basis {f i
l }l such that λi(e

i
jf

i
l ) = δj,l, for all

i ∈ Q0.

Definition 3.6. Using notation from the previous paragraph, the decorated pre-
projective algebra Πk(Q,DQ) is defined to be the quotient of the decorated path

algebra of the double P (Q,DQ) by the two-sided ideal generated by

r :=
∑

α∈Q′

1


∑

i

e
s(α)
i ⊗ 1⊗ f s(α)

i −
∑

j

e
t(α)
j ⊗ 1⊗ f t(α)

j


+

∑

α∈Q′′

1

[1Mα , 1Mα∗ ].
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We will usually write Π(Q,DQ) := Πk(Q,DQ), suppressing the dependence on the
field.

The usual preprojective relation in kQ1 ⊗kQ0 kQ0 is kQ0-central, since it is
concentrated on the diagonal. Similarly, we want r to be an (⊕Ai)-central element
of ⊕Mα ⊗(⊕Ai) ⊕Mα, so we choose for each i, the dual element to the Frobenius

pairing, k → Ai⊗Ai, which when written in bases {eij} and dual bases {f i
j} is the

Ai-central element
∑

j e
i
j ⊗k f

i
j . For arrows in Q′′

1 , M
α ⊗A Mα∗ ∼= A ⊗A A ∼= A

has the A-central element 1Mα⊗AMα∗ = 1Mα ⊗ 1Mα∗ , so one need not use the
Frobenius form in the definition of the decorated preprojective algebra, yet we
still require the existence of such a form for desirable properties, see Remark 3.19.

Remark 3.7. The above definition depends only on the decorated quiver (Q,DQ)
and the field k. To see this, observe that for each α : i→ j ∈ Q′

1 the summand of
r corresponding to α lies in

Ai⊗Ai
∼= Ai ⊗ k⊗Ai ⊂ Ai ⊗Aj ⊗Ai

∼= (Ai ⊗Aj)⊗Aj
(Aj ⊗Ai) ∼=Mα⊗Aj

Mα∗

and hence it suffices to show that, in any Frobenius algebra A with basis {ei} and
dual basis {fi}, the ideal generated by c :=

∑
i ei⊗fi doesn’t depend on the choice

of basis nor the form. For independence of basis, notice that c can be represented
canonically as the comultiplication of the unit. Next, observe that a Frobenius form
can be viewed as the image of 1A under a left A-module isomorphism ϕ : A→ A∗.
Hence, two Frobenius forms λ1, λ2 : A→ k each give rise to ϕ1, ϕ2 : A→ A∗ such
that ϕ−1

2 ◦ϕ1 : A→ A is a left A-module isomorphism. Such a map is determined

by u := ϕ−1
2 ◦ ϕ1(1A), which is invertible. Hence

λ1 = ϕ1(1) = ϕ2(u) = λ2 ◦Ru

where Ru is right multiplication by u ∈ A×. We conclude that the canonical sums
c1 and c2 satisfy c1 = c2u and hence generate the same two-sided ideal in A⊗k A.

Example 3.8. This phenomenon is already visible in the setting of the four el-
ement algebra A = F2[x]/(x

2). Here λ : A → F2 is Frobenius if (x) 6⊂ ker(λ)
or equivalently if λ(x) 6= 0 and hence is 1. So there are two Frobenius forms:
λ1(1) = 0 and λ2(1) = 1. They are related by the invertible element 1 + x ∈ A as
λ1(1) = 0 = λ2(1(1+ x)) and λ1(x) = 1 = λ2(x(1 + x)). The basis {1, x} has dual
basis {x, 1} under λ1 and dual basis {1, 1+ x} under λ2. Hence c1 = 1⊗x+x⊗ 1
and

c2 = 1⊗ x+ x⊗ (1 + x) = 1⊗ x(1 + x) + x⊗ 1(1 + x) = c1(1 + x)

both generate the ideal (c1) = {c1, c2, c1 + c2} ⊂ A⊗A.

Remark 3.9. This explains the reason for the dichotomy between types of arrows
and the resulting asymmetry in the definition. Namely, it’s an artifact of the
identifications,

EndA(A) ∼= A ∼=Mα ⊗A M
α∗

id 7→ 1 7→ 1⊗A 1
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as k-bimodules for Mα = AAA
∼=Mα∗

and

Endk(A) ∼= A⊗k A
∗ ∼=Mα ⊗k M

α∗

id 7→ c =
∑

i

ei ⊗k fi 7→
∑

i

ei ⊗ 1⊗ fi

as A-bimodules for Mα = AAk an (A, k)-bimodule.

The key result motivating the definition is the following. Recall fixing (Q,DQ)

and a dimension vector d, we have the action of Gd =
∏

i∈Q0
GLAi

(Adi

i ) on

Repd(Q,DQ) with Lie algebra gd = ⊕i∈Q0glAi
(Adi

i ). Let µd : T ∗(Repd(Q,DQ)→
g∗d denote the moment map corresponding to the Hamiltonian action on the cotan-
gent space coming from the action on the base. In this setting, we can generalize
Proposition 3.2 as follows:

Theorem 3.10. With the identifications induced from the non-degenerate pair-
ings,

Repd(Q,DQ)⊗ Repd(Q
op, Dop

Q )→ k gd ⊗ gd → k

(ρ, ρ′) 7→
∑

α∈Q1

λAs(α)
◦trAs(α)

(ρ(1Mα)◦ρ′(1Mα∗ )) (X,Y ) 7→
∑

i∈Q0

λi◦trAi
(XY )

the following diagram commutes,

T ∗Repd(Q,DQ) g∗d

Repd(Q,DQ) gd

µd //

∼=

;;✇✇✇✇✇✇✇✇✇

∼=

##●
●●

●●
●●

●●
●●

(ρ(1Mα ),ρ(1
Mα∗ )) 7→ρ(r)

//

and hence one can view the moment map as evaluation on the element r.

Note that ρ(r) is, a priori, an element of ⊕i∈Q0glk(A
di

i ), but in fact is ⊕Ai-
linear since eir is Ai-central, hence an element of gd. Additionally, since each
pairing is Gd-invariant, we have identified the moment map with evaluation on r,
Gd-equivariantly

Remark 3.11. For each Ai, to apply trAi
: Matdi

(Ai) → Ai one needs to pre-

compose with an identification glAi
(Adi

i ) ∼= Matdi
(Ai). Although trAi

depends on
the choice of identification, λAi

◦ trAi
does not, as λAi

is symmetric.

Corollary 3.12. The set of representations of dimension vector d in Π(Q,DQ)
is the zero fiber of the moment map µd.

The remainder of this section is dedicated to a proof of the above theorem,
justifying the terminology preprojective algebra in a geometric context.

Since Q is a finite quiver, r =
∑

i∈Q0
eir can be computed locally at each vertex,

where it is given by a sum over all incoming arrows. Hence it suffices to prove
the above result in the context of a quiver with a single decorated arrow. Such
decorated quivers satisfying condition (F) take the form,

(I) A1
A1⊗kA2 // A2 (II) A

A // A

(III) A
A⊗kA // A (IV) A 	 A (V) A 	 A⊗k A
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where A,A1, and A2 are symmetric Frobenius algebras. The formula for the
moment map in cases (IV) and (V) follow from the (II) and (III) cases, respectively,
by post-composing with the map d∆∗ : g∗d ⊕ g∗d → g∗d, induced from the diagonal
map ∆ : Gd → Gd×Gd. Next notice (III) is a special case of (I), when A1 = A2 =
A. Moreover the definition of e1r uses only the unit k ⊂ A2 and hence one can
further reduce to verifying the theorem in the two cases:

Q′ := A
AAk // k or Q′′ := A

A // A.

In these cases, representations of the double decorated quiver have a concrete
description, owing to the cyclicity of the bimodules. That is, if d = (d1, d2), then

Repd(Q
′)

= HomA−mod(AAk,Homk(A
d1 , kd2))⊕Hommod−A(kAA,Homk(A

d1 , kd2))

∼= Homk(A
d1 , kd2)⊕Homk(k

d2 , Ad1)

and

Repd(Q
′′)

= HomA−bimod(AAA,Homk(A
d1 , Ad2))⊕HomA−bimod(AAA,Homk(A

d2 , Ad1))

∼= HomA(A
d1 , Ad2)⊕HomA(A

d2 , Ad1).

In each case, the theorem reduces to much more concrete statements, given re-
spectively by Proposition 3.13 and Proposition 3.17.

Proposition 3.13. With the identifications induced from the non-degenerate pair-
ings,

Homk(A
d1 , kd2)⊗Homk(k

d2 , Ad1)→ k (f, g) 7→ tr(f ◦ g)
EndA(A

d1)⊗ EndA(A
d1)→ k (X,Y ) 7→ λA ◦ trA(X ◦ Y )

Endk(k
d2)⊗ Endk(k

d2)→ k (X,Y ) 7→ tr(X ◦ Y )

the following diagram commutes:

Homk(A
d1 , kd2)⊕Homk(A

d1 , kd2)∗ EndA(A
d1)∗ ⊕ Endk(k

d2)∗

Homk(A
d1 , kd2)⊕Homk(k

d2 , Ad1) EndA(A
d1)⊕ Endk(k

d2)

µd //

∼=

FF✍✍✍✍✍✍
∼=

XX✵✵✵✵✵✵
(ρ(A1k),ρ(k1A)) 7→ρ(r)

//

where r = 1⊗A 1−∑ ei ⊗k fi.

Roughly speaking, in the ordinary case two applications of the trace pairing
cancel, yielding a simplified expression for the moment map. From this perspective,
the main technical difficulty arises from the need to relate the trace of an A-linear
map (regarded as a k-linear map) with the Frobenius form.
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More precisely, if (f, g) ∈ Homk(A
d1 , kd2)⊕Homk(k

d2 , Ad1) and
(ϕ, ψ) ∈ EndA(A

d1)⊕ Endk(k
d2) then in the above diagram,

(f, tr(g ◦ −)) tr(f ◦ g ◦ −) + tr(−g ◦ f ◦ −)

λA ◦ trA(ϕ ◦ −) + tr(ψ ◦ −)

=

(f, g) (ϕ, ψ)

✤ //

❘

II✒✒✒✒✒✒✒✒✒✒✒✒ t

ZZ✹✹✹✹✹✹✹
✤ ? //

In our setting, f = ρ(A1k) and g = ρ(k1A) and so we need to find ϕ ∈ EndA(A
d1)

and ψ ∈ Endk(k
d2) such that,

tr(ρ(−A1⊗k 1A) ◦ −) = λA ◦ trA(ϕ ◦ −)
and

tr(ρ(k1⊗A 1k) ◦ −) = tr(ψ ◦ −).
Clearly, ψ = ρ(k1⊗A 1k) and hence the moment map at the vertex decorated with
k is evaluation at k1⊗A 1k, playing the role of α ◦ α∗ in the ordinary case.

However, ϕ 6= ρ(−1 ⊗k 1), which need not be A-linear in general. To remedy
the situation, we will define a map Φ : Endk(A)→ EndA(A) such that

ϕ = Matd(Φ)(ρ(−1⊗k 1)) = ρ
(
−
∑

ei ⊗ fi
)
,

completing the proof of the proposition.
We now present a series of lemmas about Frobenius algebras. Since the subject

matter is classical and the proofs are elementary, the following is probably well
known. Nonetheless we provide short proofs for completeness of exposition.

Lemma 3.14. Let A be a Frobenius algebra with multiplication µ and form λ :
A→ k. Define Φ : Endk(A)→ EndA(A) by Φ(φ)(a) =

∑
i φ(ei)fia, where {ei} is

a basis for A over k with dual basis {fi}. Then

Endk(A)

∼=

��

Φ

&&▲▲
▲▲▲

▲▲▲
▲▲

tr // k

A⊗k A
∗

∼=

��

EndA(A)

∼=

��

A⊗k A
µ

// A

λ

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

commutes. In particular, tr(φ) = λ(Φ(φ)(1)) for φ ∈ Endk(A).

Proof. Φ is defined so the diagram commutes. In more detail,

Endk(A) // A⊗k A
∗ // A⊗k A // A

φ ✤ //
∑

i φ(ei)⊗k λ ◦ µ(−, fi) ✤ //
∑

i φ(ei)⊗k fi
✤ //

∑
i φ(ei)fi

Since Φ(φ)(1) :=
∑

i φ(ei)fi the lower left half of the diagram commutes.
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For the rest of the diagram, compute tr using the basis {ei}. If φ(ei) is expanded
as
∑

j αijej then,

αii = λ ◦ µ(
∑

j

αijej, fi) = λ ◦ µ(φ(ei), fi).

and hence tr(φ) = λ ◦ µ(
∑

i φ(ei), fi) = λ(Φ(φ)(1)) as desired. �

Lemma 3.15. The following diagram commutes:

Endk(A
d)

∼=

��

tr

''
Matd(Endk(A))

Matd(Φ)

��

Matd(tr)
// Matd(k)

tr // k

Matd(EndA(A)) ∼=
// Matd(A)

Matd(λ)
55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

trA
// A

λ

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Proof. Applying Matd(−) to the commutative diagram in Lemma 3.14 gives com-
mutativity of the lower left trapezoid. The commutativity of the upper triangle is
the fact that the trace of a block matrix is the sum of the traces of the diagonal
blocks. The final quadrilateral commutes since if M = (ai,j) ∈Matd(A) then

λ ◦ trA(M) =
∑

i

λ(ai,i) = tr((λ(ai,j))) = tr ◦Matd(λ)(M). �

Lemma 3.16. The following diagram commutes:

Endk(A
d)

Matd(Φ)

��

∼= // Endk(A
d)∗

rest.

��

EndA(A
d)

∼= // EndA(A
d)∗

where the horizontal identifications are given by the non-degenerate pairings,

Endk(A
d)⊗ Endk(A

d)→ k (φ1 ⊗ φ2) 7→ tr(φ1 ◦ φ2)

EndA(A
d)⊗ EndA(A

d)→ k (ψ1 ⊗ ψ2) 7→ λ ◦ trA(ψ1 ◦ ψ2).

Proof. Commutativity amounts to the equivalence

tr(φ ◦ ψ) = λ ◦ trA(Matd(Φ)(ϕ) ◦ ψ)
for all φ ∈ Endk(A

d) and ψ ∈ EndA(A
d). By Lemma 3.15, one can factor trace

as,

tr = λ ◦ trA ◦Matd(Φ)

and hence it suffices to show Matd(Φ)(φ ◦ ψ) = Matd(Φ)(φ) ◦ ψ. By comparing
components of the mappings, one reduces to the case d = 1, where the result
follows from the fact that Φ is an A-bimodule map and ψ can be viewed as an
element of A. �
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Note that this completes the proof of Proposition 3.13, since

Matd(Φ)ρ(1 ⊗k 1) = ρ(Φ(1⊗k 1)) = ρ
(∑

ei ⊗k fi

)
.

Proposition 3.17. With the identifications induced from the non-degenerate pair-
ings,

HomA(A
d1 , Ad2)⊗HomA(A

d2 , Ad1)→ k EndA(A
dj )⊗ EndA(A

dj )→ k

(ρ, ρ′) 7→
∑

α∈Q1

λA ◦ trA(ρ(1Mα) ◦ ρ′(1Mα∗ )) (X,Y ) 7→
∑

i∈Q0

λA ◦ trA(XY )

for j ∈ {1, 2}, the following diagram commutes:

HomA(A
d1 , Ad2)⊕HomA(A

d1 , Ad2)∗ EndA(A
d1)∗ ⊕ EndA(A

d2)∗

HomA(A
d1 , Ad2)⊕HomA(A

d2 , Ad1) EndA(A
d1)⊕ EndA(A

d2)

µd //

∼=

FF✍✍✍✍✍✍
∼=

XX✵✵✵✵✵✵
(ρ(A1A),ρ(A1A)) 7→ρ(r)

//

where r = e1r + e2r = 1⊗2
A 1− 1⊗1

A 1 = [A1A,A 1A] where the labels 1 and 2 are
used to distinguish between the two copies of A, one at each vertex.

The difficulty in the previous proposition was relating, for a given α : i → j,
the expressions λAi

◦ trAi
and λAj

◦ trAj
. In this case, Ai = A = Aj and hence

that issue is not present.

Proof. The result follows from showing that the moment map still has the same
form as before. Whenever G acts on a vector space V , the moment map for the
action of G on T ∗(V ) = V ⊕ V ∗ is given by

µ : T ∗(V )→ g∗ µ((v, ϕ))(X) = ϕ(X · v).
In this case g = g1 ⊕ g2 is a sum and the action X = (X1, X2) on v defined by
differentiating the conjugation action is

X · v = X2 · v − v ·X1.

Therefore,

(f, λA ◦ trA(g ◦ −)) λA ◦ trA(−g ◦ f ◦ −) + λA ◦ trA(f ◦ g ◦ −)

(f, g) (−g ◦ f + f ◦ g)

✤ //

❏

DD✡✡✡✡✡✡✡ t

ZZ✹✹✹✹✹✹✹

and hence the composition is giving by commutator and plugging in f = ρ(A1A)
and g = ρ(A1A) gives the desired result. �

This completes the proof of Theorem 3.10.

Remark 3.18. A more general definition of preprojective algebra appears in [13],
which puts a weaker restriction on the decorations than condition (F), although
the Frobenius condition still arises naturally as we explain below. When can the
representations of such algebras be identified with the zero fiber of a moment map,
as in Theorem 3.10?
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In more detail, in [13], decorations are required instead to have the property
that each Mα is projective as a left At(α)-module and a projective as a right
As(α)-module. In this setting, Mα has both left and right duals, and it is further
required that these duals agree,

HomAop
s(α)

(Mα, As(α)) ∼= HomAt(α)
(Mα, At(α))

as (At(α), As(α))-bimodules. One says Mα is dualizable in this case, and one says
DQ is dualizable if each Mα is dualizable.

Notice that if a quiver has an arrow labelled with M := AAk then dualizability
at that arrow says,

A ∼= HomA(M,A) ∼= Homk(M,k) ∼= Homk(A, k)

as an (k,A)-bimodule, and hence A is Frobenius. More generally, if M := AAR

where R is a k-algebra and A is an algebra over R then dualizability says

A ∼= HomR(A,R)

and hence A is Frobenius relative to R, the assumption used in [5].

Remark 3.19. In the case M = AAA dualizability is vacuous, yet we still need
A to be Frobenius in order to have a non-degenerate pairing

HomA(A
d1 , Ad2)⊗HomA(A

d2 , Ad1)
◦−→ EndA(A

d1)
trA−→ A

λ−→ k.

Further, for the pairing to be GLA(A
d1)-invariant then λ needs to be symmet-

ric. This justifies the assumption that the algebra at each vertex be symmetric
Frobenius.

Remark 3.20. If α : i→ j is decorated with Mα an (Ai, Aj)-bimodule, then

RHomAi⊗kA
op
j
(Mα,Homk(Vi, Vj)) ∼= HomAi⊗kA

op
j
(Mα,Homk(Vi, Vj))

if Mα is a projective (Ai, Aj)-bimodule or Homk(Vi, Vj) is an injective (Ai, Aj)-
bimodule. Hence the restriction to free Ai-modules, Vi, implies that the under-
ived representation spaces are actually derived, hence well-behaved and natural
to study. One could alternatively consider Mα perfect and remove restrictions on
the representations. Since our main objective is to study preprojective algebras,
we prefer to allow for general Mα.

4. Decorated Preprojective Algebras as Degenerations

Many of the examples of decorated quivers in this paper have an interpretation
as degenerations of ordinary quivers. In this section we explain this interpretation
by first defining a notion of Frobenius deformation and proving that every finite-
dimensional Frobenius algebra degenerates to a Frobenius algebra determined by a
vector space with a non-degenerate bilinear form. In the commutative case, over an
algebraically closed field of characteristic not two, there is a unique such degenerate
algebra. Then we define a notion of Frobenius deformation for decorated quivers
and use this to realize decorated preprojective algebras as degenerations. Finally,
we conjecture that these degenerations are flat, and use upper semi-continuity of
dimension under deformations to reduce the conjecture to a single verification for
each quiver.
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4.1. Frobenius Degenerations. We want to degenerate (or deform) a decora-
tion by degenerating both the k-algebras labelling each vertex and the bimodules
labelling each edge. In the presence of condition (F), the degeneration of the deco-
ration is determined by the degeneration of the algebras at the vertices. Moreover,
to ensure condition (F) is satisfied when degenerating a decoration satisfying con-
dition (F) we need to ensure each symmetric Frobenius algebra degenerates to a
symmetric Frobenius algebra.

We first recall the notions of formal and filtered deformations of associative
algebras and bimodules.

Definition 4.1. Let A and B be unital associative algebras over a field k. One
says B is a formal deformation of A and A is a formal degeneration of B if there
is a k[[t]]-algebra D such that

• D/Dt ∼= A as k-algebras and
• D[t−1] ∼= B((t)) as k((t))-algebras.

Moreover, one says a formal deformation is flat if D ∼= A[[t]] as left k[[t]]-modules.

Definition 4.2. Let A and B be unital associative k-algebras. One says B is a
filtered deformation of A and A is a filtered degeneration of B if there exists:

• a filtration B0 ⊂ B≤1 ⊂ B≤2 ⊂ · · · ⊂ B≤n = B,
• a grading A ∼=

⊕n
i=0Ai, and

• an isomorphism of graded algebras,

gr(B) :=

n⊕

i=0

B≤i/B≤(i−1)
∼=

n⊕

i=0

An
∼= A.

Any filtered deformation B with gr(B) ∼= A gives rise to a formal deformation,

R̂B :=




∑

i≥0

bit
i : bi ∈ B≤i



 ,

called the Rees algebra. We present theory in the more general setting of formal
deformations, but strengthen results by presenting proofs in the more specific set-
ting of filtered deformations.

Since our objective is to degenerate decorated quivers, we want to consider de-
generations preserving condition (F). Notice that a (symmetric) Frobenius algebra
can degenerate to a non-Frobenius algebra, e.g k[[t]][x, y]/(x2− t, y2− t, xy) degen-
erates k⊕3 to k[x, y]/(x2, y2, xy), which is not Frobenius as it is not self-injective
since xA→ A sending x 7→ y does not extend to all of A.

Hence, at each vertex we need to degenerate the symmetric Frobenius algebra
to another symmetric Frobenius algebra.

Definition 4.3. Let D be a formal deformation of associative k-algebras from A
to B. We say the deformation is Frobenius if D is Frobenius as a k[[t]]-algebra and
A and B are Frobenius as k-algebras. Further we say the deformation is symmetric
Frobenius if D, A, and B are all symmetric Frobenius.
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Remark 4.4. This definition appears in [5] and the notion was studied in [3],
where it is shown that the cohomology of the dg-Lie algebra controlling Frobenius
deformations of a fixed Frobenius algebra (A, λ) is the cyclic cohomology of A, see
[3].

Notice that we do not require that the isomorphisms A ∼= D/tD or B((t)) ∼=
D[t−1] preserve the Frobenius forms. This added flexibility is convenient and
innocuous for our purposes since different Frobenius forms on the same decoration
yield isomorphic preprojective algebras, as explained in Remark 3.7. However, one
should be mindful about some non-intuitive consequences of not fixing Frobenius
forms, as explained in Example 4.7 (4).

Remark 4.5. A Frobenius form λ : D → k[[t]] on D gives rise to Frobenius forms
λ0 on the k-algebra A ∼= D/tD and λ1 on the k((t))-algebra B((t)) ∼= D[t−1]
defined so that the following diagram commutes:

D/tD
λ0 // k

D
λ //

mod t

<<②②②②②②②②②
� p

""❉
❉❉

❉❉
❉❉

❉❉
k[[t]]

mod t

::✉✉✉✉✉✉✉✉✉✉

� r

$$■
■■

■■
■■

■■

D[t−1]
λ1

// k((t)).

Remark 4.6. If B is a filtered deformation of a finite-dimensional algebra A =
⊕n

i=0Ai, then a Frobenius form on A induces a Frobenius form on B. To see this,
observe λ : A → k non-degenerate implies ker(λ) 6⊂ An

∼= B/B≤(n−1). Hence the

lift λ̃ : B → k to B by defining λ̃(B≤(n−1)) = 0 is non-degenerate.

Example 4.7.

(1) Assume k contains nth roots of unity, write ζ for a primitive nth root of
unity, and define the surjective algebra homomorphism

k[x]→ k⊕n p(x) 7→ (p(ζ), p(ζ2), . . . , p(ζn))

with kernel (xn− 1). Using this map one can view k⊕n ∼= k[x]/(xn− 1) as
a filtered deformation of k[x]/(xn). The Frobenius form λ : k[x]/(xn)→ k

given by λ(
∑

j ajx
j) = an−1 lifts to λ̃(

∑
j ajx

j) = an−1. Precomposing

with k⊕n ∼= k[x]/(xn − 1) gives the Frobenius form

k⊕n → k (a1, a2, . . . , an) 7→
1

n

n∑

j=1

ζjaj

(2) Fix a field k of characteristic not two, a k-vector space V , and a quadratic
form Q : V → k. Then define the Clifford algebra by

Clk(V,Q) := Tk(V )/〈v ⊗k v −Q(v)1〉v∈V .
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This is a filtered algebra with associated graded algebra given by the exte-
rior algebra,

∧
(V ) = Clk(V, 0). The Frobenius form on the exterior alge-

bra given by projecting onto the top wedge power remains non-degenerate
when viewed as a form on Cl(V,Q).

(3) A ∼=Mat2×2(k) is separable as an algebra over k so

HH2(A,A) := Ext2A⊗Aop−mod(A,A) = 0.

We conclude that A has no deformations as a (symmetric Frobenius) al-
gebra. In particular, A does not deform to k4 and more generally in all
dimensions n ≥ 4, A⊕ kn−4 does not deform to kn.

(4) Mat2×2(k) can be viewed as a Clifford algebra, and hence has a degen-
eration to the exterior algebra. However, it does not degenerate as a
Frobenius algebra using the trace form, and in fact does not degenerate
as a symmetric Frobenius algebra.

In more detail, if k is a field of characteristic not two and containing
i :=

√
−1, then one realizes Mat2×2(k) as a Clifford algebra using the

surjective algebra map

ϕ : k〈x, y〉 → Mat2(k) given by x 7→
(

0 −1
1 0

)
y 7→

(
i 0
0 −i

)

with kernel (x2 + 1, y2 + 1, xy + yx). Therefore,

Mat2×2(k) ∼= k〈x, y〉/(x2 + 1, y2 + 1, xy + yx) ∼= Cl(V,Q)

where V ∼= k2 with basis {x, y} and Q : V → k is determined by Q(x) =
Q(y) = Q(x+ y)/2 = −1. Hence Mat2×2(k) degenerates as an associative
algebra to

∧
(V ).

Consider two Frobenius forms λ1, λ2 : Mat2×2(k)→ k given by,

λ1

(
a b
c d

)
= a+ d λ2

(
a b
c d

)
= b+ c.

Observe λ1 is the usual trace and hence symmetric, but λ1(x) = λ1(xy) =
0 implies it degenerates to a form on

∧
(V ) whose kernel contains the left

ideal generated by x. Therefore, the degeneration as associative algebras
from Mat2(k) to

∧
(V ) cannot be made into a Frobenius degeneration

when Mat2(k) is given the Frobenius form λ1. In fact, one can show that
there is no associative algebra degeneration taking λ1 to a non-degenerate
form on

∧
(V ).

However, λ2 degenerates to π2 :
∧
(V )→ ∧2

(V ) ∼= k, the usual Frobe-
nius form on

∧
(V ). We conclude that (Mat2(k), λ2) Frobenius degenerates

to (
∧
(V ), π2).

In the remainder of this subsection we address the following questions:

Consider the directed graph Gn,k for each n ∈ N and field k with
a vertex for each isomorphism class of n-dimensional Frobenius k-
algebra and an arrow from A to B if A deforms to B as a Frobenius
k-algebra, with some choice of forms. What is the shape of Gn,k?
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More specifically, viewed as a partially ordered set, does it have
a greatest and least element? If not, what are the minimal and
maximal elements?

Example 4.8. The subgraph of commutative Frobenius algebras, denoted Gcom
4,k ⊂

G4,k, for k algebraically closed appears in [5]. Gcom
4,k has least element k[x, y]/(x2−

y2, xy) and greatest element k⊕4, and hence, by composing deformations, every
four-dimensional commutative Frobenius k-algebra deforms to k⊕4 and degener-
ates to k[x, y]/(x2− y2, xy). See Example 4.14 for the entire G4,k, with character-
istic of k not two.

By Remark 4.4, if an algebra has vanishing second cyclic cohomology, then it
has no deformations as a Frobenius algebra, and hence is maximal. Any Frobenius
deformation gives rise to a deformation of associative algebras by forgetting the
Frobenius form and hence rigid algebras are maximal. In particular, this includes
all semisimple algebras.

A commutative n-dimensional algebra is called smoothable if it deforms to k⊕n.
The smallest non-smoothable commutative algebra is 8-dimensional, e.g.

k[x, y, z, w]/(x2, xy, y2, z2, zw,w2, xw − yz),
see [15]. The smallest non-smoothable commutative Frobenius algebra is 14-
dimensional, see [2]. Said differently, k⊕n is the unique n-dimensional, rigid com-
mutative algebra if n < 8 and the unique n-dimensional rigid commutative Frobe-
nius algebra if n < 14. Classifying rigid algebras becomes intractable in higher
dimensions. For a nice survey of the techniques used and difficulties encountered,
see [4], where 8-dimensional rigid algebras are classified.

One can generalize this notion to the non-commutative case by asking when an
algebra deforms to a semisimple algebra. The smallest non-smoothable algebra is
the 3-dimensional path algebra P (A2). The smallest non-smoothable Frobenius
algebras are 4-dimensional, e.g. k〈x, y〉/(x2, y2, xy − 2yx), see Example 4.14.

We now classify minimal elements in Gn,k, i.e. most degenerate Frobenius alge-
bras. Additionally, we characterize Frobenius algebras among associative algebras,
as filtered deformations of this class of algebras.

One can view a finite-dimensional vector space V with a bilinear form (−,−) :
V × V → k as a multiplication µ on the graded vector space V ⊕ k with V
in degree 1 and k in degree 2. The multiplication is trivially associative since
µ◦ (µ⊗ 1) = 0 = µ◦ (1⊗µ) and commutative if (−,−) is symmetric. One can add
a unit, a copy of the ground field in degree 0, to obtain a dim(V ) + 2 dimensional
algebra,

A(V, (−,−)) := k ⊕ V ⊕ k
as a graded vector space with multiplication,

(a, b, c) · (a′, b′, c′) := (aa′, ab′ + ba′, (b, b′) + ac′ + ca′).

Moreover, if (−,−) is non-degenerate, then projecting onto the copy of k in the
second graded piece is a Frobenius form. These algebras are the only candidates
for the most degenerate Frobenius algebras, as made precise in the following propo-
sition.
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Proposition 4.9. Let A be a Frobenius algebra of dimension n > 1 over any
field k. Then there exists a Frobenius form λ on A such that A degenerates as a
Frobenius algebra to A(V, (−,−)) for some non-degenerate, bilinear form (−,−) :
V ⊗ V → k.

How general is this class of algebras? If V is finite-dimensional then choose a
basis {ei} for V and write the bilinear form (−,−) as a matrixM with (i, j)th entry
mij := (ei, ej). Over a field of characteristic different from 2, if (−,−) is symmetric
then one can change bases so that M is diagonal. Moreover, if all square roots of
the diagonal entries are contained in the field, then one can rescale any element
a to a/

√
(a, a) so that the matrix is given by the identity. Hence A(V, (−,−)) ∼=

A(kn, (ei, ej) = δi,j) as Frobenius algebras over an algebraically closed field of
characteristic not two. To condense notation we write Zn := A(kn, (ei, ej) = δi,j)
and note that,

Zn := k[1]⊕k[x1, . . . , xn−2]⊕k[w] xi ·xj = δijw, xi·w = 0 λ : Zn → k[w].

for n ≥ 2 and we define Z1 := k. Therefore, in the commutative case, over an
algebraically closed field of characteristic not two, there is a single most degenerate
Frobenius algebra.

Corollary 4.10. Every n-dimensional commutative Frobenius algebra over an
algebraically closed field k with characteristic not two Frobenius degenerates, with
some choice of form, to Zn.

The idea of the proof of the proposition is to write down an explicit 3-term
filtration on the Frobenius algebra A with form λ by,

k1 ⊂ ker(λ) ⊂ A
whose associated graded algebra is of the form A(V, λ ◦ µ). Therefore, we first
establish a technical lemma that says one can always find a Frobenius form such
that k1 ⊂ ker(λ).

Lemma 4.11. Let A be a Frobenius algebra with form λ over k 6= F2. Then either
A = k or there exists a unit u ∈ A× such that λ(u) = 0. Consequently, there exists
a Frobenius form λ′ on A such that λ′(1) = 0.

Proof. If λ vanishes on a unit u ∈ A× then define λ′ := λ ◦ Lu where Lu is left
multiplication by u ∈ A, so λ′(1) = λ(u) = 0 as desired.

Suppose λ is non-zero on every unit. Notice that each element x ∈ A with xn = 0
gives rise to a unit 1 + x ∈ A× as

(1 + x)




n−1∑

j=0

(−x)j

 = (1 ± xn) = 1.

Then λ(1·λ(x)−λ(1)·x) = 0 implies 1·λ(x)−λ(1)·x is not a unit and hence λ(x) =
0. We conclude that λ vanishes on all nilpotent elements and hence λ vanishes
on the Jacobson radical, J(A). Non-degeneracy of λ implies J(A) = 0. The
vanishing of the Jacobson radical and the fact that A is Artinian together imply
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that A is semisimple. By the Artin-Wedderburn Theorem, A ∼=
∏m

i=1 Matni
(Di)

is a product of matrix algebras over division algebras over k.
Therefore, A has a subalgebra k

∑m
i=1 ni of diagonal matrices with coefficients in

k. Splitting the inclusion of this subalgebra and summing the components gives a
Frobenius form

λ′ : A ∼=
m∏

i=1

Matni
(Di) −→ k

∑

ni −→ k,

which by construction agrees with the usual trace for matrices in
∏

iMatni
(k). In

particular, λ′ vanishes on the units given by products of diagonal matrices with
non-zero entries summing to zero. Such entries can be found since k 6= F2.

As any two Frobenius forms differ by multiplication by a unit, see Remark 3.7,
we have λ′ = λ ◦ Lu for some u ∈ A×. In particular, λ vanishes on a unit if and
only if λ′ does. So we conclude that m = 1 and n1 = 1.

Now A ∼= D1 and λ : A → k doesn’t vanish on a unit only if λ is injective.
Hence A = k, completing the proof. �

Remark 4.12. If k = F2, the above proof holds for m even, and for m odd can be
modified to show A = Fm

2 , a product of copies of F2 with pointwise multiplication.
Non-degeneracy of a form λ : A → F2 implies λ(1, 0, . . . , 0) = λ(0, 1, 0, . . . , 0) =
· · · = λ(0, . . . , 0, 1) = 1, in which case λ(1, 1, . . . , 1) = m ≡ 1 (mod 2). Hence
A has a unique Frobenius form, which takes the unit to one. Therefore, the
assumption that k 6= F2 in Lemma 4.11 is necessary. However, if m ≥ 3 is odd,
then Fm

2
∼= F2

2 ⊕ F
m−2
2 Frobenius degenerates to F2[x]/(x

2) ⊕ F
m−2
2 , which has

Frobenius form λ(b1 + b2x, a1, . . . , am−2) = b1 + b2 + a1 + · · ·+ am−2 sending the
unit to zero. Therefore, every Frobenius algebra Frobenius degenerates to a one
whose form vanishes on a unit.

Proof. (of Prop 4.9) If k 6= F2, then by Lemma 4.11 A has a Frobenius form which
vanishes on the unit. If k = F2 then A either has such a form, or can be Frobenius
degenerated to an algebra B with form λ satisfying λ(1) = 0, by Remark 4.12.
Then the filtration,

k1 ⊂ ker(λ) ⊂ B
has associated graded algebra

gr(B) = k1⊕ ker(λ)/k1⊕B/ ker(λ).
Define V := ker(λ)/k1 and observe B/ ker(λ) ∼= im(λ) ∼= k, so gr(B) = k ⊕ V ⊕ k
as a graded vector space. λ is still a well-defined Frobenius form on gr(B). And
multiplication is defined on gr(B) so that (1, 0, 0) is the unit and (0, v, 0)·(0, w, 0) =
λ(µ(v, w)). Hence A degenerates as a Frobenius algebra to A(V, λ ◦ µ). �

The upshot is that every n-dimensional Frobenius algebra has a filtered Frobe-
nius degeneration to some A(V, (−,−)). In the commutative case, over an alge-
braically closed field of characteristic not two, A(V, (−,−)) ∼= Zn. Conversely,
Frobenius algebras are characterized among associative algebras as being filtered
deformations of some A(V, (−,−)), which necessarily preserves the Frobenius form
by Remark 4.5.



FROBENIUS DEGENERATIONS OF PREPROJECTIVE ALGEBRAS 29

Remark 4.13. Frobenius degenerations from A(V, (−,−)) to A(V, (−,−)′) by
definition preserve the unit and top-graded piece and hence necessarily arise as
degenerations of the underlying bilinear form. In terms of the corresponding ma-
trices M and M ′ of the forms, one must have M ′ in the closure of the congruence
class of M , i.e.

M ′ = lim
t→0

NtMN⊺

t ,

for some Nt ∈Mat|V |(k((t))). For instance,

(
0 1
−1 0

)
= lim

t→0

(
t2 1
−1 0

)
= lim

t→0

(
t 0
0 1/t

)(
1 1
−1 0

)(
t 0
0 1/t

)

realizes the skew-symmetric bilinear form as a degeneration of the form on k2x,y
given by (x, x) = (x, y) = −(y, x) = 1 + (y, y) = 1. This is the only non-trivial
deformation among non-degenerate bilinear forms on k2, see [7]. The question of
determining the closures of congruence classes of matrices is studied in [8], by first
establishing a canonical form for every congruence class of matrices.

Example 4.14. Here is G4,k for characteristic of k not 2, where we have omitted
arrows that can be obtained as a composition of the given arrows. The commuta-
tive component appeared in [5], and is classical.

k[x, y]

(x2 − y2, xy)
k[x]

(x4)

k[x]

(x3)
⊕ k

k[x]

(x2)
⊕ k[y]

(y2)

k[x]

(x2)
⊕ k ⊕ k k⊕4

∧
(k2) Mat2(k)



























a 0 0 0
0 a 0 d
c 0 b 0
0 0 0 b























: a, b, c, d ∈ k




∼= Π(A2)

k〈x, y〉
(x2, y2, xy − λyx) ,

k〈x, y〉
(y2, x2 + yx, xy + yx)

λ ∈ k\{−1, 0, 1}

//

55❧❧❧❧❧❧❧❧

))❘❘
❘❘❘❘

❘

**❱❱❱
❱❱❱❱

❱❱❱

44❤❤❤❤❤❤❤❤❤

//

// //

��
✷✷

✷✷
✷✷

✷✷
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Notice that the algebras on the far left are of the form A(k2, (−,−)):

A(k2,

(
1 0
0 1

)
) ∼= k[x, y]/(x2 − y2, xy)

A(k2,

(
0 1
−1 0

)
) ∼=

∧
(k2)

A(k2,

(
0 1
λ 0

)
) ∼= k〈x, y〉/(x2, y2, xy − λyx)

A(k2,

(
1 1
−1 0

)
) ∼= k〈x, y〉/(y2, x2 + yx, xy + yx).

The deformation of Π(A2) = k[e1, e2] ⊕ k[α, α∗] to the matrix algebra is given
by deforming the preprojective relation [α, α∗] = t(e1 − e2). The degeneration to∧
(k2) is the filtered Frobenius degeneration produced in the proof of Proposition

4.9, with λ given by summing the non-diagonal entries, which vanishes on the
identity. The deformation from

∧
(k2) to k〈x, y〉/(y2, x2+yx, xy+yx) comes from

a deformation of the underlying bilinear forms, as explained in Remark 4.13.

4.2. Degenerations of Preprojective Algebras. We define a notion of degen-
eration of decorations, which gives rise to degenerations at the level of decorated
path and preprojective algebras. We use this notion to view decorated preprojec-
tive algebras as degenerations of ordinary preprojective algebras.

We want to deform pairs (A,M) where A is a k-algebra and M is an A-bimodule.

Definition 4.15. Let A, B be associative algebras and M an A-bimodule and N
a B-bimodule. One says (A,M) deforms to (B,N) if there exists a pair (D,P )
where D is a k[[t]]-module deforming A to B and P is a D-bimodule such that,

• P/tP ∼=M as A-bimodules
• P [t−1] ∼= N((t)) as B((t))-bimodules

Moreover, one says the deformation is flat if (D,P ) ∼= (A[[t]],M [[t]]) as k[[t]]-
modules.

One can modify this definition to work for left or right modules as well. Addi-
tionally, if D is a symmetric Frobenius deformation then we say the pair (D,P ) is
a symmetric Frobenius deformation.

Remark 4.16. In the presence of condition (F), one only needs to degenerate A as
an (A, k)-bimodule, (k,A)-bimodule, or (A,A)-bimodule. All such degenerations
come from degenerations of A as an algebra over k. Moreover, flatness of the
module deformation is precisely flatness of the algebra deformation.

Hence, we arrive at the notion of degeneration of a decoration (Q,DQ) by
degenerating each k-algebra and bimodule.

Definition 4.17. Let DQ = (Ai,M
α) and D′

Q = (Bi, N
α) be decorations of

Q. One says DQ deforms to D′
Q if the pair (⊕i∈Q0Ai,⊕α∈Q1M

α) deforms to

(⊕i∈Q0Bi,⊕α∈Q1N
α).
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Notice that degenerations of decorated quivers need not preserve condition (F),
even for the quiver with a single vertex and no arrows, see Example 4.7. Conse-
quently, we exclusively consider symmetric Frobenius degenerations of decorations,
which do preserve condition (F).

Conceptually, one can view the pair (⊕i∈Q0Di,⊕α∈Q1P
α) as a decoration for Q

by symmetric Frobenius k[[t]]-algebras. Now the path algebra, Pk[[t]](Q, (Di, P
α)),

is a deformation from Pk(Q, (Ai,M
α)) to Pk(Q, (Bi, N

α)). And, using the Frobe-
nius form on the deformation, the preprojective algebra Πk[[t]](Q, (Di, P

α)) is a
deformation from Πk(Q, (Ai,M

α)) to Πk(Q, (Bi, N
α)).

Having defined degenerations of decorations we now define foldings of decora-
tions. If Q is a quiver with graph automorphisms Aut(Q), then one can form the
quotient quiverQ/Aut(Q) and decorate it with decorationDQ/Aut(Q) = (Bj , N

β)
defined by:

Bj :=
⊕

i∈Aut(Q)·j

Ai and Nβ :=
⊕

α∈Aut(Q)·β

Mα.

In this case, we say (Q,DQ) folds to (Q/Aut(Q), DQ/Aut(Q)).
Consider Q a quiver with the decoration

CQ := {Ai = k,Mα = k},

known as the constant k-decoration. With this decoration, one recovers the clas-
sical notions,

Rep(Q,CQ) ∼= Rep(Q) P (Q,CQ) = P (Q) Π(Q,CQ) = Π(Q).

Next suppose Q has non-trivial graph automorphisms and fold (Q,CQ) to
(Q/Aut(Q), CQ/Aut(Q)), so the decoration consists of sums of copies of k at each
vertex. Notice,

Rep(Q) ∼= Rep(Q,CQ) ∼= Rep(Q/Aut(Q), CQ/Aut(Q))

P (Q) = P (Q,CQ) ∼= P (Q/Aut(Q), CQ/Aut(Q))

Π(Q) = Π(Q,CQ) ∼= Π(Q/Aut(Q), CQ/Aut(Q))

so we’ve built a decorated quiver with (1) the same preprojective algebra as an
ordinary quiver and (2) a non-trivial degeneration to a decorated quiver for each
symmetric Frobenius degeneration at each folded vertex.

It is natural to ask which decorated quivers, and hence decorated preprojective
algebras, arise from ordinary quivers, and hence ordinary preprojective algebras,
in this way. In the case of a quiver with no arrows, this is the class of Frobenius
algebras with a Frobenius deformation to k⊕n, denoted Fn. More generally, any
decorated quiver (Q,DQ) satisfying condition (F) with ⊕iAi ∈ F∑

i dimk(Ai) de-
forms to an ordinary quiver. Consequently, a large class of decorated preprojective
algebras deform to ordinary preprojective algebras, including many in [11].

Example 4.18. For any dimension vector d = (di) ∈ Nn, and choice of Frobenius
algebra Fi ∈ Fdi

for i ∈ {1, . . . , n} can obtain a decorated An quiver with the
k-algebras given by Fi, and the arrows decorated by Fi ⊗ Fi+1 as a degeneration
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of the k-constant decoration of the quiver,

• //

��
❅❅

❅❅
❅❅

❅

��
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮

• //

��
❅❅

❅❅
❅❅

❅

��
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮

• //

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

· · · •

•

??⑧⑧⑧⑧⑧⑧⑧
//

��
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲

•

??⑧⑧⑧⑧⑧⑧⑧
//

��
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲

•

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ //

��
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
· · · •

...
...

... · · ·
...

• //

HH✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑

JJ✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕ • //

HH✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑

JJ✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕ • //

@@��������������������

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠ · · · •
with di vertices in the ith column.

4.3. Flatness Conjecture. In this subsection, we conjecture that all flat Frobe-
nius degenerations of decorations induce flat degenerations of the preprojective
algebras.

Recall that a deformation of associative algebras D deforming A to B is flat
if D ∼= A[[t]] as k[[t]]-modules. If D is finitely-generated over k[[t]] then flatness
is equivalent to dimk(A) = dimk(B). In the absence of flatness, the vector space
underlying B is no larger than that of A.

Proposition 4.19. Let A and B be finite-dimensional k-algebras. If A deforms
to B as k-algebras, then dimk(A) ≥ dimk(B).

In all of the cases where we use this inequality one has a finite filtration on B,
B≤0 ⊂ B≤1 ⊂ · · · ⊂ B≤m = B such that A is the associated graded algebra and
hence there is a surjection, ϕn : An → B≤n/B≤n−1 for each n and hence,

dim(A) =

m∑

n=0

dim(An) ≥
m∑

n=0

dim(B≤n/B≤n−1) =

m∑

n=0

dim(B≤n)− dim(B≤n−1)

= dim(B≤m)− dim(B≤−1) = dim(B).

In general, the inequality can be strict, e.g. k[[t]][x]/(xt, x2) deforms k[x]/(x2) to
k.

Additionally, in our set-up A and B both have N-gradings, distinct from the
grading already on A as a filtered degeneration, by path length. The deformation
preserves the length of each element and so we will have the more refined inequality
on the level of Hilbert–Poincaré series

hA(t) :=
∑

j∈N

dim(Aj)t
n

given by hA(t) ≥ hB(t) in the sense that the difference hA(t) − hB(t) has non-
negative coefficients.

In the interest of computing the Hilbert–Poincaré series of decoration prepro-
jective algebras, we would like to know when the degeneration from the ordinary
preprojective algebra, defined in the previous section, is flat. Flatness of the length
zero and one paths says the algebras and the bimodules in the decoration have the
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same dimension. We conjecture that this is all that is needed to ensure flatness in
any length.

Conjecture 4.20. Suppose DQ flatly Frobenius deforms to D′
Q. Then with respect

to the path length grading,

hΠ(Q,DQ)(t) = hΠ(Q,D′

Q
)(t).

For ordinary preprojective algebras of Dynkin quivers, one can use the Euler-
Poincaré principle applied to the Schofield resolution to get a formula for the
Hilbert–Poincaré series:

hΠ(Q)(t) =
1− Ptmax

1−At+ t2

where A is the adjacency matrix for Q, and P is the permutation matrix of the
vertices induced from the Nakayama automorphism, see [14]. In the non-Dynkin
case, one can again use the Euler-Poincaré principle, now applied to the Koszul
resolution, to get a formula for the Hilbert–Poincaré series:

hΠ(Q)(t) =
1

1−At+ t2
.

If we assume the Schofield and Koszul resolutions degenerate to resolutions in
the decorated setting, then the same analysis produces the following formula. Let
A = (ai,j) be a |Q0| × |Q0| matrix with coefficients in Z defined by

ai,j :=
∑

α:i→j∈Q1

dimk(M
α)

dimk(Ai)
.

Let D = (di,j) be a diagonal matrix defined by di,j = δij dimk(Ai). We conjecture
the following formula holds:

Conjecture 4.21. The Hilbert–Poincaré series of Π(Q,DQ), with DQ = (Ai,M
α)

is given by,

hΠ(Q,DQ)(t) =

{
(I + tmaxt+2P )D(1−At+ t2)−1 for (Q,DQ) Dynkin

D(1− At+ t2)−1 otherwise

where, in the Dynkin case, maxt is the maximum path length of a non-zero homo-
geneous element in Π(Q,DQ) and P is the permutation matrix for the permutation
of the set {1Ai

}i∈Q0 given by the Nakayama automorphism.

By Proposition 4.19, it suffices to prove Conjecture 4.20, at the extremes. That
is, for a fixed quiver Q, it suffices to prove the conjecture for DQ = (Ai,M

α) with
each Ai a most degenerate Frobenius algebra and with each Ai a most deformed
Frobenius algebra. By Proposition 4.9 and Remark 4.13, the most degenerate
Frobenius algebras are given by a vector space with a non-degnerate billinear form
without degenerations to an inequivalent non-degenerate bilinear form.

In the commutative case, if k is algebraically closed and characteristic zero,
with n < 14, k⊕n is the unique most deformed Frobenius algebra and Zn is the
unique most degenerate Frobenius algebra, by [2] and Corollary 4.10. Therefore,
to prove the conjecture for commutative decorations of total dimension less than
14, one only needs to establish a single equality of Hilbert–Poincaré series. Addi-
tionally, one Hilbert–Poincaré series is equal to an ordinary preprojective algebra
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and hence is known and the other cannot have any smaller coefficients. Therefore,
the conjecture reduces to finding a spanning set (of a specified size) for a single
algebra.

In particular, in the Dynkin setting, the automorphism groups of the under-
lying diagrams are: (1) trivial in types B,C, F,G, (2) Z/2Z in types A,D,E
except D4 and (3) the symmetric group on the three valence one vertices in type
D4. Therefore, by folding the constant decoration at these vertices, one gets the
Frobenius algebras k, k⊕2, k⊕3. Consequently, in the Dynkin setting, we only need
to consider the maximal Frobenius degeneration of decorations k, k⊕2, k⊕3 to k,
k[x]/(x2), and k[x]/(x3) respectively. In Section 5, we exploit these observations
to prove the conjecture in the Dynkin case.

Remark 4.22. By generalizing a result of Etingof and Eu, in [9], we believe that
the conjecture can be reduced to the Dynkin and extended Dynkin cases. In more
detail, for any connected non-Dynkin quiver Q there exists an extended Dynkin
subquiver QE. Filter Π(Q) by giving arrows in QE degree one, while all others

are degree zero. For any subquiver of Q′ ⊂ Q, denote by Q̂′ the quiver with arrow
set Q′

1 but vertex set Q0. Then,

gr(Π(Q)) = Π(Q̂E) ∗Π(Q̂\QE , (QE)0)

where Π(Q̂\QE , (QE)0) is the algebra obtained from Π(Q̂\QE) by deleting the
relation at each vertex in QE . This determines the Hilbert–Poincaré series of
Π(Q) in terms of the known polynomial for QE and a partial preprojective algebra.
Future work will attempt to generalize this argument to the decorated setting.

Evidence for Conjecture 4.20 consists of the following:

(1) a proof of the conjecture in the case Q is Dynkin, see Theorem 4.26,

(2) a proof of the conjecture in the case Q = D̃4 with commutative algebras at
the vertices see [5], and computer evidence suggesting that commutativity
can be removed,

(3) and computer evidence in the case

Q = ({1, · · · , n}, {α1, · · · , αn−1}, s(αi) = i, t(αi) = n)

for n ≤ 50, in low path-graded pieces.

Here we present computations in Magma providing evidence for the conjecture.

Let Qn+1 be a quiver with n + 1 vertices, n sources and one sink. Qn+1 can
be folded to A2 with decoration k⊕n and k at the vertices. Then one can maxi-
mally degenerate the decoration to Zn and k. Denote the decorated preprojective
algebra by Π(Zn) and its j-path graded piece by Πj(Zn).

Using Magma we’ve shown,

Proposition 4.23.

dimΠj(Qn+1) = dimΠj(Zn)

for (j, n) ∈ {1, . . . , 10} × {1, . . . , 10} ∪ {1, . . . , 5} × {11, . . .50}.
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Corollary 4.24. Every degeneration of Π(Qn) by degenerating the decoration is
flat in the jth graded piece, for j ≤ 5 and n ≤ 50.

Additionally, we computed the dimension of the decorated preprojective algebra
of the A2 quiver, with labels k and Matn(k), denoted Π(Matn(k)).

Proposition 4.25.

dimΠj(Matn(k)) = dimΠj(Zn2)

for (j, n) ∈ {1, . . . , 10} × {1, 2, 3} ∪ {1, . . . , 5} × {4, 5, 6, 7}.
Combining the propositions, one has

dimΠj(Matn(k)) = dimΠ(Qn2+1)

despite there being no deformation of k → Matn(k) to k → k⊕n2

.
This suggests that Theorem 3.8 in [5], giving the dimensions dimΠj(F ) for all

j ∈ N and for any F , a four-dimensional commutative Frobenius algebra, may hold
for non-commutative Frobenius algebras as well.

In the next section we prove the conjecture in the case of degenerations of
Dynkin quivers.

Theorem 4.26. Let (Q,DQ) be Dynkin. Suppose DQ Frobenius degenerates flatly
to D′

Q. Then, Π(Q,DQ) and Π(Q,D′
Q) are both Frobenius algebras and Π(Q,DQ)

Frobenius degenerates flatly to Π(Q,D′
Q).

Remark 4.27. Theorem 4.26 only addresses Frobenius degenerations of prepro-
jective algebras coming from degenerations of decorated quivers. This does not
include, for instance, the degeneration of Π(A2) to ∧(k2) from Example 4.14, which
in degree zero degenerates ke1 ⊕ ke2 to k.

Proof. For each non-simply laced Dynkin diagram X obtained by folding Q denote
by Π(X) the quiver obtained in the statement above with the most degenerate
decorations. To show flatness it suffices to compute the dimension of Π(X), apriori
no smaller than the dimension of Π(Q) by Proposition 4.19. Hence we need to
show:

• dim(Π(G2)) ≤ dim(Π(D4)) = 28
• dim(Π(F4)) ≤ dim(Π(E6)) = 156
• dim(Π(Bn)) ≤ dim(Π(A2n−1)) =

1
3n(2n− 1)(2n+ 1)

• dim(Π(Cn)) ≤ dim(Π(Dn+1)) =
1
3n(n+ 1)(2n+ 1)

This is done in each subsection of Section 5.

In each case, the Frobenius structure on Π(X) can be viewed as a composition:

λ : Π(X)
π
։ Πmaxt(X) ∼= Π0(X)

⊕λi−→ k,

where π is the projection to the maximum length paths and ⊕iλi is the Frobenius
form on the sum of the decorations at the vertices. Since ⊕λi is non-degenerate
by assumption, it suffices to show π is non-degenerate. In other words, we need to
show any path can be extended to a maximum length path, i.e. for all q ∈ Π(X)
there exists p ∈ Π(X) such that pq ∈ Πmaxt(X). This is apparent in the explicit
bases we produce, where each basis element is visibly a subpath of a maximum
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length basis element. From this perspective the deformation to an ordinary pre-
projective algebra is a Frobenius deformation, coming from the Frobenius defor-
mations of the decorations at the vertices. �

Remark 4.28. These arguments hold over any field, as the classification of 3-
dimensional Frobenius algebras over k is independent of k, and the calculations
do not involve dividing by integers.

5. The Dynkin Case

This section is dedicated to a proof of Theorem 4.26, which proves Conjecture
4.20 in the case of Q Dynkin. In the previous section, we reduced Theorem 4.26
to computing spanning sets for the decorated quivers,

Π(Bn),Π(Cm),Π(F4),Π(G2)

for n ≥ 2 and m ≥ 4, defined by folding and maximally degenerating (Q,CQ) with
Q respectively A2n−1, Dm+1, E6, and D4. In diagrams,

k // · · · // k

A2n−1 = k

@@✂✂✂✂✂

��
❄❄

❄❄

fold=⇒ k // k ⊕ k // · · · // k ⊕ k
deg

Bn = k // S // · · · // S

k // · · · // k

k

Dm+1 = k // · · · // k

==④④④④④④

!!❈
❈❈

❈❈
❈

fold=⇒ k // · · · // k // k ⊕ k
deg

Cm = k // · · · // k // S

k

k

k

::✉✉✉✉✉✉

E6 = k // k

CC✞✞✞✞

��
✼✼

✼✼
fold=⇒ k // k // k ⊕ k // k ⊕ k

deg
F4 = k // k // S // S

k

$$■
■■■

■■

k

k

D4 = k //

CC✞✞✞✞

��
✼✼

✼✼
k

fold=⇒ k // k ⊕ k ⊕ k
deg

G2 = k // S′

k
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where S := k[x]/(x2) and S′ := k[x]/(x3) are the most degenerate Frobenius
algebras of dimension 2 and 3, respectively. Now,

Π(Bn) := Π(k → S → · · · → S) Π(F4) := Π(k → k → S → S)
Π(Cn) := Π(k → · · · → k → S) Π(G2) := Π(k → S′)

We present these examples in a pedagogical order. The first example, Π(G2) can
be carefully worked out by hand without machinery and mirrors the computations
of Π(D4). The second example, Π(F4) requires more knowledge of preprojective
algebras and is more difficult. The third and fourth examples, Π(Bn) and Π(Cn)
use Gröbner bases.

Remark 5.1. The Bn and Cn examples are long since we provide the reader with
the additional information of how to arrive at a basis, instead of merely checking
a set is a basis, in order to demystify the computation. We also give a proof of
linear independence by applying the Buchberger’s algorithm and showing that all
ambiguities are resolvable. In light of the inequality in Proposition 4.19 this is not
strictly necessary, but highlights a technique available for computing the Hilbert–
Poincaré series of decorated quivers not arising as degenerations. The reader can
distill each subsection to half a page by first listing the Gröbner basis of the ideal
(r) ⊂ P (Q,DQ) and the proposed spanning set. Then one can verify that the
elements of the Gröbner basis lie in the ideal generated by the relations and show
that the proposed set spans modulo (multiples of) leading terms of the Gröbner
basis.

Remark 5.2. Recall that flipping the orientation of an arrow α ∈ Q1 in a quiver
Q gives a new quiver, denote it Qα, with the same double Q = Qα. Moreover, one
can identify the path algebras

P (Q)→ P (Qα)

by sending

α 7→ α∗ α∗ 7→ −α.
Now let Q be a bipartite graph and fix a decomposition Q0 = Q′

0 ⊔ Q′′
0 . By

applying orientation flips, one can arrange for each source to lie in Q′
0 and each

target in Q′′
0 . Such flips give equivalences on the path algebras of the doubled

quivers, described above. Then observe for any arrow α ∈ Q1, one has

 ∑

e′∈Q′

0

e′ −
∑

e′′∈Q′′

0

e′′


 (αα∗ − α∗α) = αα∗ + α∗α

and 
 ∑

e′∈Q′

0

e′ −
∑

e′′∈Q′′

0

e′′


 (αα∗ + α∗α) = αα∗ − α∗α.

Therefore, the two-sided ideal generated by (αα∗−α∗α) equals that generated by
(αα∗ +α∗α), and consequently one can drop the signs in the definition of the pre-
projective algebra. This argument applies equally well in the setting of decorated
bipartite quivers, which includes all examples in the next section. Therefore, for



38 DANIEL KAPLAN

computations in Section 5 we will drop all minus signs in the relations for conve-
nience.

5.1. Case: Π(G2). Let Q = A2 with DQ = ({k, S := k[x]/(x3)}, {kSS}), visual-
ized as

k

k⊗kS
""

S.

To compute the preprojective algebra one doubles the quiver and doubles the
decoration by adding the bimodule Homk(kSS , k) ∼= SSk.

We will begin by describing an explicit basis for the algebra Π(G2) := Π(Q,DQ).
Since a degeneration cannot have smaller dimension, we have

dimΠ(G2) ≥ dimΠ(D4) = 28

So we will produce a spanning set with 28 elements, which is automatically linearly
independent by the above discussion on degenerations.

Remark 5.3. To distinguish between the length zero paths 1 ∈ k and 1 ∈ S as well
as the length one paths 1 ∈ SSk and 1 ∈ kSS we use subscripts: k1k, S1k, k1S , S1S.
Often, the path γ will be written s(γ)γt(γ), to delineate its location.

Proposition 5.4. The following set is a basis of the algebra

Π(G2) = TS⊕k(kSS ⊕ SSk)/〈k1⊗S 1k + 1⊗k x
2 + x⊗k x+ x2 ⊗k 1〉

as a vector space over k, presented by length with α := k1 ⊗S xk, β := k1 ⊗S x
2
k

and B := {1, x, x2} ⊂ S a basis for S over k:

Length 0: B, k1k Length 3: α⊗k 1 · B, B · 1⊗k α
Length 1: B · S1k, k1S · B Length 4: α⊗k β, 1⊗k α⊗k 1 · B
Length 2: α, β, 1⊗k 1 · B, x⊗k 1 · B.

Corollary 5.5. S1S ·Π(G2) is a free left S-module and Π(G2) · S1S is a free right
S-module

Corollary 5.6. The Hilbert–Poincaré series for Π(G2) is

hΠ(G2)(t) = 4 + 6t+ 8t2 + 6t3 + 4t4

where the coefficient of ti is the dimension Πi(G2), the subspace spanned by length
i paths. Using the bigrading (t, s) by path length and x-degree, one obtains the
matrix-valued Hilbert–Poincaré series

(1 + t2s)

(
1 + t2s2 (1 + s+ s2)t

(1 + s+ s2)t (1 + s+ s2)(1 + t2)

)

where enumerating the vertices the (i, j)th entry is the Hilbert–Poincaré series
heiΠ(G2)ej (t, s).

Define M := S as a (k, S)-bimodule and N := S as a (S, k)-bimodule. Before
presenting a proof, we make a few useful observations. Notice that in length 2,

T 2
S⊕k(M ⊕N) = (M ⊕N)⊗S⊕k (M ⊕N) =M ⊗S N ⊕N ⊗k M

and similarly for higher length terms: the two non-vanishing tensor products al-
ternate in M and N .



FROBENIUS DEGENERATIONS OF PREPROJECTIVE ALGEBRAS 39

Moreover, in odd length the two non-zero tensor products are isomorphic via a
map reading each tensor product from right to left. In even length 2m, the term
starting with M is a vector space generated by applying 1⊗S− to paths of length
2m− 1. The term starting with N is an S-bimodule generated as left S-module
by applying 1 ⊗k − to paths of length 2m − 1 and hence generated as a vector
space by left multiplication by S1k, Sxk, and Sx

2
k.

Finally, notice that the tensor algebra TS⊕k(M ⊕N) has a decomposition

TS⊕k(M ⊕N) = (1k + 1S)TS⊕k(M ⊕N)(1k + 1S)

= kTS⊕k(M ⊕N)k ⊕ kTS⊕k(M ⊕N)S

⊕ STS⊕k(M ⊕N)k ⊕ STS⊕k(M ⊕N)S

and an N-grading given by the number of times x appears in a monomial ex-
pression. Since the relations 1 ⊗S 1 and Rel := 1 ⊗k x

2 + x ⊗k x + x2 ⊗k 1 are
homogeneous with respect to this grading and respect the above decomposition,
the quotient Π(G2) inherits both. We conclude that all relations are generated
by relations involving only paths with the same starting and ending vertex of
the same length and x-degree. We write Ai

Πd(G2)Aj
for the subspace of linear

combinations of length d paths starting at vertex i and ending at vertex j.

Proof of Proposition 5.4. Once we show that the given set spans, then linear in-
dependence will follow from Proposition 4.19 together with the fact that Π(D4) is
28-dimensional. So we will only need to show the spanning property.

For lengths 0 and 1, it is clear that these elements span. For higher lengths we
now explain how any tensor product of lower length basis elements can be realized
in the span of our given basis.

In length 2, M ⊗S N ∼= S is three dimensional generated by 1 ⊗S 1, α, and β.
Since 1 ⊗S 1 is a relation in Π(G2), it follows that α and β generate kΠ

2(G2)k.
N ⊗k M is generated by 1⊗k 1 as an S-bimodule and hence is 9-dimensional as a
vector space, generated by the six elements 1⊗k 1 · B and x⊗k 1 · B together with
the elements

Rel := 1⊗k x
2 + x⊗k x+ x2 ⊗k 1

x · Rel = x⊗k x
2 + x2 ⊗k x

x2 · Rel = x2 ⊗k x
2

all relations in Π(G2).
In length 3, both direct summands have the same dimension, and applying

−⊗k M to the 2-dimensional vector space Span{α, β} =M ⊗S N/〈1⊗S 1〉 yields
the spanning set,

α⊗k B ∪ β ⊗k B.
For each n ∈ {2, 3, 4}, if we sum all of the above elements of x-degree equal to n,
we obtain the relation xn−2⊗SRel. Hence the smaller set α⊗kB spans kΠ

3(G2)S ,
as desired.

In length 4, first notice that the quotient kΠ
4(G2)k of M ⊗S N ⊗kM ⊗S N has

a spanning set

α⊗k B ⊗S 1,
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the image of the spanning set α⊗k B under the surjective map −⊗S 1. The term
α⊗k 1⊗S 1 is zero in the quotient, as is the term

α⊗ x⊗S 1 ≡ 1⊗S Rel⊗S 1 mod 1⊗S 1.

Next the quotient SΠ
4(G2)k of N⊗kM⊗SN⊗kM is generated as a left S-module

by
1⊗k 1⊗S x⊗k B.

But, this set also generates as a vector space since,

x · (1⊗k 1⊗S x⊗k 1)− (1⊗k 1⊗S x⊗k 1) · x ≡ 1⊗k 1⊗S Rel−Rel⊗S 1⊗k 1

are congruent modulo 1 ⊗S 1, so the left action is equivalent to a right action,
which produces no new terms as S ⊗S S ∼= S.

To show Π≥5(G2) = 0, it suffices to show that Π5(G2) = 0, and by the isomor-
phism between the direct summands, it suffices to show that kΠ

5(G2)S is zero. As
a right S-module kΠ

5(G2)S is generated by the element,

1⊗S x⊗k 1⊗S x
2 ⊗k 1,

which is the relation 1 ⊗S x ⊗k 1 ⊗S Rel + 1 ⊗S Rel ⊗S 1 ⊗k x modulo 1 ⊗S 1,
and hence zero in Π(G2). We conclude that our given set spans and hence forms
a basis for Π(G2). �

Remark 5.7. Here is an alternative proof of linear independence that does not
appeal to degeneration arguments, but rather examines the relations carefully.
The technical computations are left to the reader.

Notice any two basis elements are in different bigradings or start at different
vertices and hence are linearly independent with the following exceptions

x⊗k 1, 1⊗k x and x⊗k x, 1⊗k x
2

which can be seen to be linearly independent directly from the definition. To see
that all listed paths are non-zero observe each is a subpath of 1 ⊗S x ⊗k 1 ⊗S x

2

or 1⊗k 1⊗S x⊗k x
2, which can be shown non-zero by writing out the length four

elements in the two-sided idea generated by the relations.

Next notice that Π(G2) is Frobenius with the form given by projecting to the
one-dimensional space, spanned by the element,

1⊗S x⊗k 1⊗S x
2 + 1⊗k 1⊗S x⊗k x

2

summing over both cycles of maximal bigrading (4, 3). Non-degeneracy of this
form amounts to the fact that every path is a subpath of a maximal length cycle,
which can be checked by hand. This Frobenius form deforms to the usual one on
Π(D4).

Corollary 5.8. Π(G2) is a flat Frobenius degeneration of Π(D4).

Restricting to the above basis, the Frobenius pairing, given by first multiplying
and then applying the Frobenius form, takes values in {−1, 0, 1}with the −1 values
given by the pairs:

(1⊗S x, 1⊗S x
2) (1 ⊗k x, 1⊗k x

2) (x⊗k 1, x⊗k x)
(Sxk, 1⊗S x⊗k x) (kx

2
S , S1⊗k 1⊗S x) (kxS , Sx⊗k 1⊗S x)

(k1S , Sx
2 ⊗k 1⊗S x)
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The Nakayama automorphism is given by a 7→ −a on the elements appearing
in the above pairings and is the identity on all other basis elements, and hence
squares to the identity.

Using computations from the proof of Proposition 5.4, it is not hard to compute
the center, Z(Π(G2)).

Proposition 5.9. Z(Π(G2)) = k · 1⊕Π4(G2) ∼= k[0]⊕ (k ⊕ S)[4].
Proof. The Frobenius structure allows one to identify Πi(G2) with Π4−i(G2)

∗ for
i ∈ {0, 1, 2, 3, 4}. In particular, the Frobenius pairing identifies Π4(G2) with S⊕k,
explaining the second isomorphism.

Π4(G2) ⊂ Z(Π(G2)) as one only needs to check that the commutator [SxS , 1⊗k

1 ⊗S x ⊗k 1] vanishes, which is done in the proof of Proposition 5.4 above. Con-
versely, Z(Π(G2) ⊂ k[0] ⊕ k[4] ⊕ S[4] as the centralizer of k1k excludes all paths
of odd length, the centralizer of k1S excludes all paths of even length less than 4
except the the span of the identity and the span of {1⊗k γ}γ∈{1,x,x2}. The latter
span is not in the centralizer of kxS . �

5.2. Case: Π(F4). Now we consider the example Q = A4 with decoration
DQ = ({k, k, S, S}, {k, k⊗k S, S}). The doubled decorated quiver is,

k

k
  

k

k

__

k⊗kS

!!

S

S⊗kk

__

S
!!

S

S

__

We want to compute a basis for the decorated preprojective algebra
Π(F4) := Π(Q,DQ). The length zero paths

e1 := 111, e2 := 212, e3 := 313, e4 := 414, 3x3, 4x4

and length one paths

112, 211, 213, 312, 314, 413

form a generating set. The quadratic relation R can be multiplied by the length
zero path ei to get a relation Ri at each vertex i, given by,





R1 := 112 ⊗k 211 at vertex 1

R2 := 211 ⊗k 211 + 213 ⊗S 312 at vertex 2

R3 := 312 ⊗k 2x3 + 3x2 ⊗k 213 + 314 ⊗S 413 at vertex 3

R4 := 413 ⊗S 314 at vertex 4.

Appealing directly to the definition, the relations at vertices 1, 2, and 4 are the
usual commutators, ignoring signs in light of Remark 5.2. At vertex 3, one needs to
use the Frobenius form λ : S = k[x]/(x2)→ k by λ(a+bx) := b to get the dual basis
{x, 1} to the basis {1, x}, and hence the canonical element 312⊗k 2x3+ 3x2⊗k 213.

Remark 5.10. Consider 314 and 413 to have x-grading 1/2, so that the relation
at vertex 3 is homogeneous in the x-grading. We make this choice so the x-grading
is symmetric, but if one would like to realize this algebra as a filtered degeneration
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of Π(E6) then one needs to choose integral x-gradings, such as |314|x = 1 and
|413|x = 0.

Here we explain the methodology to compute a basis for this algebra, leaving
the details to the reader. Recall it suffices to provide a spanning set with exactly
dim(Π(E6)) = 156 elements.

Remark 5.11. To simplify notation for longer paths we define

γa,b :=





a1a+1 · a+11a+2 · · · b−11b if a < b

a1a if a = b

a1a−1 · a−11a−2 · · · b+11b if a > b

using an ordering on the vertices Q0. Then define

γi1,i2,...,in := γi1,i2γi2,i3 · · · γin−1,in

where if ij < ij+1 < ij+2 or ij > ij+1 > ij+2 then we remove ij+1 from the
notation in order to solely delineate changes in direction.

Observe that every path is equivalent to one passing through vertex 3 except
those belonging to X := {111, 212, 414, 4x4, 112, 211}. Exploiting this observation,
for any pair of vertices i and j the map,

Φi,j : e3Π(F4)e3 7→ eiΠ(F4)ej/k · eiXej α 7→ γi,3αγ3,j

is surjective, where k · eiXej denotes the k-span of paths in X from i to j. There-
fore,

eiΠ(F4)ej ∼= Φi,j(e3Π(F4)e3)⊕ k · eiXej
as k-vector spaces and we have the equality

dim(Π(F4)) =
∑

i,j

dim(eiΠ(F4)ej)

= dim k ·X +
∑

i,j

dim(Φi,j(e3Π(F4)e3))

= dim k ·X +
∑

i,j

dim(e3Π(F4)e3)− dim(ker(Φi,j))

= 6 + 16 dim(e3Π(F4)e3)−
∑

i,j

dim(ker(Φi,j)).

Since dim(ker(Φj,i)) = dim(ker(Φi,j)), we’ve reduced showing the inequality
dim(Π(F4)) ≤ 156 to computing a spanning set for e3Π(F4)e3 and linearly inde-
pendent subsets for ten subspaces, ker(Φi,j) for i ≤ j.

We compute a spanning set for e3Π(F4)e3 by building a surjection q : k〈α, β〉 ։
e3Π(F4)e3, and then reducing the spanning set by identifying elements in the ker-
nel of q. Every path in e3Π(F4)e3 is equivalent to one avoiding vertex 1 and
vertex 4, using the relations at vertex 2 and 3, respectively. Therefore, e3Π(F4)e3
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is generated by q(α) := 312 ⊗k 213 and q(β) := 3x3. They satisfy the relations:

q(α)3 = 312 ⊗k 213 ⊗S 312 ⊗k 213 ⊗S 312 ⊗k 213

R2
= 312 ⊗k 211 ⊗k 112 ⊗k 211 ⊗k 112 ⊗k 213
R1
= 0,

q(αβ + βα)2
R3
= (314 ⊗ 413)

2 R4
= 0, and q(β2) = x2 = 0. Hence q factors through

the quotient,

q′ :
k〈α, β〉

(α3, β2, (αβ + βα)2)
։ e3Π(F4)e3.

Let C denote k〈α, β〉/(α3, β2, (αβ + βα)2). We find a k-basis for C in Example
5.15, after introducing the Diamond Lemma, given by:

(0) 1, β
(2) α, αβ, βα, βαβ
(4) α2, α2β, αβα, αβαβ, βα2, βα2β
(6) α2βα, α2βαβ, αβα2, αβα2β, βα2βα, βα2βαβ
(8) α2βα2, α2βα2β, α2βα2β, αβα2βα, αβα2βαβ

(10) α2βα2βα, α2βα2βαβ.

Here we have ordered the elements first by number of occurrences of α and then
by alphabetical order. We conclude that C is a free rank 12 right S-module and
has dimension 24 as a k-module. This shows q′ is an isomorphism since,

24 = dim((e3 + e5)Π(E6)(e3 + e5)) ≤ dim(e3Π(F4)e3) ≤ dim(C) = 24.

The first inequality is a refinement of dim(Π(E6)) ≤ dim(Π(F4)) formed by keeping
track of the decomposition of paths by starting and ending vertices. Here E6 is
folded to F4 by identifying vertices 3 and 5 and vertices 4 and 6. In particular,

dim(Π(F4)) ≤ 6 + 16(24)−
∑

i,j

dim(ker(Φi,j)) = 390−
∑

i,j

dim(ker(Φi,j))

and it remains to bound the dimension of the kernel of each map Φi,j from below.
Observe that γ3,jα

j = 0 = αjγj,3 for all j ∈ {1, 2, 3} and γ3,4(αβ + βα) = 0 =
(αβ + βα)γ3,4. Hence we have the following containment,

ker(Φi,j) = ker(Φi,3 ◦ Φ3,j) = ker(Lγi,3 ◦Rγ3,j ) = ker(Rγ3,j ◦ Lγi,3)

⊃ ker(Rγ3,j ) ∪ ker(Lγi,3)

⊃ 〈αi, (αβ + βα)5−i〉R ∪ 〈αj , (αβ + βα)5−j)〉L,
where 〈s〉R and 〈s〉L denote the right and left ideals in C generated by s and Ls

and Rs denote left and right multiplication by s ∈ C.
For each i, j, one can find linearly independent elements of the above ideals such

that the total number of elements is 390-156. For instance, if i = 4 and j = 3,
then ker(Φ4,3) ⊃ 〈αi, (αβ + βα)5−i〉R ∪ 〈αj , αβ + βα)5−j〉L = 〈αβ + βα〉R.

Using a basis for C, it is not hard to find a basis for this ideal, given by

〈αβ + βα〉R = Span{αβ + βα, βαβ, α2β + αβα, αβαβ, α2βα, α2βαβ, βα2βα,

αβα2βα, αβα2βαβ, αβα2βαβ, α2βα2βα, α2βα2βαβ}
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which is 12-dimensional. Hence Φ4,3(C) is at most 12-dimensional.
Note that the number of linearly independent elements needed for each i, j is

dimC −
∑

i′ 7→i

∑

j′ 7→j

dim(ei′Π(E6)ej′ )− dim(ei′Π(E6\{3, 5}))ej′)

where the sum is taken over all vertices i′ and j′ that fold to i and j, respectively.
So E6\{3, 5} = A1 ⊔ A1 ⊔ A2 is the disconnected quiver obtained by discarding
vertices 3 and 5 and all arrows with either 3 or 5 as source or target. If i = 4 and
j = 3 this is precisely

24− 2 dim(e3Π(E6)e4)− 2 dim(e3Π(E6)e6) = 12,

as desired.
The remaining computations are done similarly and are left to the reader. The

upshot is that the 4× 4 matrix with (i, j)th entry given by eiΠ(F4)ej is



4 6 8 4
6 12 16 8
8 16 24 12
4 8 12 8


 .

For each entry of this matrix, we compute the Hilbert–Poincaré series, a poly-
nomial in variables s and t defined so the coefficient of tnsm is dimension of
Π(n,m)(F4), i.e. the path length n and x-grading m component of Π(F4). That is,

Proposition 5.12. hΠ(F4)(s, t) = (1 + t4s)·



(1+t
6
s) t(1+t

2
s+t

4
s
s) t

2(1+s)(1+t
2
s) t

3
s
1/2(1+s)

t(1+t
2
s+t

4
s
2) (1+t

2)(1+t
2
s+t

4
s) t(1+s)(1+t

2
s) t

2
s
1/2(1+s)(1+t

2)

t2(1+s)(1+t2s) t(1+s)(1+t2s) (1+s)(1+t2+t4)(1+t2s) ts1/2(1+s)(1+t2+t4)

t3s1/2(1+s) t2s1/2(1+s)(1+t2) ts1/2(1+s)(1+t2+t4) (1+s)(1+t6s)




and

hΠ(F4)(t, 1) = 6+10t+14t2 +18t3 +20t4 +20t5 +20t6 +18t7 +14t8 +10t9 +6t10

where the coefficient in front of tn is the dimension of the vector space of paths of
length n in Π(F4).

As before, the Frobenius pairing is defined by projecting onto the (10, 3)-
bigraded piece and adding the coefficients. In more detail, if B is a basis of Π(F4)
with dual basis B∨ = {γ∨ : γ ∈ B}, then

(α, β) :=
∑

γ∨∈Y ∨

γ∨(αβ)

where

Y := {112βαββ211, αββαβ, 312βαββ213, 413 · 312αββ213 · 314}
is the set of paths of (10, 3)-bidegree in the basis for Π(F4). This Frobenius pairing
deforms to the usual one in Π(E6), defined analogously.

Corollary 5.13. Π(F4) is a flat Frobenius degeneration of Π(E6).
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5.3. Case: Π(Bn). Consider the decorated double quiver

1•
kSS

(( 2•
SSk

hh

SSS

(( 3•
SSS

hh · · ·
SSS

++ n−1•
SSS

jj

SSS

)) n•.
SSS

jj

The relations in the preprojective algebra are




R1 := 112 ⊗S 211 at vertex 1

R2 := 211 ⊗k 1x2 + 2x1 ⊗k 112 + 213 ⊗S 312 at vertex 2

Rj := j1j+1 ⊗S j+11j + j1j−1 ⊗S j−11j at vertex j ∈ {3, 4, . . . , n− 1}
Rn := n1n−1 ⊗S n−11n at vertex n.

These relations are homogeneous in path length and can be made homogeneous
in x-degree by declaring the x-grading of i1i+1 and i+11i to be 1/2 for i > 1.
Therefore, the preprojective algebra inherits both gradings from the the path
algebra.

The idea is to produce a basis for Π(Bn) by realizing it as a subalgebra of
P (Q,DQ), denoted P (Q,DQ)irr. The key ingredient is an algebra map

r : P (Q,DQ)→ P (Q,DQ)irr

satisfying:

(1) ker(r) = ker(P (Q,DQ)→ Π(Bn)) and (2) r ◦i = idP (Q,DQ)irr ,

where i : P (Q,DQ)irr → P (Q,DQ) is the natural inclusion. The first condition
says r descends to Π(Bn) and the second condition implies r is surjective. Therefore
r induces an identification Π(Bn) ∼= P (Q,DQ)irr as algebras.

To define r, we choose a partial ordering ≤ on paths in P (Bn). This gives rise
to a notion of leading term, for any linear combination of paths, denoted lt. Then,
for each relation Rj in Π(Bn), define a k-linear map rj which is the identity on all
monomials except taking the leading term lt(Rj) to the strictly smaller element
lt(Rj)−Rj. This map is called a reduction and informally it imposes the relation
Rj only in the direction that makes the path smaller with respect to the partial
order.

Remark 5.14. For any pair of monomials A,B ∈ P (Q,DQ), ARjB is also a
relation and hence one defines the reduction rAjB taking A(lt(Rj))B to A(lt(Rj)−
Rj)B. Since A and B will be clear in context, we simplify but abuse notation and
write rj for any such reduction.

One would like to define r to be any finite composition of these reductions such
that the resulting expression is irreducible, i.e. every reduction acts as the identity.
The existence of r will be clear in our context since each path will have a finite
disorder index. This index is a natural number measuring the failure of a path to
be irreducible and it strictly decreases under reductions, and hence is eventually
zero. However, r is, in general, not well-defined, as it depends on the order that
the reductions are applied.

The Diamond Lemma in [1] says that r is well-defined, if whenever a product
of monomials αβγ is reduced by r1 and r2 to elements r1(αβ)γ and αr2(βγ), each
further reduces to the same irreducible element. Such a 5-tuple (α, β, γ, r1, r2)
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where αβ is the leading term for r1 and βγ is the leading term for r2, is called an
ambiguity. And we say the ambiguity resolves if r1(αβ)γ and αr2(βγ) have the
same reduced form.

The name Diamond Lemma comes from the visual that every diagram

αβγ

r2

$$■
■■

■■
■■

■■
r1

zz✉✉
✉✉
✉✉
✉✉
✉

r1(αβ)γ αr2(βγ)

called an ambiguity, can be completed to a diagram,

αβγ

r2

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

r1

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

r1(αβ)γ
r′1

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
αr2(βγ)

r′2

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦

r′1(r1(αβ)γ) = r′2(αr2(βγ))

for some composition of reductions, r′1 and r′2, called a resolution.
If every ambiguity is resolvable then r is well-defined and clearly satisfies (1)

and (2) above. Hence i is a splitting for r and realizes,

P (Q,DQ) ∼= P (Q,DQ)irr ⊕ I
the decorated preprojective algebras as a subalgebra, as opposed to a quotient,
of the decorated path algebra. From this perspective a basis for the decorated
preprojective algebras is given by a basis for the irreducible paths.

Example 5.15. Consider C = k〈α, β〉/(α3, β2, (αβ + βα)2) from the previous
section. One defines a partial order on monomials in k〈α, β〉 by γ ≤ γ′ if the
length of γ is less than the length of γ′ or they have the same length but γ is first
alphabetically. Then the three relations are viewed as reductions:

r1(α
3) = 0, r2(β

2) = 0, r3(βαβα) = −αβαβ − βααβ.
Reducing βαβαα2 using r1 gives zero and using r3◦r3◦r3 gives βα2βα2−α2βα2β+
αβα2βα. And hence we add the reduction, r4(βα

2βα2) = α2βα2β−αβα2βα, and
the remaining ambiguities, ββα2βα2 and βα2βα2α, are resolvable. We conclude
that a word is reduced if it has no occurrences of α3, β2, βαβα, or βα2βα2.

Reductions r1 and r2 reduce any word to one alternating between β and either
α or α2. The reduction r3 says a reduced word has only a single βα, which
necessarily occurs at the end. The reduction r4 says any reduced word starting
with β cannot have repeating α2. Hence the longest reduced word is α2βα2βαβ
and it is not hard to realize all 24 basis elements of C as subwords.

Define the following ordering of the generators at each vertex i

ixi−1 > ixi+1 > i1i−1 > i1i+1
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with 1 < i < n and nxn−1 > n1n−1 and extend this to a partial ordering on all
paths lexicographically. That is, view each path γ of length l as a product of
length one paths γ = γ1 · γ2 · · · · · γl and define α > β for paths α and β if

(I) α is longer than β or
(II) they are the same length with α having the larger x-grading or
(III) they have the same length and x-grading with αi > βi for the smallest i

where αi 6= βi.

To make this definition well-defined one should write the any subpath x ⊗S 1 as
1⊗S x, always moving the x’s towards the end of the path.

The relations R1, R2, · · ·Rn give rise to a system of reductions, with respect to
the lexicographical ordering.

Upward Reductions: Integral Reductions:
• rUj (j1j−1 ⊗S j−11j) = j1j+1 ⊗S j+11j • rIj (γ2,1,j+1,j) = γ2,3,1,j

for 3 ≤ j ≤ n− 1 for 2 ≤ j ≤ n− 1
• rUn (n1⊗S 1n) = 0 Death Reductions:

X-Reductions: • rDi,j(γi,n−j+i+1,1,j) = 0
• rX2 (2x⊗k 12) = 21⊗k x2 + 21⊗S 12 for 2 ≤ i < j ≤ n
• rX2,1(211 ⊗k 112 ⊗S 2x1) = γ2,3,1 Mound Reductions:

• rMj (γ1,j,1) = 0, for 2 ≤ j ≤ n

where we use the notation γi1,i2,...,in with i1, . . . , in ∈ Q0 introduced in Remark
5.11.

Upward Reductions pull paths towards vertex n and realize paths visiting vertex
n consecutively to be zero, see Figure 4. The X-reductions remove occurrences
of x when possible and moves them to the end of the path otherwise, see Figure
3. The Integral Reductions straighten paths after visiting vertex 1, thus removing
any instances of the shape

∫
, see Figure 1. The Death Reductions identify when

paths visiting vertex 1 are too long and hence zero and the Mound Reductions
identify paths of the shape ∩ starting and ending at vertex 1 to be zero, see Figure
2.

One reads these figures as reductions according to the following rules:

– The paths are depicted in two dimensions with integer vertical compo-
nent indicating the vertices of the quiver and the horizontal component
increases when the path changes directions, for visualization.

– Unbroken paths are products of the generators i1i+1, i+11i for i ∈ {1, . . . , n−
1}. Paths involving generators ixi for i ∈ {2, 3, . . . , n} are broken by x at
vertex i, i.e. −x− indicates an insertion of the length zero path ixi at this
vertex.

– Caution: Signs are not depicted.

Remark 5.16. Starting from the relations of the preprojective algebra, viewed
as reductions rM2 , rX2 , r

U
j , r

U
n one realizes the need for the remaining reductions in

light of the following ambiguities.

• R2 ⊗S 211 reduces to zero under rX2 and to γ2,1,22x1 − γ2,3,1 under rM2
giving rise to the additional reduction rX2,1 sending γ2,1,22x1 to γ2,3,1.
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j + 1

j

3

2

1

rIj

Figure 1. Integral Reduction rIj for 2 ≤ j ≤ n− 1

• 112 ⊗S R2⊗S · · · ⊗S R2⊗S 211 (with j − 2 copies of R2) reduces to zero
under rX2 and to γ1,j,1 under the Upward Reductions rUj−1 ◦ rUj−2 ◦ · · · ◦ rU3
and hence give rise to the Mound Reduction rMj taking γ1,j,1 to zero.

• (R2 ⊗S 211 ⊗k 112 − 211 ⊗k 112 ⊗S R2)⊗S γ2,j reduces to zero under rX2
and to γ2,3,1,j − γ2,1,j+1,j under rUj ◦ · · · ◦ rU3 and so we add the Integral

Reduction rIj sending γ2,1,j+1,j to γ2,3,1,j .

• The path γi,1,j ⊗S (j1j+1 ⊗S j+11j)
n−j+1 is sent to zero by rUn ◦ rUn−1 ◦

· · · ◦ rUj+1 and iterated applications of the Integral Reduction rIj gives

γi,2 ⊗S (213 ⊗S 312)
n−j+1γ2,1,j from which applying the Upper Reduc-

tions rUn−j+i+1 ◦ · · · ◦ rU4 ◦ rU3 gives γi,n−j+i+1,1,j . Hence we add the Death

Reduction rDi,j taking this term to zero to resolve the ambiguity.

Proposition 5.17. The following is a basis for eiΠ(Bn)ej:





γi,k,j ; γi,k,jx; max{i, j} ≤ k ≤ n
γi,m,1,j ; γi,m,1,jx i ≤ m ≤ n− j + i if i, j ≥ 2
γ1,k,j ; γ1,k,jx j ≤ k ≤ n if i = 1, j ≥ 2
γi,k,1; xγi,k,1 i ≤ k ≤ n if j = 1, i ≥ 2
γ1,kxγk,1; 111 1 ≤ k ≤ n if i = j = 1.
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j

2

1

rMj
0

n

n− j + i+ 1

j

i

2

1

rDi,j
0

Figure 2. Mound Reduction rMj for 1 ≤ j ≤ n on the left and

Death Reduction rDi,j on the right

3

3

2

2

1

1

x
rX2,1

x
rX2

x +

Figure 3. X-reductions rX2,1 and rX2

Corollary 5.18. The bigraded Hilbert–Poincaré series are:

heiΠ(Bn)ej (s, t) = t|i−j|s|i−j|/2(1 + s)

· (1 + st2 + s2t4 + · · ·+ sn−max{i,j}t2n−2max{i,j}) if i, j ≥ 2

+ ti+j−2s(i+j−4)/2(1 + s)

· (1 + st2 + s2t4 + · · ·+ s(n−j−1)/2tn−j−1)

he1Π(Bn)ej (s, t) = hejΠ(Bn)e1(s, t) = tj−1s(j−1)/2(1 + s)

· (1 + st2 + s2t4 + · · ·+ sn−jt2n−2j) if j ≥ 2

he1Π(Bn)e1(s, t) = 1 + st2 + s2t4 + · · ·+ sn−1t2n−2
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j + 1

j

j − 1

rUj

n

n− 1

rUn
0

Figure 4. Upward Reduction rUj for 3 ≤ j ≤ n− 1 and rUn

and the x-degree of i1i+1 and i+11i are 1/2 to ensure the relations R2, R3, . . .R(n−
1) are homogeneous in the x-degree.

Proof. We first show that any path can be reduced to a linear combination of
paths in the proposed basis. Let α be a path from i to j.

Case: α doesn’t visit vertex 1
If α does not contain any occurrences of x then applying the Upward Reduc-

tions rUn ◦ rUn−1 ◦ · · · ◦ rU3 is either zero or γi,k,j for k ≥ max{i, j}. Any occurrence
of x can be moved to the end as all tensor products in the path are over S and
hence two such occurrences gives zero.

Case: α visits vertex 1 once
If α doesn’t contain an occurrence of x then by the above the subpaths before

and after vertex 1 can be reduced to the form γi,k,2 and γ2,l,j and hence α can be
reduced to γi,k,1,l,j .

If i = 1 then such a path has the form γ1,l,j for l ≥ j. Similarly, if j = 1 reading
the path backward must have this form.

If i, j > 1 then applying the Integral Reductions rIj ◦ rIj+1 ◦ · · · ◦ rIl−1 gives
γi,m,1,j, where the path is now direct after visiting vertex 1. Finally, applying the
Death Reductions ri,j gives zero unless m ≤ n− j + i.

If x occurs in α before visiting vertex 1, then one can arrange for the path to
contain 2x1, since all tensor products are over S before 1. The X-Reduction rX2
gives a linear combination of paths where x occurs after vertex 1. So the x can be
taken to occur at the end, giving the desired form.

Case: α visits vertex 1 at least twice
If j > 1 then by applying the X-reductions rX2,1 ◦ rX2 successively one can ensure
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the x’s appear at the end and so the Mound Reductions rMn ◦· · ·◦rM2 send the sub-
path starting and ending at vertex 1 to zero. So the path must end at vertex 1 and
cannot visit vertex 1 more than twice. Consequently, the path is concatenation of
a path in the previous case ending at vertex 2 (i.e. γi,m,1,2, γi,m,1,2x, γ1,k,2, γ1,k,2x)
with 211 and therefore, after applying the Mound Reductions rMn ◦ · · ·◦ rM3 ◦ rM2 , is
zero or of the form γi,m,1,22x1 or γ1,kxγk,1. The X-Reduction rX2,1 sends γi,m,1,22x1
to a path visiting vertex 1 a single time and hence any path visiting vertex 1 twice
is of the form γ1,kxγk,1, for k > 1.

This shows that the above set is a spanning set. It follows from the Diamond
Lemma that for linear independence one only needs to show that all ambiguities
are resolvable.

The family of Integral Reductions, Mound Reductions, and Death Reductions
all arise as ambiguities with Upward Reductions. Moreover, Upward Reductions
cannot overlap with X-Reductions nor with other Upward Reductions and hence
there are no overlap ambiguities involving them. Clearly their are no ambiguities
among two reductions sending the path to zero and so it remains to check Integral
Reductions and X-reductions.

Moreover, Integral Reductions overlap with Mound and Death Reductions in
the same way that Upward Reductions do, with the resolution given by other
Mound and Death Reductions. Integral Reductions cannot self overlap and the
only ambiguity with X-reductions is rX2 and rI2 applied to xγ2,1,3,2 which both
further reduce to γ2,3,1,2x + γ2,4,2 by applying rU3 ◦ rX2 ◦ rI2 . The final ambiguity
to resolve is rX2 and rX2,1 applied to γ2,1,2xγ2,1,2, with each term further resolving

to zero by rM2 ◦ rM3 . �

Remark 5.19. Carefully reading the above argument, and defining:

rU := rUn ◦ · · · ◦ rU3 , rM := rMn ◦ · · · ◦ rM2 , rI := rIn−1 ◦ · · · ◦ rI2 ,
rD := rDn−1 ◦ · · · ◦ rD2 where rDi := rDi,i+1 ◦ · · · ◦ rDi,n

one can define r : P (Q,DQ)→ P (Q,DQ)irr to be the composition

r := rM ◦ rD ◦ rU ◦ rI ◦ rU ◦ (rX2 ◦ rX2,1)n.
That is, one can first reduce a path by moving the x’s to the end then pushing
upward until Integral Reductions arise and then further pushing upward until
Mound or Death Reductions arise.

As before, the functional giving the sum of the coefficients of all the maximum
length cycles containing an x gives a Frobenius form.

Corollary 5.20. Π(Bn) is a flat Frobenius degeneration of Π(A2n−1).

5.4. Case: Π(Cn). Consider the decorated quiver

1•
kkk

(( 2•
kkk

hh · · · n−2•
kkk

** n−1•
kkk

jj

kSS

(( n•
SSk

jj

The goal of this section is to compute a basis for the decorated preprojective
algebra using the Diamond Lemma for rings, developed in [1] and explained in the
previous subsection.



52 DANIEL KAPLAN

Proposition 5.21. A basis for eiΠ(Cn)ej is given by

{γi,m,j ; γi,l,nnxnγn,j | m ≤ min{i, j}, i ≥ l > max{i− j, 0}}
and hence dim(eiΠ(Cn)ej) = 2min{i, j}. In particular, Π(Cn) is a flat degenera-
tion of Π(Dn+1).

The relations in the preprojective algebra are




112 ⊗k2 211 at vertex 1

j1j+1 ⊗k j+11j + j1j−1 ⊗k j−11j at vertex j ∈ {2, 3, 4, . . . , n− 1}
n−11n ⊗S n1n−1 + n−11n−2 ⊗k n−21n−1 at vertex n− 1

n1n−1 ⊗k n−1xn + nxn−1 ⊗k n−11n at vertex n.

One views each relation as a reduction reducing the length or the number of times
a path changes direction by pulling all paths towards vertex 1. More formally, one
defines a partial order, determined on length one paths by

ixi−1 > ixi+1 > i1i−1 > i1i+1

and extended to all paths lexicographically, as described in the previous subsection.
Hence the reductions are determined by:

r1(112 ⊗k2 211) = 0

rj(j1j+1 ⊗k j+11j) = −j1j−1 ⊗k j−11j for j ∈ {2, . . . , n− 2}
rn−1(n−11n ⊗S n1n−1) = −n−11n−2 ⊗k n−21n−1

rn(nxn−1 ⊗k n−11n) = −n1n−1 ⊗k n−1xn.

With this set of reductions there are unresolvable ambiguities and hence we intro-
duce additional reductions:

Downward Reductions

• r1(112 ⊗k 211) = 0
• rj(j1j+1 ⊗k j+11j) = −j1j−1 ⊗k j−11j for l < j < n− 1
• rn−1(n−11n ⊗S n1n−1) = −n−11n−2 ⊗k n−21n−1

X-Reductions

• rXk (nxnγn,k−1,k) = γn,n−1,nnxnγn,k for 1 < k ≤ n
Death Reductions

• rDi,j(γi,i−j,nnxnγn,j) = 0 for i > j.

Visually, Figures 5, 6, and 7 provide schematics for the reductions, where paths
are depicted with vertical position giving the vertex of the quiver and the horizontal
component is strictly for visualization, as explained in the previous subsection.

Remark 5.22. The X-reductions are introduced to resolve the ambiguity created
by reducing nxnγn,n−1,n,k using rk ◦ · · · ◦ rn−2 ◦ rn−1 as opposed to rn. The
Death Reductions are then introduced to resolve the ambiguity created by reducing
γi,nxn(γn,n−1,n)

jγn,j using ri−j+1 ◦ ri−j+2 ◦ · · · ◦ rn ◦ (rXn )j as opposed to r1 ◦ r2 ◦
· · · ◦ rn.
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Figure 5. Downward Reductions

n

n− 1

j

j − 1

x x

rn,j

Figure 6. X-Reductions

All ambiguities are resolvable:

(I) The ambiguity giving rise to additional X-reductions:
rXj − rXj−1 ◦ rj−1(nxn γn,j−1,j,j−1) = 0

(II) The ambiguity giving rise to the Death reductions:
r1 − rX2 ◦ rX1 (nxnγn,1,2,1) = 0

(III) The Downward-Death ambiguity:
rDi,j − rDi−1,j ◦ ri−j ◦ · · · ◦ ri−2 ◦ ri−1(γi−1,i,i−j,nnxnγn,i−j) = 0

(IV) The X-Death ambiguity:
rDi,j − rDi,j+1 ◦ ri−j ◦ · · · ◦ rn−2 ◦ rn−1 ◦ rXj+1(γi,i−j,nnxnγn,j,j+1) = 0

(V) The Double X-Death ambiguity:
rDi,j − rXn−1 ◦ rXn−2 ◦ · · · ◦ rXj (nxnγn,i−j−1,nnxn γn,j) = 0
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j

x
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Figure 7. Death Reductions

With these reductions one can put any path in normal form. According to the
Downward Reductions such a path cannot go from increasing to decreasing, except
at vertex n. Consequently, paths not containing x must be of the from γi,m,j for
m ≤ min{i, j}, where equality gives the direct path. Moreover, no path can visit
vertex n more than once since between the final two such visits the path can be
reduced to γn,m,n at which point iterated application of the X-reductions collides
the two x’s giving zero.

Applying the X-reductions to a path with one instance of x allows for the path
after x to be direct. Therefore, every such path can be reduced to one of the form
γi,l,nnxnγn,j and the Death Reductions say that these are non-zero if l > i − j.
This proves Proposition 5.21.

Corollary 5.23. The matrix-valued Hilbert–Poincaré series of Π(Cn) is of the
form, 



2 2 2 · · · 2
2 4 4 · · · 4
2 4 6 · · · 6
...

...
...

. . .
...

2 4 6 · · · 2n




The bigraded Hilbert–Poincaré series

heiΠ(Cn)ej (s, t) = td(i,j)(1 + t2 + t4 + · · ·+ t2min{i,j}−2)(1 + st2d(max{i,j},n))

where d(a, b) = |a− b| is the distance between the vertices a and b.

As above, one can define a Frobenius form on the degenerate preprojective
algebra using the cycles of maximal length, γi,nnxnα

i−1γn,i for each i ∈ {1, . . . , n}.

Corollary 5.24. Π(Cn) is a flat Frobenius degeneration of Π(Dn+1).
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This is the final case of maximal degenerations of folding ADE quivers and
hence we’ve completed the proof of Theorem 4.26.
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