
ar
X

iv
:1

80
3.

09
44

2v
3 

 [
m

at
h.

R
T

] 
 1

0 
O

ct
 2

01
8

CHARACTER VALUES AND HOCHSCHILD HOMOLOGY

ROMAN BEZRUKAVNIKOV, DAVID KAZHDAN

Abstract. We present a conjecture (and a proof for G = SL(2)) generalizing
a result of J. Arthur which expresses a character value of a cuspidal representa-
tion of a p-adic group as a weighted orbital integral of its matrix coefficient. It
also generalizes a conjecture by the second author proved by Schneider-Stuhler
and (independently) the first author. The latter statement expresses an elliptic
character value as an orbital integral of a pseudo-matrix coefficient defined via
the Chern character map taking value in zeroth Hochschild homology of the
Hecke algebra. The present conjecture generalizes the construction of pseudo-
matrix coefficient using compactly supported Hochschild homology, as well as
a modification of the category of smooth representations, the so called com-
pactified category of smooth G-modules. This newly defined ”compactified
pseudo-matrix coefficient” lies in a certain space K on which the weighted or-
bital integral is a conjugation invariant linear functional, our conjecture states
that evaluating a weighted orbital integral on the compactified pseudo-matrix
coefficient one recovers the corresponding character value of the representation.

We also discuss the properties of the averaging map from K to the space of
invariant distributions, partly building on works of Waldspurger and Beuzart-
Plessis.
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1. Introduction

Let G be a reductive group over a local nonArchimedean field F .
The goal of the article is to present an algebraic expression for a character of an

admissible representation of G on a compact element.
1
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The statement is presented as a conjecture (see Conjecture 4.3) for a general
reductive group, it is proved in the paper for G = SL(2). We also describe a modi-
fication of the category Sm = Sm(G) of finitely generated smooth representations,
the so called compactified category of smooth G-modules, which plays a key role in
our algebraic description of character values and may have an independent interest.

To describe the context for these constructions recall a conjecture of [14] proved
in [19] and [7].

Let H = ∪KHK be the Hecke algebra of locally constant compactly supported
C-valued measures. Thus Sm(G) is identified with the category of finitely generated
nondegenerate H modules [10].

Let C(H) = H/[H,H] = HG = HH0(H) = HH0(Sm) be the cocenter of H.
Here HG denotes coinvariants with respect to the conjugation action, while HH∗

stands for Hochschild homology, and its second appearance refers to the notion of
Hochschild homology of an abelian category.

Since H is Noetherian and has finite homological dimension, there is a well
defined Chern character (also called the Hattori-Stallings or Dennis trace) map
ch : K0(Sm) → C(H) (we will abbreviate ch([M ]) to ch(M)). It has been conjec-
tured in [14] and proven in [19], [7] that for an elliptic regular semisimple element
g ∈ G and an admissible representation ρ we have

(1) χρ(g) = Og(ch(ρ)),

where Og denotes the orbital integral. Here we use that Og : H → C being conju-
gation invariant factors through C(H).

If ρ is a cuspidal irreducible representation then (assuming that G has a compact
center) a matrix coefficient mρ ∈ H is a representative of the class ch(ρ) ∈ C(H).
Thus in this case (1) reduces to an earlier result of Arthur [2]. However, the latter
applies also to nonelliptic regular semisimple elements: for such an element g and
a cuspidal irreducible representation ρ Arthur has proved that

(2) χρ(g) =WOg(mρ),

where WOg denotes the weighted orbital integral. Our Conjecture 4.3 provides a
generalization of (1) to all regular semisimple compact elements g, which for a
cuspidal representation ρ reduces to (2).

The first step in this direction is a generalization of the map ch : K0(Sm) →
C(H). For our present purposes we need to modify both the source and the target
of this map. We replace the target C(H) = HG by KG where K ⊂ H is a subspace
invariant under the conjugation action of G, the so called space of ”weightless”
functions.1 Definition and some properties of K are discussed in section 2. The
key property is that WOg|K is a G-invariant functional for any regular semisimple
element g ∈ G; furthermore, there is a well defined averaging map Av from K to the
space of invariant generalized functions on G and for φ ∈ K the value of WOg(φ)
coincides with Av(φ)(g) (the latter is well defined since Av(φ) is in fact a locally
constant function on the set of regular elements in G). We also provide a conjecture
with a proof for PGL(2, F ), char(F ) = 0 describing the image of the averaging map
from K to the space of invariant distributions.

1This adjective reflects the fact that weighted orbital integrals restricted to this space are
independent of the choices involved in choosing the weight function on an orbit. This space has
appeared in the literature (see [6], [24] and references therein) where it was called the space of
strongly cuspidal function. We refrain from using this terminology since we use the term ”cuspidal
function” in the sense of [14] where it refers to a function acting by zero in any parabolically
induced representation, thus in our terminology K contains the space of cuspidal functions. The
term ”cuspidal function” was used in a different sense in [6], [24] etc., so that K is contained in
the set of cuspidal functions in the sense of loc. cit.
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To describe the source of the map generalizing ch we need some new ingredients.
One of them is the so called compactified category of smooth (finitely generated)
representations Sm.

The abelian category Sm is defined in section 3. Recall that according to Bern-
stein [9], Sm can be identified with the category of coherent sheaves of modules over
a certain sheaf of algebras over a scheme which is an infinite union of affine algebraic
varieties, the spectrum Z of the Bernstein center of G. The category Sm can be de-
scribed as the category of coherent sheaves of modules over a certain coherent sheaf
of algebras over a (componentwise) compactification of Z. An admissible module ρ
can also be viewed as an object in Sm, so we can apply the Chern character to the
class of ρ obtaining c̄h(ρ) ∈ HH0(Sm).

We also need another invariant of the category Sm, namely the compactly sup-
ported Hochschild homology HHc

∗(Sm) which is the derived global sections with
compact support in the sense of [12] of localized Hochschild homologyRHomH⊗Hop(H,H).

We have natural maps HHc
∗(Sm) → HH∗(Sm) → HH∗(Sm); for an admissible

module ρ we have its compactly supported Chern character chc(ρ) ∈ HHc
0(Sm), so

that c̄h(ρ) and ch(ρ) equal the images of chc(ρ) under the corresponding maps.
The first statement in the main conjecture (a theorem for SL(2)) provides a

natural isomorphism

KcG
∼= Im(HHc

0(Sm) → HH0(Sm)),

where Kc ⊂ K is the subspace of measures supported on compact elements. By
the previous paragraph, c̄h(ρ) belongs to that image, thus we obtain a homological
construction of an element in KcG from an admissible representation, the so called
”compactified pseudo-matrix coefficient” of the representation.

The second main statement (proved for SL(2)) asserts that for a compact regular
element g and an admissible representation ρ we haveWOg(c̄h(ρ)) = χρ(g). Notice
that for a noncompact regular element g the value of χρ(g) coincides with a character
value of the Jacquet functor applied to ρ [11], in particular it vanishes for a cuspidal
module.

We view Conjecture 4.3 as an algebraic statement underlying some aspects of
Arthur’s local trace formula [1], while equality (1) underlies the elliptic part of the
local trace formula (see also Remark 3.16 below). We plan to develop this theme
in a future publication.

Acknowledgements. We thank Joseph Bernstein, Vladimir Drinfeld, Dmitry
Kaledin and Dmitry Vaintrob for many useful discussions over the years. In par-
ticular, the definition of the compactified category was conceived as a result of
discussions with Kaledin and it took its present form partly due to discussions with
Drinfeld.

We also thank Raphaël Beuzart-Plessis, Dan Ciubotaru, Eric Opdam and Jean-
Loup Waldspurger for helpful correspondence.

The project received funding from ERC under grant agreement No 669655; R.B.
was partly supported by NSF grant DMS-1601953, the collaboration was partly
supported by the US-Israel Binational Science Foundation.

2. Weightless functions and invariant distributions

Let H = H(G) be the Hecke algebra of compactly supported locally constant
measures on G, the convolution product on H(G) will be denoted by ∗. For an
open subsemigroup S ⊂ G we let H(S) ⊂ H(G) denote the subalgebra of measures
supported on S. We denote by D the space of generalized functions on G (that is
the space of linear functionals on H(G)) and by DG ⊂ D the subspace of invariant
generalized functions. Let Hcusp, D

G
cusp be the cuspidal part of H, DG, i.e. Hcusp

consists of functions acting by zero in any parabolically induced representation and
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DG
cusp consists of distributions vanishing on the orthogonal complement of Hcusp

(cf. footnote 1 above). Until the end of the section we assume for simplicity of
notation that G has compact center.

Then averaging with respect to conjugations yields a well defined mapH0(G,Hcusp) →

DG
cusp given by f 7→

∫
G

gf
dg dg for a Haar measure dg on G.

In this section we define a larger subspace K in H on which the averaging map is
still well defined and conjecture that the map τ defines an embedding H0(G,K) →֒
DG. Moreover, we propose a conjectural description of the image of τ . We prove
this conjecture in the case when G = PGL(2).

2.1. The conjecture. We start with some notation. Let O ⊂ F be the ring of
integers and π be a generator of the maximal ideal m of O. Let val : F ⋆ → Z be the
valuation such that val(π) = 1. We define ‖x‖ = q−val(x), x ∈ F ⋆ where q = |O/m|.

For any smooth F -variety X we denote by S(X) the space of locally constant
measures on X with compact support. In the case when X is a homogeneous G-
variety with a G-invariant measure dx the map f → f/dx identifies S(X) with
the space of compactly supported locally constant functions on X . In this case
we will not distinguish between functions and measures on X . Also, we will work
with spaces YP = (G/UP ×G/UP )/L for a parabolic subgroup P = LUP ⊂ G. In
this case S(YP ) will denote the space of integral kernels of operators S(G/UP ) →
S(G/UP ), i.e. locally constant compactly supported sections of the G-equivariant
locally constant sheaf pr∗1(µ), where pr1 : YP → G/P is the first projection.

In particular, we fix a Haar measure dg on G and identify the space S(G) = H(G)
with the space of compactly supported locally constant functions on G. Then ∆ is
identified with the space of distributions, we also get the L2 pairing 〈 , 〉 on H(G).

Let g be the Lie algebra of G. We will assume that g has a finite number of
nilpotent conjugacy classes and that there exists a G-equivariant F -analytic bijec-
tion φ between a neighbourhood of 0 in g and a neighbourhood of e in G. We also
assume that for a semisimple element s ∈ G the Lie algebra z of its centralizer ZG(s)
admits a ZG(s)-invariant complement. These assumptions are well known to hold
if char(F ) = 0 or if char(F ) > N for some N depending on the rank of G, see [15,
§1.8] for more precise information.

Definition 2.1. • We denote by GG,e the space of germs of Ad-invariant
distributions near 0 on g which are restrictions of linear combinations of the
Fourier transforms of invariant measures on a nilpotent orbits. Using the
bijection φ we consider GG,e as a space of germs of Ad-invariant distributions
on G near the identity.

• For a semisimple element s ∈ G we denote by GZG(s),s the space of germs
of distributions on ZG(s) at s obtained from the space GZG(s),e by the shift
by s.

• Let s ∈ G be a semisimple element, Xs = G/ZG(s), r : G → Xs be the
natural projection and γ : Xs → G be a continuous section. We denote by
dz a G-invariant measure on Xs.

• We denote by κ̃ : ZG(s)×Xs → G the map given by (z, x) → γ(x)sz(γ(x))−1.

Let z ⊂ g be the Lie algebra of ZG(s). By assumption there exists a complemen-
tary z-invariant subspace W ⊂ g and the map κ0 : z⊕W → g, (z, w) → z+Ad(s)w
is a bijection. Therefore there exists an open neighborhood R ⊂ ZG(s) of e such
that the restriction κ of κ̃ on R×Xs is an open embedding.

Definition 2.2. For any ψ̄ ∈ GZG(s),s we choose a representative ψ̃ ∈ DZG(s)(ZG(s))

of ψ̄.

• For a function f ∈ S(G) and z ∈ R ⊂ Xs we define fz ∈ S(ZG(s)) by
fz := f(κ(z, x)).
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• We define a function f̄ on R by f̄(z) := ψ̃(fz).

• We define a distribution ψ(ψ̃) on G by ψ(f) :=
∫
Xs
f̄(z).

• We denote by [ψ(ψ̃)] the germ of the distribution ψ at s.

It is clear that for any two choices ψ̃, ψ̃′ of representatives of ψ̄ the difference
ψ(ψ̃)−ψ(ψ̃′) vanishes on a G-invariant open neighborhood of s. Therefore the germ
[ψ̄] does not depend on a choice of a representative of ψ̄.

Definition 2.3. • We denote by Gs the space of germs at s of Ad-invariant
distributions of the form [ψ], ψ ∈ GZG(s),s.

• We denote by E ⊂ DG the subspace of distributions α such that
a) there exists a compact subset C in G such that supp(α) ⊂ G(C) and
b) for any semisimple s ∈ G the germ of α at s belongs to Gs.

Remark 2.4. If char(F ) = 0 then E admits an equivalent description as the space
of invariant distributions α satisfying the following requirements:

a) there exists a compact subset C in G such that supp(α) ⊂ G(C);
b) there exists a compact open subgroup K ⊂ G such that for every element z

in the Bernstein center satisfying δK ∗ z = 0 we have α ∗ z = 0.
Equivalence of the two definitions of E follows from2 [13, Theorem 16.2].

Definition 2.5. • We define the space K(G) of weightless functions as the
subspace in S(G) of functions f such that

∫
u∈UQ

f(lu)du = 0, l ∈ L for all

proper parabolic subgoups Q = LUQ ⊂ G.
• For a closed conjugation invariant subsetX ofG we define the spaceK(X) =
KX ⊂ S(X) as the subspace of functions f such that

∫

u∈UQ

f(lu)du = 0,

for all proper parabolic subgroups Q = LUQ ⊂ G and l ∈ L such that
lUQ ⊂ X .

Remark 2.6. For f ∈ H and a parabolic P = LUP ⊂ G let AP (f) ∈ S(YP ) denote
its orishperic transform, i.e. the integral kernel of the action of f on S(G/UP ). Let
∆YP

⊂ YP be the preimage of diagonal under the projection YP → (G/P )2. Then
∆YP

∼= (G/UP ×L)/L, where L acts on the first factor by right translations and on
the second one by conjugation. It is easy to see that for f ∈ H we have f ∈ K iff
for any parabolic subgroup P ( G we have AP (f)|∆YP

= 0.

The following result is due to J.-L. Waldspurger (see [24, Lemma 9]).

Proposition 2.7. For f ∈ H(G) the following are equivalent:
a) f ∈ K.
b) For any h ∈ H(G) the function g 7→ 〈gf, h〉 has compact support.

For any f ∈ S(G) we define distribution f̂ by:

〈f̂ , h〉 :=

∫

g∈G

〈gf, h〉dg.

For future reference we mention the following.

Lemma 2.8. For f ∈ K the distribution f̂ |Grs (where Grs is the open set of regular
semisimple elements) is a locally constant function. For g ∈ Grs we have

f̂(g) =WOg(f),

where WOg denotes the weighted orbital integral.

2We thank Raphaël Beuzart-Plessis for pointing this out to us.
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Proof follows from the definition and basic properties of the weighted orbital
integral, see e.g. [3, §I.11]. �

The group G acts on K by conjugation. It is clear that the map f → f̂ factors
through a map τ : H0(G,K) → DG. For any f ∈ K we denote by [f ] it image in
H0(G,K).

Conjecture 2.9. a) f̂ ∈ E for f ∈ K.
b) The map τ defines an isomorphism between H0(G,K) and E .
c) dim(H0(G,K(Ω))) = 1 for any regular semisimple conjugacy class Ω ⊂ G.

Remark 2.10. One can check that f̂ satisfies the conditions of Remark 2.4, thus if
char(F ) = 0 then part (a) of the conjecture follows from Harish-Chandra’s Theorem
[13, Theorem 16.2]; see [23, Corollary 5.9], [6, Proposition 5.6.1] for details.

Remark 2.11. It is clear that part c) follows from a) and b).

Remark 2.12. If the centralizer of an element g ∈ Ω is an anisotropic (compact)
torus then statement (c) clearly follows from uniqueness (up to scaling) of a Haar
measure on G. In the case when that centralizer has split rank one the statement
is checked in the next subsection.

2.2. Almost elliptic orbits. To simplify the wording we assume in this subsection
that the center of G is compact. A regular semisimple element g ∈ G will be called
almost elliptic if the split rank of its centralizer is at most one. We now prove
Conjecture 2.9(c) in the case when Ω consists of almost elliptic elements.

Fix g ∈ Ω and let T be the centralizer of G, thus Ω ∼= G/T . In view of Remark
2.12 it suffices to consider the case when the split rank of T equals one; we also
assume without loss of generality that G is almost simple.

There are exactly two parabolic subgroups P, P ′ ( G containing T . Let U , U ′

be their unipotent radicals.
Consider the complex

(3) 0 → KΩ → S(G/T ) → S(G/TU)⊕ S(G/TU ′) → C → 0;

here S stands for the space of locally constant compactly supported measures as
before, the third arrow send φ to (pr∗(φ), pr

′
∗(φ)), where pr : G/T → G/TU ,

pr′ : G/T → G/TU ′ are the projections and the fourth arrow sends (φ, φ′) to∫
φ−

∫
φ′.

Lemma 2.13. The complex (3) is exact.

Proof. Exactness at all the terms except for S(G/TU)⊕S(G/TU ′) is clear. Suppose
that (ψ, ψ′) : S(G/TU) ⊕ S(G/TU ′) → C is a linear functional vanishing on the

image of S(G/T ). Let ψ̃ : S(G) → C be the composition of the direct image map
S(G) → S(G/TU) with ψ. Then ψ is a right TU invariant generalized function on
G. On the other hand, −ψ is equal to the composition of the direct image map
S(G) → S(G/TU ′) with ψ′, which shows that ψ̃ is also right TU ′ invariant. Since G

is assumed to be almost simple, U and U ′ together generate G, thus we see that ψ̃ is
right G invariant. It follows that ψ̃ is proportional to the functional φ 7→

∫
φ, hence

the functional (ψ, ψ′) factors through the differential in (3), which yields exactness
of (3). �

We can now finish the proof of Conjecture 2.9(c) in the present case. Breaking
(3) into short exact sequences we get

0 → KΩ → S(G/T ) →M → 0,

0 → M → S(G/TU)⊕ S(G/TU ′) → C → 0.

Considering the corresponding long exact sequences on homology we see that it suf-
fices to check that the map C = H0(G,S(G/T )) → H0(G,M) is nonzero while
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the map H1(G,S(G/T )) → H1(G,M) has one-dimensional cokernel. The for-
mer statement is clear since the composition H0(G,S(G/T )) → H0(G,M) →
H0(G,S(G/TU)) is nonzero. To check the latter recall that Hi(G,C) = 0 for
i > 0 since the resolution of C provided by the simplicial complex for computation
of homology of the Bruhat-Tits building B shows that Hi(G,C) ∼= Hi(B/G), while
B/G is a product of simplices. Thus

H1(G,M) ∼= H1(G,S(G/TU)⊕ S(G/TU ′)) ∼= H1(T,C)⊕H1(T,C).

Since S(G/TU) ∼= H1(T,C) we see that

CoKer (H1(G,S(G/T )) → H1(G,M)) ∼= H1(T,C),

which is one-dimensional. �

2.3. The case of PGL(2). To simplify the argument we assume in this subsection
that char(F ) = 0.

Theorem 2.14. Conjecture 2.9 is true for G = PGL(2).

The rest of the subsection is devoted to the proof of the Theorem.

Claim 2.15. We have Kcusp ⊂ K.

Proposition 2.16. The map τ : H0(G,K) → DG is an embedding.

Proof. We need more notation.

Definition 2.17. • For ǫ ≥ 0 we define Gǫ = {g ∈ G||p(g)| ≤ ǫ}, where

p(g) = tr2(g̃)
det(g̃) − 4; here g̃ ∈ GL(2, F ) is a representative of g.

• We let Gs, Ge, N , N̄ denote, respectively, the sets of regular semisimple
split, regular semisimple elliptic, regular unipotent and all unipotent ele-
ments.

• We set

Ku = K(N̄ ) := {f ∈ S(N̄) |

∫

u∈U

f(u)du = 0 ∀B = TU ⊂ G},

K0 := {f ∈ Ku|f(e) = 0},

where B runs over the set of Borel subgroups in G.
• For f ∈ K we denote by κ(f) ∈ Ku the restriction of f to N̄ and by [κ(f)]
the image of κ(f) in H0(G,Ku).

We start with the following geometric statement.

Lemma 2.18. Let f ∈ S(G) be such that f |N̄ ∈ Ku. Then there exists ǫ > 0 such
that f |Gǫ ∈ K.

Proof. Recall notations of Remark 2.6. We have ∆YB
= G/B × T , where T is

the (abstract) Cartan subgroup of G. It is easy to see that condition f |N̄ ∈ Ku
is equivalent to vanishing of the restriction of AB(f) to G/B × {1} ⊂ ∆YB

. Also,
condition f |Gǫ ∈ K is equivalent to vanishing of AB(f) on G/B× Tǫ ⊂ ∆YB

, where
Tǫ = Gǫ ∩ T (here we abuse notation by identifying the abstract Cartan subgroup
T with an arbitrarily chosen Cartan subgroup). Since AB(f) is locally constant for
f ∈ H, the statement follows from compactness of G/B. �

Corollary 2.19. For any f ∈ K such that [κ(f)] = 0 there exists f ′ ∈ K with the
same image in H0(G,K) and such that f ′|N̄ = 0.

Proof. Since [f |N̄ ] = 0 we can write the restriction of f to N̄ as a finite sum∑
i(f̃

gi
i − f̃i), f̃i ∈ K′

0, gi ∈ G. As follows from the Lemma 2.18 we can choose

fi ∈ K such that f̃i = fi|N̄ . Then the function f ′ := f −
∑
i(f

gi
i − fi) satisfies the

conditions of Corollary. �
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Proposition 2.20. The space H0(G,Ku) is two dimensional.

Proof. We first show that dim(H0(G,K0)) = 1.
Let B be the variety of Borel subgroups, p : N → B the map which associates to

u ∈ N the Borel subgroup containing u. By definition we have an exact sequence

0 → K0 → S(N) → S(B) → 0

and therefore an exact sequence

H1(G,S(N)) → H1(G,S(B)) → H0(G,K0) → H0(G,S(N)) → H0(G,S(B)).

Lemma 2.21. H1(G,S(N)) = 0.

Proof. Fix a Borel subgroup B = TU . We can write U as a union of open com-
pact subgroup U1 ⊂ ...Un ⊂ .... Therefore S(N) = S(G/U) is the direct limit of
S(G/Un). Since the functor M 7→ H1(G,M) commutes with direct limits it is suf-
ficient to show that H1(G,S(G/Un)) = {0}. Since Un ⊂ G is a compact subgroup
the space H1(G,S(G/Un)) is a direct summand of S(G). Since H1(G,S(G)) = 0
the Lemma is proven. �

Since G acts transitively on N and on B we have H0(G,S(N))−̃→H0(G,S(B)) =
C. Since H1(G,S(N)) = 0 we see that the map H1(G,S(B)) → H0(G,K0) is an
isomorphism. Since B = G/B we have:

H1(G,S(B)) = H1(B,C) = H1(T,C) = C.

So dim(H0(G,K0)) = 1.
To conclude the argument, recall the short exact sequence 0 → K0 → Ku → C →

0.
Since H1(G,C) = 0 we have an exact sequence:

0 → H0(G,K0) → H0(G,Ku) → C → 0

So dim(H0(G,Ku) = 2. �

Let r : Kcusp → Ku be the restriction and [r] : Kcusp → H0(G,Ku) be the
composition of r and projection Ku → H0(G,Ku).

Lemma 2.22. The map [r] is onto.

Proof. Recall the map τ : H0(G,K) → DG, [f ] → f̂ . Let D̄G be the space of germs
of invariant distributions at e and τ̄ : H0(G,K) → D̄G be the composition of τ with
the restriction map.

Corollary 2.19 implies that the map τ̄ vanishes on the kernel of the mapH0(G,K) →
H0(G,Ku). Thus it suffices to show that τ̄ |Kcusp

has rank at least two, i.e. that
there exist irreducible cuspidal representations ρ1, ρ2, such that their characters
restricted to any G-invariant open neighborhood of identity are not proportional.
This is easily done by inspecting the character tables, see e.g. [20, §2.6]. �

Corollary 2.23. a) For any f ∈ K there exists fcusp ∈ Kcusp such that [κ(f)] =
[κ(fcusp′)].

b) For any f0 ∈ Ku there exists f ∈ Kcusp such that [f0] = [κ(f)]. �

Let s ∈ G be a regular split semisimple element and Ω ⊂ G be the conjugacy
class of s.

Proposition 2.24. dim(H0(G,KΩ)) = 1.

Proof. Let T = ZG(t) be the split torus and B,B′ ⊂ G be Borel subgroups con-
taining T . Since Ω = G/T we have maps r : Ω → G/B and r′ : Ω → G/B′ and
therefore morphisms r⋆ : S(Ω) → S(G/B) and r′⋆ : S(Ω) → S(G/B′).

As a special case of Lemma 2.13 we get:
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Lemma 2.25. The sequence

(4) 0 → KΩ → S(Ω) → S(G/B)⊕ S(G/B′) → C → 0,

where the last map l is given by (ν, ν′) 7→
∫
ν −

∫
ν′, is exact. �

Let L := ker(l). We have an exact sequence

0 → L→ S(G/B) ⊕ S(G/B′) → C → 0.

Using that G has homological dimension one, we get that the corresponding long
exact sequence of homology contains the following fragment:

0 → H1(G,L) → H1(B,C)⊕H1(B
′,C) → H1(G,C).

It is easy to see that

dim(H1(B,C)) = dim(H1(B
′,C)) = dim(H1(T,C)) = 1

Since the quotientG/[G,G] is finite we see thatH1(G,C) = 0. Therefore dim(H1(G,L)) =
2.

On the other hand we have an exact sequence

0 → KΩ → S(Ω) → L→ 0

and therefore an exact sequence

H1(G,S(Ω)) → H1(G,L) → H0(G,KΩ) → H0(G,S(Ω)).

Since H1(G,S(Ω)) = H1(T,C) we see dim(H1(G,S(Ω)) = 1.

Lemma 2.26. The map a : H1(G,S(Ω)) → H1(G,L) is an embedding.

Proof. It is sufficient to show that the map H1(G,S(Ω)) → H1(G,S(G/B)) induced
by the composition p⋆ ◦ a : L→ S(G/B) is an embedding.

Since H1(G,S(Ω)) = H1(T,C), H1(G,S(G/B)) = H1(B,C) and H>0(U,C) = 0,
we see that this map is an isomorphism. �

We can now finish the proof of Proposition 2.24. Since G acts transitively on
G/B the map µ →

∫
G/B

µ defines an isomorphism H0(G,S(G/B)) → C. On the

other hand, since
∫
Ω

ν = 0 for any ν ∈ KΩ the map H0(G,KΩ) → H0(G,S(Ω))

equals zero. So dim(H0(G,KΩ)) = 1. �

Recall that Gs ⊂ G is the subset of regular split semisimple elements, let Ks ⊂ K
be the subspace of functions in K supported on Gs. We fix a Cartan subgroup T ,
the Weyl group W = Z/2Z acts on T and on G/T in the usual way. Then the map

(T − {e})×G/T → Gs, (s, g) → gsg−1

induces an isomorphism

(5) S(Gs) → (S(T − {e})⊗ S(G/T ))W .

Corollary 2.27. a) For f ∈ Ks the distribution f̂ is locally constant on Gs.

b) The map f 7→ (t 7→ f̂(t)) induces an isomorphism

H0(G,Ks) → S(T − {e})W .

Proof. The isomorphism (5) is clearly compatible with the averaging map f 7→ f̂ ,
which implies a). Likewise, restriction to an orbit is compatible with averaging, thus

in view of (5) it suffices to show that for a fixed orbit Ω ⊂ Gs the map f 7→ f̂(t),
t ∈ Ω induces an isomorphism H0(G,K(Ω)) → C. By Proposition 2.24 it suffices
to see that this map is nonzero. This follows, for example, from the fact that the
character of a cuspidal representation does not necessarily vanish on Gs, while the
character of an irreducible cuspidal representation is obtained by averaging from its
matrix coefficient. �
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Now we can finish the proof of Proposition 2.16. Let f ∈ K be such that f̂ = 0.
It follows from Corollary 2.19 and Lemma 2.18 that we can can find f ′ with the
same image in H0(G,K) such that f ′ = fs + fe where fs is supported on regular

split semisiple elements and fe on regular elliptic elements. The condition f̂ = 0

implies that f̂ ′ = 0, hence f̂s = 0 and f̂e = 0. It is easy to see that the condition

f̂e = 0 implies that [fe] = 0. So we may assume that the support of f is contained
in the subset Gs ⊂ G of regular split semisimple elements. Now Proposition 2.16
follows from Corollary 2.27. �

Let D̃e be the space of germs of distributions at e and De ⊂ D̃e be the subspaces
spanned by germs of characters of irreducible representations.

Lemma 2.28. The space De is 2-dimensional. It is spanned by germs of characters
of irreducible cuspidal representations.

Proof. The second statement is a special case of a theorem of Harish-Chandra [13].
The first one also follows from loc. cit., as it shown there that more generally the
space De has a basis indexed by unipotent orbits. �

Recall that E ⊂ D is the subspace of distributions α satisfying the following three
conditions:

a) There exists a compact subset C in G such that supp(α) ⊂ CG.
b) The restriction of α on G− {e} is given by a locally constant function.
c) The germ of α at e belongs to De.

Lemma 2.29. τ(K) ⊂ E .

Proof. Fix f ∈ K. It is clear that the distribution f̂ satisfies condition a).

To prove that f̂ satisfies condition b) we have to show that for any semisimple
element s ∈ G − {e} there exists an open neighborhood R ⊂ G of s such that the

restriction f̂ |R is a constant. If s is split then this follows from Corollary 2.27(a), if
s is elliptic the proof is similar.

To prove that f̂ satisfies condition c) we observe that Corollary 2.23 implies
existence of fcusp ∈ Kcusp such that [κ(f)] = [κ(fcusp)].

It is easy to see that when f is a matrix coefficient of an irreducible cuspidal

representation ρ then f̂ is proportional to the character of ρ. Thus condition c) is

satisfied by αcusp = ˆfcusp. However, by Lemma 2.18 and Corollary 2.19 the germs
of α and αcusp at e coincide. �

Proposition 2.30. τ(K) = E .

Proof. It remains to show that every α ∈ E is in the image of τ . Lemma 2.28 shows
that there exists β ∈ E which is a linear combination of characters of cuspidal
representations such α − β vanishes on an open neighborhood of e. Thus we have
α− β = αs + αe, where αs is supported on Gs, while αe is supported on Ge.

Now αs is in the image of τ by Corollary 2.27, while αe is in the image of τ by a
similar argument. Also, β is in the image of τ since the character of an irreducible

cuspidal representation ρ equals f̂ where f is a matrix coefficient of ρ.
Proposition 2.30 and therefore Theorem 2.14 are proven. �

3. The compactified category of smooth modules

3.1. Definition of the compactified category. For a parabolic P = LU let
L0 ⊂ L be the subgroup generated by compact subgroups; thus L0 is the kernel of
the unramified characters of L. Set Λ̌P = L/L0.

Let ΛP be the group of F -rational characters of L and Λ+
P be the subset of P -

dominant weights, i.e. weights which are (non-strictly) dominant with respect to
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any (not necessarily F -rational) Borel subgroup B ⊂ P . We have a nondegenerate
pairing between the lattices Λ̌P and ΛP given by:

〈xL0, λ〉 = valF (λ(x)).

Let Λ̌+
P be the subsemigroup defined by:

Λ̌+
P = {x ∈ Λ̌P | 〈x, λ〉 ≥ 0 ∀λ ∈ Λ+

P },

and let L+
P ⊂ L be the preimage of Λ̌+

P under the projection L→ Λ̌P .

For a pair of parabolics P ⊃ Q let LP+
Q ⊂ LQ denote the image of L+

P ∩ Q in

LQ = Q/UQ. It is easy to see that LP+
Q ⊃ L+

Q.

For an open submonoid M ⊂ G we let Sm(M) denote the category of nondegen-
erate finitely generated H(M)-modules; this is easily seen to be equivalent to the
category of finitely generated smooth M -modules.

For parabolic subgroups P ⊃ Q we have the ”Jacquet” functor JPQ : Sm(L+
P ) →

Sm(LP+
Q ), M 7→MUQ

, where UQ is image of UQ in LP = P/UP .

To simplify the wording in the following definition we fix a minimal parabolic
P0, then by a standard parabolic we mean a subgroup P containing P0.

Definition 3.1. The compactified category of smooth G-modules Sm
qc

= Sm
qc
(G)

is the category whose object is a collection (MP ) indexed by standard parabolic
subgroups P = LPUP , where MP is a smooth module over L+

P , together with
isomorphisms

(6) JPQ (MP ) ∼= H(LP+
Q )⊗H(L+

Q
) MQ

fixed for every pair of standard parabolic subgroups P = LPUP ⊃ Q = LQUQ;
here H denotes the algebra of locally constant compactly supported distributions.
The isomorphisms are required to satisfy the associativity identity for each triple
of parabolics P1 ⊃ P2 ⊃ P3.

An object in the compactified category is called coherent if the module MP is
finitely generated for all P .

We let Sm = Sm(G) ⊂ Sm
qc

denote the full subcategory of coherent objects.

It is easy to see that Sm(G) is an abelian category, the functor sending (MP ) ∈
Sm to MG identifies Sm(G) with a Serre quotient of Sm.

We also have an adjoint functor Sm(G) → Sm
qc
. This functor sends admissible

modules but not general finitely generated modules to Sm.

Example 3.2. Let G = SL(2). In this case the category Sm admits the following
more direct description. A component of the spectrum Z of Bernstein center is in this
case either a point or an affine curve, thus Z admits a canonical (componentwise)
compactification Z. Notice that ∂Z = Z \ Z is identified with the set (O×)∗ of
characters of T0 = O×. Let T+ = O \ {0} ⊂ F× = T , thus T+ ∼= O× × Z≥0. Set

Z̃+ = Spec(H(T+)) ∼= (O×)∗ × A1. Notice that we have a natural map π : Z̃+ → Z

inducing an isomorphism (O×)∗ × {0} → ∂Z. Moreover, π is etale at (O×)∗ × {0}.
The full Hecke algebra H defines a quasicoherent sheaf of algebras on Z, we

now describe its extension to a quasicoherent sheaf of algebras H on Z. The latter
depends on the choice of a maximal open compact subgroup K0 = SL(2, O). Fixing

this choice we set H̃+ = EndT+(S(G/U+)), where (G/U)+ = O2 \{0} ⊂ F 2\{0} =

G/U . We also let H̃ = EndT (S(G/U)). It is clear that H̃+ defines a quasicoherent

sheaf on Z̃+ whose restriction to the open subset Z̃ := Z̃+ \ (O×)∗ × {0} is the

quasicoherent sheaf defined by H̃.
The action of H on S(G/U) defines a homomorphism π∗(H) → H̃ which is an

isomorphism on a Zariski neighborhood of ∂Z̃+ = Z̃+ \ Z̃. Thus we get a well
defined quasicoherent sheaf of algebras H on Z such that H|Z = H and the induced
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map π∗(H)|Z̃ → H̃ extends to a map π∗(H) → H̃+ which is an isomorphism on a

neighborhood of ∂Z̃+.
It is clear that K2

0 acts on H and for an open subgroup K ⊂ K0 the subsheaf
HK of K2 invariants is a coherent sheaf of algebras.

We leave it to the reader to show that although H depends on an auxiliary
choice, different choices lead to algebras which are canonically Morita equivalent.
Thus we can consider the category of sheaves of nondegenerate H-modules which
can be checked to be canonically equivalent to Sm. If the subgroup K ⊂ K0 is nice
in the sense of [9] then for every component X of Z either the coherent sheaf of

algebras HK |X is zero or the corresponding summand in Sm (respectively, Sm
qc
)

is canonically equivalent to the category of coherent (respectively, quasicoherent)
sheaves of HK |X -modules.

3.2. Compactified center and a spectral description of the compactifed
category. Let Z = Z(G) be the Bernstein center of G and Z = Spec(Z) be its
spectrum. By the main result of [9] (the set of closed points of) Z is in bijection with
the set Cusp(G) of cuspidal data, i.e. the set of G-conjugacy classes of pairs (L, ρ),
where L ⊂ G is a Levi subgroup and ρ is a cuspidal irreducible representation of L.

3.2.1. Compactified center. Let Z denote its compactification described as follows.
We have a canonical isomorphism Z = Z̃/W where W is the Weyl group, and Z̃

parametrizes pairs (L, ρ) where L is a Levi subgroup containing a fixed maximally
split Cartan T and ρ is a cuspidal representation of L. The complex torus LT =
X (L) acts nn the union Z̃L of components corresponding to a given Levi subgroup
L ⊃ T ; here X (L) stands for the group of unramified characters of L acting on the
set of representations by twisting. Notice that LT is a torus with X∗(LT ) = L/L0.
The action is transitive on each component and the stabilizer of each point is finite.
The space X∗(LT )R = X∗(Z(L))R (where X∗ stands for the lattice of F -rational
cocharacters) contains hyperplanes corresponding to the roots of Z(L) in g; the fan

formed by these hyperplanes defines an equivariant compactification LT of LT . We
set

Z = Z̃/W, Z̃ =
⋃

L

LT ×
LT Z̃L,

where the right hand side makes sense because the action of W on Z̃ extends to
the compactification, here we use the notation X ×H Y = (X × Y )/H . Notice that

every component of Z̃L is of the form LT/A for a finite subgroup A ⊂L T , thus the

corresponding component of LT ×
LT Z̃L is identified with LT/A.

For a parabolic P = LU let Z0(L) ⊂ Z(L), Z+(L) ⊂ Z(L) be the subalgebras
consisting of distributions supported on L0 and L+

P respectively, set also Z0(L) =
Spec(Z0(L)), Z+(L) = Spec(Z+(L)).

It is clear that

(7) Z0(L) = Z(L)/X (L),

where X (L) is the group of unramified characters of L.

Proposition 3.3. a) Z admits a canonical stratification indexed by conjugacy
classes of parabolic subgroups, where the stratum ZP corresponding to the class
of a parabolic P is identified with Z0(L).

b) The embedding Z0(L) → Z canonically extends to a map Z+(L) → Z which
is etale on a Zariski neighborhood of ZP ∼= Z0(L).

Given two parabolics P ⊂ Q we have a canonical map cQP : Z+(LP ) → Z+(LQ)

which is compatible with maps to Z.
Moreover, for three parabolics P1 ⊂ P2 ⊂ P3 we have

cP3

P1
= cP3

P2
cP2

P1
.
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Proof. Let Z̃L = LT ×
LT Z̃L.

It is a standard fact that LT -orbits in LT are in bijection with parabolic sub-

groups containing L, so that the orbit LTQ corresponding to a parabolic Q =MUQ
is identified with X (L)/X (M). The stratification of LT by LT -orbits induces a

stratification on Z̃L, the stratum corresponding to a parabolic Q will be denoted by

Z̃L{Q}.

Fix a conjugacy class P of parabolic subgroups and set Z̃L(P) =
⋃
Q∈P

Z̃L{Q}.

Let Z̃P =
⋃
L

Z̃L(P).

It is clear that (Z̃P) is a stratification of Z̃ and each stratum is W -invariant.

Thus ZP := Z̃P/W are strata of a stratification of Z.

The map Q 7→ Z̃L{Q} is easily seen to be W -equivariant, it follows that for a
parabolic P = LU ∈ P we have

ZP
∼=

⋃

M,T⊂M⊂L

Z̃M{P}/WL.

The above isomorphism LTQ ∼= X (L)/X (M) shows that Z̃M{P} ∼= ZM (L)/X (L).
Passing to the union over M and taking quotient by the action of WL (which com-
mutes with the action of X (L)) we get ZP

∼= Z(L)/X (L) which yields (a) in view
of (7).

To check (b) observe that for parabolic subgroups Q = MUQ ⊃ P = LUP ⊃ T

the cone R≥0Λ+
Q belongs to the fan defining the toric variety LT . Let VL{Q} be

the corresponding affine open subset in LT and VL{Q} be the corresponding open

affine in Z̃L. Thus VL{Q} is a Zariski open neighborhood of Z̃L{Q}.
It is easy to see that VL{Q} is WM invariant and VL{Q}/WM

∼= Z+(L). Since

Z = Z̃/W , claim (b) follows from the fact that the stabilizer of any point x ∈ Z̃{Q}
is contained in WM .

c) follows by inspection. �

In order to relate Sm to Z we will need the following general concept. Let X be
an algebraic variety. By a quasicoherent enrichment of a category C over X we will
mean assigning to objects M , N ∈ C an object Hom(M,N) ∈ QCoh(X) together
with an isomorphism Hom(M,N) = Γ(Hom(M,N)) and maps Hom(M1,M2)⊗OX

Hom(M2,M3) → Hom(M1,M3) satisfying the associativity constraint and compat-
ible with the composition of morphisms in C. If the quasicoherent sheaf Hom(M,N)
is actually coherent for all M,N ∈ C we say that the enrichment is coherent.

Proposition 3.4. The category Sm (respectively, Sm
qc
(G)) admits a natural lifts

to a category coherent (respectively, quasicoherent) enrichment over Z.

Corollary 3.5. The categories Sm, Sm
qc

split as a direct sum indexed by compo-
nents of Z. �

Before proceeding to prove the Proposition we state a general elementary Lemma.

Lemma 3.6. Let X =
∐
Xi be a scheme with a fixed stratification (i.e. the closure

of Xi coincides with
∐
j≤iXj for some partial order ≤ on the set I of strata). Set

Ui =
∐
j≥iXj , this is an open subset of X . Suppose that for each i we are given a

map ui : Yi → Ui, such that
i) Xi ×X Yi−̃→Xi

ii) ui is etale over a Zariski neighborhood of Xi.
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iii) For j ≤ i set Yji = Yj ×X Ui. Then the map Yji → Ui factors through a map
uji : Yji → Yi. Moreover, for k < j < i the map Yki → Uj ⊃ Ui factors through a
map ukji : Yki → Yji.

Let Yd =
∐
i1<···<id

Yi1id . Then the diagram Y3
→→→ Y2 ⇒ Y1 → X satisfies

descent for quasicoherent sheaves, i.e. QCoh(X) is equivalent to the category of
quasicoherent sheaves on Y1 with isomorphisms of the two pull-backs to Y2 whose
pull-backs to Y3 satisfy the natural compatibility.

Remark 3.7. To fix ideas let us first prove the Lemma for sheaves in the analytic
topology assuming we work over the base field C. Then it is easy to see that we
can find an open subset Y oi ⊂ Yi for each i so that Y oi maps isomorphically to a
neighborhood of Xi in X . Moreover, we can arrange it so that the images of Y oi
and Y oj have a nonempty intersection only if i ≤ j or j ≤ i. Replacing Yi by Y

o
i

does not affect the category of gluing data; however, (Y oi ) is just an open covering
of X , so the claim is clear.

3.2.2. Proof of Lemma 3.6. Let X0 be a closed stratum. Running an inductive
argument, we can assume the theorem is known for the stratified space X \ X0.
Then we are reduced to proving the claim in the situation when the stratification
consists of two strata X = X0

∐
X1. Replacing Y0 by its open subset containing

X0 clearly does not affect the category of descent data, so we can assume without
loss of generality that Y1 → X is etale. By a standard argument the claim reduces
to exactness of the complex of sheaves on X :

0 → O → (Y0 → X)∗(O)⊕ (Y1 → X)∗(O) → (Y01 → X)∗(O) → 0.

The complex is clearly exact over X1, so it is enough to show that local cohomol-
ogy of this complex with support on X1 vanishes. This reduces to showing that
α!(O)−̃→β!(O), where β : X0 → X , α1 : X0 → Y0. This follows from conditions
(i), (ii). �

3.2.3. Proof of Proposition 3.4. Proposition 3.3 implies that X = Z with the strati-
fication of Proposition 3.3(a), and Yi = Z(L+

i ) satisfy the conditions of Lemma 3.6.

It is easy to see from the definition of Sm
qc

that the collection of quasi-coherent
sheaves Hom(MP , NP ) provides gluing data described in Lemma 3.6. Also, for
M, N ∈ Sm the module Hom(MP , NP ) is finitely generated, so the resulting qua-
sicoherent sheaf is in fact coherent. �

3.3. The spectral description of Sm. Recall that for every component X ⊂ Z

the choice of a sufficiently small nice (in the sense of [9]) open compact subgroup
K ⊂ G defines a coherent sheaf of algebras A = AX(K) on X with an equivalence
between AX(K) modules and the corresponding summand in smooth G-modules.

Let B be the (reductive) Bruhat-Tits building of G. We fix a special vertex
x ∈ B and let Kx ⊂ G denote the corresponding maximal compact subgroup.

We also fix a maximally split Cartan subgroup T , such that the corresponding
apartment AT ⊂ B contains x. Thus AT is an affine space with underlying vector
space V = X∗(T ) ⊗ R. Let V+ ⊂ AT be a Weyl cone with vertex at x and B the
corresponding minimal parabolic subgroup.

It follows from the Iwasawa decomposition (see e.g. [22, §3.3.2]) that we have a
natural bijection

(8) P ′\G/Kx
∼= Λ̌P ,

where P ′ denotes the commutator group. Let G+(x, P ) be the union of cosets
corresponding to elements in Λ̌+

P ⊂ Λ̌P .
Let (UP \G)

+(x) be the image ofG+(x, P ) in UP \G and S+(UP \G)(x) ⊂ S(UP \G)
be the subspace of functions whose support is contained in (UP \G)

+(x).
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Proposition 3.8. a) The left action of L on S(UP \G) restrict to an L+
P action on

S+(UP \G)(x).
b) Let K ⊂ Kx be an open subgroup. The H(L+

P )-module S+(UP \G)(x)
K is

finitely generated and projective.
c) There exists a unique object P(x)K ∈ Sm such that P(x)KP = S+(UP \G)(x)

K

while the isomorphism (6) for P = G comes from the natural arrow S+(UQ\G)(x)
K →

S(UQ\G)
K = JGQ (S(G)K).

d) For every open subgroup K ⊂ Kx the object P(x)K is locally projective, i.e.
the functor Hom(P(x)K , ) is exact.

e) For every component X there exists an open subgroup S ⊂ Kx such that
for any open subgroup K ⊂ S the object PKx is local generator of the correspond-
ing summand SmX ⊂ Sm. The latter property means that Hom(Pσ(x)

K , ) is
conservative i.e. it Hom(Pσ(x)

K ,M) 6= 0 for 0 6= M ∈ SmX .

Proof. a) Bijection (8) intertwines the left action of L on P ′\G/Kx with the action of
Λ̌P = L/L0 on itself by translations, this implies part a). The space S+(UP \G)(x)

K

splits as a direct sum indexed by P\G/K, each summand is isomorphic to the space
S(L+

P )
KL for some open compact subgroup KL ⊂ K, this implies b).

Notice that given modules MP and isomorphisms (6) for P = G as in Definition
3.1, the rest of the isomorphisms (6) satisfying the requirements of the Definition
are defined uniquely (if they exist) provided that each module MP is torsion free as
a module over Z+(LP ). This implies uniqueness in c). Existence follows from the
fact that G+(x, P ) ⊂ G+(x,Q) for parabolic subgroups P ⊂ Q.

Statement d) follows from b).
Finally e) follows from the corresponding statement about HK established in

[9]. �

Set AX = AX(x,K) := Hom(P(x)K ,P(x)K)|X , this is a sheaf of algebras on X .

Corollary 3.9. Given a component X ⊂ Z for any small enough open subgroup
K ⊂ Kx we have a canonical equivalence between the category of (quasi)coherent

sheaves of AX(x,K)-modules and the summand in Sm (respectively, Sm
qc
) corre-

sponding to X .

3.4. Compactified category and filtered modules. For a simple root α let
Pα be the corresponding maximal proper parabolic and Zα be the closure of the
corresponding stratum in Z. It is easy to see that Zα is a divisor. For a weight λ
set Dλ =

∑
α〈α̌, λ〉[Zα] where the sum runs over the set of simple roots, let also

O(λ) = O
Z
(Dλ) and F(λ) = F ⊗O(Z) O(λ).

A coherent sheaf F on Z is determined by the graded module ⊕λΓ(F(λ)), over
the homogeneous coordinate ring ⊕Γ(O(λ)).

If F is torsion free then the natural map F(µ) → F(λ + µ), λ ∈ Λ+ is injective
and

⋃
λ

F(λ) = j∗j
∗(F) where j : Z → Z is the embedding. Thus the category of

torsion free coherent sheaves Cohtf (Z) admits a full embedding into the category of
O(Z)-modules equipped with a filtration indexed by Λ+ compatible with the natural
filtration on the ring O(Z): to a sheaf F it assigns the module Γ(j∗(F )) with the
filtration by the subspaces Γ(F(λ)).

Applying it to the sheaf of ringsAX(x,K) we get a filtration on the Hecke algebra
F spec≤λ (HK).

Thus we obtain the following:

Proposition 3.10. We have a full embedding from the category Sm
tf

K of torsion
free objects in SmK to the category of modules over HK equipped with a filtration
compatible with the filtration F spec on HK .
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It is clear that the associated graded of the filtered module in the image of such
an embedding is finitely generated; recall that a filtration with this property is
called a good filtration.

We also have the left adjoint functor Loc from the category of HK modules with
a good filtration to SmK .

3.4.1. A geometric description of the filtration. We now provide a more explicit
description of the filtration F spec≤λ (HK).

Recall that the two sided cosets of Kx in G are indexed by X+
B (see e.g. [22,

§3.3.3]), for λ ∈ X+
B let Gλ denote the corresponding coset. Let F geom≤λ (HK) be the

space of functions whose support is contained in
⋃
µ≤λ

Gµ.

Proposition 3.11. For every open compact K ⊂ Kx there exists λ0 ∈ X+
B such

that:

(9) F spec≤λ (HK) = {h ∈ HK | ∀µ ∈ λ0 +X+
B : h ∗ F geom≤µ (HK) ⊂ F geom≤µ+λ(HK).}

Proof It follows from the definition that

(10) h ∈ F spec≤λ (HK) ⇐⇒ ∀P, µ : S((UP \G)≤µ) ∗ h ⊂ S((UP \G)≤λ̄P+µ),

where λ̄P is the image of λ in Λ̌P and (UP \G)≤µ =
⋃
ν≤µ

(UP \G)ν for the standard

partial order ≤ on Λ̌P ; here (UP \G)ν is the image of the coset corresponding to ν
under bijection (8). ) Let XP = (G/UP ×G/UP−)/L. We have Kx\XP/Kx

∼= Λ̌P ,
let (XP )µ denote the two-sided coset corresponding to µ ∈ Λ̌P . Then the condition
in the right hand side of (10) is equivalent to:

(11) ∀P, µ : h ∗ S((XP )≤µ) ⊂ S((XP )≤λ+µ),

where (XP )≤µ =
⋃
ν≤µ

(XP )ν . this is clear by considering the projection X → G/P−

with fiber G/UP . Assume now that h lies in the set in the right hand side of (9).
Applying the map BI of [8, Definition 5.3] and using [8, Lemma 5.5], we see that h
also satisfies (11). This shows that the right hand side of (9) is contained in the left
hand side. We proceed to check the opposite inclusion. The Rees ring ⊕λF

spec
≤λ (HK)

is finite over its center which is a finitely generated commutative ring, hence the
Rees ring is finitely generated. Thus it suffices to check that for a finite set of
generators hi ∈ F spec≤λi

(HK) we have:

hi ∗ F
geom
≤µ (HK) ⊂ F geom≤µ+λi

(HK) ∀µ ∈ λ0 + Λ+

for some λ0 ∈ Λ+. Existence of such a λ0 for a given hi follows from [8, Lemma 5.5].
Since we consider a finite set of hi, there exists λ0 which satisfies the requirement
for all hi. �)

Remark 3.12. It easily follows from the construction that gr(F spec) is a Noether-
ian ring.

Notice that the geometric filtration on H is also compatible with the algebra
structure; however, its associated graded is neither Noetherian, nor finitely gener-
ated in general. This is closely related to the fact that the intertwining operator
acting on the space of functions over (G/U)(O/πnO) is not an isomorphism for

n > 1 (here (G/U) is a scheme over O coming from the O-group scheme with

generic fiber G corresponding to x ∈ B).

Example 3.13. In view of Proposition 3.11 the geometric filtration F geom on H
makes it into a filtered module over the filtered algebra (H, F spec). Applying the

functor Loc to that filtered module we get an object in Sm. We denote it by H
′

and call it the intertwining object in Sm.
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Lemma 3.14. Assume that G = SL(2).

The intertwining object H
′
is equivalently described by H

′

G = H,

H
′

B = {f ∈ S(G/U) | supp(I−1(f)) ⊂ (G/U−)
+},

where I−1 denotes the inverse intertwining operator taking values in functions of
bounded support.3

Proof. Without loss of generality we can assume that x is the standard vertex, so
that Kx = SL(2, O), we will write K0 instead of Kx.

We need to check that for h ∈ HK and large λ ∈ Λ we have:

h ∈ F geom≤λ ⇐⇒ supp(I−1
P AP (h)) ⊂ (XP )≤λ,

where X≤λ is the union of two-sided K0 cosets corresponding to weights µ ≤ λ and
A : H → S(YP ). By [8, Theorem 7.6] I−1A = B⋆ (notations of loc. cit.). It follows
from [8, Lemma 5.5] that for large λ we have

supp(h) ⊂ G≤λ ⇐⇒ supp(B⋆(f)) ⊂ X≤λ.

The claim follows. �

Remark 3.15. A similar statement can also be checked for an arbitrary reductive
group G based on a generalization of [8, Theorem 7.6] to an arbitrary parabolic
subgroup.

Remark 3.16. We expect the local trace formula [1] to be closely related to the

computation of Chern character of H
′
taking values in the appropriate Hochschild

homology group.

4. Hochschild homology and character values

Recall the notion of Hochschild homology of an abelian category [18], [16]. For
a coherent sheaf of algebras A over a quasi-projective algebraic variety X over a
field we have HH∗(X ;A) ∼= HH∗(A−mod), where A−mod is the abelian category
of coherent sheaves of A-modules and HH∗(X ;A) is defined as the derived global
section of a naturally defined object RHomA⊗Aop(A,A) in the derived category of
sheaves on X , here the isomorphism is shown in [17].

One can also define the compactly supported Hochschild homology HHc
∗(X ;A) as

the derived global sections with compact support in the sense of [12] ofRHomA⊗Aop(A,A).
If X is projective then we also have

HHc
∗(X ;A) ∼= HH∗(X ;A) ∼= HH∗(A−mod),

where the first isomorphism is clear since RΓ = RΓc for a projective scheme. Also,
for an open subscheme U ⊂ X we have a natural push forward mapHHc

∗(U ;A|X) →
HHc

∗(X,A).
Assume that the sheaf of algebras A (locally) has finite homological dimension.

Then we have the Chern character map ch : K0(A−mod) → HH0(A −mod), see
e.g. [17, §4.2] for the definition (it is called the Euler class map in loc. cit.).

Example 4.1. For future reference we spell out this general construction in some
simple special cases. We leave the proofs of these standard facts to the interested
reader.

(1) Assume X is affine, so that A − mod is the category of finitely gener-
ated modules over a Noetherian ring which we also denote by A. Then
HH∗(X ;A) = HH∗(A) is computed by the bar complex of A, in particular
HH0(X ;A) = HH0(A) = A/[A,A]. A finitely generated projective module
M is isomorphic to A⊕ne for an idempotent e ∈Matn(A) for some n. Then
ch(M) =

∑
(eii) mod [A,A].

3Here by a bounded set in G/U
−

= F 2 \ {0} we mean a subset with compact closure in F 2.



18 ROMAN BEZRUKAVNIKOV, DAVID KAZHDAN

(2) Assume that X = U1∪U2 for affine open subsets U1, U2. Let Ai = Γ(Ui, A),
i = 1, 2 and A12 = Γ(U1 ∩ U2, A). Then HH∗(X ;A) is computed by the
complex

Cone (Bar(A1)⊕Bar(A2) → Bar(A12)) [−1].

For a locally projective module coherent sheaf M of A-modules we can find
integers n, m and idempotents e1 ∈ Matn(A1), e

2 ∈ Matm(A2) together
with isomorphisms Γ(U1,M) ∼= A⊕n

1 e1, Γ(U2,M) ∼= A⊕m
2 e2 and matri-

ces a ∈ Matnm(A12), b ∈ Matmn(A21) which induce the inverse isomor-
phisms between A⊕n

12 e
1 and A⊕m

12 e2 coming from the identification of both
with Γ(U1 ∩ U2,M). In this setting ch(M) is represented by the cocycle
(
∑
e1ii,

∑
e2jj ,

∑
aij ⊗ bji) ∈ A1 ⊕A2 ⊕A⊗2

12 .

(3) Let U ⊂ X be an affine open subset such that its complement Z is also
affine. Let A1 = Γ(U,A), and let A1, A12 be the algebras of sections of
A on the formal neighborhood and the punctured formal neighborhood of
Z respectively. Then the statements of part (b) continue to hold mutatis
mutandis.

Definition 4.2. In the above setting, for an object M ∈ A − mod with proper
support we have the Chern character chc(M) ∈ HHc

0(X ;A) as follows. Fix a
proper subscheme Z ⊂ X containing support of cohomology of M. Then [17,
§5.7] yields chZ(M) ∈ RΓZ(X,RHomA⊗Aop(A,A)). We define chc(M) to be
the image of chZ(M) under the canonical map RΓZ(X,F ) → RΓc(X,F ), F =
RHomA⊗Aop(A,A).

It is immediate to check that chc(M) is independent of the auxiliary choice of
Z.

In particular, we have Chern character map c̄h : K0(Sm) → HH0(Sm) and
chc : K0(Adm) → HHc

0(Sm), where Adm ⊂ Sm is the subcategory of admissible
modules.

Let Kc ⊂ K, Knc ⊂ K be the subspace of measures supported on compact
(respectively, noncompact) elements.

Conjecture 4.3. a) We have a canonical isomorphism:
KcG

∼= Im(HHc
0(Sm) → HH0(Sm)).

b) For ρ ∈ Adm and g ∈ G we have WOg(c̄h(ρ)) = χρ(g) if g is compact

regular semisimple. (Here we use that ¯ch(ρ) is the image of chc(ρ) thus it belongs
to Im(HHc

0(Sm) → HH0(Sm)) which we identify with KcG by a).

The proof of Conjecture for G = SL(2) is presented in the next section; we plan
to present the proof in the general case in a later publication.

5. SL(2) calculations

Theorem 5.1. Conjecture 4.3 holds for G = SL(2).

The rest of the section is devoted to the proof of the Theorem. From now on set
G = SL(2).

5.1. Explicit complexes for Hochschild homology. Applying the general con-
struction of section 3.3 with σ = {x} where x is the vertex with stabilizer G(O) we
arrive at a sheaf of algebrasA on Z such that a direct summand in Sm is canonically
identified with the category of coherent sheaves of A-modules. It is easily seen to
coincide with the sheaf HK introduced in Example 3.2. We keep notations of that
Example.

We also let Ĥ+
K denote its sections on the formal neighborhood ∂̂Z of ∂Z = Z \Z

and ĤK the sections on the punctured formal neighborhood of ∂Z. We set Ĥ+ =
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⋃
K

Ĥ+
K and Ĥ =

⋃
K

ĤK . We also let X = (G/U ×G/U−)/T be the set of rank one

matrices in Mat2(F ) and X+ = X ∩Mat2(O).

Then we have Ĥ+
K = EndT+(S(G/U)K+ )⊗C[t] C[[t]], ĤK = ĤK

+ ⊗C[[t]] C((t)). We

have ĤK = EndĤ(T )(S
K
b (G/U)), where Sb(G/U)K ∼= S(G/U)⊗C[t,t−1]C((t)) is the

space of functions on G/U with bounded support.

Also notice that Ĥ (though not Ĥ+) carries a G×G action.

Lemma 5.2. a) HH∗(Sm) is computed by the complex

(12) Bar(Sm) := cone[Bar(H)⊕Bar(Ĥ+) → Bar(Ĥ)][−1].

b) HHc
∗(Sm) is computed by the complex

(13) Barc(Sm) := cone[Bar(H) → Bar(Ĥ)][−1].

c) HHc
∗(Sm) is canonically isomorphic to derived G coinvariants in the two-term

complex

(14) H → Ĥ

(placed in degrees 0,1).

Proof. For a complex F of coherent sheaves on Z the complexes

cone[Γ(Z,F)⊕ Γ̂+(F) → Γ̂(F)][−1],

cone[Γ(Z,F) → Γ̂(F)][−1]

compute, respectively, RΓ(F) and RΓc(Z,F), where Γ̂+(F) and Γ̂(F) denote, re-
spectively, sections of F on the formal neighborhood and on the punctured formal
neighborhood of ∂Z. Applying this to a complex representingRHomHK⊗H

op

K
(HK ,HK)

and observing that we have canonical quasi-isomorphisms Γ̂+(F) → Bar(Ĥ+),

Γ̂(F) → Bar(Ĥ) we get statements (a,b).

Statement (c) follows from isomorphisms HH∗(M) ∼= H∗(G,M), HHĤ
∗ (N) ∼=

HHH
∗ (N) for an H-bimodule M and an Ĥ-bimodule N . �

5.2. Calculation of HH0. In this subsection we prove part (a) of the Theorem.

Proposition 5.3. a) We have a short exact sequence:

(15) 0 → KG → HHc
0(Sm) → Ŝ(T )/S(T ) → 0.

b) We have a natural isomorphism KcG
∼= Im(HHc

0(Sm) → HH0(Sm)).

We start the proof with the following

Lemma 5.4. G acts trivially on the cokernel of the map H → S(Y∆).

Proof follows from Lemma 2.25. �

Corollary 5.5. We have:
H1(G,CoKer(H → S(Y∆))) = 0.

H1(G,CoKer(H → Ŝ(Y∆))) = Ŝ(T )/S(T ),

where Ŝ(T ) is the Tate completion of S(T ) (functions on the torus).

Proof of Proposition 5.3. By Lemma 5.2 (c), HHc
∗(Sm) is identified with the

derived G-coinvariants in the complex H → Ŝ(Y ) which is clearly isomorphic to
(14). We have a short exact sequence

0 → S(Y0) → S(Y ) → S(Y∆) → 0,
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where Y0 = Y \ Y∆ is the open set of non-colinear pairs of vectors. Thus the
action of G on Y0 is almost free, i.e. the stabilizer of every point in {±1}, and
the orbits of G on Y0 are indexed by the finite set F×/(F×)2. This shows that
H1(G,S(Y0)) = 0 and H0(G,S(Y0)) is finite dimensional. Denoting as above

Ŝ(Y ) = S(Y ) ⊗C[̟,̟−1] C((̟)) and similarly for Ŝ(Y0)) we see Hi(G,S(Y0)) = 0
for all i. Thus derived G coinvariants of the complex (14) are canonically isomor-

phic to derived G-coinvariants of the quotient complex C = H → Ŝ(Y∆). Notice

that H0(C) = K, H1(C) = CoKer(H → Ŝ(Y∆))) and C is quasi-isomorphic to
the complex with zero differential since the category of G-modules has homological
dimension one. Thus part(a) of the Proposition follows from Corollary 5.5.

Lemma 5.2 shows that Barc(Sm) is canonically quasiisomorphic to C
L
⊗GC. One

the other hand, we have a short exact sequence of complexes

0 → Barc(Sm) → Bar(Sm) → Bar(Ĥ(T+)) → 0,

which yields a long exact sequence on cohomology:

· · · → HHi+1(Ĥ(T+)) → HHc
i (Sm) → HHi(Sm) → · · ·

We are interested in i = 0. We have HH1(Ĥ(T+)) ∼= Ĥ(T+). To finish the proof
we need another

Lemma 5.6. a) Let us identify

HH1(Ĥ(T )) = H1(G, Ŝ(Y∆)) = Ŝ(T ).

Then the image of the natural map HH1(Ĥ(T+)) → HH1(Ĥ(T )) coincides with

̟Ŝ(T+), i.e. with the space of functions supported on ̟T+, where ̟ ∈ F is a
uniformizer.

b) In view of (15), part (a) yields a map ̟Ŝ(T+) ∩ S(T ) → KG ⊂ HHc
0(Sm).

This map induces an isomorphism onto (Knc)G where Knc ⊂ K is the space of
measures supported on noncompact elements.

Proof of the Lemma. By Hochschild-Kostant-Rosenberg, we can identify Hochschild

homology with forms. It is easy to see that elements in S(T 0) ⊂ Ŝ(T ) (where T 0

is the maximal compact subgroup in the torus T ) locally on each component of
Bernstein center are proportional to dz

z for a local coordinate coming from a global

coordinate on C×. On the other hand, the image of HH1(Ĥ(T+)) equals C[[z]]dz,
this proves (a).

To prove (b) observe that the map in question can be described as follows.
We have a short exact sequence of G-modules

0 → K → H → I → 0,

where I = Im(H → S(Y∆)) which yields the Bockstein homomorphism φ : H1(G, I) →
H0(G,K). By Corollary 5.5 we have H1(G, I) ∼= H1(G,S(Y∆)) = H1(G,µP1) ⊗
S(T ) = S(T ). In view of (a) it suffices to check that φ : S(̟T+)−̃→H0(G,K

nc).
We have a direct sum decomposition H = Hc⊕Hnc compatible with the decom-

position S(Y∆) = S(Y c∆)⊕S(Y nc∆ ), where Y c∆ = P1×O× and Y nc∆ = Y∆\Y nc∆ . Let us
further decompose Y nc∆ = Y +

∆ ∪Y −
∆ , where Y +

∆ = P1×(̟O\{0}), Y −
∆ = P1×(F \O).

The image of φ clearly coincides with the image of H1(G,S(Y
+
∆ )) under the

map coming from the class in Ext1(S(Y +
∆ ),K) induced from the above short exact

sequence. It is clear that it is contained in H0(G,K
nc). It coincides with H0(G,K

nc)
for the following reason. Consider a regular orbit O = G/T , then the image KO of
K in S(O) is the kernel of the pushforward map S(G/T ) → µG/B ⊕ µG/B− . Then
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(KO)G is one dimensional and the Bockstein map H1(G,µG/B) → H0(G,KO) is
nonzero. �

The Lemma clearly implies statement (b) of Proposition. �

5.3. Cocycles for Chern character and Euler characteristic. Let now M be
a locally projective object of Sm.

Thus there exist idempotents e ∈Matn(H), e+ ∈Matm(Ĥ+) and a, b ∈Matn,m(Ĥ),

such that ab = e, ba = e+ with isomorphismsM |Z ∼= Hne, M
∂̂Z

∼= Ĥm
+ e+, so that a,

b induces the two inverse isomorphisms between the restrictions of Hne and Ĥ+e+
to the punctured formal neighborhood of ∂Z coming from the identification with
the restriction of M .

Lemma 5.7. In the above notation, c̄h(M) is represented by the cocycle for
Bar(Sm) c = (cH, c+, ĉ), where

c =
∑
i

eii ∈ H, c+ =
∑

j(e+)jj ∈ Ĥ+, ĉ =
∑
i,j

aij ⊗ bji ∈ Ĥ ⊗ Ĥ.

Proof. This is a special case of Example 4.1(c). �

To state the next result we need the following notation. Fix g ∈ G(O) normalizing
K thus g acts by conjugation on the sheaf of algebras A and on global sections of
an object in A−mod.

We introduce a zero-cochain τg for the dual complexBar(Sm)∗, τg = (τH(g), τ+(g), τ̂(g)),

where τH(g) = WOg ∈ H∗ (the weighted orbital integral), τ+(g) = 0 ∈ Ĥ∗
+ and

τ̂ (g) : α ⊗ β 7→ Tr([α,Π]β ◦ g, Ŝ(X)), where α, β ∈ Ĥ act on Ŝ(X) by left multi-
plication, Π is the operator of multiplication by the characteristic function of X+

acting on Ŝ(X) and g is acting on the right.

Proposition 5.8. a) The cochain τg is a cocycle. It satisfies:

Tr(g,RHom(H
′
,M)) = 〈τg, c̄h(M)〉,

forM ∈ Sm, where H
′
is the intertwining bimodule introduced at the end of section

3.
b) For φ ∈ KcG = Im(HHc

0(Sm) → HH0(Sm)) we have:

〈φ, τg〉 =WOg(φ).

c) The image of τg in HHc
0(Sm) is independent of the auxiliary choices in the

definition of τg.

Proof. Part (c) clearly follows from (b).
We deduce (b) from Lemma 3.14. Let us present the mapKcG → HH0(Bar

c(Sm))
by an explicit cocycle. Fix f ∈ K ∩HK . Consider the decomposition of S(G/U)K

as a direct sum of spaces of functions on preimages of K orbits in G/B. Then
the action of f on this space has zero block diagonal components with respect to

this decomposition. Also, the image of f in Ĥ = Ŝ(Y ) is contained in S(Y0),

while Ŝ(Y0)G = 0 by the proof of Proposition 5.3. Thus f =
∑
hi −

gi hi, gi ∈ G,

hi ∈ Ŝ(Y0). It is easy to check that the image of f̄ inHH0(Bar
c(Sm)) is represented

by (f,
∑
giδK ⊗ hig

−1) ∈ H ⊕ Ĥ ⊗ Ĥ.
It remains to check that for hi as above we have

(16) Tr([gi,Π]hig
−1
i ◦ g, Ŝ(X)) = 0.

We claim that the following stronger statement holds: the operator [gi,Π]hig
−1
i

acting on S(G/U) has zero diagonal blocks with respect to the above block decom-
position. To see this pick an open compact subgroup K ′ such that hi ∈ H

g
−1
i K′

for all i. Then g−1
i sends a summand of the decomposition corresponding to a
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K ′-orbit U ⊂ G/B to a summand corresponding to the g−1

i K ′ orbits g−1
i (U), the

endomorphism hi acts by an operator with zero diagonal blocks with respect to

the decomposition corresponding to g−1

i K ′ orbits, while [gi,Π] sends the summand
corresponding to an orbit g−1

i (U) to the summand corresponding to the orbit U
(this is clear since Π preserves all the direct sum decompositions above). Equality
(16) and hence part (b) of the Proposition follows.

The proof of part (a) occupies the next subsection.

5.4. Tate cocyle and weighted orbital integral.

5.4.1. The Tate cocycle. A general reference for the following material is [5] or [4],
especially [4], §4.2.13, p 142; §7.13.18, p 344, developing the theme started in [21].

Let V be a Tate vector space, then the Lie algebra End(V ) of continuous endo-

morphism of V has a canonical central extension, which we will denote by Ẽnd(V ).
Let Endb(V ) ⊂ End(V ) denote the subspace of endomorphisms with bounded

image, and Endd(V ) ⊂ End(V ) be the subspace of endomorphisms having open
kernel (here b stands for bounded, and d for discrete). Then Endb(V ), Endd(V )
are two-sided ideals in the associative algebra End(V ), and hence ideals in the
Lie algebra End(V ). Further, the trace functional is defined on the intersection
Endbd = Endb(V ) ∩ Endd(V ), tr : Endbd → k; it satisfies

(17)
tr([E,Ebd]) = 0;
tr([Eb, Ed]) = 0

for Eb ∈ Endb(V ), Ed ∈ Endd(V ), Ebd ∈ Endbd(V ), E ∈ End(V ).

The central extension Ẽnd(V ) → End(V ) is specified by the requirement that
it is trivialized on the ideals Endb(V ), Endd(V ), i.e. the embeddings Endb(V ) →֒
End(V ), Endd(V ) →֒ End(V ) are lifted to (fixed) homomorphisms sb : End

b(V ) →֒

Ẽnd(V ), sd : Endd(V ) →֒ Ẽnd(V ), where sb, sd intertwine the adjoint action of
End(V ); and for Ebd ∈ Endbd(V ) we have

(18) sb(E
bd)− sd(E

bd) = tr(Ebd) · c,

where c ∈ Ẽnd(V ) is the generator of the kernel of the projection Ẽnd(V ) →
End(V ).

Suppose now that a decomposition of V

(19) V = V + ⊕ V −

into a sum of a bounded open and a discrete subspaces is given, and let Π denote
the projection to the bounded open V + along the discrete V −. Then for any
E ∈ End(V ) in the right-hand side of

E = E ·Π+ E · (Id−Π)

the first summand lies in Endb(V ), and the second one in Endd(V ). Thus we get

a splitting s = sΠ : End(V ) → Ẽnd(V ),

(20) sΠ(E) = sb(E ·Π) + sd(E · (Id−Π)).

It is also easy to see that for E preserving V− (respectively, V−) the element
sΠ(E) is independent of the choice of the complement V− (respectively, V+). Thus
we get a canonical splitting sV + (respectively, sV −) of the central extension on
the subalgebras EndV+

(V ), EndV −(V ) consisting of endomorphisms preserving V+
(respectively, V−).

Denote by C(E1, E2) the corresponding 2-cocycle of End(V ), i.e. a bi-linear
functional, such that

[s(E1), s(E2)] = s([E1, E2]) + C(E1, E2) · c.
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Then we have

(21) C(E1, E2) = Tr(E1 ◦Π ◦ E2 ◦ (Id−Π)− E2 ◦Π ◦ E1 ◦ (Id−Π)).

Finally, suppose that another discrete cobounded space W ⊂ V is fixed. The
splitting sW of the central extension on EndW (V ) yields a linear functional σW =
sW − sΠ|EndW (V ) on EndW (V ).

Example 5.9. We have

(22) σW (Id) = dim(V + ∩W )− co dimV (V
+ +W ).

Also, suppose that F is an automorphism of V such that either F (V +) ⊂ V +, or
V + ⊂ F (V +); set dV +(F ) = − dim(V +/F (V +)) in the former and
dV+

(F ) = dim(F (V +)/V +) in the latter case. Then

(23) C(F, F−1) = dV +(F ).

Both equalities follow directly from the definitions.

Consider now the complex

(24) Cone (Bar(EndV +(V ))⊕Bar(EndW (V )) → Bar(End(V ))) [−1]

and define a zero-cochain for the dual complex ǫ = (0, σW , C).
It is easy to check that the zero-cochain ǫ is in fact a cocycle whose cohomology

class does not depend on the choice of V − for a fixed V +.

5.4.2. Weighted orbital integral and Tate cocycle. We now apply this in the following
example. Consider the Tate space

(25) V = Ĥ ∼= Ŝ(Y ) ∼= Ŝ(X)

where X was defined in the second paragraph of §5.1, the first isomorphism was
discussed above and the second one is induced by the inverse intertwining operator.

LetW be the image ofH in the space (25) and Ŝ(X)+ be the space of functions sup-

ported on X+ while Ŝ(X)− is the space of functions supported on the complement
of X+.

The group K0 acts on all these spaces. Fix a representation ρ of K0 and set

Vρ = HomK0
(ρ, V ), Wρ = HomK0

(ρ,H) and V ±
ρ = HomK0

(ρ, Ŝ(X)
±
).

The complex (12) maps naturally to the complex (24) constructed from V = Vρ
V ± = V ±

ρ and W =Wρ, let aρ denote that map.

Lemma 5.10. We have a∗ρ(ǫ) =
∫
K0
τgTr(g, ρ)dg.

Proof. Equality of components in (Ĥ⊗2)∗ follows by inspection.
It remains to check equality of components in H∗. Recall (see e.g. [3, §I.11])

that WOg(f) = φ(0), where φ is a linear function on dominant weights such that
for large λ we have

φ(λ) = Tr(f ◦Πλ ◦ g,H).

Here f acts on H by convolution on the left, g acts by right translation and Πλ
is the characteristic function of G≤λ which is the union of two sided K0 = G(O)
cosets corresponding to µ ≤ λ.

It follows that for a locally constant function ψ on K0 supported on regular
semisimple elements there exists an affine linear function φψ(λ), such that

φψ(λ) = Tr(f ◦Πλ ◦ ψ,H) for λ≫ 0,
∫

K0

WOg(f)ψ(g)dg = φψ(0),

where ψ acts by convolution on the right.
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Comparing this with the definition of Tate cocycle ǫ and of the intertwining

bimodule H
′
(see Example 3.13) and using Lemma 3.14, we see that for ψ as above:

∫

K0

WOg(f)ψ(g)dg = σH(f ⊗ ψ),

where f ⊗ψ acts on the Tate space (25) via its natural H-bimodule structure. Both
sides of the last equality are continuous in ψ with respect to the L1 norm: this is
clear for the right hand side and it follows from Theorem 2.14 for the left hand
side. Thus validity of the equality for ψ supported on regular semisimple elements
implies its validity for all ψ. �

5.4.3. Sheaves of algebras on curves. We now apply the above construction in the
following setting. Let C be a smooth4 complete curve with a finite collection of

points x = {x1, . . . , xn}. Let Ĉx, Ĉ
0
x
be the formal neighborhood and the punc-

tured formal neighborhood of x respectively. Let V be a torsion free coherent sheaf
on C, and set V = Γ(Ĉ0

x
,V), W = Γ(C \ x,V), V + = Γ(Ĉx,V). Fixing formal

coordinates zi at xi and trivializations of V on the formal neighborhood of xi we
get an isomorphism V ∼= C((z))N sending V+ to C[[z]]N , thus we get a splitting
V = V + ⊕ V − where V − ∼= z−1C[z−1]N .

Let A be a torsion free coherent sheaf of algebras on C with a right action on
V ; we assume also that A has finite homological dimension (i.e. that the algebra of
sections of A on an affine open set has this property).

Let A = Γ(C \ x,A), Â+ = Γ(Ĉx,A) and Â = Γ(Ĉ0
x
,A). Then the complex

(26) Cone
(
Bar(A) ⊕Bar(Â+) → Bar(Â)

)
[−1]

computes Hochschild homology of the category A − mod. On the other hand, it
maps naturally to the complex (24), let α denote this map.

Lemma 5.11. Suppose that V is a locally projective sheaf of right A-modules.
Then for a coherent sheaf M of (left) A-modules we have:

(27) 〈ch(M), α∗(ǫ)〉 = χ(V ⊗A M),

where χ denotes Euler characteristic.

Proof. Both sides of (27) do not change if we replace A by EndOC
(V)op and M

by EndOC
(V)op ⊗A M. Thus we can assume without loss of generality that A =

EndOC
(V)op. In that case we have a canonical equivalence of categories Coh(C) ∼=

A−mod, F 7→ F ⊗OC
V∗.

Furthermore, the operator [F ] 7→ [F ⊗ V ] induces an automorphism of the
rational Grothendieck group K0(Coh(C)) ⊗ Q, thus it suffices to prove (27) for
A = EndOC

(V)op, M = F ⊗ V∗, where F = V ⊗ F ′, thus F = F ′ ⊗OC
A. Now,

both sides of (27) do not change if we replace A by OC and M by F ′; the locally
projective module V is replaced by the corresponding coherent sheaf V|OC

. Thus
we have reduced to the case A = OC .

It is easy to see that both sides of (27) are additive on short exact sequences as a
function of both V and F . A locally free sheaf on a curve admits a filtration whose
associated graded is a sum of line bundles; also, since C is smooth the Grothendieck
group K0(Coh(C)) is generated by line bundles. Thus we can assume without loss
of generality that both M and V are line bundles.

If M is a trivial line bundle then ch(M) is represented by the cocycle (1, 1, 1⊗1),
so (27) follows from (22). Notice also that both sides of (27) for a fixed V depend
only on the degree of the line bundle M (here we assume without loss of generality
that the curve C is irreducible): this is clear for the right hand side, while for the

4This assumption is likely unnecessary but it allows one to simplify the statements and the
proofs.
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left hand side it follows from the fact that a regular function on an abelian variety
is constant. Thus it suffices to consider the case when M = O(nx), x ∈ x. In this
case ch(M) is represented by the cocycle (1, 1, f ⊗ f−1) where f is a function on
the formal punctured neighborhood of x having order n at x and order 0 at other
points. In this case (27) follows from (22) and (23). �

Corollary 5.12. a) Suppose that V ∼= eA is a direct summand in a free rank one
module for an idempotent e ∈ Γ(C,A). Then for a coherent sheaf M of A-modules
we have:

〈ch(M), α∗(ǫ)〉 = χ(eM),

where χ denotes the Euler characteristic.
b) Suppose that M has finite support contained in C \ x. Then the equality in

(a) holds under a weaker assumption that V|C\x
∼= Ae|C\x.

5.4.4. Proof of Proposition 5.8(a). It suffices to check that we get an equality upon
averaging against a character of any representation ψ of K0 = G(O).

In view of Corollary 5.12(b) it suffices to check that the cochain
∫
K0
τgTr(g, ψ)dg

is obtained as in Corollary 5.12 for an appropriate choice of trivialization for V on the
formal neighborhood of x, where C ⊂ Z is the union of one dimensional components
containing representations with nonzeroK-invariant vectors, x = (Z\Z)∩C, A = H,

zi are the natural local coordinates and V = HomK0
(ψ,H

′
). Applying Lemma 5.10

we reduce to showing that a∗ψ(ǫ) has the required form.

It follows from Lemma 3.14 that the space V+ of sections of H
′
on the formal

neighborhood of Z \ Z is identified with Ŝ(X+)
K×K

(notation introduced in the
second paragraph of §(5.1)); moreover, we can choose a trivialization of the sheaf H

on the formal neighborhood of Z\Z so that constant sections correspond to functions
supported on the set X(O) = X+ \ (tX+). Then the space V− is identified with
S(X \X+)

K×K . The desired equality now follows by inspecting the definitions. �

5.5. Proof of part (b) of Theorem 5.1. For g ∈ K0 the formula follows from
Proposition 5.8. The general case of a compact element follows by conjugating with
an element of GL(2, F ). �
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